Feeding and Feedback in the Powerful Radio Galaxy 3C 120
NASA Technical Reports Server (NTRS)
Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.;
2017-01-01
We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.
Grumetto, Lucia; Russo, Giacomo; Barbato, Francesco
2016-08-01
The affinity indexes for phospholipids (log kW(IAM)) for 42 compounds were measured by high performance liquid chromatography (HPLC) on two different phospholipid-based stationary phases (immobilized artificial membrane, IAM), i.e., IAM.PC.MG and IAM.PC.DD2. The polar/electrostatic interaction forces between analytes and membrane phospholipids (Δlog kW(IAM)) were calculated as the differences between the experimental values of log kW(IAM) and those expected for isolipophilic neutral compounds having polar surface area (PSA) = 0. The values of passage through a porcine brain lipid extract (PBLE) artificial membrane for 36 out of the 42 compounds considered, measured by the so-called PAMPA-BBB technique, were taken from the literature (P0(PAMPA-BBB)). The values of blood-brain barrier (BBB) passage measured in situ, P0(in situ), for 38 out of the 42 compounds considered, taken from the literature, represented the permeability of the neutral forms on "efflux minimized" rodent models. The present work was aimed at verifying the soundness of Δlog kW(IAM) at describing the potential of passage through the BBB as compared to data achieved by the PAMPA-BBB technique. In a first instance, the values of log P0(PAMPA-BBB) (32 data points) were found significantly related to the n-octanol lipophilicity values of the neutral forms (log P(N)) (r(2) = 0.782) whereas no significant relationship (r(2) = 0.246) was found with lipophilicity values of the mixtures of ionized and neutral forms existing at the experimental pH 7.4 (log D(7.4)) as well as with either log kW(IAM) or Δlog kW(IAM) values. log P0(PAMPA-BBB) related moderately to log P0(in situ) values (r(2) = 0.604). The latter did not relate with either n-octanol lipophilicity indexes (log P(N) and log D(7.4)) or phospholipid affinity indexes (log kW(IAM)). In contrast, significant inverse linear relationships were observed between log P0(in situ) (38 data points) and Δlog kW(IAM) values for all the compounds but ibuprofen and chlorpromazine, which behaved as moderate outliers (r(2) = 0.656 and r(2) = 0.757 for values achieved on IAM.PC.MG and IAM.PC.DD2, respectively). Since log P0(in situ) refer to the "intrinsic permeability" of the analytes regardless their ionization degree, no correction for ionization of Δlog kW(IAM) values was needed. Furthermore, log P0(in situ) were found roughly linearly related to log BB values (i.e., the logarithm of the ratio brain concentration/blood concentration measured in vivo) for all the analytes but those predominantly present at the experimental pH 7.4 as anions. These results suggest that, at least for the data set considered, Δlog kW(IAM) parameters are more effective than log P0(PAMPA-BBB) at predicting log P0(in situ) values for all the analytes. Furthermore, ionization appears to affect differently, and much more markedly, BBB passage of acids (yielding anions) than that of the other ionizable compounds.
First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters
NASA Astrophysics Data System (ADS)
Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.
2013-05-01
We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations
NASA Astrophysics Data System (ADS)
Xu, Xinfeng; Arav, Nahum; Miller, Timothy; Benn, Chris
2018-05-01
We determine the physical conditions and location of the outflow material seen in the mini-BAL quasar SDSS J1111+1437 (z = 2.138). These results are based on the analysis of a high S/N, medium-resolution VLT/X-shooter spectrum. The main outflow component spans the velocity range ‑1500 to ‑3000 km s‑1 and has detected absorption troughs from both high-ionization species: C IV, N V, O VI, Si IV, P V, and S IV; and low-ionization species: H I, C II, Mg II, Al II, Al III, Si II, and Si III. Measurements of these troughs allow us to derive an accurate photoionization solution for this absorption component: a hydrogen column density, {log}({N}{{H}})={21.47}-0.27+0.21 cm‑2 and ionization parameter, {log}({U}{{H}})=-{1.23}-0.25+0.20. Troughs produced from the ground and excited states of S IV combined with the derived {U}{{H}} value allow us to determine an electron number density of {log}({n}{{e}})={3.62}-0.11+0.09 cm‑3 and to obtain the distance of the ionized gas from the central source: R={880}-260+210 pc.
Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum
NASA Astrophysics Data System (ADS)
Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.
2018-01-01
We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa
2013-08-01
In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.
NASA Astrophysics Data System (ADS)
Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.
2014-07-01
We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.
Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN
NASA Astrophysics Data System (ADS)
Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark
2017-01-01
Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.
NASA Technical Reports Server (NTRS)
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-01-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.
NASA Astrophysics Data System (ADS)
Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.
2018-05-01
Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10-20 Å is low, Z = 0.02-0.2 Z⊙, and the ionization parameter higher (logU -1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg-1 Hz 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1-0.2 Z⊙ and logU = -1.7 to - 1.5. Conclusions: A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2-4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.JSPS Overseas Research Fellow.
The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta
2016-06-01
We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.
Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen
2017-12-15
Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
NASA Astrophysics Data System (ADS)
Sobral, David; Matthee, Jorryt; Darvish, Behnam; Smail, Ian; Best, Philip N.; Alegre, Lara; Röttgering, Huub; Mobasher, Bahram; Paulino-Afonso, Ana; Stroe, Andra; Oteo, Iván
2018-06-01
Deep narrow-band surveys have revealed a large population of faint Ly α emitters (LAEs) in the distant Universe, but relatively little is known about the most luminous sources ({L}_{Lyα } ≳ 10^{42.7} erg s-1; L_{Lyα }≳ L^*_{Lyα }). Here we present the spectroscopic follow-up of 21 luminous LAEs at z ˜ 2-3 found with panoramic narrow-band surveys over five independent extragalactic fields (≈4 × 106 Mpc3 surveyed at z ˜ 2.2 and z ˜ 3.1). We use WHT/ISIS, Keck/DEIMOS, and VLT/X-SHOOTER to study these sources using high ionization UV lines. Luminous LAEs at z ˜ 2-3 have blue UV slopes (β =-2.0^{+0.3}_{-0.1}) and high Ly α escape fractions (50^{+20}_{-15} per cent) and span five orders of magnitude in UV luminosity (MUV ≈ -19 to -24). Many (70 per cent) show at least one high ionization rest-frame UV line such as C IV, N V, C III], He II or O III], typically blue-shifted by ≈100-200 km s-1 relative to Ly α. Their Ly α profiles reveal a wide variety of shapes, including significant blue-shifted components and widths from 200 to 4000 km s-1. Overall, 60 ± 11 per cent appear to be active galactic nucleus (AGN) dominated, and at LLyα > 1043.3 erg s-1 and/or MUV < -21.5 virtually all LAEs are AGNs with high ionization parameters (log U = 0.6 ± 0.5) and with metallicities of ≈0.5 - 1 Z⊙. Those lacking signatures of AGNs (40 ± 11 per cent) have lower ionization parameters (log U=-3.0^{+1.6}_{-0.9} and log ξion = 25.4 ± 0.2) and are apparently metal-poor sources likely powered by young, dust-poor `maximal' starbursts. Our results show that luminous LAEs at z ˜ 2-3 are a diverse population and that 2× L^*_{Lyα } and 2× M_UV^* mark a sharp transition in the nature of LAEs, from star formation dominated to AGN dominated.
Ruiz-Angel, M J; Carda-Broch, S; García-Alvarez-Coque, M C; Berthod, A
2004-03-19
Logarithm of retention factors (log k) of a group of 14 ionizable diuretics were correlated with the molecular (log P o/w) and apparent (log P(app)) octanol-water partition coefficients. The compounds were chromatographed using aqueous-organic (reversed-phase liquid chromatography, RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC) with the anionic surfactant sodium dodecyl sulfate (SDS), in the pH range 3-7, and a conventional octadecylsilane column. Acetonitrile was used as the organic modifier in both modes. The quality of the correlations obtained for log P(app) at varying ionization degree confirms that this correction is required in the aqueous-organic mixtures. The correlation is less improved with SDS micellar media because the acid-base equilibriums are shifted towards higher pH values for acidic compounds. In micellar chromatography, an electrostatic interaction with charged solutes is added to hydrophobic forces; consequently, different correlations should be established for neutral and acidic compounds, and for basic compounds. Correlations between log k and the isocratic descriptors log k(w), log k(wm) (extrapolated retention to pure water in the aqueous-organic and micellar-organic systems, respectively), and psi0 (extrapolated mobile phase composition giving a k = 1 retention factor or twice the dead time), and between these descriptors and log P(app) were also satisfactory, although poorer than those between log k and log P(app) due to the extrapolation. The study shows that, in the particular case of the ionizable diuretics studied, classical RPLC gives better results than MLC with SDS in the retention hydrophobicity correlations.
Hay, Tanya; Jones, Rhys; Beaumont, Kevin; Kemp, Mark
2009-09-01
The relationship between rat pharmacokinetics and physicochemical parameters [the partition coefficient between octanol and buffer at pH 7.4 (log D((7.4))) and pK(a)] was studied for a series of tetrahydropyran compounds. Sixteen compounds ranging in log D((7.4)) 0.1 to 1.8 were administered intravenously to rats, and the pharmacokinetic parameters were determined from blood concentration time curves. Across the series, a weak correlation was observed between log D((7.4)) and blood clearance, suggesting that log D((7.4)) values less than 0.5 were required to prevent clearance at hepatic blood flow. In terms of the volume of distribution (V(d)), the compounds fell into three distinct subseries characterized by the number of basic centers and differences in ionization of each basic center at physiological pH. These were referred to as the monobasic, weak second base, and strong second base subseries. All the compounds exhibited V(d) greater than body water, as would be expected from their lipophilic and basic nature. For a given clog P, the strong second base subseries showed higher V(d) than the weak second base subseries, which in turn exhibited higher values than the monobasic subseries. In addition, for the weak second base subseries, V(d) could be tuned by modulating the pK(a) of the second basic center. This relationship was rationalized in respect to the interactions of the ionizable centers with phospholipid heads in the cell membrane and/or lysosomal trapping. Compounds in the weak second base subseries showed optimal V(d), and when combined with a log D((7.4)) of 0.1, driving to moderate blood clearance, one compound showed the optimal pharmacokinetic profile.
Caron, Giulia; Vallaro, Maura; Ermondi, Giuseppe; Goetz, Gilles H; Abramov, Yuriy A; Philippe, Laurence; Shalaeva, Marina
2016-03-07
This study describes the design and implementation of a new chromatographic descriptor called log k'80 PLRP-S that provides information about the lipophilicity of drug molecules in the nonpolar environment, both in their neutral and ionized form. The log k'80 PLRP-S obtained on a polymeric column with acetonitrile/water mobile phase is shown to closely relate to log Ptoluene (toluene dielectric constant ε ∼ 2). The main intermolecular interactions governing log k'80 PLRP-S were deconvoluted using the Block Relevance (BR) analysis. The information provided by this descriptor was compared to ElogD and calclog Ptol, and the differences are highlighted. The "charge-flush" concept is introduced to describe the sensitivity of log k'80 PLRP-S to the ionization state of compounds in the pH range 2 to 12. The ability of log k'80 PLRP-S to indicate the propensity of neutral molecules and monoanions to form Intramolecular Hydrogen Bonds (IMHBs) is proven through a number of examples.
Multiphase gas in quasar absorption-line systems
NASA Technical Reports Server (NTRS)
Giroux, Mark L.; Sutherland, Ralph S.; Shull, J. Michael
1994-01-01
In the standard model for H I Lyman-limit (LL) quasar absorption-line systems, the absorbing matter is galactic disk and halo gas, heated and photoionized by the metagalactic radiation field produced by active galaxies. In recent Hubble Space Telescope (HST) observations (Reimers et al. 1992; Vogel & Reimers 1993; Reimers & Vogel 1993) of LL systems along the line of sight to the quasar HS 1700+6416, surprisingly high He I/H I ratios and a wide distribution of column densities of C, N, and O ions are deduced from extreme ultraviolet absorption lines. We show that these observations are incompatible with photoionization equilibrium by a single metagalactic ionizing background. We argue that these quasar absorption systems possess a multiphase interstellar medium similar to that of our Galaxy, in which extended hot, collisionally ionized gas is responsible for some or all of the high ionization stages of heavy elements. From the He/H ratios we obtain -4.0 less than or = log U less than or = -3.0, while the CNO ions are consistent with hot gas in collisional ionization equilibrium at log T = 5.3 and (O/H) = -1.6. The supernova rate necessary to produce these heavy elements and maintain the hot-gas energy budget of approximately 10(exp 41.5) ergs/s is approximately 10(exp -2)/yr, similar to that which maintains the 'three-phase' interstellar medium in our own Galaxy. As a consequence of the change in interpretation from photoionized gas to a multiphase medium, the derived heavy-element abundances (e.g., O/C) of these systems are open to question owing to substantial ionization corrections for unseen C V in the hot phase. The metal-line ratios may also lead to erroneous diagnostics of the shape of the metagalactic ionizaing spectrum and the ionizing parameter of the absorbers.
Sleno, Lekha; Volmer, Dietrich A
2006-01-01
Growing interest in the ability to conduct quantitative assays for small molecules by matrix-assisted laser desorption/ionization (MALDI) has been the driving force for several recent studies. This present work includes the investigation of internal standards for these analyses using a high-repetition rate MALDI triple quadrupole instrument. Certain physicochemical properties are assessed for predicting possible matches for internal standards for different small molecules. The importance of similar molecular weight of an internal standard to its analyte is seen through experiments with a series of acylcarnitines, having a fixed charge site and growing alkyl chain length. Both acetyl- and hexanoyl-carnitine were systematically assessed with several other acylcarnitine compounds as internal standards. The results clearly demonstrate that closely matched molecular weights between analyte and internal standard are essential for acceptable quantitation results. Using alpha-cyano-4-hydroxycinnamic acid as the organic matrix, the similarities between analyte and internal standard remain the most important parameter and not necessarily their even distribution within the solid sample spot. Several 4-quinolone antibiotics as well as a diverse group of pharmaceutical drugs were tested as internal standards for the 4-quinolone, ciprofloxacin. Quantitative results were shown using the solution-phase properties, log D and pKa, of these molecules. Their distribution coefficients, log D, are demonstrated as a fundamental parameter for similar crystallization patterns of analyte and internal standard. In the end, it was also possible to quantify ciprofloxacin using a drug from a different compound class, namely quinidine, having a similar log D value as the analyte. Copyright 2006 John Wiley & Sons, Ltd.
Role of photoacoustics in optogalvanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, D.; McGlynn, S.P.
1990-09-15
Time-resolved laser optogalvanic (LOG) signals have been induced by pulsed laser excitation (l{ital s}{sub {ital j}}{r arrow}2{ital p}{sub {ital k}}, Paschen notation) of a {approximately}30 MHz radio-frequency (rf) discharge in neon at {approximately}5 torr. Dramatic changes of the shape/polarity of certain parts of the LOG signals occur when the rf excitation frequency is scanned over the electrical resonance peak of the plasma and the associated driving/detecting circuits. These effects are attributed to ionization rate changes (i.e., laser-induced alterations of the plasma conductivity), with concomitant variations in the plasma resonance characteristics. In addition to ionization rate changes, it is shown thatmore » photoacoustic (PA) effects also play a significant role in the generation of the LOG signal. Those parts of the LOG signal that are invariant with respect to the rf frequency are attributed to a PA effect. The similarity of LOG signal shapes from both rf and dc discharges suggests that photoacoustics play a similar role in the LOG effect in dc discharges. Contrary to common belief, most reported LOG signal profiles, ones produced by excitation to levels that do not lie close to the ionization threshold, appear to be totally mediated by the PA effect.« less
X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations
NASA Technical Reports Server (NTRS)
Garcia, J.; Kallman, T. R.; Mushotzky, R. F.
2011-01-01
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.
A Search for H I Lyα Counterparts to Ultrafast X-Ray Outflows
NASA Astrophysics Data System (ADS)
Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz
2018-06-01
Prompted by the H I Lyα absorption associated with the X-ray ultrafast outflow at ‑17,300 km s‑1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H I Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s‑1 have 2σ upper limits on the H I column density of generally ≲2 × 1013 cm‑2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe XXVI Lyα X-ray absorption with equivalent widths >30 eV and associated H I Lyα absorption with {N}{{H}{{I}}}< 2× {10}13 {cm}}-2 requires total absorbing column densities {N}{{H}}> 5× {10}22 {cm}}-2 and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H I Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombesi, F.; Kallman, T.; Leutenegger, M. A.
2016-10-20
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less
NASA Technical Reports Server (NTRS)
Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.
2016-01-01
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.
Zhang, Keda; Abraham, Michael H; Liu, Xiangli
2017-04-15
Experimental values of permeability coefficients, as log K p , of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37°C for the effect of temperature. The values of log K p for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log K p values have been regressed against Abraham solute descriptors to yield a correlation equation with R 2 =0.866 and SD=0.432 log units. The equation can provide valid predictions for log K p of neutral molecules, ions and ionic species, with predictive R 2 =0.858 and predictive SD=0.445 log units calculated by the leave-one-out statistics. The predicted log K p values for Na + and Et 4 N + are in good agreement with the observed values. We calculated the values of log K p of ketoprofen as a function of the pH of the donor solution, and found that log K p markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log K p was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log K p . Copyright © 2017 Elsevier B.V. All rights reserved.
SU-E-T-184: Clinical VMAT QA Practice Using LINAC Delivery Log Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H; Jacobson, T; Gu, X
2015-06-15
Purpose: To evaluate the accuracy of volumetric modulated arc therapy (VMAT) treatment delivery dose clouds by comparing linac log data to doses measured using an ionization chamber and film. Methods: A commercial IMRT quality assurance (QA) process utilizing a DICOM-RT framework was tested for clinical practice using 30 prostate and 30 head and neck VMAT plans. Delivered 3D VMAT dose distributions were independently checked using a PinPoint ionization chamber and radiographic film in a solid water phantom. DICOM RT coordinates were used to extract the corresponding point and planar doses from 3D log file dose distributions. Point doses were evaluatedmore » by computing the percent error between log file and chamber measured values. A planar dose evaluation was performed for each plan using a 2D gamma analysis with 3% global dose difference and 3 mm isodose point distance criteria. The same analysis was performed to compare treatment planning system (TPS) doses to measured values to establish a baseline assessment of agreement. Results: The mean percent error between log file and ionization chamber dose was 1.0%±2.1% for prostate VMAT plans and −0.2%±1.4% for head and neck plans. The corresponding TPS calculated and measured ionization chamber values agree within 1.7%±1.6%. The average 2D gamma passing rates for the log file comparison to film are 98.8%±1.0% and 96.2%±4.2% for the prostate and head and neck plans, respectively. The corresponding passing rates for the TPS comparison to film are 99.4%±0.5% and 93.9%±5.1%. Overall, the point dose and film data indicate that log file determined doses are in excellent agreement with measured values. Conclusion: Clinical VMAT QA practice using LINAC treatment log files is a fast and reliable method for patient-specific plan evaluation.« less
NASA Astrophysics Data System (ADS)
Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.
2008-12-01
We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: elena@astroscu.unam.mx
Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281
NASA Astrophysics Data System (ADS)
Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit
2018-04-01
We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.
Fast Ionized X-ray Absorbers in AGNs
NASA Astrophysics Data System (ADS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2015-07-01
We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.
Vaze, Nachiket; Jiang, Yi; Mena, Lucas; Zhang, Yipei; Bello, Dhimiter; Leonard, Stephen S; Morris, Anna M; Eleftheriadou, Mary; Pyrgiotakis, Georgios; Demokritou, Philip
2018-03-01
Engineered water nanostructures (EWNS) synthesized utilizing electrospray and ionization of water, have been, recently, shown to be an effective, green, antimicrobial platform for surface and air disinfection, where reactive oxygen species (ROS), generated and encapsulated within the particles during synthesis, were found to be the main inactivation mechanism. Herein, the antimicrobial potency of the EWNS was further enhanced by integrating electrolysis, electrospray and ionization of de-ionized water in the EWNS synthesis process. Detailed physicochemical characterization of these enhanced EWNS (eEWNS) was performed using state-of-the-art analytical methods and has shown that, while both size and charge remain similar to the EWNS (mean diameter of 13 nm and charge of 13 electrons), they possess a three times higher ROS content. The increase of the ROS content as a result of the addition of the electrolysis step before electrospray and ionization led to an increased antimicrobial ability as verified by E. coli inactivation studies using stainless steel coupons. It was shown that a 45-minute exposure to eEWNS resulted in a 4-log reduction as opposed to a 1.9-log reduction when exposed to EWNS. In addition, the eEWNS were assessed for their potency to inactivate natural microbiota (total viable and yeast and mold counts), as well as, inoculated E.coli on the surface of fresh organic blackberries. The results showed a 97% (1.5-log) inactivation of the total viable count, a 99% (2-log) reduction in the yeast and mold count and a 2.5-log reduction of the inoculated E.coli after 45 minutes of exposure, without any visual changes to the fruit. This enhanced antimicrobial activity further underpins the EWNS platform as an effective, dry and chemical free approach suitable for a variety of food safety applications and could be ideal for delicate fresh produce that cannot withstand the classical, wet disinfection treatments.
Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes.
Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J
2003-05-06
Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on the phenol chemical structure.
The Variable Warm Absorber in Circinus X-1
NASA Astrophysics Data System (ADS)
Schulz, N. S.; Kallman, T. E.; Galloway, D. K.; Brandt, W. N.
2008-01-01
We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During the prezero phase the source did not exhibit significant variability but did exhibit an emission-line spectrum rich in H- and He-like lines from high-Z elements such as Si, S, Ar, and Ca. The light curve in the postdip observation showed quiescent and flaring episodes. Only in these flaring episodes was the source luminosity significantly higher than observed during the prezero phase. We analyzed all high-resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The prezero-phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log ξ = 3.0, down from log ξ = 4.0 in the high-flux state. The ionization balances we measure from the spectra during the postzero-phase episodes are significantly different. Both episodes feature absorbers with variable high columns, ionization parameters, and luminosity. While cold absorption remains at levels quite similar to that observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near-edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher, and we observe obscuration in analogy to the extragalactic Seyfert 2 sources. We discuss possible consequences and relate cold, lukewarm, warm, and hot absorbers to dynamic accretion scenarios.
The Binary Central Star of the Planetary Nebula A35
NASA Astrophysics Data System (ADS)
Herald, J. E.; Bianchi, L.
2002-11-01
Using new Far Ultraviolet Spectroscopic Explorer (FUSE) observations in conjunction with Space Telescope Imaging Spectrograph (STIS) and International Ultraviolet Explorer archive data, we have modeled both components of the binary central star of the planetary nebula A35. The white dwarf (the ionizing star) was modeled using the non-LTE, plane-parallel code TLUSTY. We find its parameters to be Teff=80+/-3 kK, logg=7.70+0.13-0.18 cm s-2, and [He/H]=-4+/-1 and C, N, O, Si, and Fe to be underabundant by 2 orders of magnitude with respect to their solar values. This confirms its classification as a DAO white dwarf, and using the Hipparcos distance D=163 pc, we derive a radius of RWD~=1.65×10-2 Rsolar and a mass of M~=0.5 Msolar. The modeling of the far-ultraviolet spectra also constrains the extinction value; EB-V=0.04+/-0.01. Furthermore, the FUSE and STIS data allow us to measure the molecular hydrogen (H2) and neutral hydrogen (H I) column densities along the sight line, the majority of which we believe is associated with the circumstellar material. The FUSE spectrum is best fitted with a two-component model for H2, consisting of a cool component (T=200 K) with logN(H2,cool)=19.6+0.1-0.2 cm-2 and a hot component (T~=1250 K) with logN(H2,hot)=17.4+0.3-0.4 cm-2. The H I column density is logN(HI)=20.9+/-0.1 cm-2. Assuming a typical gas/dust ratio for the interstellar medium, our value of EB-V implies that logN(HI)=20.8 cm-2 of this is circumstellar. Our low extinction value and the measured column densities imply that there is essentially no dust in the nebula. Assuming that the neutral and molecular hydrogen is contained in a sphere of comparable dimensions to the ionized shell, we derive the combined mass of the circumstellar H I and H2 to be ~2.7 Msolar. Other geometries, such as a shell surrounding the ionized region, can be excluded. The mass of the ionized hydrogen is <~1% that of the neutral material. From comparison with evolutionary calculations, we estimate the progenitor mass to be ~3.2 Msolar. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.
NASA Astrophysics Data System (ADS)
Hussain, T.; Muzahid, S.; Narayanan, A.; Srianand, R.; Wakker, B. P.; Charlton, J. C.; Pathak, A.
2015-01-01
We report the detection of Ne VIII in a zabs = 0.599 61 absorber towards the QSO PG1407+265 (zem= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (˜410 pc), metal-rich (Z ˜ Z⊙) and overdense (log nH ˜ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log nH ≤ -5.0), metal-rich (Z ≳ Z⊙) and diffuse (˜180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 < log nH < -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 < log T < 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas.
Joint fit of Warm Absorbers in COS and HETG spectra of NGC 3783
NASA Astrophysics Data System (ADS)
Fu, Xiao-Dan; Zhang, Shui-Nai; Sun, Wei; Niu, Shu; Ji, Li
2017-09-01
Warm Absorbers (WAs), as an important form of AGN outflows, show absorption in both the UV and X-ray bands. Using XSTAR generated photoionization models, for the first time we present a joint fit to the simultaneous observations of HST/COS and Chandra/HETG on NGC 3783. A total of five WAs explain well all absorption features from the AGN outflows, which are spread over a wide range of parameters: ionization parameter logξ from 0.6 to 3.8, column density log {N}{{H}} from 19.5 to 22.3 cm-2, velocity v from 380 to 1060 km s-1, and covering factor from 0.33 to 0.75. Not all the five WAs are consistent in pressure. Two of them are likely different parts of the same absorbing gas, and two of the other WAs may be smaller discrete clouds that are blown out from the inner region of the torus at different periods. The five WAs suggest a total mass outflowing rate within the range of 0.22-4.1 solar mass per year.
Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin
2014-11-01
A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Giaginis, Costas; Theocharis, Stamatios; Tsantili-Kakoulidou, Anna
2013-12-01
The advantageous effect of n-octanol as a mobile phase additive for lipophilicity assessment of structurally diverse acidic drugs both in the neutral and ionized form was explored. Two RP C18 columns, ABZ+ and Aquasil, were used for the determination of logkw indices, and the results were compared with those previously reported on a base-deactivated silica column. At pH 2.5, the use of n-octanol-saturated buffer as the mobile phase aqueous component led to high-quality 1:1 correlation between logkw and logP for the ABZ+ column, while inferior statistics were obtained for Aquasil. At physiological pH, the correlations were significantly improved if strongly ionized acidic drugs were treated separately from weakly ionized ones. In the latter case, 1:1 correlations between logD7.4 and logkw(oct) indices were obtained in the presence of 0.25% n-octanol. Concerning strongly ionized compounds, adequate correlations were established under the same conditions; however, slopes were significantly lower than unity, while large negative intercepts were obtained. According to the absolute difference (diff = logD7.4 – logkw) pattern, base-deactivated silica showed a better performance than ABZ+, however, the latter seems more efficient for the lipophilicity assessment of highly lipophilic acidic compounds. Aquasil may be the column of choice if logD7.4<3 with the limitation, however, that very hydrophilic compounds cannot be measured.
StePar: an automatic code for stellar parameter determination
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; González Hernández, J. I.; Montes, D.
2013-05-01
We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.
Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar
2015-12-01
To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
An Outburst Scenario for the X-ray Spectral Variability in 3C 111
NASA Technical Reports Server (NTRS)
Tombesi, Francesco; Reeves, J. N.; Reynolds, Christopher S.; Garcia, J.; Lohfink, A.
2013-01-01
We present a combined Suzaku and Swift BAT broad-band E=0.6-200 keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R approximately equal to 0.2) cold reflection component from distant material. We constrain the continuum cutoff at E(sub C) approximately equal to 150- 200 keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Ly alpha emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized disc reflection, this should be emitted at r(sub in) greater than or equal to 50 r(sub g) or, in the lamp-post configuration, the illuminating source should be at a height of h greater than or equal to 30 r(sub g) over the black hole. Alternatively, the line could be modeled with a hot collisionally ionized plasma with temperature kT = 22.0(sup +6.1)(sub -3.2) keV or a photo-ionized plasma with logXi=4.52(sup +0.10)(sub -0.16) erg per second cm, and column density N(sub H) greater than 3×10(sup 23) per square centimeter. However, the first and second scenarios are less favored on statistical and physical grounds, respectively. The blue-shifted absorption line in the second observation can be modelled as an ultra-fast outflow (UFO) with ionization parameter logXi=4.47(sup +0.76) (sub -0.04) erg per second cm, column density NH=(5.3(sup +1.8)(sub -1.3))×10(sup 22) per square centimeter and outflow velocity v(sub out) = 0.104+/-0.006c. Interestingly, the parameters of the photoionized emission model remarkably match those of the absorbing UFO, supporting the possibility that the same material could be responsible for both emission and absorption. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly-relativistic UFO.
Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning
2015-07-25
A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-01-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.
Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission
Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A
2009-01-01
Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings. PMID:19296717
The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars
NASA Technical Reports Server (NTRS)
Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael
1996-01-01
Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.
NASA Technical Reports Server (NTRS)
Gofford, Jason; Reeves, James N.; Tombesi, Francesco; Braito, Valentina; Turner, T. Jane; Miller, Lance; Cappi, Massimo
2013-01-01
We present the results of a new spectroscopic study of Fe K-band absorption in active galactic nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Healpha and/or Fe XXVI Lyalpha absorption lines in a large sample of 51 Type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find that statistically significant absorption is detected at E greater than or approximately equal to 6.7 keV in 20/51 sources at the P(sub MC) greater than or equal tov 95 per cent level, which corresponds to approximately 40 per cent of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available X-ray imaging spectrometer detectors, which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Healpha and Fe XXVI Lyalpha at a common velocity shift. From xstar fitting the mean column density and ionization parameter for the Fe K absorption components are log (N(sub H) per square centimeter)) is approximately equal to 23 and log (Xi/erg centimeter per second) is approximately equal to 4.5, respectively. Measured outflow velocities span a continuous range from less than1500 kilometers per second up to approximately100 000 kilometers per second, with mean and median values of approximately 0.1 c and approximately 0.056 c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly ionized circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe.
Suzaku Observations of Near-Relativistic Outflows in the BAL Quasar APM 08279+5255
NASA Astrophysics Data System (ADS)
Saez, C.; Chartas, G.; Brandt, W. N.
2009-05-01
We present results from three Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of lsim2 keV (low energy) and 7-12 keV (high energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low- and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku X-ray Imaging Spectrometer spectra (with an F-test significance of gsim99%). We interpret the low-energy absorption as arising from a low-ionization absorber with log N H ~ 23 and the high-energy absorption as due to lines arising from highly ionized (2.75 lsim logξ lsim 4.0, where ξ is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be lsim36°. We also detect likely variability of the absorption lines (at the gsim99.9% and gsim98% significance levels in the FI and BI spectra, respectively) with a rest-frame timescale of ~1 month. Assuming that the detected high-energy absorption features arise from Fe XXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be gsim10%.
Scherrer, Robert A; Donovan, Stephen F
2009-04-01
The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.
2009-01-01
The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log PI values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log PI through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log PN − I)). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pKa′′ values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log PI and log D. In contrast to the common assumption that diff (log PN − I) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log PI is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log PI. On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log DN and log DI. This work also brings attention to the fascinating world of nature’s highly stabilized ion pairs. PMID:19265385
Compilation and physicochemical classification analysis of a diverse hERG inhibition database
NASA Astrophysics Data System (ADS)
Didziapetris, Remigijus; Lanevskij, Kiril
2016-12-01
A large and chemically diverse hERG inhibition data set comprised of 6690 compounds was constructed on the basis of ChEMBL bioactivity database and original publications dealing with experimental determination of hERG activities using patch-clamp and competitive displacement assays. The collected data were converted to binary format at 10 µM activity threshold and subjected to gradient boosting machine classification analysis using a minimal set of physicochemical and topological descriptors. The tested parameters involved lipophilicity (log P), ionization (p K a ), polar surface area, aromaticity, molecular size and flexibility. The employed approach allowed classifying the compounds with an overall 75-80 % accuracy, even though it only accounted for non-specific interactions between hERG and ligand molecules. The observed descriptor-response profiles were consistent with common knowledge about hERG ligand binding site, but also revealed several important quantitative trends, as well as slight inter-assay variability in hERG inhibition data. The results suggest that even weakly basic groups (p K a < 6) might substantially contribute to hERG inhibition potential, whereas the role of lipophilicity depends on the compound's ionization state, and the influence of log P decreases in the order of bases > zwitterions > neutrals > acids. Given its robust performance and clear physicochemical interpretation, the proposed model may provide valuable information to direct drug discovery efforts towards compounds with reduced risk of hERG-related cardiotoxicity.
An outburst scenario for the X-ray spectral variability in 3C 111
NASA Astrophysics Data System (ADS)
Tombesi, F.; Reeves, J. N.; Reynolds, C. S.; García, J.; Lohfink, A.
2013-09-01
We present a combined Suzaku and Swift BAT broad-band E = 0.6-200 keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R ≃ 0.2) cold reflection component from distant material. We constrain the continuum cutoff at EC ≃ 150-200 keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Lyα emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized-disc reflection, this should be emitted at rin ≥ 50 rg or, in the lamp-post configuration, the illuminating source should be at a height of h ≥ 30 rg above the black hole. Alternatively, the line could be modelled with a hot collisionally ionized plasma with temperature kT = 22.0^{+6.1}_{-3.2} keV or a photoionized plasma with log ξ = 4.52^{+0.10}_{-0.16} erg s-1 cm and column density NH > 3 × 1023 cm-2. However, the first and second scenarios are less favoured on statistical and physical grounds, respectively. The blueshifted absorption line in the second observation can be modelled as an ultrafast outflow (UFO) with ionization parameter log ξ = 4.47^{+0.76}_{-0.04} erg s-1 cm, column density N_H = (5.3^{+1.8}_{-1.3})× 10^{22} cm-2 and outflow velocity vout = 0.104 ± 0.006c. Interestingly, the parameters of the photoionized emission model remarkably match those of the absorbing UFO, supporting the possibility that the same material could be responsible for both emission and absorption. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly relativistic UFO.
The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9
NASA Astrophysics Data System (ADS)
Silva, M.; Humphrey, A.; Lagos, P.; Villar-Martín, M.; Morais, S. G.; di Serego Alighieri, S.; Cimatti, A.; Fosbury, R.; Overzier, R. A.; Vernet, J.; Binette, L.
2018-03-01
We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly α emitting nebula and the giant H I absorber associated with the z = 2.92 radio galaxy MRC 0943-242, using spectroscopic observations from Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE), VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765-6378 Å at z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localized compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of supersolar metallicity gas (Z/Z⊙ = 2.1) by an active galactic nuclei-like continuum (α = -1.0) at a moderate ionization parameter (U = 0.018) gives the best overall fit to the complete X-SHOOTER emission-line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the H I absorption feature across the range log N(H I/cm-2) = 15.20 and 19.63, with the two best fitting occurring near the extreme ends of this range. The extended H I absorber is blueshifted relative to the emission-line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large-scale expanding shell.
Lipophilicity assessment of basic drugs (log P(o/w) determination) by a chromatographic method.
Pallicer, Juan M; Sales, Joaquim; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth
2011-09-16
A previously reported chromatographic method to determine the 1-octanol/water partition coefficient (log P(o/w)) of organic compounds is used to estimate the hydrophobicity of bases, mainly commercial drugs with diverse chemical nature and pK(a) values higher than 9. For that reason, mobile phases buffered at high pH to avoid the ionization of the solutes and three different columns (Phenomenex Gemini NX, Waters XTerra RP-18 and Waters XTerra MS C(18)) with appropriate alkaline-resistant stationary phases have been used. Non-ionizable substances studied in previous works were also included in the set of compounds to evaluate the consistency of the method. The results showed that all the columns provide good estimations of the log P(o/w) for most of the compounds included in this study. The Gemini NX column has been selected to calculate log P(o/w) values of the set of studied drugs, and really good correlations between the determined log P(o/w) values and those considered as reference were obtained, proving the ability of the procedure for the lipophilicity assessment of bioactive compounds with very different structures and functionalities. Copyright © 2011 Elsevier B.V. All rights reserved.
Abundance analysis of neodymium in the solar atmosphere
NASA Astrophysics Data System (ADS)
Abdelkawy, Ali G. A.; Shaltout, Abdelrazek M. K.; Beheary, M. M.; Bakry, A.
2017-10-01
Based on non-local thermodynamical equilibrium (NLTE) calculations, the solar neodymium (Nd) content was found based on a model atom of singly ionized neodymium (Nd II) containing 153 energy levels and 42 line transitions plus the ground state of Nd III. Here, we re-derive the solar Nd abundance using the model of the solar photosphere of Holweger & Müller.We succeed in selecting a good sample line list, relying on 20 Nd II solar lines together with the most accurate transition probabilities measured experimentally and available observational data. With damping parameters obtained from the literature, we find a mean NLTE solar photospheric Nd abundance of log ɛNd(1D) = 1.43 ± 0.16, which is in excellent agreement with the meteoritic value (log ɛNd = 1.45 ± 0.02). For a set of selected Nd II lines, the NLTE abundance correction is found to be +0.01 dex compared with the standard LTE effect. The influence of collisional interactions with electrons and neutral hydrogen atoms is investigated in detail.
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Sembach, Kenneth R.; Cardelli, Jason A.
1994-01-01
High-resolution spectra of interstellar Si IV, C IV, and N V absorption lines along the 4 kpc path to the inner Galaxy star HD 167756 at z = -0.85 kpc are presented. The spectra were obtained with the echelle mode of Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope (HST) and have signal-to-noise ratios ranging from 23 to 38. The high resolution of the measurements full width at half maximum (FWHM = 3.5 km/s) results in fully resolved line profiles for the highly ionized gas absorption. The measurements provide information on the column density per unit velocity, N(v), as a function of velocity for Si IV, C IV, and N V. The C IV and N V profiles extend from -70 to +70 km/s, while the Si IV profiles extend from -40 to +70 km/s. The integrated logarithmic column densities are long N(Si IV) = 13.09 +/- 0.02, log N(C IV) = 13.83 +/- 0.02, and log N(N V) = 13.56 +/- 0.03. The N V profile is broad, asymmetric, and featureless, while the Si IV profile contains narrow absorption components near V(sub LSR) = -19, 0, +20, and +52 km/s with Doppler spread parameters, b about = 10-12 km/s. The C IV profile contains both broad and narrow structure. The high ion feature near +52 km/s is also detected in the low-ionization lines of Ca II, O I, Si II, and Fe II. The other narrow Si IV and C IV components occur within several km/s of components seen in low-ionization species. The sight line contains at least two types of highly ionized gas. One type gives rise to a broad N V profile, and the other results in the more structured Si IV profile. The C IV profile contains contributions from both types of highly ionized gas. The broad but asymmetric N V profile is well represented by a large Galactic scale height gas which is participating in Galactic rotation and has a combination of thermal and turbulent broadening with b(sub tot) about = 42 km/s. The C IV to N V abundance ratio of 1.0 +/- 0.3 for the gas implies T about 1.6 x 10(exp 5) K or about 8 x 10(exp 5) K if the gas is in collisional ionization equilibrium and has a solar carbon to nitrogen abundance ratio. This absorption may be associated with cooling hot gas situated in Galactic shells and supershells along the sight line. The gas producing the narrow Si IV and C IV absorption components has line widths that are compatible with origins in conductive interfaces between the warm and hot interstellar medium. Kinematic flows associated with the photoionized edges of clouds might also produce Si IV and C IV lines with Doppler spread parameters similar to those observed, but the C IV to Si IV ratio in this gas is 3.5, which leads us to favor the conductive interface interpretation.
Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2015-05-01
We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.
A photoionization instability in the early intergalactic medium
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1992-01-01
It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.
Quantitative prediction of ionization effect on human skin permeability.
Baba, Hiromi; Ueno, Yusuke; Hashida, Mitsuru; Yamashita, Fumiyoshi
2017-04-30
Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol-water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization. Copyright © 2017 Elsevier B.V. All rights reserved.
The peculiar ring galaxy HRG 54103 revisited
NASA Astrophysics Data System (ADS)
Freitas-Lemes, P.; Krabbe, A. C.; Faúndez-Abans, M.; da Rocha-Poppe, P.; Rodrigues, I.; de Oliveira-Abans, M.; Fernandes-Martin, V. A.
2017-07-01
We present an observational study of the galaxy HRG 54103, a peculiar galaxy with an asymmetric disc ring. The main goal of this work is to study the stellar population and oxygen abundances for the inner bulge region. The kinematics derived from long-slit spectroscopy suggest that the line of nodes of the gaseous component of HRG 54103 is nearly along the galaxy ring minor axis. The gaseous disc seems to be kinematically decoupled relative to the morphology of the stellar ring. A small, but non-negligible, fraction of young stars (5-10 per cent) is estimated to contribute. This object is mainly dominated by old and intermediate stellar populations. The emission-line spectrum shows low-ionization nuclear emission-line region (LINER) type characteristics. We determined oxygen abundances using calibrations between this parameter and the strong emission line ratios known as the indices O3N2 and N2. Our results suggest a relatively homogeneous O/H across the minor axis of the galaxy, with average values of 12 + log(O/H) = 8.4 dex and 12 + log(O/H) = 8.7 dex, using the O3N2 and N2 parameters, respectively. These values are compatible with the few estimations of oxygen abundance for peculiar ring galaxies published in the literature. Implications on the formation history of HRG 54103 were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Kaori; Nagatsuma, Tsutomu; Reeves, Geoffrey D.
The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary orbit (GEO) and medium Earth orbit. In order to provide alerts of electron flux enhancements, 16 prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omnidirectional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES 15 spacecraftmore » were used as the predictors. Furthermore, we selected model explanatory parameters from solar wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For the central to outermost regions, at L≥4.8 and L ≥5.6, the electron flux is predicted most accurately by including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best overall single parameter for predicting at 3 ≤ L ≤ 6, while for the GEO flux prediction, the K P index is better than Dst. Finally, a test calculation demonstrates that the model successfully predicts the timing and location of the flux maximum as much as 2 days in advance and that the electron flux decreases faster with time at higher L values, both model features consistent with the actually observed behavior.« less
Sakaguchi, Kaori; Nagatsuma, Tsutomu; Reeves, Geoffrey D.; ...
2015-12-22
The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary orbit (GEO) and medium Earth orbit. In order to provide alerts of electron flux enhancements, 16 prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omnidirectional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES 15 spacecraftmore » were used as the predictors. Furthermore, we selected model explanatory parameters from solar wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For the central to outermost regions, at L≥4.8 and L ≥5.6, the electron flux is predicted most accurately by including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best overall single parameter for predicting at 3 ≤ L ≤ 6, while for the GEO flux prediction, the K P index is better than Dst. Finally, a test calculation demonstrates that the model successfully predicts the timing and location of the flux maximum as much as 2 days in advance and that the electron flux decreases faster with time at higher L values, both model features consistent with the actually observed behavior.« less
NASA Astrophysics Data System (ADS)
Sakaguchi, Kaori; Nagatsuma, Tsutomu; Reeves, Geoffrey D.; Spence, Harlan E.
2015-12-01
The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary orbit (GEO) and medium Earth orbit. To provide alerts of electron flux enhancements, 16 prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omnidirectional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES 15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For the central to outermost regions, at L ≧ 4.8 and L ≧ 5.6, the electron flux is predicted most accurately by including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best overall single parameter for predicting at 3 ≦ L ≦ 6, while for the GEO flux prediction, the KP index is better than Dst. A test calculation demonstrates that the model successfully predicts the timing and location of the flux maximum as much as 2 days in advance and that the electron flux decreases faster with time at higher L values, both model features consistent with the actually observed behavior.
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
NASA Astrophysics Data System (ADS)
Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.
2004-03-01
Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).
NASA Astrophysics Data System (ADS)
Menzhevitski, V. S.; Shimansky, V. V.; Shimanskaya, N. N.
2012-07-01
We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0-4.5, and metallicity [ A] = 0.0;-1.0;-2.0;-3.0;-4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3 p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (Δ X NLTE = log ɛ NLTE - log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.
O VI ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, B. D.; Narayanan, A.; Wakker, B. P.
2010-08-20
High signal-to-noise observations of the QSO PKS 0405-123 (z {sub em} = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716, which has previously been studied using relatively low signal-to-noise spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h {sup -1} {sub 70} andmore » 99 h {sup -1} {sub 70}. The broad and symmetric O VI absorption is detected in the z = 0.16716 rest frame with v = -278 {+-} 3 km s{sup -1}, log N(O VI) = 13.90 {+-} 0.03, and b = 52 {+-} 2 km s{sup -1}. This absorber is not detected in H I or other species with the possible exception of N V. The broad, symmetric O VI profile and the absence of corresponding H I absorption indicate that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T {approx} 5.8-6.2). The absorber may represent a rare but important new class of low-z intergalactic medium absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 {+-} 0.02 spanning a velocity range from -200 to +100 km s{sup -1}. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized high-velocity clouds where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.« less
A probabilistic approach to emission-line galaxy classification
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.
2017-12-01
We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.
NASA Astrophysics Data System (ADS)
Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin
2014-12-01
Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library, and the literature atmospheric parameters were recovered within 125 K for T eff, 0.10 dex for [Fe/H], and 0.29 dex for log g. These precisions are consistent with or better than those provided by the pipelines of surveys operating with similar resolutions. These results show that the spectral indices are a competitive tool to characterize stars with intermediate resolution spectra. Based on observations obtained with the 2.2 m MPG telescope at the European Southern Observatory (La Silla, Chile), under the agreement ESO-Observatório Nacional/MCT, and the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium.
Understanding the strong intervening O VI absorber at zabs ˜ 0.93 towards PG1206+459
NASA Astrophysics Data System (ADS)
Rosenwasser, B.; Muzahid, S.; Charlton, J. C.; Kacprzak, G. G.; Wakker, B. P.; Churchill, C. W.
2018-05-01
We have obtained new observations of the partial Lyman limit absorber at zabs=0.93 towards quasar PG 1206+459, and revisit its chemical and physical conditions. The absorber, with N({H I})˜ 10^{17.0} cm-2 and absorption lines spread over ≳1000 km s-1 in velocity, is one of the strongest known O VI absorbers at \\log N({{O VI}})= 15.54 ± 0.17. Our analysis makes use of the previously known low- (e.g. Mg II), intermediate- (e.g. Si IV), and high-ionization (e.g. C IV, N V, Ne VIII) metal lines along with new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations that cover O VI and an HST/ACS image of the quasar field. Consistent with previous studies, we find that the absorber has a multiphase structure. The low-ionization phase arises from gas with a density of \\log (n_H/cm^{-3})˜ -2.5 and a solar to supersolar metallicity. The high-ionization phase stems from gas with a significantly lower density, i.e. \\log (n_H/cm^{-3}) ˜ -3.8, and a near-solar to solar metallicity. The high-ionization phase accounts for all of the absorption seen in C IV, N V, and O VI. We find the the detected Ne VIII, reported by Tripp et al. (2011), is best explained as originating in a stand-alone collisionally ionized phase at T˜ 10^{5.85} K, except in one component in which both O VI and Ne VIII can be produced via photoionization. We demonstrate that such strong O VI absorption can easily arise from photoionization at z ≳ 1, but that, due to the decreasing extragalactic UV background radiation, only collisional ionization can produce large O VI features at z ˜ 0. The azimuthal angle of ˜88° of the disc of the nearest (68 kpc) luminous (1.3L*) galaxy at zgal = 0.9289, which shows signatures of recent merger, suggests that the bulk of the absorption arises from metal enriched outflows.
Electronic and structural aspects of p450-mediated drug metabolism.
Lewis, David F V; Ito, Yuko; Lake, Brian G
2009-04-01
From a consideration of first principles for enzymes kinetics, we have employed theoretical methods which enable one to analyse the kinetics of cytochrome P450-mediated reactions which have been based on the known physicochemical principles underlying the majority of chemical or enzymatic reactions. A comparison is made between the correlation equations produced from the QSAR analysis of experimental P450 reaction rate data and those obtained from first principles, where there appears to be a generally satisfactory concordance between the two procedures. In this respect, we have developed expressions based on standard reaction kinetics theory which incorporate the Eyring and Marcus relationships. The analysis of P450-catalyzed reaction rates is elaborated to encompass a treatment of metabolic clearance, and satisfactory correlations are obtained with literature values for both intrinsic clearance and whole body clearance in terms of compound lipophilicity derived from log P data, where P is the octanol/water partition coefficient. The importance of ionization potential as a factor in the overall catalytic turnover of P450-mediated reactions is noted, especially in combination with the lipophilicity parameter, log P.
Physical properties of the ionized gas and brightness distribution in NGC4736
NASA Astrophysics Data System (ADS)
Rodrigues, I.; Dottori, H.; Cepa, J.; Vilchez, J.
1998-03-01
In this work we study the galaxy NGC4736, using narrow band interference filters imaging centered at the emission lines {Oii} {3727+3729}, Hβ, {Oiii} {5007}, Hα, {Sii} {6716+6730} and {Siii} {9070} and nearby continua. We have obtained sizes, positions, emission line absolute fluxes, and continua intensities for 90 Hii regions, mainly distributed in a ring-like structure of 3.2kpc in diameter. The Hα luminosities are in the range 37.3 <= log L_Hα <= 39.4 ergs(-1) . The Hii regions size distribution presents a characteristic diameter D_0 = 115pc and verifies the relation log (L_Hα ) ~D(3) . The temperature of the ionizing sources and the metallicity of the Hii regions are respectively in the ranges 3.410(4) <~T_⋆ <~ 4.010(4) K and 8.5 <~12 + log (O/H) <~9.3. The masses of the ionizing clusters are in the range 510(3) <~M_T/M_sun <~210(5) . The continua radial surface brightness distribution is better fitted by the superposition of a de Vaucouleurs', a thin and a thick exponential disk laws. The monochromatic colors show that outside the star forming ring the disk presents a younger stellar population than inside it. Tables 3 and 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
A TWO-PHASE LOW-VELOCITY OUTFLOW IN THE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.; Mathur, S.; Krongold, Y.
2013-05-10
The Seyfert 1 galaxy Ark 564 was observed with Chandra high-energy transmission gratings for 250 ks. We present the high-resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers (WAs) with two different ionization states (log U = 0.39 {+-} 0.03 and log U = -0.99 {+-} 0.13), both with moderate outflow velocities ({approx}100 km s{sup -1}) and relatively low line of sight column densities (log N{sub H} = 20.94 and 20.11 cm{sup -2}). The high-ionization phase produces absorption lines of O VII, O VIII, Ne IX, Ne X, Mg XI, Fe XVII, andmore » Fe XVIII, while the low-ionization phase produces lines at lower energies (O VIand O VII). The pressure-temperature equilibrium curve for the Ark 564 absorber does not have the typical ''S'' shape, even if the metallicity is super-solar; as a result, the two WA phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow rate and the associated kinetic energy and find it to be at most 0.009% of the bolometric luminosity of Ark 564. Thus, it is highly unlikely that these outflows provide significant feedback required by the galaxy formation models.« less
LOW VOLTAGE 14 Mev NEUTRON SOURCE
Little, R.N. Jr.; Graves, E.R.
1959-09-29
An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.
Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod.
Chen, Ciara Chun; Kuo, Dave Ta Fu
2018-05-01
The present study presents a bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod based on first-order kinetics. Uptake rate constant k 1 is modeled as logk1=10.81logKOW + 0.15 (root mean square error [RMSE] = 0.52). Biotransformation rate constant k M is estimated using an existing polyparameter linear free energy relationship model. Respiratory elimination k 2 is calculated as modeled k 1 over theoretical biota-water partition coefficient K biow considering the contributions of lipid, protein, carbohydrate, and water. With negligible contributions of growth and egestion over a typical amphipod bioconcentration experiment, the bioconcentration factor (BCF) is modeled as k 1 /(k M + k 2 ) (RMSE = 0.68). The proposed model performs well for non-ionic organic compounds (log K OW range = 3.3-7.62) within 1 log-unit error margin. Approximately 12% of the BCFs are underpredicted for polar and ionizable compounds. However, >50% of the estimated k 2 values are found to exceed the total depuration rate constants. Analyses suggest that these excessive k 2 values and underpredicted BCFs reflect underestimation in K biow , which may be improved by incorporating exoskeleton as a relevant partitioning component and refining the membrane-water partitioning model. The immediate needs to build up high-quality experimental k M values, explore the sorptive role of exoskeleton, and investigate the prevalence of k 2 overestimation in other bioconcentration models are also identified. The resulting BCF model can support, within its limitations, the ecotoxicological and risk assessment of emerging polar and ionizable organic contaminants in aquatic environments and advance the science of invertebrate bioaccumulation. Environ Toxicol Chem 2018;37:1378-1386. © 2018 SETAC. © 2018 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
Detection of Ne VIII in an Intervening Multiphase Absorption System Toward 3C 263
NASA Astrophysics Data System (ADS)
Narayanan, Anand; Wakker, Bart P.; Savage, Blair D.
2009-09-01
We report the detection of Ne VIII in an intervening multiphase absorption line system at z = 0.32566 in the Far Ultraviolet Spectroscopic Explorer spectrum of the quasar 3C 263 (zem = 0.646). The Ne VIII λ770 Å detection has a 3.9σ significance. At the same velocity, we also find absorption lines from C IV, O III, O IV, and N IV. The line parameter measurements yield log [N(Ne VIII) cm-2] = 13.98+0.10 -0.13 and b = 49.8 ± 5.5 km s-1. We find that the ionization mechanism in the gas phase giving rise to the Ne VIII absorption is inconsistent with photoionization. The absorber has a multiphase structure, with the intermediate ions produced in cool photoionized gas and the Ne VIII most likely in a warm collisionally ionized medium in the temperature range (0.5-1.0) × 106 K. This is the second ever detection of an intervening Ne VIII absorption system. Its properties resemble the previous Ne VIII absorber reported by Savage and colleagues. Direct observations of H I and O VI are needed to better constrain the physical conditions in the collisionally ionized gas phase of this absorber. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer operated by Johns Hopkins University, supported by NASA contract NAS5-32985.
An Extreme Metallicity, Large-scale Outflow from a Star-forming Galaxy at z ~ 0.4
NASA Astrophysics Data System (ADS)
Muzahid, Sowgat; Kacprzak, Glenn G.; Churchill, Christopher W.; Charlton, Jane C.; Nielsen, Nikole M.; Mathes, Nigel L.; Trujillo-Gomez, Sebastian
2015-10-01
We present a detailed analysis of a large-scale galactic outflow in the circumgalactic medium of a massive ({M}{{h}}˜ {10}12.5 {M}⊙ ), star-forming (˜ 6.9 {M}⊙ yr-1), sub-L* (˜ 0.5{L}B*) galaxy at z = 0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i=63^\\circ ) and the azimuthal angle ({{Φ }}=73^\\circ ) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, multicomponent structure with ultra-strong, wide velocity spread {{O}} {{VI}} ({log}N=15.16+/- 0.04, {{Δ }}{v}90 = 419 km s-1) and {{N}} {{V}} ({log}N=14.69+/- 0.07, {{Δ }}{v}90 = 285 km s-1) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (˜ {10}-4.2 cm-3), diffuse (˜10 kpc), cool (˜104 K) photoionized gas with a super-solar metallicity ([{{X}}/{{H}}]≳ 0.3). From the observed narrowness of the Lyβ profile, the non-detection of {{S}} {{IV}} absorption, and the presence of strong {{C}} {{IV}} absorption in the low-resolution FOS spectrum, we rule out equilibrium/non-equilibrium collisional ionization models. The low-ionization photoionized gas with a density of ˜ {10}-2.5 cm-3 and a metallicity of [{{X}}/{{H}}]≳ -1.4 is possibly tracing recycled halo gas. We estimate an outflow mass of ˜ 2× {10}10 {M}⊙ , a mass-flow rate of ˜ 54 {M}⊙ {{yr}}-1, a kinetic luminosity of ˜ 9× {10}41 erg s-1, and a mass loading factor of ˜8 for the outflowing high-ionization gas. These are consistent with the properties of “down-the-barrel” outflows from infrared-luminous starbursts as studied by Rupke et al. Such powerful, large-scale, metal-rich outflows are the primary means of sufficient mechanical and chemical feedback as invoked in theoretical models of galaxy formation and evolution.
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-11-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.
Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273
NASA Technical Reports Server (NTRS)
Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column density toward 3C273, logN O(VI) = 14.73 +/- 0.04, implies n(sub e) < 0.02/cubic cm and P/k < 11,500/cubic cm for an assumed temperature of 3 x 10(exp 5) K. The elemental abundances in the neutral and weakly-ionized interstellar clouds are similar to those found for other halo clouds. The warm neutral and warm ionized clouds along the sight line have similar dust-phase abundances, implying that the properties of the dust grains in the two types of clouds are similar. Interstellar H2 absorption is present at positive velocities at a level of logN(H2) = 15.71, but is very weak at the velocities of the main column density concentration along the sight line observed in H(I) 21 cm emission.
NASA Astrophysics Data System (ADS)
Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia
2017-12-01
Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.
Yoshida, F; Topliss, J G
1996-08-01
Corneal permeability data taken from the literature were analyzed for possible quantitative relationships with physicochemical properties. Although a parabolic relationship was obtained with good correlation between lipophilicity, as expressed by the 1-octanol-water partition coefficients, log Poctanol (or the distribution coefficients, log D for ionizable compounds), and the permeability in individual analyses of compound classes such as beta-adrenoceptor blockers and steroids, the correlation was reduced when taken together. However, delta log P (i.e., log Poctanol-log Palkane) correlated inversely with the combined permeability data for beta-blockers and steroids and played a key role as a unifying variable. To a lesser extent, lipophilicity itself also contributes positively to corneal permeation. Even with the addition of miscellaneous compounds such as methanol and ibuprofen, the delta log P and lipophilicity terms were still significant. However, small molecules were likely to be underestimated, which is consistent with penetration via another pathway besides that governed by delta log P and lipophilicity.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization.
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed. Graphical Abstract ᅟ.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization
NASA Astrophysics Data System (ADS)
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.
Peltenburg, Hester; Timmer, Niels; Bosman, Ingrid J; Hermens, Joop L M; Droge, Steven T J
2016-05-20
The mixed-mode (C18/strong cation exchange-SCX) solid-phase microextraction (SPME) fiber has recently been shown to have increased sensitivity for ionic compounds compared to more conventional sampler coatings such as polyacrylate and polydimethylsiloxane (PDMS). However, data for structurally diverse compounds to this (prototype) sampler coating are too limited to define its structural limitations. We determined C18/SCX fiber partitioning coefficients of nineteen cationic structures without hydrogen bonding capacity besides the charged group, stretching over a wide hydrophobicity range (including amphetamine, amitriptyline, promazine, chlorpromazine, triflupromazine, difenzoquat), and eight basic pharmaceutical and illicit drugs (pKa>8.86) with additional hydrogen bonding moieties (MDMA, atenolol, alprenolol, metoprolol, morphine, nicotine, tramadol, verapamil). In addition, sorption data for three neutral benzodiazepines (diazepam, temazepam, and oxazepam) and the anionic NSAID diclofenac were collected to determine the efficiency to sample non-basic drugs. All tested compounds showed nonlinear isotherms above 1mmol/L coating, and linear isotherms below 1mmol/L. The affinity for C18/SCX-SPME for tested organic cations without Hbond capacities increased with longer alkyl chains, ranging from logarithmic fiber-water distribution coefficients (log Dfw) of 1.8 (benzylamine) to 5.8 (triflupromazine). Amines smaller than benzylamine may thus have limited detection levels, while cationic surfactants with alkyl chain lengths >12 carbon atoms may sorb too strong to the C18/SCX sampler which hampers calibration of the fiber-water relationship in the linear range. The log Dfw for these simple cation structures closely correlates with the octanol-water partition coefficient of the neutral form (Kow,N), and decreases with increased branching and presence of multiple aromatic rings. Oxygen moieties in organic cations decreased the affinity for C18/SCX-SPME. Log Dfw values of neutral benzodiazepines were an order of magnitude higher than their log Kow,N. Results for anionic diclofenac species (logKow,N 4.5, pKa 4.0, log Dfw 2.9) indicate that the C18-SCX fiber might also be useful for sampling of organic anions. This data supports our theory that C18-based coatings are able to sorb ionized compounds through adsorption and demonstrates the applicability of C18-based SPME in the measurement of freely dissolved concentrations of a wide range of ionizable compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Kriss, Gerard A.; Young, Andrew J.; Hardcastle, Martin J.; Chakravorty, Susmita; Fang, Taotao; Neilsen, Joseph; Rahoui, Farid; Smith, Randall K.
2018-02-01
We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Origins Spectrograph (HST-COS) and radio bands using the Jansky Very Large Array (VLA). We constructed a multi-wavelength ionizing spectral energy distribution using these observations and archival infrared data to create XSTAR photoionization models specific to the PG 1211+143 flux behavior during the epoch of our observations. Our analysis of the Chandra-HETGS spectra yields complex absorption lines from H-like and He-like ions of Ne, Mg, and Si, which confirm the presence of an ultra-fast outflow (UFO) with a velocity of approximately ‑17,300 km s‑1 (outflow redshift z out ∼ ‑0.0561) in the rest frame of PG 1211+143. This absorber is well described by an ionization parameter {log}ξ ∼ 2.9 {erg} {{{s}}}-1 {cm} and column density {log}{N}{{H}}∼ 21.5 {{cm}}-2. This corresponds to a stable region of the absorber’s thermal stability curve, and furthermore its implied neutral hydrogen column is broadly consistent with a broad Lyα absorption line at a mean outflow velocity of approximately ‑16,980 km s‑1 detected by our HST-COS observations. Our findings represent the first simultaneous detection of a UFO in both X-ray and UV observations. Our VLA observations provide evidence for an active jet in PG 1211+143, which may be connected to the X-ray and UV outflows; this possibility can be evaluated using very-long-baseline interferometric observations.
Compton thick absorber in type 1 quasar 3C 345 revealed by Suzaku and Swift/BAT
NASA Astrophysics Data System (ADS)
Eguchi, Satoshi
2017-07-01
The archival data of 3C 345, a type 1 quasar at z = 0.5928, obtained with Suzaku and Swift/BAT are analysed. Though previous studies of this source applied only a simple broken power-law model, a heavily obscuring material is found to be required by considering Akaike information criteria. The application of the numerical torus model by Murphy & Yaqoob surprisingly reveals the existence of Compton thick type 2 nucleus with the line-of-sight hydrogen column density of the torus of NH = 1024.5 cm-2 and the inclination angle of θinc = 90°. However, this model fails to account for the Eddington ratio obtained with the optical observations by Gu et al. and Shen et al., or requires the existence of a supermassive black hole binary, which was suggested by Lobanov & Roland, thus this model is likely to be inappropriate for 3C 345. A partial covering ionized absorber model that accounts for absorption in 'hard excess' type 1 active galactic nuclei (AGNs) is also applied, and finds a Compton thick absorber with the column density of NH ≃ 1025 cm-2, the ionization parameter of log ξ ≳ 2 and the covering fraction of 75 per cent ≲ fc ≲ 85 per cent. Since this model obtains a black hole mass of log (MBH/M⊙) = 9.8, which is consistent with the optical observation by Gu et al., this model is likely to be the best-fitting model of this source. The results suggest that 3C 345 is the most distant and most obscured hard excess AGN at this time.
The ionization parameter of star-forming galaxies evolves with the specific star formation rate
NASA Astrophysics Data System (ADS)
Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan
2018-07-01
We investigate the evolution of the ionization parameter of star-forming galaxies using a high-redshift (z˜ 1.5) sample from the FMOS-COSMOS (Fibre Multi-Object Spectrograph-COSMic evOlution Survey) and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR), and specific star formation rate (sSFR) are matched to the high-redshift sample, we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionization parameter of each sample. We find an evolution in the ionization parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z< 0.3, star-forming galaxies we show that high ionization parameters are directly linked to high sSFRs and are not simply the by-product of an evolution in metallicity. Our results are physically consistent with the definition of the ionization parameter, a measure of the hydrogen ionizing photon flux relative to the number density of hydrogen atoms.
Bari, M L; Nakauma, M; Todoriki, S; Juneja, Vijay K; Isshiki, K; Kawamoto, S
2005-02-01
Ionizing radiation can be effective in controlling the growth of food spoilage and foodborne pathogenic bacteria. This study reports on an investigation of the effectiveness of irradiation treatment to eliminate Listeria monocytogenes on laboratory-inoculated broccoli, cabbage, tomatoes, and mung bean sprouts. Irradiation of broccoli and mung bean sprouts at 1.0 kGy resulted in reductions of approximately 4.88 and 4.57 log CFU/g, respectively, of a five-strain cocktail of L. monocytogenes. Reductions of approximately 5.25 and 4.14 log CFU/g were found with cabbage and tomato, respectively, at a similar dose. The appearance, color, texture, taste, and overall acceptability did not undergo significant changes after 7 days of postirradiation storage at 4 degrees C, in comparison with control samples. Therefore, low-dose ionizing radiation treatment could be an effective method for eliminating L. monocytogenes on fresh and fresh-cut produce.
X-ray evidence for ultra-fast outflows in AGNs
NASA Astrophysics Data System (ADS)
Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo
2012-07-01
X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.
The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548
NASA Astrophysics Data System (ADS)
Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena
2010-03-01
We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that different outflow velocity systems have been modeled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other WAs: two or three discrete phases in pressure equilibrium. There are no remaining cases of a well-studied WA in which a model consisting of a multi-phase medium is not viable.
O/H-N/O: the curious case of NGC 4670
NASA Astrophysics Data System (ADS)
Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.; Amorín, Ricardo; Pérez-Montero, Enrique
2018-05-01
We use integral field spectroscopic (IFS) observations from Gemini Multi-Object Spectrograph North (GMOS-N) of a group of four H II regions and the surrounding gas in the central region of the blue compact dwarf (BCD) galaxy NGC 4670. At spatial scales of ˜9 pc, we map the spatial distribution of a variety of physical properties of the ionized gas: internal dust attenuation, kinematics, stellar age, star formation rate, emission-line ratios, and chemical abundances. The region of study is found to be photoionized. Using the robust direct Te method, we estimate metallicity, nitrogen-to-oxygen ratio, and helium abundance of the four H II regions. The same parameters are also mapped for the entire region using the HII-CHI-mistry code. We find that log(N/O) is increased in the region where the Wolf-Rayet bump is detected. The region coincides with the continuum region, around which we detect a slight increase in He abundance. We estimate the number of WC4, WN2-4, and WN7-9 stars from the integrated spectrum of WR bump region. We study the relation between log(N/O) and 12 + log(O/H) using the spatially resolved data of the field of view as well as the integrated data of the H II regions from 10 BCDs. We find an unexpected negative trend between N/O and metallicity. Several scenarios are explored to explain this trend, including nitrogen enrichment, and variations in star formation efficiency via chemical evolution models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
(F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe
NASA Astrophysics Data System (ADS)
Ziegler, Marc
2013-07-01
The aim of this thesis was the precise determination of basic stellar parameters and metal abundances for a sample of 15 ionizing stars of gaseous nebulae. Strategic lines of metals for the expected parameter range are located in the ultraviolet (UV) and far-ultraviolet (FUV) range. Thus high-resolution, high-S/N UV and FUV observations obtained with the Hubble Space Telescope (HST) and the Far Ultraviolet Spectroscopic Explorer (FUSE) were used for the analysis. For the calculation of the necessary spectral energy distributions the Tübingen NLTE Model-Atmosphere Package (TMAP) was used. The model atmospheres included most elements from H - Ni in order to account for line-blanketing effects. For each object a small grid of model atmospheres was calculated. As the interstellar medium (ISM) imprints its influence in the Space Telescope Imaging Spectrograph (STIS) and especially the FUSE range, the program OWENS was employed to calculate the interstellar absorption features. Both, the photospheric model spectral energy distribution (SED) as well as the ISM models were combined to enable the identification of most of the observed absorption lines. The analyzed sample covers a range of 70 kK < Teff < 136 kK, and surface gravities from log (g/cm/sec^2) = 5.4 - 7.4, thus representing different stages of stellar evolution. For a large number of elements, abundances were determined for the first time in these objects. Lines of C, N, O, F, Ne, Si, P, S, and Ar allowed to determine the corresponding abundances. For none of the objects lines of Ca, Sc, Ti, and V could be found. Only a few objects were rich in Cr, Mn, Fe, Co, and Ni lines. Most of the analyzed stars exhibited only lines of Fe (ionization stages V - VIII) from the iron-group elements. No signs for gravitational settling (the gravitational force exceeds the radiation pressure and elements begin to sink from the atmosphere into deeper layers) were found. This is expected as the values of the surface gravities of the sample are still too small to start gravitational settling. For the elements C, N, O, Si, P, and S we find increasing abundances with increasing log(Teff^4/g), while the abundances for Ar and Fe decrease. The latter is unexpected as the higher the Teff^4/g ratio, the more the radiative force dominates the gravitational force and, thus, the elements should be kept in the atmosphere. The determined abundances were compared with previous literature values, with abundances predicted from diusion calculations, with abundances from Asymptotic Giant Branch (AGB) nucleosynthesis calculations, and, if available, with abundances found for the corresponding nebulae. The agreement was of mixed quality. The derived Teff and log g values confirmed some literature values while others had to be revised (e.g. for LSS 1362 and NGC1360). However, most of them agree with the previous literature values within the error limits. No difference in Teff can be found for DAO and O(H)-type stars, but O(H)-type stars have a lower log g (5.4 - 6.0) compared to the DAOs (6.5 - 7.4). The exception is the O(H)-type central star of the planetary nebula (CSPN) of Lo 1 with log g = 7.0. A comparison of the positions of each object with stellar evolutionary tracks for post-AGB stars in the log Teff - log g diagram lead to the respective stellar masses. The derived mean mass of the analyzed sample (M = 0.536 ± 0.023 Msol) agrees within the error limits with the expected mean mass for these objects. In the literature M = 0.638 - 0.145 Msol can be found for DA-type white dwarfs, the immediate successors of DAO-type white dwarfs. For two objects (A 35, Sh 2-174) extremely low masses were found. For A35 the derived mass (M_A35 = 0.523 ± 0.05Msol) lies at the lower end of possible masses predicted for post-AGB stars. The very low mass of Sh 2-174 (M_Sh 2-174 = 0.395 ± 0.05Msol) points at Sh 2-174 being a post-extended horizontal branch (EHB) star and not a CSPN. If a stellar mass is too low, it is impossible for the star to reach the thermally pulsing AGB phase and, thus, to develope a planetary nebula (PN). Post-EHB stars evolve directly from the Horizontal Branch (HB) to the white dwarf (WD) cooling sequence. The low masses for A35 and Sh 2-174 support literature works that classify the two corresponding nebulae as ionized H II regions and not as PNe.
NASA Astrophysics Data System (ADS)
Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Pratt, Cameron T.; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.
2017-05-01
We present basic data and modeling for a survey of the cool, photoionized circumgalactic medium (CGM) of low-redshift galaxies using far-UV QSO absorption-line probes. This survey consists of “targeted” and “serendipitous” CGM subsamples, originally described in Stocke et al. (Paper I). The targeted subsample probes low-luminosity, late-type galaxies at z< 0.02 with small impact parameters (< ρ > =71 kpc), and the serendipitous subsample probes higher luminosity galaxies at z≲ 0.2 with larger impact parameters (< ρ > =222 kpc). Hubble Space Telescope and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper I, but this value is significantly smaller than that found by the COS-Halos survey. We trace much of this difference to the specific values of the low-z metagalactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain {log}(M/{M}⊙ )=10.5+/- 0.3, or ˜30% of the total baryon reservoir of an L≥slant {L}* , star-forming galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems
2007-05-03
34Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Porne ", Parameter estimation for 3-parameter log-logistic distribu- tion...section V we physical security, air traffic control, traffic monitoring, andvidefaconu s cribedy. video surveillance, industrial automation etc. Each
The 3-D ionization structure of NGC 6818: A Planetary Nebula threatened by recombination
NASA Astrophysics Data System (ADS)
Benetti, S.; Cappellaro, E.; Ragazzoni, R.; Sabbadin, F.; Turatto, M.
2003-03-01
Long-slit NTT+EMMI echellograms of NGC 6818 (the Little Gem) at nine equally spaced position angles, reduced according to the 3-D methodology introduced by Sabbadin et al. (\\cite{Sabbadin00}a,b), allowed us to derive: the expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model, the 3-D reconstruction in He II, [O III] and [N II], the multicolor projection and a series of movies. The Little Gem results to be a young (3500 years), optically thin (quasi-thin in some directions) double shell (Mion =~ 0.13 Msun) at a distance of 1.7 kpc, seen almost equatorial on: a tenuous and patchy spherical envelope (r =~ 0.090 pc) encircles a dense and inhomogeneous tri-axial ellipsoid (a/2 =~ 0.077 pc, a/b =~ 1.25, b/c =~ 1.15) characterized by a hole along the major axis and a pair of equatorial, thick moustaches. NGC 6818 is at the start of the recombination phase following the luminosity decline of the 0.625 Msun central star, which has recently exhausted the hydrogen shell nuclear burning and is rapidly moving toward the white dwarf domain (log T* =~ 5.22 K; log L*/Lsun =~ 3.1). The nebula is destined to become thicker and thicker, with an increasing fraction of neutral, dusty gas in the outermost layers. Only over some hundreds of years the plasma rarefaction due to the expansion will prevail against the slower and slower stellar decline, leading to a gradual re-growing of the ionization front. The exciting star of NGC 6818 (mV =~ 17.06) is a visual binary: a faint, red companion (mV =~ 17.73) appears at 0.09 arcsec in PA =190degr , corresponding to a separation ge 150 AU and to an orbital period ge 1500 years. Based on observations made with ESO Telescopes at the La Silla Observatories, under programme ID 65.I-0524, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute (observing programs GO 7501 and GO 8773; P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We have applied the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University.
Physical parameters for proton induced K-, L-, and M-shell ionization processes
NASA Astrophysics Data System (ADS)
Shehla; Puri, Sanjiv
2016-10-01
The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.
Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H
2002-07-01
Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.
Evaluation of various molecular parameters as predictors of bioconcentration in fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, D.W.; Schueuermann G3
1988-06-01
A reliable set of data on the bioconcentration factors (KB) of a diverse range of compounds in fish was selected from the literature. Using the structures of these compounds, the following molecular parameters were calculated: molecular weight (MW), solvent accessible molecular surface area (SASA), solvent accessible molecular volume (SAV), molar refraction (MR), largest principal moment of inertia (LPMI) and several molecular connectivity indices of the Randic type (1 chi, 2 chi, 3 chi, 1 chi vr, 3 chi c). The relationships between these parameters and log KB were evaluated for all compounds and the following subgroups: chlorinated hydrocarbons (CHC), polyaromaticmore » hydrocarbons (PAH), and CHC and PAH combined. These relationships indicated that SASA, SAV, and MR were good predictors of log KB for the CHC and PAH combined or alone and the other parameters were less satisfactory with these groups. In addition with the CHC, the log of these parameters displayed an improved correlation with log KB due to apparent nonlinearity in the log to linear relationship. Thus, with these groups of compounds, calculated values of SASA, SAV, and MR provide a satisfactory means of estimating log KB without measured data.« less
The X-ray evolution of inflows and outflows in active galactic nuclei
NASA Astrophysics Data System (ADS)
Saez, Cristian
The evolution of the space density of AGNs might have spectral counterparts which could be observable in X-rays. The main objective of this thesis is to study the spectral properties of AGNs in X-rays in order to increase our current knowledge of AGN evolution. In chapter 2, we present results from a statistical analysis of 173 bright radio-quiet AGNs selected from the Chandra Deep Field-North and Chandra Deep Field-South surveys (hereafter, CDFs) in the redshift range of 0.1 ≲z≲ 4. We find that the X-ray power-law photon index (Gamma) of radio-quiet AGNs is correlated with their 2--10 keV rest-frame X-ray luminosity ( LX) at the > 99.5% confidence level in two redshift bins, 0.3 ≲z≲ 0.96, and 1.5 ≲z≲ 3.3 and is slightly less significant in the redshift bin 0.96 ≲z≲ 1.5. The X-ray spectral slope steepens as the X-ray luminosity increases for AGNs in the luminosity range 1042 to 1045 erg s-1. Combining our results from the CDFs with those from previous studies in the redshift range 1.5 ≲z≲ 3.3, we find that the Gamma -- L X correlation has a null-hypothesis probability of 1.6 x 10 -9. We investigate the redshift evolution of the correlation between the power-law photon index and the hard X-ray luminosity and find that the slope and offset of a linear fit to the correlation change significantly (at the > 99.9% confidence level) between redshift bins of 0.3 ≲z≲ 0.96 and 1.5 ≲z≲ 3.3. We explore physical scenarios explaining the origin of this correlation and its possible evolution with redshift in the context of steady corona models focusing on its dependency on variations of the properties of the hot corona with redshift. In chapter 3, we present results from three Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of ≲ 2 keV (low-energy) and 7--12 keV (high-energy). The detection of these features confirms the results of previous long-exposure (80--90 ks) Chandra and XMM-Newton observations. The low and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku XIS spectra (with an F-test significance of ≳ 99%). We interpret the low-energy absorption as arising from a low-ionization absorber with log (NH/cm-2) ˜ 23 and the high-energy absorption as due to lines arising from highly ionized (2.75 ≲ log xi ≲ 4.0; where xi is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be ≲ 36°. We also detect likely variability of the absorption lines (at the ≳ 99.9% and ≳ 98% significance levels in the FI and BI spectra, respectively) with a rest-frame time scale of ˜1 month. Assuming that the detected high-energy absorption features arise from Fe XXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be ≳ 10%. In chapter 4, we present an expansion of our previous work on the study of X-ray outflows on APM 08279+5255. The main conclusions from our multi-epoch spectral analysis of Chandra, XMM-Newton and Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line (BAL) quasar APM 08279+5255 are: (1) In every observation we confirm the presence of two strong features, one at rest-frame energies between 1--4 keV, and the other between 7--18 keV. (2) The low-energy absorption is interpreted as arising (1--4 keV rest-frame) from a low-ionization absorber with log (N H/cm-2) ˜ 23 and the high-energy absorption (7--18 keV rest-frame) as due to lines arising from highly ionized (3 ≲ log xi ≲ 4; where xi is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to ˜ 0.7c. We also present results obtained from fits to all the long exposure observations of APM 08279+5255 with a new outflow model. (Abstract shortened by UMI.)
Fatigue shifts and scatters heart rate variability in elite endurance athletes.
Schmitt, Laurent; Regnard, Jacques; Desmarets, Maxime; Mauny, Fréderic; Mourot, Laurent; Fouillot, Jean-Pierre; Coulmy, Nicolas; Millet, Grégoire
2013-01-01
This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in 'fatigue' or in 'no-fatigue' state in 'real life' conditions. 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms(2) and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). 172 trials were identified as in a 'fatigue' and 891 as in 'no-fatigue' state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between 'fatigue' and 'no-fatigue': HRSU (+6.27±0.61 bpm), logTPSU (-0.36±0.04), logLFSU (-0.27±0.04), logHFSU (-0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (-9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (-0.28±0.03), logLFST (-0.29±0.03), logHFST (-0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the 'fatigue' state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern.
NASA Astrophysics Data System (ADS)
Christiansen, Christian; Hartmann, Daniel
This paper documents a package of menu-driven POLYPASCAL87 computer programs for handling grouped observations data from both sieving (increment data) and settling tube procedures (cumulative data). The package is designed deliberately for use on IBM-compatible personal computers. Two of the programs solve the numerical problem of determining the estimates of the four (main) parameters of the log-hyperbolic distribution and their derivatives. The package also contains a program for determining the mean, sorting, skewness. and kurtosis according to the standard moments. Moreover, the package contains procedures for smoothing and grouping of settling tube data. A graphic part of the package plots the data in a log-log plot together with the estimated log-hyperbolic curve. Along with the plot follows all estimated parameters. Another graphic option is a plot of the log-hyperbolic shape triangle with the (χ,ζ) position of the sample.
Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael
2009-01-01
We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
X-ray evidence for ultra-fast outflows in Seyfert galaxies
NASA Astrophysics Data System (ADS)
Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro
2012-07-01
X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.
Liu, Joe; Obando, Daniel; Schipanski, Liam G; Groebler, Ludwig K; Witting, Paul K; Kalinowski, Danuta S; Richardson, Des R; Codd, Rachel
2010-02-11
Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphenoxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferiprone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass spectrometry and RP-HPLC measurements. The extent of intracellular (59)Fe mobilized by the DFOB-3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC(50) value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship between logP and (59)Fe mobilization for the DFOB conjugates showed that maximal mobilization of intracellular (59)Fe occurred at a logP value approximately 2.3. This parameter, rather than the affinity for Fe(III), appears to influence the extent of intracellular (59)Fe mobilization. The low toxicity-high Fe mobilization efficacy of selected adamantane-based DFOB conjugates underscores the potential of these compounds to treat iron overload disease in patients with transfusional-dependent disorders such as beta-thalassemia.
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.
2017-03-01
High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.
Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings
NASA Astrophysics Data System (ADS)
Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long
2018-05-01
We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.
2010-01-01
We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).
NASA Astrophysics Data System (ADS)
Yegireddi, Satyanarayana; Uday Bhaskar, G.
2009-01-01
Different parameters obtained through well-logging geophysical sensors such as SP, resistivity, gamma-gamma, neutron, natural gamma and acoustic, help in identification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular stratigraphy formation, are function of its composition, physical properties and help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify or assess the type of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the type of stratigraphy from borehole geophysical log data using a combined approach of neural networks and fuzzy logic, known as Adaptive Neuro-Fuzzy Inference System. A model is built based on a few data sets (geophysical logs) of known stratigraphy of in coal areas of Kothagudem, Godavari basin and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. The results are very encouraging and the model is able to decipher even thin cola seams and other strata from borehole geophysical logs. The model can be further modified to assess the physical properties of the strata, if the corresponding ground truth is made available for simulation.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures
1980-07-01
HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD
Estimation of octanol/water partition coefficients using LSER parameters
Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.
1998-01-01
The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.
NASA Astrophysics Data System (ADS)
Finn, Charles W.; Morris, Simon L.; Crighton, Neil H. M.; Hamann, Fred; Done, Chris; Theuns, Tom; Fumagalli, Michele; Tejos, Nicolas; Worseck, Gabor
2014-06-01
We present HST/COS observations of highly ionized absorption lines associated with a radio-loud quasar (QSO) at z = 1.1319. The absorption system has multiple velocity components, with an overall width of ≈600 km s-1, tracing gas that is largely outflowing from the QSO at velocities of a few 100 km s-1. There is an unprecedented range in ionization, with detections of H I, N III, N IV, N V, O IV, O IV*, O V, O VI, Ne VIII, Mg X, S V and Ar VIII. We estimate the total hydrogen number density from the column density ratio N(OIV*) / N(OIV) to be log(nH/cm-3)˜3. Combined with constraints on the ionization parameter in the O IV bearing gas from photoionization equilibrium models, we derive a distance to the absorbing complex of 2.3≲R≲6.0kpc from the centre of the QSO. A range in ionization parameter, covering ˜two orders of magnitude, suggest absorption path lengths in the range 10-4.5≲labs≲1pc. In addition, the absorbing gas only partially covers the background emission from the QSO continuum, which suggests clouds with transverse sizes ltrans≲10-2.5 pc. Widely differing absorption path lengths, combined with covering fractions less than unity across all ions pose a challenge to models involving simple cloud geometries in associated absorption systems. These issues may be mitigated by the presence of non-equilibrium effects, which can be important in small, dynamically unstable clouds, together with the possibility of multiple gas temperatures. The dynamics and expected lifetimes of the gas clouds suggest that they do not originate from close to the active galactic nuclei, but are instead formed close to their observed location. Their inferred distance, outflow velocities and gas densities are broadly consistent with scenarios involving gas entrainment or condensations in winds driven by either supernovae, or the supermassive black hole accretion disc. In the case of the latter, the present data most likely does not trace the bulk of the outflow by mass, which could instead manifest itself as an accompanying warm absorber, detectable in X-rays.
Environmental and Genetic Factors Explain Differences in Intraocular Scattering.
Benito, Antonio; Hervella, Lucía; Tabernero, Juan; Pennos, Alexandros; Ginis, Harilaos; Sánchez-Romera, Juan F; Ordoñana, Juan R; Ruiz-Sánchez, Marcos; Marín, José M; Artal, Pablo
2016-01-01
To study the relative impact of genetic and environmental factors on the variability of intraocular scattering within a classical twin study. A total of 64 twin pairs, 32 monozygotic (MZ) (mean age: 54.9 ± 6.3 years) and 32 dizygotic (DZ) (mean age: 56.4 ± 7.0 years), were measured after a complete ophthalmologic exam had been performed to exclude all ocular pathologies that increase intraocular scatter as cataracts. Intraocular scattering was evaluated by using two different techniques based on a straylight parameter log(S) estimation: a compact optical instrument based in the principle of optical integration and a psychophysical measurement. Intraclass correlation coefficients (ICC) were used as descriptive statistics of twin resemblance, and genetic models were fitted to estimate heritability. No statistically significant difference was found for MZ and DZ groups for age (P = 0.203), best-corrected visual acuity (P = 0.626), cataract gradation (P = 0.701), sex (P = 0.941), optical log(S) (P = 0.386), or psychophysical log(S) (P = 0.568), with only a minor difference in equivalent sphere (P = 0.008). Intraclass correlation coefficients between siblings were similar for scatter parameters: 0.676 in MZ and 0.471 in DZ twins for optical log(S); 0.533 in MZ twins and 0.475 in DZ twins for psychophysical log(S). For equivalent sphere, ICCs were 0.767 in MZ and 0.228 in DZ twins. Conservative estimates of heritability for the measured scattering parameters were 0.39 and 0.20, respectively. Correlations of intraocular scatter (straylight) parameters in the groups of identical and nonidentical twins were similar. Heritability estimates were of limited magnitude, suggesting that genetic and environmental factors determine the variance of ocular straylight in healthy middle-aged adults.
Warfarin: history, tautomerism and activity
NASA Astrophysics Data System (ADS)
Porter, William R.
2010-06-01
The anticoagulant drug warfarin, normally administered as the racemate, can exist in solution in potentially as many as 40 topologically distinct tautomeric forms. Only 11 of these forms for each enantiomer can be distinguished by selected computational software commonly used to estimate octanol-water partition coefficients and/or ionization constants. The history of studies on warfarin tautomerism is reviewed, along with the implications of tautomerism to its biological properties (activity, protein binding and metabolism) and chemical properties (log P, log D, p K a). Experimental approaches to assessing warfarin tautomerism and computational results for different tautomeric forms are presented.
Fatigue Shifts and Scatters Heart Rate Variability in Elite Endurance Athletes
Schmitt, Laurent; Regnard, Jacques; Desmarets, Maxime; Mauny, Fréderic; Mourot, Laurent; Fouillot, Jean-Pierre; Coulmy, Nicolas; Millet, Grégoire
2013-01-01
Purpose This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in ‘fatigue’ or in ‘no-fatigue’ state in ‘real life’ conditions. Methods 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms2 and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). Results 172 trials were identified as in a ‘fatigue’ and 891 as in ‘no-fatigue’ state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between ‘fatigue’ and ‘no-fatigue’: HRSU (+6.27±0.61 bpm), logTPSU (−0.36±0.04), logLFSU (−0.27±0.04), logHFSU (−0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (−9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (−0.28±0.03), logLFST (−0.29±0.03), logHFST (−0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the ‘fatigue’ state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). Conclusion HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern. PMID:23951198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.
2016-03-25
Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less
Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho
2015-09-15
Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Standardization of terminology in field of ionizing radiations and their measurements
NASA Astrophysics Data System (ADS)
Yudin, M. F.; Karaveyev, F. M.
1984-03-01
A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.
Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook
2011-01-01
A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.
Alfvén ionization in an MHD-gas interactions code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, A. D.; Diver, D. A.
A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less
Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359
NASA Technical Reports Server (NTRS)
Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin
1995-01-01
We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, J. Michael; Stevans, Matthew; Danforth, Charles
2011-10-01
We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
Fuzzy inference system for identification of geological stratigraphy off Prydz Bay, East Antarctica
NASA Astrophysics Data System (ADS)
Singh, Upendra K.
2011-12-01
The analysis of well logging data plays key role in the exploration and development of hydrocarbon reservoirs. Various well log parameters such as porosity, gamma ray, density, transit time and resistivity, help in classification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular geological stratigraphy formation are function of its composition, physical properties that help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify the kind of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the kinds of stratigraphy from well logs over Prydz bay basin, East Antarctica using fuzzy inference system. A model is built based on few data sets of known stratigraphy and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. Initially the fuzzy based algorithm is trained, validated and tested on well log data and finally identifies the formation lithology of a hydrocarbon reservoir system of study area. The effectiveness of this technique is demonstrated by the analysis of the results for actual lithologs and coring data of ODP Leg 188. The fuzzy results show that the training performance equals to 82.95% while the prediction ability is 87.69%. The fuzzy results are very encouraging and the model is able to decipher even thin layer seams and other strata from geophysical logs. The result provides the significant sand formation of depth range 316.0- 341.0 m, where core recovery is incomplete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Gajendra; Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu
Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξmore » = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.« less
Schaffer, Mario; Boxberger, Norman; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard
2012-04-01
The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained K(OC) data were compared with calculated K(OC) values derived from two different logK(OW)-logK(OC) correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pK(a) in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of K(OC), the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied K(OC) correlations. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2010-11-01
Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
Use of vacuum-steam-vacuum and ionizing radiation to eliminate Listeria innocua from ham.
Sommers, Christopher; Kozempel, Michael; Fan, Xuetong; Radewonuk, E Richard
2002-12-01
Listeria spp. are a frequent postprocess contaminant of ready-to-eat (RTE) meat products, including ham. Vacuum-steam-vacuum (VSV) technology has been used successfully to eliminate Listeria innocua from hot dogs. Ionizing radiation can eliminate Listeria spp. from RTE meats. However, the excessive application of either technology can cause changes in product quality, including structural changes, changes in cure color (redness), and lipid oxidation. In this study, two cycles of VSV were combined with 2.0 kGy of ionizing radiation to obtain 4.40- and 4.85-log10 reductions of L. innocua on ham meat and skin, respectively. The use of both treatments resulted in an additive, as opposed to synergistic, reduction of L. innocua on ham. The combination treatment did not cause statistically significant changes in product structure, color (redness), or lipid oxidation.
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Modeling and validating the grabbing forces of hydraulic log grapples used in forest operations
Jingxin Wang; Chris B. LeDoux; Lihai Wang
2003-01-01
The grabbing forces of log grapples were modeled and analyzed mathematically under operating conditions when grabbing logs from compact log piles and from bunch-like log piles. The grabbing forces are closely related to the structural parameters of the grapple, the weight of the grapple, and the weight of the log grabbed. An operational model grapple was designed and...
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.
2014-06-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.
NASA Astrophysics Data System (ADS)
Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.
2008-07-01
The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, Brett H.
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less
Benhaim, Deborah; Grushka, Eli
2008-10-31
In this study, we show that the addition of n-octanol to the mobile phase improves the chromatographic determination of lipophilicity parameters of xenobiotics (neutral solutes, acidic, neutral and basic drugs) on a Phenomenex Gemini C18 column. The Gemini C18 column is a new generation hybrid silica-based column with an extended pH range capability. The wide pH range (2-12) afforded the examination of basic drugs and acidic drugs in their neutral form. Extrapolated retention factor values, [Formula: see text] , obtained on the above column with the n-octanol-modified mobile phase were very well correlated (1:1 correlation) with literature values of logP (logarithm of the partition coefficient in n-octanol/water) of neutral compounds and neutral drugs (69). In addition, we found good linear correlations between measured [Formula: see text] values and calculated values of the logarithm of the distribution coefficient at pH 7.0 (logD(7.0)) for ionized acidic and basic drugs (r(2)=0.95). The Gemini C18 phase was characterized using the linear solvation energy relationship (LSER) model of Abraham. The LSER system constants for the column were compared to the LSER constants of n-octanol/water extraction system using the Tanaka radar plots. The comparison shows that the two methods are nearly equivalent.
Orejas, Jaime; Pfeuffer, Kevin P; Ray, Steven J; Pisonero, Jorge; Sanz-Medel, Alfredo; Hieftje, Gary M
2014-11-01
Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters
NASA Astrophysics Data System (ADS)
Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun
2015-05-01
We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; Haridass, C.; Major, H.
1999-01-01
A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative information, such as the electron collisional ionization rate, can be extracted from the complex processes occurring within the discharge. In the optogalvanic effect (OGE), there is no problem of overlap from background emissions, and hence even weak signals can be detected with a high signal-to-noise ratio, which makes the optogalvanic effect sensitive enough to resolve vibrational changes in molecular bonds and differences in energy levels brought about by different electron spins. For calibration purposes, neon and argon gaseous discharges have been employed most extensively, because these gases are commonly used as buffer gases within hollow-cathode lamps and provide an acceptable density of calibration lines. In the present work, our main aim has been to understand the dominant physical processes responsible for the production of the OGE signal, based on the extensive time resolved optogalvanic waveforms recorded, and also to extract quantitative information on the rates of excited state collisional processes.
Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina
2006-08-01
This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques
2013-11-01
Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.
The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR
NASA Technical Reports Server (NTRS)
King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.;
2014-01-01
We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.
Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen
2009-08-15
Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.
Natarajan, R; Nirdosh, I; Venuvanalingam, P; Ramalingam, M
2002-07-01
The QPPR approach has been used to model cupferrons as mineral collectors. Separation efficiencies (Es) of these chelating agents have been correlated with property parameters namely, log P, log Koc, substituent-constant sigma, Mullikan and ESP derived charges using multiple regression analysis. Es of substituted-cupferrons in the flotation of a uranium ore could be predicted within experimental error either by log P or log Koc and an electronic parameter. However, when a halo, methoxy or phenyl substituent was in para to the chelating group, experimental Es was greater than the predicted values. Inclusion of a Boolean type indicative parameter improved significantly the predictability power. This approach has been extended to 2-aminothiophenols that were used to float a zinc ore and the correlations were found to be reasonably good.
FAMA: An automatic code for stellar parameter and abundance determination
NASA Astrophysics Data System (ADS)
Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella
2013-10-01
Context. The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Aims: Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. Methods: The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between log n(Fe i) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed "a priori" but are based on the quality of the spectra. Results: In this paper we present tests performed on the solar spectrum EWs that assess the method's dependency on the initial parameters and we analyze a sample of stars observed in Galactic open and globular clusters. The current version of FAMA is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A38
Hakk, Heldur; Shappell, Nancy W; Lupton, Sara J; Shelver, Weilin L; Fanaselle, Wendy; Oryang, David; Yeung, Chi Yuen; Hoelzer, Karin; Ma, Yinqing; Gaalswyk, Dennis; Pouillot, Régis; Van Doren, Jane M
2016-01-13
Seven animal drugs [penicillin G (PENG), sulfadimethoxine (SDMX), oxytetracycline (OTET), erythromycin (ERY), ketoprofen (KETO), thiabendazole (THIA), and ivermectin (IVR)] were used to evaluate the drug distribution between milk fat and skim milk fractions of cow milk. More than 90% of the radioactivity was distributed into the skim milk fraction for ERY, KETO, OTET, PENG, and SDMX, approximately 80% for THIA, and 13% for IVR. The distribution of drug between milk fat and skim milk fractions was significantly correlated to the drug's lipophilicity (partition coefficient, log P, or distribution coefficient, log D, which includes ionization). Data were fit with linear mixed effects models; the best fit was obtained within this data set with log D versus observed drug distribution ratios. These candidate empirical models serve for assisting to predict the distribution and concentration of these drugs in a variety of milk and milk products.
A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: a case study.
Xu, Changhai; Tang, Wenjuan; Du, Jinmei
2014-02-15
The sorption data of an anionic dye on cellulose fiber are often correlated with a log-linear model to determine the internal accessible volume of the fiber to the anionic dye (V, L/kg) and as such the standard affinity of the anionic dye to the fiber (-Δμ°, J/mol), but without taking into account the influence of ionized carboxyl groups due to cellulose oxidation ([COO(-)]f, mol/kg). In this study, a nonlinear isotherm model was derived by incorporating [COO(-)]f, V and -Δμ° as three model parameters. A set of classical sorption data of C. I. Direct Blue 1 on bleached cotton was correlated with the nonlinear isotherm model. The nonlinear curve fitting analysis showed that the nonlinear isotherm model was in excellent agreement with the sorption data and robust to determine the values of [COO(-)]f, V and -Δμ° for describing the sorption behaviors of anionic dyes on cellulose fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electronic structures of elements according to ionization energies.
Zadeh, Dariush H
2017-11-28
The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.
NASA Astrophysics Data System (ADS)
Liigand, Piia; Kaupmees, Karl; Kruve, Anneli
2016-07-01
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.
VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)
NASA Astrophysics Data System (ADS)
Sutherland, R. S.; Dopita, M. A.
2017-06-01
In this paper we treat the preionization problem in shocks over the velocity range 10
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Macalpine, Gordon M.
1992-01-01
Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.
Electrospray Post-Ionization Mass Spectrometry of Electrosurgical Aerosols
NASA Astrophysics Data System (ADS)
Guenther, Sabine; Schäfer, Karl-Christian; Balog, Júlia; Dénes, Júlia; Majoros, Tamás; Albrecht, Katalin; Tóth, Miklós; Spengler, Bernhard; Takáts, Zoltán
2011-11-01
The feasibility of electrospray (ES) ionization of aerosols generated by electrosurgical disintegration methods was investigated. Although electrosurgery itself was demonstrated to produce gaseous ions, post-ionization methods were implemented to enhance the ion yield, especially in those cases when the ion current produced by the applied electrosurgical method is not sufficient for MS analysis. Post-ionization was implemented by mounting an ES emitter onto a Venturi pump, which is used for ion transfer. The effect of various parameters including geometry, high voltage setting, flow parameters, and solvent composition was investigated in detail. Experimental setups were optimized accordingly. ES post-ionization was found to yield spectra similar to those obtained by the REIMS technique, featuring predominantly lipid-type species. Signal enhancement was 20- to 50-fold compared with electrosurgical disintegration in positive mode, while no improvement was observed in negative mode. ES post-ionization was also demonstrated to allow the detection of non-lipid type species in the electrosurgical aerosol, including drug molecules. Since the tissue specificity of the MS data was preserved in the ES post-ionization setup, feasibility of tissue identification was demonstrated using different electrosurgical methods.
Bio-logging of physiological parameters in higher marine vertebrates
NASA Astrophysics Data System (ADS)
Ponganis, Paul J.
2007-02-01
Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
NASA Astrophysics Data System (ADS)
Frimpong, G. K.; Kottoh, I. D.; Ofosu, D. O.; Larbi, D.
2015-05-01
The effect of ionizing radiation on the microbiological quality on minimally processed carrot and lettuce was studied. The aim was to investigate the effect of irradiation as a sanitizing agent on the bacteriological quality of some raw eaten salad vegetables obtained from retailers in Accra, Ghana. Minimally processed carrot and lettuce were analysed for total viable count, total coliform count and pathogenic organisms. The samples collected were treated and analysed for a 15 day period. The total viable count for carrot ranged from 1.49 to 14.01 log10 cfu/10 g while that of lettuce was 0.70 to 8.5 7 log10 cfu/10 g. It was also observed that total coliform count for carrot was 1.46-7.53 log10 cfu/10 g and 0.14-7.35 log10 cfu/10 g for lettuce. The predominant pathogenic organisms identified were Bacillus cereus, Cronobacter sakazakii, Staphylococcus aureus, and Klebsiella spp. It was concluded that 2 kGy was most effective for medium dose treatment of minimally processed carrot and lettuce.
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Rigby, Jane R.; Sharon, Keren; Wuyts, Eva; Florian, Michael; Gladders, Michael D.; Johnson, Traci; Oguri, Masamune
2014-08-01
We present optical and near-IR imaging and spectroscopy of SGAS J105039.6+001730, a strongly lensed galaxy at z = 3.6252 magnified by >30×, and derive its physical properties. We measure a stellar mass of log(M */M ⊙) = 9.5 ± 0.35, star formation rates from [O II] λλ3727 and Hβ of 55 ± 25 and 84 ± 24 M ⊙ yr-1, respectively, an electron density of ne <= 103 cm-2, an electron temperature of Te <= 14,000 K, and a metallicity of 12 + log(O/H) = 8.3 ± 0.1. The strong C III] λλ1907,1909 emission and abundance ratios of C, N, O, and Si are consistent with well-studied starbursts at z ~ 0 with similar metallicities. Strong P Cygni lines and He II λ1640 emission indicate a significant population of Wolf-Rayet stars, but synthetic spectra of individual populations of young, hot stars do not reproduce the observed integrated P Cygni absorption features. The rest-frame UV spectral features are indicative of a young starburst with high ionization, implying either (1) an ionization parameter significantly higher than suggested by rest-frame optical nebular lines, or (2) differences in one or both of the initial mass function and the properties of ionizing spectra of massive stars. We argue that the observed features are likely the result of a superposition of star forming regions with different physical properties. These results demonstrate the complexity of star formation on scales smaller than individual galaxies, and highlight the importance of systematic effects that result from smearing together the signatures of individual star forming regions within galaxies. Based on observations from the Magellan Telescopes at Las Campanas Observatory, from Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the United States, Canada, Chile, Australia, Brazil and Argentina, with additional supporting data obtained at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the MAST data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. GO13003.
A STUDY OF THE X-RAYED OUTFLOW OF APM 08279+5255 THROUGH PHOTOIONIZATION CODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, Cristian; Chartas, George, E-mail: saez@astro.psu.edu, E-mail: chartasg@cofc.edu
2011-08-20
We present new results from our study of the X-rayed outflow of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. These results are based on spectral fits to all the long exposure observations of APM 08279+5255 using a new quasar-outflow model. This model is based on CLOUDY{sup 3} CLOUDY is a photoionization code designed to simulate conditions in interstellar matter under a broad range of conditions. We have used version 08.00 of the code last described by Ferland et al. (1998). The atomic database used by CLOUDY is described in Ferguson et al. (2001) and http://www.pa.uky.edu/{approx}verner/atom.html.more » simulations of a near-relativistic quasar outflow. The main conclusions from our multi-epoch spectral re-analysis of Chandra, XMM-Newton, and Suzaku observations of APM 08279+5255 are the following. (1) In every observation, we confirm the presence of two strong features, one at rest-frame energies between 1-4 keV and the other between 7-18 keV. (2) We confirm that the low-energy absorption (1-4 keV rest frame) arises from a low-ionization absorber with log(N{sub H}/cm{sup -2}) {approx} 23 and the high-energy absorption (7-18 keV rest frame) arises from highly ionized (3 {approx}< log {xi} {approx}< 4, where {xi} is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to {approx}0.7c. (3) We confirm a correlation between the maximum outflow velocity and the photon index and find possible trends between the maximum outflow velocity and the X-ray luminosity, and between the total column density and the photon index. We performed calculations of the force multipliers of material illuminated by absorbed power laws and a Mathews-Ferland spectral energy distribution (SED). We found that variations of the X-ray and UV parts of the SEDs and the presence of a moderate absorbing shield will produce important changes in the strength of the radiative driving force. These results support the observed trend found between the outflow velocity and X-ray photon index in APM 08279+5255. If this result is confirmed it will imply that radiation pressure is an important mechanism in producing quasar outflows.« less
Feasibility of using the linac real-time log data for VMAT treatment verification
NASA Astrophysics Data System (ADS)
Midi, N. S.; Zin, Hafiz M.
2017-05-01
This study investigates the feasibility of using the real-time log data from a linac to verify Volumetric Modulated Arc Therapy (VMAT) treatment. The treatment log data for an Elekta Synergy linac can be recorded at a sampling rate of 4 Hz using the service graphing tool on the linac control computer. A treatment plan that simulates a VMAT treatment was delivered from the linac and all the dynamic treatment parameters including monitor unit (MU), Multileaf Collimator (MLC) position, jaw position, gantry angle and collimator angle were recorded in real-time using the service graphing tool. The recorded raw data were extracted and analysed using algorithms written in Matlab (MathWorks, Natick, MA). The actual treatment parameters logged using the service graphing tool was compared to the prescription and the deviations were analysed. The MLC position errors travelling at the speed range from -3.25 to 5.92 cm/s were between -1.7 mm to 2.5 mm, well within the 3.5 mm tolerance value (AAPM TG-142). The discrepancies of other delivery parameters were also within the tolerance. The real-time linac parameters logged using the service graphing tool can be used as a supplementary data for patient specific VMAT pre-treatment quality assurance.
NASA Astrophysics Data System (ADS)
James, B.; Aloisi, A.
2018-02-01
The abundance of oxygen in galaxies is widely used in furthering our understanding of galaxy formation and evolution. Unfortunately, direct measurements of O/H in the neutral gas are extremely difficult to obtain, as the only O I line available within the Hubble Space Telescope (HST) UV wavelength range (1150–3200 Å) is often saturated. As such, proxies for oxygen are needed to indirectly derive O/H via the assumption that solar ratios based on local Milky Way sight lines hold in different environments. In this paper we assess the validity of using two such proxies, P II and S II, within more typical star-forming environments. Using HST-Cosmic Origins Spectrograph (COS) far-UV (FUV) spectra of a sample of nearby star-forming galaxies (SFGs) and the oxygen abundances in their ionized gas, we demonstrate that both P and S are mildly depleted with respect to O and follow a trend, log(P II/S II) = -1.73 +/- 0.18, in excellent agreement with the solar ratio of {log}{({{P}}/{{S}})}ȯ =-1.71 +/- 0.04 over the large range of metallicities (0.03–3.2 Z ⊙) and H I column densities ({log}[N(H I)/cm‑2] =18.44–21.28) spanned by the sample. From literature data we show evidence that both elements individually trace oxygen according to their respective solar ratios across a wide range of environments. Our findings demonst-rate that the solar ratios of {log}{({{P}}/{{O}})}ȯ =-3.28+/- 0.06 and {log}{({{S}}/{{O}})}ȯ =-1.57+/- 0.06 can both be used to derive reliable O/H abundances in the neutral gas of local and high-redshift SFGs. The difference between O/H in the ionized- and neutral gas phases is studied with respect to metallicity and H I content. The observed trends are consistent with galactic outflows and/or star formation inefficiency affecting the most metal-poor galaxies, with the possibility of primordial gas accretion at all metallicities.
NASA Astrophysics Data System (ADS)
Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.
2018-06-01
We study the direct gas-phase oxygen abundance using the well-detected auroral line [O III]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O III]λ5007/Hβ versus [N II]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances (7.8< 12+{log}({{O}}/{{H}})< 8.4) and the N2 (log([N II]λ6584/Hα))/O3N2 (log(([O III]λ5007/Hβ)/([N II]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H II regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O III]λλ4959,5007+[O II]λλ3726,3729)/Hβ)), O32(log([O III]λλ4959,5007/[O II]λλ3726,3729)), {log}([O III]λ5007/Hβ), and log([Ne III]λ3869/[O II]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure variations are minimal and ISM conditions do not change dramatically from z ∼ 2 to z ∼ 5, these empirical calibrations can be used to measure relative metallicities in galaxies with redshifts up to z ∼ 5.0 in ground-based observations.
Gradually truncated log-normal in USA publicly traded firm size distribution
NASA Astrophysics Data System (ADS)
Gupta, Hari M.; Campanha, José R.; de Aguiar, Daniela R.; Queiroz, Gabriel A.; Raheja, Charu G.
2007-03-01
We study the statistical distribution of firm size for USA and Brazilian publicly traded firms through the Zipf plot technique. Sale size is used to measure firm size. The Brazilian firm size distribution is given by a log-normal distribution without any adjustable parameter. However, we also need to consider different parameters of log-normal distribution for the largest firms in the distribution, which are mostly foreign firms. The log-normal distribution has to be gradually truncated after a certain critical value for USA firms. Therefore, the original hypothesis of proportional effect proposed by Gibrat is valid with some modification for very large firms. We also consider the possible mechanisms behind this distribution.
NASA Astrophysics Data System (ADS)
Choudhury, Kishalay; García, Javier A.; Steiner, James F.; Bambi, Cosimo
2017-12-01
The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR) simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source counts across the effective 3–79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like {log} ξ carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.
Relativistic effects in electron impact ionization from the p-orbital
NASA Astrophysics Data System (ADS)
Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Karim, K. R.; Saha, B. C.; Malik, F. B.
2006-06-01
The parameters of our recent modification of BELI formula (MBELL) [A.K.F. Haque, M.A. Uddin, A.K. Basak, K.R. Karim, B.C. Saha, Phys. Rev. A 73 (2006) 012708] are generalized in terms of the orbital quantum numbers nl to evaluate the electron impact ionization (EII) cross sections of a wide range of isoelectronic targets (H to Ne series) and incident energies. For both the open and closed p-shell targets, the present MBELL results with a single parameter set, agree nicely with the experimental cross sections. The relativistic effect of ionization in the 2p subshell of U82+ for incident energies up to 250 MeV is well accounted for by the prescribed parameters of the model.
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
Limits on Log Cross-Product Ratios for Item Response Models. Research Report. ETS RR-06-10
ERIC Educational Resources Information Center
Haberman, Shelby J.; Holland, Paul W.; Sinharay, Sandip
2006-01-01
Bounds are established for log cross-product ratios (log odds ratios) involving pairs of items for item response models. First, expressions for bounds on log cross-product ratios are provided for unidimensional item response models in general. Then, explicit bounds are obtained for the Rasch model and the two-parameter logistic (2PL) model.…
Properties of the highly ionized disk and halo gas toward two distant high-latitude stars
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Sembach, K. R.
1994-01-01
Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.
Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry
ERIC Educational Resources Information Center
Weinecke, Andrea; Ryzhov, Victor
2005-01-01
Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…
LTC1877 High Efficiency Regulator Total Ionizing Dose Test Report
NASA Technical Reports Server (NTRS)
Oldham, Timothy; Pellish, Jonathan; Boutte, Alvin
2012-01-01
This report presents total ionizing dose evaluation data for the Linear Technology Corporation LTC1877 high efficiency monolithic synchronous step-down regulator. Data sheet parameters were tracked as a function of ionizing dose up to a total of 20 krad(SiO2). Control devices were also used.
Formation and evolution of dwarf elliptical galaxies. I. Structural and kinematical properties
NASA Astrophysics Data System (ADS)
de Rijcke, S.; Michielsen, D.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.
2005-08-01
This paper is the first in a series in which we present the results of an ESO Large Program on the kinematics and internal dynamics of dwarf elliptical galaxies (dEs). We obtained deep major and minor axis spectra of 15 dEs and broad-band imaging of 22 dEs. Here, we investigate the relations between the parameters that quantify the structure (B-band luminosity L_B, half-light radius R_e, and mean surface brightness within the half-light radius Ie = LB / 2 π R_e^2) and internal dynamics (velocity dispersion σ) of dEs. We confront predictions of the currently popular theories for dE formation and evolution with the observed position of dEs in log LB vs. log σ, log LB vs. log R_e, log LB vs. log I_e, and log Re vs. log Ie diagrams and in the (log σ,log R_e,log I_e) parameter space in which bright and intermediate-luminosity elliptical galaxies and bulges of spirals define a Fundamental Plane (FP). In order to achieve statistical significance and to cover a parameter interval that is large enough for reliable inferences to be made, we merge the data set presented in this paper with two other recently published, equally large data sets. We show that the dE sequences in the various univariate diagrams are disjunct from those traced by bright and intermediate-luminosity elliptical galaxies and bulges of spirals. It appears that semi-analytical models (SAMs) that incorporate quiescent star formation with an essentially z-independent star-formation efficiency, combined with post-merger starbursts and the dynamical response after supernova-driven gas-loss, are able to reproduce the position of the dEs in the various univariate diagrams. SAMs with star-formation efficiencies that rise as a function of redshift are excluded since they leave the observed sequences traced by dEs virtually unpopulated. dEs tend to lie above the FP and the FP residual declines as a function of luminosity. Again, models that take into account the response after supernova-driven mass-loss correctly predict the position of dEs in the (log σ,log R_e,log I_e) parameter space as well as the trend of the FP residual as a function of luminosity. While these findings are clearly a success for the hierarchical-merging picture of galaxy formation, they do not necessarily invalidate the alternative “harassment” scenario, which posits that dEs stem from perturbed and stripped late-type disk galaxies that entered clusters and groups of galaxies about 5 Gyr ago.
Vucicevic, J; Popovic, M; Nikolic, K; Filipic, S; Obradovic, D; Agbaba, D
2017-03-01
For this study, 31 compounds, including 16 imidazoline/α-adrenergic receptor (IRs/α-ARs) ligands and 15 central nervous system (CNS) drugs, were characterized in terms of the retention factors (k) obtained using biopartitioning micellar and classical reversed phase chromatography (log k BMC and log k wRP , respectively). Based on the retention factor (log k wRP ) and slope of the linear curve (S) the isocratic parameter (φ 0 ) was calculated. Obtained retention factors were correlated with experimental log BB values for the group of examined compounds. High correlations were obtained between logarithm of biopartitioning micellar chromatography (BMC) retention factor and effective permeability (r(log k BMC /log BB): 0.77), while for RP-HPLC system the correlations were lower (r(log k wRP /log BB): 0.58; r(S/log BB): -0.50; r(φ 0 /P e ): 0.61). Based on the log k BMC retention data and calculated molecular parameters of the examined compounds, quantitative structure-permeability relationship (QSPR) models were developed using partial least squares, stepwise multiple linear regression, support vector machine and artificial neural network methodologies. A high degree of structural diversity of the analysed IRs/α-ARs ligands and CNS drugs provides wide applicability domain of the QSPR models for estimation of blood-brain barrier penetration of the related compounds.
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
Use of the Bethe equation for inner-shell ionization by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-14
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less
Zhao, Jian-Liang; Furlong, Edward T; Schoenfuss, Heiko L; Kolpin, Dana W; Bird, Kyle L; Feifarek, David J; Schwab, Eric A; Ying, Guang-Guo
2017-04-18
The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000-4000 ng L -1 ) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g -1 , respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71-3960 and 0.13-48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log K ow (that is, log D ow ), with the strongest relations for liver and brain (r 2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (K u ) and elimination rate constants (K e ) at 0.0066-0.0330 h -1 and 0.0075-0.0384 h -1 , respectively, and half-lives at 18.1-92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.
Zhao, Jian-Liang; Furlong, Edward T.; Schoenfuss, Heiko L.; Kolpin, Dana W.; Bird, Kyle L.; Feifarek, David J.; Schwab, Eric A.; Ying, Guang-Guo
2017-01-01
The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000–4000 ng L–1) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g–1, respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71–3960 and 0.13–48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log Kow (that is, log Dow), with the strongest relations for liver and brain (r2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (Ku) and elimination rate constants (Ke) at 0.0066–0.0330 h–1 and 0.0075–0.0384 h–1, respectively, and half-lives at 18.1–92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.
Farsa, Oldřich
2013-01-01
The log BB parameter is the logarithm of the ratio of a compound's equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain's absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism.
Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.
Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2016-03-01
The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...
Prediction of Log "P": ALOGPS Application in Medicinal Chemistry Education
ERIC Educational Resources Information Center
Kujawski, Jacek; Bernard, Marek K.; Janusz, Anna; Kuzma, Weronika
2012-01-01
Molecular hydrophobicity (lipophilicity), usually quantified as log "P" where "P" is the partition coefficient, is an important molecular characteristic in medicinal chemistry and drug design. The log "P" coefficient is one of the principal parameters for the estimation of lipophilicity of chemical compounds and pharmacokinetic properties. The…
Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.
Janicka, Małgorzata
2014-08-01
Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of ionization, bedding, and feeding on air quality in a horse stable.
Siegers, Esther Willemijn; Anthonisse, Milou; van Eerdenburg, Frank J C M; van den Broek, Jan; Wouters, Inge M; Westermann, Cornélie Martine
2018-05-01
Organic dust is associated with Equine asthma. Ionization should reduce airborne dust levels. To determine the effect of ionization of air, type of bedding, and feed on the levels of airborne dust, endotoxin, and fungal colonies in horse stables. 24 healthy University-owned horses occupied the stables. A randomized controlled cross-over study. Four units with 6 stables were equipped with an ionization installation (25 VA, 5000 Volt Direct Current). Horses were kept either on wood shavings and fed haylage (2 units), or on straw and fed dry hay (2 units). Measurements were performed with and without activated ionization, during daytime and nighttime, repeatedly over the course of a week and repeatedly during 4-6 weeks. Statistical analysis was performed using a mixed effect model with Akaike's Information Criterion for model reduction and 95% profile (log) likelihood confidence intervals (CI). Ionization did not alter concentrations of dust, endotoxin, or fungi, fewer. In the units with straw and hay, the concentration of dust, endotoxin, and fungi (difference in logarithmic mean 1.92 (95%CI 1.71-2.12); 2.86 (95%CI 2.59-3.14); 1.75 (95%CI 1.13-2.36)) were significantly higher compared to wood shavings and haylage. The installation of a negative air-ionizer in the horse stable did not reduce concentrations of dust, endotoxin, and viable fungal spores. The substantial effect of low dust bedding and feed is confirmed. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T
2016-04-05
Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.
A simple way to model nebulae with distributed ionizing stars
NASA Astrophysics Data System (ADS)
Jamet, L.; Morisset, C.
2008-04-01
Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission
NASA Astrophysics Data System (ADS)
Barger, K. A.; Madsen, G. J.; Fox, A. J.; Wakker, B. P.; Bland-Hawthorn, J.; Nidever, D.; Haffner, L. M.; Antwi-Danso, Jacqueline; Hernandez, Michael; Lehner, N.; Hill, A. S.; Curzons, A.; Tepper-García, T.
2017-12-01
The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way (MW) with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Stream’s properties change along its length, we have conducted an observational study of the Hα emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin Hα Mapper telescope, we detect Hα emission brighter than 30–50 mR in 26 of our 39 sight lines. This Hα emission extends over 2^\\circ away from the H I emission. By comparing {I}{{H}α } and {I}[{{O}{{I}}]}, we find that regions with {log}{N}{{H}{{I}}}/{{cm}}-2≈ 19.5{--}20.0 are 16%–67% ionized. Most of the {I}{{H}α } along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the MW, and the extragalactic background. We find that the additional contribution from self ionization through a “shock cascade” that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of Hα emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.
ERIC Educational Resources Information Center
Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver
2012-01-01
Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…
Shen, Meiyu; Russek-Cohen, Estelle; Slud, Eric V
2016-08-12
Bioequivalence (BE) studies are an essential part of the evaluation of generic drugs. The most common in vivo BE study design is the two-period two-treatment crossover design. AUC (area under the concentration-time curve) and Cmax (maximum concentration) are obtained from the observed concentration-time profiles for each subject from each treatment under each sequence. In the BE evaluation of pharmacokinetic crossover studies, the normality of the univariate response variable, e.g. log(AUC) 1 or log(Cmax), is often assumed in the literature without much evidence. Therefore, we investigate the distributional assumption of the normality of response variables, log(AUC) and log(Cmax), by simulating concentration-time profiles from two-stage pharmacokinetic models (commonly used in pharmacokinetic research) for a wide range of pharmacokinetic parameters and measurement error structures. Our simulations show that, under reasonable distributional assumptions on the pharmacokinetic parameters, log(AUC) has heavy tails and log(Cmax) is skewed. Sensitivity analyses are conducted to investigate how the distribution of the standardized log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects deviates from normality if distributions of errors in the pharmacokinetic model for plasma concentrations deviate from normality and if the plasma concentration can be described by different compartmental models.
NASA Astrophysics Data System (ADS)
Parnis, J. Mark; Mackay, Donald; Harner, Tom
2015-06-01
Henry's Law constants (H) and octanol-air partition coefficients (KOA) for polycyclic aromatic hydrocarbons (PAHs) and selected nitrogen-, oxygen- and sulfur-containing derivatives have been computed using the COSMO-RS method between -5 and 40 °C in 5 °C intervals. The accuracy of the estimation was assessed by comparison of COSMOtherm values with published experimental temperature-dependence data for these and similar PAHs. COSMOtherm log H estimates with temperature-variation for parent PAHs are shown to have a root-mean-square (RMS) error of 0.38 (PAH), based on available validation data. Estimates of O-, N- and S-substituted derivative log H values are found to have RMS errors of 0.30 at 25 °C. Log KOA estimates with temperature variation from COSMOtherm are shown to be strongly correlated with experimental values for a small set of unsubstituted PAHs, but with a systematic underestimation and associated RMS error of 1.11. Similar RMS error of 1.64 was found for COSMO-RS estimates of a group of critically-evaluated log KOA values at room temperature. Validation demonstrates that COSMOtherm estimates of H and KOA are of sufficient accuracy to be used for property screening and preliminary environmental risk assessment, and perform very well for modeling the influence of temperature on partitioning behavior in the temperature range -5 to 40 °C. Temperature-dependent shifts of up to 2 log units in log H and one log unit for log KOA are predicted for PAH species over the range -5 and 40 °C. Within the family of PAH molecules, COSMO-RS is sufficiently accurate to make it useful as a source of estimates for modeling purposes, following corrections for systematic underestimation of KOA. Average changes in the values for log H and log KOA upon substitution are given for various PAH substituent categories, with the most significant shifts being associated with the ionizing nitro functionality and keto groups.
The Iron Abundance of IOTA Herculis From Ultraviolet Iron Lines
NASA Astrophysics Data System (ADS)
Grigsby, J.; Mulliss, C.; Baer, G.
1995-03-01
We have obtained (Adelman 1992, 1993, private comunication) coadded, high-resolution IUE spectra of Iota Herculis (B3 IV) in both short wavelength (SWP) and long wavelength (LWP) regions. The spectra span the ultraviolet spectrum from 110 - 300 nm and have a SNR of roughly 30 -50; they are described in Adelman et. al. (1993, ApJ 419, 276). Abundance indicators were 54 lines of Fe II and 26 lines of Fe III whose atomic parameters have been measured in the laboratory. LTE synthetic spectra for comparison with observations were produced with the Kurucz model atmosphere and spectral synthesis codes ATLAS9/SYNTHE (Kurucz 1979, ApJS 40,1; Kurucz and Avrett 1981, SAO Special Report 391). Model parameters were chosen from the literature: effective temperature = 17500 K, log g =3.75, v sin i= 11 km/s, and turbulent velocity = 0 km/s. (Peters and Polidan 1985, in IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht: Reidel), 417). We determined the equivalent widths of the chosen lines by fitting gaussian profiles to the lines and by measuring the equivalent widths of the gaussians. We derived abundances by fitting a straight line to a plot of observed equivalent widths vs. synthetic equivalent widths; we adjusted the iron abundance of the models until a slope of unity was achieved. The abundances derived from the different ionization stages are in agreement: Fe II lines indicate an iron abundance that is 34 +15/-10% the solar value([Fe/H]=-0.47 +0.16-0.15dex), while from Fe III lines we obtain 34 +/- 10% ([Fe/H]=-0.47 +0.11/-0.15 dex). A search of the literature suggests that no previous investigations of this star's iron abundance have found agreement between the different ionization stages. We thank Saul Adelman for his generous assistance, and the Faculty Research Fund Board of Wittenberg University for support of this research.
Ultrafast outflows in radio-loud active galactic nuclei
NASA Astrophysics Data System (ADS)
Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.
2014-09-01
Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
Spectroscopic investigation of stars on the lower main sequence
NASA Astrophysics Data System (ADS)
Mishenina, T. V.; Soubiran, C.; Bienaymé, O.; Korotin, S. A.; Belik, S. I.; Usenko, I. A.; Kovtyukh, V. V.
2008-10-01
Aims: The aim of this paper is to provide fundamental parameters and abundances with a high accuracy for a large sample of cool main sequence stars. This study is part of wider project, in which the metallicity distribution of the local thin disc is investigated from a complete sample of G and K dwarfs within 25 pc. Methods: The stars were observed at high resolution and a high signal-to-noise ratio with the ELODIE echelle spectrograph. The V sin i were obtained with a calibration of the cross-correlation function. Effective temperatures were estimated by the line depth ratio method. Surface gravities (log g) were determined by two methods: parallaxes and ionization balance of iron. The Mg and Na abundances were derived using a non-LTE approximation. Abundances of other elements were obtained by measuring equivalent widths. Results: Rotational velocities, atmospheric parameters (T_eff, log g, [Fe/H], V_t), and Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, and Zn abundances are provided for 131 stars. Among them, more than 30 stars are active stars with a fraction of BY Dra and RS CVn type stars for which spectral peculiarities were investigated. We find the mean abundances of the majority of elements in active and nonactive stars to be similar, except for Li, and possibly for Zn and Co. The lithium is reliably detected in 54% of active stars but only in 20% of nonactive stars. No correlation is found between Li abundances and rotational velocities. A possible anticorrelation of log A(Li) with the index of chromospheric activity GrandS is observed. Conclusions: Active and nonactive cool dwarfs show similar dependencies of most elemental ratios vs. [Fe/H]. This allows us to use such abundance ratios to study the chemical and dynamical evolution of the Galaxy. Among active stars, no clear correlation has been found between different indicators of activity for our sample stars. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France). Tables A.1-A3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/923
Small-diameter log evaluation for value-added structural applications
Ronald Wolfe; Cassandra Moseley
2000-01-01
Three species of small-diameter logs from the Klamath/Siskiyou Mountains and the Cascade Range in southwest Oregon were tested for their potential for value-added structural applications. The logs were tested in bending and compression parallel to the grain. Strength and stiffness values were correlated to possible nondestructive evaluation grading parameters and...
Financial Indicators of Reduced Impact Logging Performance in Brazil: Case Study Comparisons
Thomas P. Holmes; Frederick Boltz; Douglas R. Carter
2001-01-01
Indicators of financial performance are compared for three case studies in the Brazilian Amazon. Each case study presents parameters obtained from monitoring initial harvest entries into primary forests for reduced impact logging (RIL) and conventional logging (CL) operations. Differences in cost definitions and data collection protocols complicate the analysis, and...
NASA Astrophysics Data System (ADS)
Stark, Daniel P.; Richard, Johan; Siana, Brian; Charlot, Stéphane; Freeman, William R.; Gutkin, Julia; Wofford, Aida; Robertson, Brant; Amanullah, Rahman; Watson, Darach; Milvang-Jensen, Bo
2014-12-01
We present deep spectroscopy of 17 very low mass (M⋆ ≃ 2.0 × 106-1.4 × 109 M⊙) and low luminosity (MUV ≃ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z ≃ 1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous emission lines (N IV], O III], C IV, Si III], C III]) which are rarely seen in individual spectra of more massive star-forming galaxies. C III] is detected in 16 of 17 low-mass star-forming systems with rest-frame equivalent widths as large as 13.5 Å. Nebular C IV emission is present in the most extreme C III] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal-poor gas and stars (0.04-0.13 Z⊙), young stellar populations (6-50 Myr), and large ionization parameters (log U = -2.16 to -1.84). The young ages implied by the emission lines and continuum spectral energy distributions (SEDs) indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colours, and large specific star formation rates of our sample are similar to those of typical z ≳ 6 galaxies. Given the strong attenuation of Lyα in z ≳ 6 galaxies, we suggest that C III] is likely to provide our best probe of early star-forming galaxies with ground-based spectrographs and one off the most efficient means of confirming z ≳ 10 galaxies with the James Webb Space Telescope.
Weakly ionized cosmic gas: Ionization and characterization
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Mendis, D. A.; Chow, V. W.
1994-01-01
Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.
SU-E-T-473: A Patient-Specific QC Paradigm Based On Trajectory Log Files and DICOM Plan Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMarco, J; McCloskey, S; Low, D
Purpose: To evaluate a remote QC tool for monitoring treatment machine parameters and treatment workflow. Methods: The Varian TrueBeamTM linear accelerator is a digital machine that records machine axis parameters and MLC leaf positions as a function of delivered monitor unit or control point. This information is saved to a binary trajectory log file for every treatment or imaging field in the patient treatment session. A MATLAB analysis routine was developed to parse the trajectory log files for a given patient, compare the expected versus actual machine and MLC positions as well as perform a cross-comparison with the DICOM-RT planmore » file exported from the treatment planning system. The parsing routine sorts the trajectory log files based on the time and date stamp and generates a sequential report file listing treatment parameters and provides a match relative to the DICOM-RT plan file. Results: The trajectory log parsing-routine was compared against a standard record and verify listing for patients undergoing initial IMRT dosimetry verification and weekly and final chart QC. The complete treatment course was independently verified for 10 patients of varying treatment site and a total of 1267 treatment fields were evaluated including pre-treatment imaging fields where applicable. In the context of IMRT plan verification, eight prostate SBRT plans with 4-arcs per plan were evaluated based on expected versus actual machine axis parameters. The average value for the maximum RMS MLC error was 0.067±0.001mm and 0.066±0.002mm for leaf bank A and B respectively. Conclusion: A real-time QC analysis program was tested using trajectory log files and DICOM-RT plan files. The parsing routine is efficient and able to evaluate all relevant machine axis parameters during a patient treatment course including MLC leaf positions and table positions at time of image acquisition and during treatment.« less
Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D
2016-03-22
Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.
The Effect of Clustering on Estimations of the UV Ionizing Background from the Proximity Effect
NASA Astrophysics Data System (ADS)
Pascarelle, S. M.; Lanzetta, K. M.; Chen, H. W.
1999-09-01
There have been several determinations of the ionizing background using the proximity effect observed in the distibution of Lyman-alpha absorption lines in the spectra of QSOs at high redshift. It is usually assumed that the distribution of lines should be the same at very small impact parameters to the QSO as it is at large impact parameters, and any decrease in line density at small impact parameters is due to ionizing radiation from the QSO. However, if these Lyman-alpha absorption lines arise in galaxies (Lanzetta et al. 1995, Chen et al. 1998), then the strength of the proximity effect may have been underestimated in previous work, since galaxies are known to cluster around QSOs. Therefore, the UV background estimations have likely been overestimated by the same factor.
Farsa, Oldřich
2013-01-01
The log BB parameter is the logarithm of the ratio of a compound’s equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k′. The second aim was to estimate the brain’s absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k′ were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism. PMID:23641330
The 3-D ionization structure of the planetary nebula NGC 6565
NASA Astrophysics Data System (ADS)
Turatto, M.; Cappellaro, E.; Ragazzoni, R.; Benetti, S.; Sabbadin, F.
2002-03-01
A detailed study of the planetary nebula NGC 6565 has been carried out on long-slit echellograms (lambda /Delta lambda =60 000, spectral range = lambda lambda 3900-7750 Å) at six, equally spaced position angles. The expansion velocity field, the c(Hβ ) distribution and the radial profile of the physical conditions (electron temperature and density) are obtained. The distance, radius, mass and filling factor of the nebula and the temperature and luminosity of the central star are derived. The radial ionization structure is analyzed using both the classical method and the photo-ionization code CLOUDY. Moreover, we present the spatial structure in a series of images from different directions, allowing the reader to ``see'' the nebula in 3-D. NGC 6565 results to be a young (2000-2500 years), patchy, optically thick triaxial ellipsoid (a=10.1 arcsec, a/b=1.4, a/c=1.7) projected almost pole-on. The matter close to major axis was swept-up by some accelerating agent (fast wind? ionization? magnetic fields?), forming two faint and asymmetric polar cups. A large cocoon of almost neutral gas completely embeds the ionized nebula. NGC 6565 is in a recombination phase, because of the luminosity drop of the massive powering star, which is reaching the white dwarf domain (log T* =~ 5.08 K; log L*/Lsun =~ 2.0). The stellar decline started about 1000 years ago, but the main nebula remained optically thin for other 600 years before the recombination phase occurred. In the near future the ionization front will re-grow, since the dilution factor due to the expansion will prevail on the slower and slower stellar decline. NGC 6565 is at a distance of 2.0 (+/-0.5) kpc and can be divided into three radial zones: the ``fully ionized'' one, extending up to 0.029-0.035 pc at the equator (0.050 pc at the poles), the ``transition'' one, up to 0.048-0.054 pc (0.080 pc), the ``halo'', detectable up to 0.110 pc. The ionized mass ( =~ 0.03 Msun) is only a fraction of the total mass (>= 0.15 Msun), which has been ejected by an equatorial enhanced superwind of 4 (+/-2) x 10-5 Msun yr-1 lasted for 4 (+/-2) x 103 years. Based on observations made with ESO Telescopes at the La Silla Observatories, under programme ID 65.I-0524, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute (observing program GO 7501; P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We have applied the photoionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University.
NASA Astrophysics Data System (ADS)
Edmonds, Larry D.; Irom, Farokh; Allen, Gregory R.
2017-08-01
A recent model provides risk estimates for the deprogramming of initially programmed floating gates via prompt charge loss produced by an ionizing radiation environment. The environment can be a mixture of electrons, protons, and heavy ions. The model requires several input parameters. This paper extends the model to include TID effects in the control circuitry by including one additional parameter. Parameters intended to produce conservative risk estimates for the Samsung 8 Gb SLC NAND flash memory are given, subject to some qualifications.
NASA Astrophysics Data System (ADS)
Sein, Lawrence T.
2011-08-01
Hammett parameters σ' were determined from vertical ionization potentials, vertical electron affinities, adiabatic ionization potentials, adiabatic electron affinities, HOMO, and LUMO energies of a series of N, N' -bis (3',4'-substituted-phenyl)-1,4-quinonediimines computed at the B3LYP/6-311+G(2d,p) level on B3LYP/6-31G ∗ molecular geometries. These parameters were then least squares fit as a function of literature Hammett parameters. For N, N' -bis (4'-substituted-phenyl)-1,4-quinonediimines, the least squares fits demonstrated excellent linearity, with the square of Pearson's correlation coefficient ( r2) greater than 0.98 for all isomers. For N, N' -bis (3'-substituted-3'-aminophenyl)-1,4-quinonediimines, the least squares fits were less nearly linear, with r2 approximately 0.70 for all isomers when derived from calculated vertical ionization potentials, but those from calculated vertical electron affinities usually greater than 0.90.
H II regions as probes of galaxy evolution and the properties of massive stars
NASA Technical Reports Server (NTRS)
Garnett, Donald R.
1993-01-01
The use of H II regions as probes to study the chemical evolution of galaxies and the spectral properties of hot, massive stars is reviewed. The observable parameters for this task are the physical conditions, elemental abundances, and ionization balance in the ionized gas. Some outstanding uncertainties in the determination of these parameters and some approaches to remedy or circumvent the problems are discussed.
Mechanisms of Radiation Induced Effects in Carbon Nanotubes
2016-10-01
the defect types created for both ionizing and non-ionizing particles under exposure to high total ionization and displacement damage doses. Carbon...and displacement damage doses. Additionally, the radiation effects on CNT carrier transport parameters (mobility, lifetime, conductivity) have been...thermal oxidation. 2. Radiation Testing of SWCNTs 2.1 Displacement Damage Dose Effects as a Function of SWCNT Electronic-Type Displacement damage does
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
NASA Astrophysics Data System (ADS)
Gross, Lutz; Tyson, Stephen
2015-04-01
Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.
Experimental optimization of directed field ionization
NASA Astrophysics Data System (ADS)
Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
Central-cell corrections and shallow donor states in strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayam, Sr. Gerardin; Navaneethakrishnan, K.
2001-06-01
Ionization energies and the central-cell corrections have been calculated for a few shallow donors in Si, GaP, and GaAs. We have assumed a short range potential with two parameters for the strength and the range for each donor, representing the central-cell effects. These parameters are fixed using the experimentally available ionization energies for each donor in a semiconductor. In the presence of a magnetic field the donor ionization energies are estimated using a variational procedure. Our results show that the ionization energies and the central-cell corrections increase with magnetic field. Our results are compared for GaAs with the recent workmore » by Heron et al. [R. J. Heron, R. A. Lewis, P. E. Simmonds, R. P. Starret, A. V. Skougarevsky, R. G. Clark, and C. R. Stanley, J. Appl. Phys. 85, 893 (1999)]. {copyright} 2001 American Institute of Physics.« less
An investigation of the ionospheric D region at sunrise
NASA Technical Reports Server (NTRS)
Turco, R. P.; Sechrist, C. F., Jr.
1970-01-01
The growth over sunrise of the C and D layers of the ionosphere is investigated. The model which is analyzed includes the negative ion species O(-), O2(-), O3(-), O4(-), NO3(-), CO3(-), and CO4(-). Ionization sources due to galactic cosmic rays, precipitated electrons, ionization of NO by scattered Lyman alpha radiation, and the direct solar radiation ionization are also included. The photodetachment of most of the negative ions is discussed, as well as the time variation of these parameters. The time variations of the electron, negative ion, and positive ion densities are calculated over sunrise. From these data, the mesospheric C and D layer development is plotted. Several model parameters are varied until the best agreement with experimentally determined electron densities is obtained. The results are discussed in light of several atmospheric parameters including the O and NO concentrations and the electron-ion recombination coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, S; Ho, M; Chen, C
Purpose: The use of log files to perform patient specific quality assurance for both protons and IMRT has been established. Here, we extend that approach to a proprietary log file format and compare our results to measurements in phantom. Our goal was to generate a system that would permit gross errors to be found within 3 fractions until direct measurements. This approach could eventually replace direct measurements. Methods: Spot scanning protons pass through multi-wire ionization chambers which provide information about the charge, location, and size of each delivered spot. We have generated a program that calculates the dose in phantommore » from these log files and compares the measurements with the plan. The program has 3 different spot shape models: single Gaussian, double Gaussian and the ASTROID model. The program was benchmarked across different treatment sites for 23 patients and 74 fields. Results: The dose calculated from the log files were compared to those generate by the treatment planning system (Raystation). While the dual Gaussian model often gave better agreement, overall, the ASTROID model gave the most consistent results. Using a 5%–3 mm gamma with a 90% passing criteria and excluding doses below 20% of prescription all patient samples passed. However, the degree of agreement of the log file approach was slightly worse than that of the chamber array measurement approach. Operationally, this implies that if the beam passes the log file model, it should pass direct measurement. Conclusion: We have established and benchmarked a model for log file QA in an IBA proteus plus system. The choice of optimal spot model for a given class of patients may be affected by factors such as site, field size, and range shifter and will be investigated further.« less
Lawler, J. E.; Sneden, C.; Nave, G.; Den Hartog, E. A.; Emrahođlu, N.; Cowan, J. J.
2017-01-01
New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr+ are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈logε (Cr II)〉 = 5.624±0.009 compared to 〈logε(Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈logε(Cr II)〉 = 3.417 ± 0.006 and 〈log ε(Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history—other iron-peak elements appear not to be associated with Cr. PMID:28579650
Lawler, J E; Sneden, C; Nave, G; Den Hartog, E A; Emrahođlu, N; Cowan, J J
2017-01-01
New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr + are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈log ε (Cr II)〉 = 5.624±0.009 compared to 〈log ε (Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε (H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈log ε (Cr II)〉 = 3.417 ± 0.006 and 〈log ε (Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history-other iron-peak elements appear not to be associated with Cr.
Galaxy emission line classification using three-dimensional line ratio diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.
2014-10-01
Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and themore » ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.« less
Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy)
2003-01-01
This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42 prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physiocochemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D7 for compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Several later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells, appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to improvements in the effectiveness of suicide gene therapy. PMID:12686722
Breakdown simulations in a focused microwave beam within the simplified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.
2016-07-15
The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less
Correlations among Galaxy Properties from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2013-07-01
Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.
2011-10-11
developed a method for determining the structure (component logs and their 3D place- ment) of a LINCOLN LOG assembly from a single image from an uncalibrated...small a class of components. Moreover, we focus on determining the precise pose and structure of an assembly, including the 3D pose of each...medial axes are parallel to the work surface. Thus valid structures Fig. 1. The 3D geometric shape parameters of LINCOLN LOGS. have logs on
Lee, Myung W.
1999-01-01
Methods of predicting acoustic logs from resistivity logs for hydrate-bearing sediments are presented. Modified time average equations derived from the weighted equation provide a means of relating the velocity of the sediment to the resistivity of the sediment. These methods can be used to transform resistivity logs into acoustic logs with or without using the gas hydrate concentration in the pore space. All the parameters except the unconsolidation constants, necessary for the prediction of acoustic log from resistivity log, can be estimated from a cross plot of resistivity versus porosity values. Unconsolidation constants in equations may be assumed without rendering significant errors in the prediction. These methods were applied to the acoustic and resistivity logs acquired at the Mallik 2L-38 gas hydrate research well drilled at the Mackenzie Delta, northern Canada. The results indicate that the proposed method is simple and accurate.
NASA Astrophysics Data System (ADS)
Schmidt, K. B.; Huang, K.-H.; Treu, T.; Hoag, A.; Bradač, M.; Henry, A. L.; Jones, T. A.; Mason, C.; Malkan, M.; Morishita, T.; Pentericci, L.; Trenti, M.; Vulcani, B.; Wang, X.
2017-04-01
The C III] and C IV rest-frame UV emission lines are powerful probes of the ionization states of galaxies. They have furthermore been suggested as alternatives for spectroscopic redshift confirmation of objects at the epoch of reionization (z> 6), where the most frequently used redshift indicator, Lyα, is attenuated by the high fraction of neutral hydrogen in the intergalactic medium. However, currently only very few confirmations of carbon UV lines at these high redshifts exist, making it challenging to quantify these claims. Here, we present the detection of C IV λλ1548, 1551 Å in Hubble Space Telescope slitless grism spectroscopy obtained by GLASS of a Lyα emitter at z = 6.11 multiply imaged by the massive foreground galaxy cluster RXC J2248.7-4431. The C IV emission is detected at the 3σ-5σ level in two images of the source, with marginal detection in two other images. We do not detect significant C III]λλ1907, 1909 Å emission implying an equivalent width {{EW}}{{C}{{III}}]}< 20 Å (1σ) and {{C}} {{IV}}/{{C}} {{III}}> 0.7 (2σ). Combined with limits on the rest-frame UV flux from the He II λ1640 Å emission line and the O III]λλ1661, 1666 Å doublet, we put constraints on the metallicity and the ionization state of the galaxy. The estimated line ratios and equivalent widths do not support a scenario where an AGN is responsible for ionizing the carbon atoms. SED fits, including nebular emission lines, imply a source with a mass of log(M/M ⊙) ˜ 9, SFR of around 10 M ⊙ yr-1, and a young stellar population < 50 {Myr} old. The source shows a stronger ionizing radiation field than objects with detected C IV emission at z< 2 and adds to the growing sample of low-mass (log(M/M ⊙) ≲ 9) galaxies at the epoch of reionization with strong radiation fields from star formation.
NASA Astrophysics Data System (ADS)
Trainor, Ryan F.; Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.
2016-12-01
We present the rest-frame optical spectroscopic properties of 60 faint (R AB ˜ 27; L ˜ 0.1 L *) Lyα-selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Lyα emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Lyα photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2-3. In particular, the LAEs have extremely high [O III] λ5008/Hβ ratios (log([O III]/Hβ) ˜ 0.8) and low [N II] λ6585/Hα ratios (log([N II]/Hα) < 1.15). Coupled with a detection of the [O III] λ4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T e ≈ 1.8 × 104 K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z neb ≈ 0.22Z ⊙), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9-7.4 (Z neb ≈ 0.02-0.05Z ⊙). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Lyα emission across the largest current sample of combined Lyα and rest-optical galaxy spectroscopy, including both the 60 KBSS-Lyα LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Lyα emissivity (parameterized by the Lyα equivalent width) is strongly correlated with nebular excitation and ionization properties and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainor, Ryan F.; Strom, Allison L.; Steidel, Charles C.
We present the rest-frame optical spectroscopic properties of 60 faint ( R {sub AB} ∼ 27; L ∼ 0.1 L {sub *}) Ly α -selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Ly α emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Ly α photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2–3. In particular, the LAEs have extremely high [O iii]more » λ 5008/H β ratios (log([O iii]/H β ) ∼ 0.8) and low [N ii] λ 6585/H α ratios (log([N ii]/H α ) < 1.15). Coupled with a detection of the [O iii] λ 4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T{sub e} ≈ 1.8 × 10{sup 4} K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z{sub neb} ≈ 0.22 Z {sub ⊙}), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9–7.4 (Z {sub neb} ≈ 0.02–0.05 Z{sub ⊙}). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Ly α emission across the largest current sample of combined Ly α and rest-optical galaxy spectroscopy, including both the 60 KBSS-Ly α LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Ly α emissivity (parameterized by the Ly α equivalent width) is strongly correlated with nebular excitation and ionization properties and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content.« less
The log-periodic-AR(1)-GARCH(1,1) model for financial crashes
NASA Astrophysics Data System (ADS)
Gazola, L.; Fernandes, C.; Pizzinga, A.; Riera, R.
2008-02-01
This paper intends to meet recent claims for the attainment of more rigorous statistical methodology within the econophysics literature. To this end, we consider an econometric approach to investigate the outcomes of the log-periodic model of price movements, which has been largely used to forecast financial crashes. In order to accomplish reliable statistical inference for unknown parameters, we incorporate an autoregressive dynamic and a conditional heteroskedasticity structure in the error term of the original model, yielding the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended models are fitted to financial indices of U. S. market, namely S&P500 and NASDAQ. Our analysis reveal two main points: (i) the log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical properties and (ii) the estimation of the parameter concerning the time of the financial crash has been improved.
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex
2012-01-01
LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).
The existence of inflection points for generalized log-aesthetic curves satisfying G1 data
NASA Astrophysics Data System (ADS)
Karpagavalli, R.; Gobithaasan, R. U.; Miura, K. T.; Shanmugavel, Madhavan
2015-12-01
Log-Aesthetic (LA) curves have been implemented in a CAD/CAM system for various design feats. LA curves possess linear Logarithmic Curvature Graph (LCG) with gradient (shape parameter) denoted as α. In 2009, a generalized form of LA curves called Generalized Log-Aesthetic Curves (GLAC) has been proposed which has an extra shape parameter as ν compared to LA curves. Recently, G1 continuous GLAC algorithm has been proposed which utilizes the extra shape parameter using four control points. This paper discusses on the existence of inflection points in a GLAC segment satisfying G1 Hermite data and the effect of inflection point on convex hull property. It is found that the existence of inflection point can be avoided by manipulating the value of α. Numerical experiments show that the increase of α may remove the inflection point (if any) in a GLAC segment.
NASA Astrophysics Data System (ADS)
Fossati, L.; France, K.; Koskinen, T.; Juvan, I. G.; Haswell, C. A.; Lendl, M.
2015-12-01
Several transiting hot Jupiters orbit relatively inactive main-sequence stars. For some of those, the {log}{R}{HK}\\prime activity parameter lies below the basal level (-5.1). Two explanations have been proposed so far: (i) the planet affects the stellar dynamo, (ii) the {log}{R}{HK}\\prime measurements are biased by extrinsic absorption, either by the interstellar medium (ISM) or by material local to the system. We present here Hubble Space Telescope/COS far-UV spectra of WASP-13, which hosts an inflated hot Jupiter and has a measured {log}{R}{HK}\\prime value (-5.26), well below the basal level. From the star’s spectral energy distribution we obtain an extinction E(B - V) = 0.045 ± 0.025 mag and a distance d = 232 ± 8 pc. We detect at ≳4σ lines belonging to three different ionization states of carbon (C i, C ii, and C iv) and the Si iv doublet at ˜3σ. Using far-UV spectra of nearby early G-type stars of known age, we derive a C iv/C i flux ratio-age relation, from which we estimate WASP-13's age to be 5.1 ± 2.0 Gyr. We rescale the solar irradiance reference spectrum to match the flux of the C iv 1548 doublet. By integrating the rescaled solar spectrum, we obtain an XUV flux at 1 AU of 5.4 erg s-1 cm-2. We use a detailed model of the planet’s upper atmosphere, deriving a mass-loss rate of 1.5 × 1011 g s-1. Despite the low {log}{R}{HK}\\prime value, the star shows a far-UV spectrum typical of middle-aged solar-type stars, pointing toward the presence of significant extrinsic absorption. The analysis of a high-resolution spectrum of the Ca ii H&K lines indicates that the ISM absorption could be the origin of the low {log}{R}{HK}\\prime value. Nevertheless, the large uncertainty in the Ca ii ISM abundance does not allow us to firmly exclude the presence of circumstellar gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13859.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Ionization Potentials for Isoelectronic Series.
ERIC Educational Resources Information Center
Agmon, Noam
1988-01-01
Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.
2013-06-01
We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at (z) = 2.4. Using Voigt profile fits to the full Ly{alpha} and Ly{beta} forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14{approx}< log (N{sub H{sub I}}/cm{sup -2}){approx}<17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than inmore » the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N{sub H{sub I}} absorbers than low-N{sub H{sub I}} absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N{sub H{sub I}}/cm{sup -2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N{sub H{sub I}}/cm{sup -2})>17.2 requires a broken power law parameterization of the frequency distribution with a break near N{sub H{sub I}} Almost-Equal-To 10{sup 15} cm{sup -2}. We compute new estimates of the mean free path ({lambda}{sub mfp}) to hydrogen-ionizing photons at z{sub em} = 2.4, finding {lambda}{sub mfp} = 147 {+-} 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to {lambda}{sub mfp} = 121 {+-} 15 Mpc. These {lambda}{sub mfp} measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z Almost-Equal-To 2-3.« less
Epoch of Reionization : An Investigation of the Semi-Analytic 21CMMC Code
NASA Astrophysics Data System (ADS)
Miller, Michelle
2018-01-01
After the Big Bang the universe was filled with neutral hydrogen that began to cool and collapse into the first structures. These first stars and galaxies began to emit radiation that eventually ionized all of the neutral hydrogen in the universe. 21CMMC is a semi-numerical code that takes simulated boxes of this ionized universe from another code called 21cmFAST. Mock measurements are taken from the simulated boxes in 21cmFAST. Those measurements are thrown into 21CMMC and help us determine three major parameters of this simulated universe: virial temperature, mean free path, and ionization efficiency. My project tests the robustness of 21CMMC on universe simulations other than 21cmFAST to see whether 21CMMC can properly reconstruct early universe parameters given a mock “measurement” in the form of power spectra. We determine that while two of the three EoR parameters (Virial Temperature and Efficiency) have some reconstructability, the mean free path parameter in the code is the least robust. This requires development of the 21CMMC code.
Objective straylight assessment of the human eye with a novel device
NASA Astrophysics Data System (ADS)
Schramm, Stefan; Schikowski, Patrick; Lerm, Elena; Kaeding, André; Klemm, Matthias; Haueisen, Jens; Baumgarten, Daniel
2016-03-01
Forward scattered light from the anterior segment of the human eye can be measured by Shack-Hartmann (SH) wavefront aberrometers with limited visual angle. We propose a novel Point Spread Function (PSF) reconstruction algorithm based on SH measurements with a novel measurement devise to overcome these limitations. In our optical setup, we use a Digital Mirror Device as variable field stop, which is conventionally a pinhole suppressing scatter and reflections. Images with 21 different stop diameters were captured and from each image the average subaperture image intensity and the average intensity of the pupil were computed. The 21 intensities represent integral values of the PSF which is consequently reconstructed by derivation with respect to the visual angle. A generalized form of the Stiles-Holladay-approximation is fitted to the PSF resulting in a stray light parameter Log(IS). Additionaly the transmission loss of eye is computed. For the proof of principle, a study on 13 healthy young volunteers was carried out. Scatter filters were positioned in front of the volunteer's eye during C-Quant and scatter measurements to generate straylight emulating scatter in the lens. The straylight parameter is compared to the C-Quant measurement parameter Log(ISC) and scatter density of the filters SDF with a partial correlation. Log(IS) shows significant correlation with the SDF and Log(ISC). The correlation is more prominent between Log(IS) combined with the transmission loss and the SDF and Log(ISC). Our novel measurement and reconstruction technique allow for objective stray light analysis of visual angles up to 4 degrees.
Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip
2012-01-01
The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.
Stochastic modelling of non-stationary financial assets
NASA Astrophysics Data System (ADS)
Estevens, Joana; Rocha, Paulo; Boto, João P.; Lind, Pedro G.
2017-11-01
We model non-stationary volume-price distributions with a log-normal distribution and collect the time series of its two parameters. The time series of the two parameters are shown to be stationary and Markov-like and consequently can be modelled with Langevin equations, which are derived directly from their series of values. Having the evolution equations of the log-normal parameters, we reconstruct the statistics of the first moments of volume-price distributions which fit well the empirical data. Finally, the proposed framework is general enough to study other non-stationary stochastic variables in other research fields, namely, biology, medicine, and geology.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2016-04-01
Numerical temperature models generated for geodynamic studies as well as for geothermal energy solutions heavily depend on rock thermal properties. Best practice for the determination of those parameters is the measurement of rock samples in the laboratory. Given the necessity to enlarge databases of subsurface rock parameters beyond drill core measurements an approach for the indirect determination of these parameters is developed, for rocks as well a for geological formations. We present new and universally applicable prediction equations for thermal conductivity, thermal diffusivity and specific heat capacity in sedimentary rocks derived from data provided by standard geophysical well logs. The approach is based on a data set of synthetic sedimentary rocks (clastic rocks, carbonates and evaporates) composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities varying between 0 and 30%. Petrophysical properties are assigned to both the rock-forming minerals and the pore-filling fluids. Using multivariate statistics, relationships then were explored between each thermal property and well-logged petrophysical parameters (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) on a regression sub set of data (70% of data) (Fuchs et al., 2015). Prediction quality was quantified on the remaining test sub set (30% of data). The combination of three to five well-log parameters results in predictions on the order of <15% for thermal conductivity and thermal diffusivity, and of <10% for specific heat capacity. Comparison of predicted and benchmark laboratory thermal conductivity from deep boreholes of the Norwegian-Danish Basin, the North German Basin, and the Molasse Basin results in 3 to 5% larger uncertainties with regard to the test data set. With regard to temperature models, the use of calculated TC borehole profiles approximate measured temperature logs with an error of <3°C along a 4 km deep profile. A benchmark comparison for thermal diffusivity and specific heat capacity is pending. Fuchs, Sven; Balling, Niels; Förster, Andrea (2015): Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs, Geophysical Journal International 203, 1977-2000, doi: 10.1093/gji/ggv403
ERIC Educational Resources Information Center
Xu, Xueli; von Davier, Matthias
2008-01-01
The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…
Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits
NASA Technical Reports Server (NTRS)
Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.
2009-01-01
This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.
WE-H-207A-03: The Universality of the Lognormal Behavior of [F-18]FLT PET SUV Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpelli, M; Eickhoff, J; Perlman, S
Purpose: Log transforming [F-18]FDG PET standardized uptake values (SUVs) has been shown to lead to normal SUV distributions, which allows utilization of powerful parametric statistical models. This study identified the optimal transformation leading to normally distributed [F-18]FLT PET SUVs from solid tumors and offers an example of how normal distributions permits analysis of non-independent/correlated measurements. Methods: Forty patients with various metastatic diseases underwent up to six FLT PET/CT scans during treatment. Tumors were identified by nuclear medicine physician and manually segmented. Average uptake was extracted for each patient giving a global SUVmean (gSUVmean) for each scan. The Shapiro-Wilk test wasmore » used to test distribution normality. One parameter Box-Cox transformations were applied to each of the six gSUVmean distributions and the optimal transformation was found by selecting the parameter that maximized the Shapiro-Wilk test statistic. The relationship between gSUVmean and a serum biomarker (VEGF) collected at imaging timepoints was determined using a linear mixed effects model (LMEM), which accounted for correlated/non-independent measurements from the same individual. Results: Untransformed gSUVmean distributions were found to be significantly non-normal (p<0.05). The optimal transformation parameter had a value of 0.3 (95%CI: −0.4 to 1.6). Given the optimal parameter was close to zero (which corresponds to log transformation), the data were subsequently log transformed. All log transformed gSUVmean distributions were normally distributed (p>0.10 for all timepoints). Log transformed data were incorporated into the LMEM. VEGF serum levels significantly correlated with gSUVmean (p<0.001), revealing log-linear relationship between SUVs and underlying biology. Conclusion: Failure to account for correlated/non-independent measurements can lead to invalid conclusions and motivated transformation to normally distributed SUVs. The log transformation was found to be close to optimal and sufficient for obtaining normally distributed FLT PET SUVs. These transformations allow utilization of powerful LMEMs when analyzing quantitative imaging metrics.« less
Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui
2006-11-03
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.
Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars
NASA Astrophysics Data System (ADS)
Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury
2018-04-01
The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.
Tunneling ionization and Wigner transform diagnostics in OSIRIS
NASA Astrophysics Data System (ADS)
Martins, S.; Fonseca, R. A.; Silva, L. O.; Deng, S.; Katsouleas, T.; Tsung, F.; Mori, W. B.
2004-11-01
We describe the ionization module implemented in the PIC code OSIRIS [1]. Benchmarks with previously published tunnel ionization results were made. Our ionization module works in 1D, 2D and 3D simulations with barrier suppression ionization or the ADK ionization model, and allows for moving ions. Several illustrative 3D numerical simulations were performed, namely of the propagation of a SLAC beam in a Li gas cell, for the parameters of [2]. We compare the performance of OSIRIS with/without the ionization module, concluding that much less simulation time is usually required when using the ionization module. A novel diagnostic over the electric field is implemented, the Wigner transform, that provides information on the local spectral content of the field. This diagnostic is applied to the analysis of the chirp induced in an ionizing laser pulse. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002). [2] S. Deng et al., Phys. Rev. E 68, 047401 (2003).
NASA Astrophysics Data System (ADS)
McLeod, A. F.; Dale, J. E.; Ginsburg, A.; Ercolano, B.; Gritschneder, M.; Ramsay, S.; Testi, L.
2015-06-01
Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionization structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionized and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionized and photoevaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionization structure where the emission lines peak in a descending order according to their ionization energies. The IFU data allowed us to analyse the kinematics of the photoevaporative flow in terms of the stratified ionization structure, and we find that, in agreement with simulations, the photoevaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionization structure have allowed us to produce a sketch of the 3D geometry of the Pillars, positioning the pillars with respect to the ionizing cluster stars. We use a novel method to detect a previously unknown bipolar outflow at the tip of the middle pillar and suggest that it has an embedded protostar as its driving source. Furthermore we identify a candidate outflow in the leftmost pillar. With the derived physical parameters and ionic abundances, we estimate a mass-loss rate due to the photoevaporative flow of 70 M⊙ Myr-1 which yields an expected lifetime of approximately 3 Myr.
Cooley, Richard L.
1993-01-01
A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.
Ding, Feng; Yang, Xianhai; Chen, Guosong; Liu, Jining; Shi, Lili; Chen, Jingwen
2017-10-01
The partition coefficients between bovine serum albumin (BSA) and water (K BSA/w ) for ionogenic organic chemicals (IOCs) were different greatly from those of neutral organic chemicals (NOCs). For NOCs, several excellent models were developed to predict their logK BSA/w . However, it was found that the conventional descriptors are inappropriate for modeling logK BSA/w of IOCs. Thus, alternative approaches are urgently needed to develop predictive models for K BSA/w of IOCs. In this study, molecular descriptors that can be used to characterize the ionization effects (e.g. chemical form adjusted descriptors) were calculated and used to develop predictive models for logK BSA/w of IOCs. The models developed had high goodness-of-fit, robustness, and predictive ability. The predictor variables selected to construct the models included the chemical form adjusted averages of the negative potentials on the molecular surface (V s-adj - ), the chemical form adjusted molecular dipole moment (dipolemoment adj ), the logarithm of the n-octanol/water distribution coefficient (logD). As these molecular descriptors can be calculated from their molecular structures directly, the developed model can be easily used to fill the logK BSA/w data gap for other IOCs within the applicability domain. Furthermore, the chemical form adjusted descriptors calculated in this study also could be used to construct predictive models on other endpoints of IOCs. Copyright © 2017 Elsevier Inc. All rights reserved.
Gandler, W; Shapiro, H
1990-01-01
Logarithmic amplifiers (log amps), which produce an output signal proportional to the logarithm of the input signal, are widely used in cytometry for measurements of parameters that vary over a wide dynamic range, e.g., cell surface immunofluorescence. Existing log amp circuits all deviate to some extent from ideal performance with respect to dynamic range and fidelity to the logarithmic curve; accuracy in quantitative analysis using log amps therefore requires that log amps be individually calibrated. However, accuracy and precision may be limited by photon statistics and system noise when very low level input signals are encountered.
The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs
NASA Astrophysics Data System (ADS)
Tan, Maojin; Bai, Ze; Xu, Jingjing
2017-04-01
Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF method for TOC prediction has more suitable and flexibility. The mineral contents and porosity from the optimized log interpretation are in good agreement with core XRD experiment and other core experiments. In some polite wells of Jiaoshiba area, china, some parameters in Wufeng-Longmaxi formation are calculated, and geological and engineering sweet spots are finally determined. For the best sweet spot, TOC is about 6%, the porosity is about 8%,the volume of kerogen is about 3%, total gas content is 8m3/t, and the brittleness index is about 90%, and the minimum and maximum horizon stress are about 30MPa and 45 MPa. Therefore, the optimized log interpretation provide an important support for sweet spots prediction and quantitative evaluation of shale gas. References: [1] Sondergeld CH, Ambrose RJ, Rai CS, Moncrieff J. Micro-structure studies of gas shales: in SPE 2012; 131771: 150-166. [2] Ellis D V, Singer J M. 2012. Well Logging for Earth Scientists (2rd edition): Springer Press. [3]Fertl W H, Chillngar G V. 1988. Total organic carbon content determined from well logs: SPE formation evaluation, 407-419. [4] Tan M J, Liu Q, and Zhang S. 2002. A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics, 2013, 78(6): 445-459. Acknowledgments: This paper is sponsored by National Natural Science Foundation of China (U1403191, 41172130), the Fundamental Research Funds for the Central Universities (292015209), and National Major Projects "Development of Major Oil& Gas Fields and Coal Bed Methane" (2016ZX05014-001).
Machine Learning for Mapping Groundwater Salinity with Oil Well Log Data
NASA Astrophysics Data System (ADS)
Chang, W. H.; Shimabukuro, D.; Gillespie, J. M.; Stephens, M.
2016-12-01
An oil field may have thousands of wells with detailed petrophysical logs, and far fewer direct measurements of groundwater salinity. Can the former be used to extrapolate the latter into a detailed map of groundwater salinity? California Senate Bill 4, with its requirement to identify Underground Sources of Drinking Water, makes this a question worth answering. A well-known obstacle is that the basic petrophysical equations describe ideal scenarios ("clean wet sand") and even these equations contain many parameters that may vary with location and depth. Accounting for other common scenarios such as high-conductivity shaly sands or low-permeability diatomite (both characteristic of California's Central Valley) causes parameters to proliferate to the point where the model is underdetermined by the data. When parameters outnumber data points, however, is when machine learning methods are most advantageous. We present a method for modeling a generic oil field, where groundwater salinity and lithology are depth series parameters, and the constants in petrophysical equations are scalar parameters. The data are well log measurements (resistivity, porosity, spontaneous potential, and gamma ray) and a small number of direct groundwater salinity measurements. Embedded in the model are petrophysical equations that account for shaly sand and diatomite formations. As a proof of concept, we feed in well logs and salinity measurements from the Lost Hills Oil Field in Kern County, California, and show that with proper regularization and validation the model makes reasonable predictions of groundwater salinity despite the large number of parameters. The model is implemented using Tensorflow, which is an open-source software released by Google in November, 2015 that has been rapidly and widely adopted by machine learning researchers. The code will be made available on Github, and we encourage scrutiny and modification by machine learning researchers and hydrogeologists alike.
Influence of small variation in impact ionization rate data on simulation of 4H-SiC IMPATT
NASA Astrophysics Data System (ADS)
Pattanaik, S. R.; Pradhan, J.; Swain, S. K.; Panda, P.; Dash, G. N.
2012-10-01
Material parameters like ionization rate coefficients for electrons and holes play important role in determining the performance of IMPATT device. Accuracy of these material data is significant for the quality of simulation results. In this paper, the influence of small variation in the ionization rate data on the performance of 4H-SiC IMPATT diode has been presented using our computer simulation program.
WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun
2013-10-01
In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less
Garcés-Vega, Francisco; Marks, Bradley P
2014-08-01
In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Rana, V
2015-06-15
Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to readmore » data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less
Propagation characteristics of electromagnetic waves in dusty plasma with full ionization
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting
2018-01-01
This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.
NASA Astrophysics Data System (ADS)
Zhang, Xiaotian; Chen, Chilai; Liu, Youjiang; Wang, Hongwei; Zhang, Lehua; Kong, Deyi; Mario, Chavarria
2015-12-01
Ionization efficiency is an important factor for ion sources in mass spectrometry and ion mobility spectrometry. Using helium as the discharge gas, acetone as the sample, and high-field asymmetric ion mobility spectrometry (FAIMS) as the ion detection method, this work investigates in detail the effects of discharge parameters on the efficiency of ambient metastable-induced desorption ionization (AMDI) at atmospheric pressure. The results indicate that the discharge power and gas flow rate are both significantly correlated with the ionization efficiency. Specifically, an increase in the applied discharge power leads to a rapid increase in the ionization efficiency, which gradually reaches equilibrium due to ion saturation. Moreover, when the discharge voltage is fixed at 2.1 kV, a maximum efficiency can be achieved at the flow rate of 9.0 m/s. This study provides a foundation for the design and application of AMDI for on-line detection with mass spectrometry and ion mobility spectrometry. supported by National Natural Science Foundation of China (No. 61374016), the Changzhou Science and Technology Support Program, China (No. CE20120081) and the External Cooperation Program of Chinese Academy of Sciences (No. GJHZ1218)
Rouse, William A.; Houseknecht, David W.
2016-02-11
In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.
NASA Astrophysics Data System (ADS)
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, F.; Nie, Z.; Wu, Y. P.
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
NASA Astrophysics Data System (ADS)
Dolomatov, M. Yu.; Kovaleva, E. A.; Khamidullina, D. A.
2018-05-01
An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel-Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.
Li, F.; Nie, Z.; Wu, Y. P.; ...
2018-02-22
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision
NASA Astrophysics Data System (ADS)
Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.
2018-06-01
A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.
Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra
NASA Technical Reports Server (NTRS)
Valenti, J. A.; Piskunov, N.
1996-01-01
We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.
2009-02-01
All Sky Survey ( 2MASS ) coordinates of the nucleus were used to verify the coordinates of each observation. The SH and LH staring observations include...isolate the nuclear region in the mapping obser- vations, fluxes were extracted from a single slit coinciding with the radio or 2MASS nuclear...presence of a hard X-ray point source coin- cident with either the radio or 2MASS nucleus and log(LX) 38 erg s−1. The resulting subsample consists of
2013-11-06
safety regulations to include a review of worker radiation dosimetry and radiation safety training records was completed. c. Survey Personnel...that is based upon T.O. 33B-1-1, 10 CFR 20, and AFMAN 48-125, Personnel Ionizing Radiation Dosimetry . (1) Verify unshielded/shielded NDI safety...rope barriers marked with appropriate signage as required by T.O. 33B-1-1. (4) Verify x-ray shot and personal radiation dosimetry logs were properly
CROSS-RESISTANCE OF ESCHERICHIA COLI B TO PENICILLIN AND IONIZING RADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutas-Mannhardt, V.
The radiosensitivity of cultures resistant to 1500 IU/ml, 2000 IU/ml, 2500 IU/ml of penicillin, produced from strain E. coli B was examined. Cultures in the log-phase were streaked in monocellular layers on the agar surface and exposed to x irradiation. As a result of penicillin treatment cell-filaments consisting of several segments were formed. Measurement of viability of x- irradiated cultures proved that penicillin resistant cultures are considerably more radioresistant than the parent strain B, non-treated with penicillin. (auth)
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa; Gholami, Amin
2015-06-01
Free fluid porosity and rock permeability, undoubtedly the most critical parameters of hydrocarbon reservoir, could be obtained by processing of nuclear magnetic resonance (NMR) log. Despite conventional well logs (CWLs), NMR logging is very expensive and time-consuming. Therefore, idea of synthesizing NMR log from CWLs would be of a great appeal among reservoir engineers. For this purpose, three optimization strategies are followed. Firstly, artificial neural network (ANN) is optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) technique, then fuzzy logic (FL) is optimized by means of GA-PS, and eventually an alternative condition expectation (ACE) model is constructed using the concept of committee machine to combine outputs of optimized and non-optimized FL and ANN models. Results indicated that optimization of traditional ANN and FL model using GA-PS technique significantly enhances their performances. Furthermore, the ACE committee of aforementioned models produces more accurate and reliable results compared with a singular model performing alone.
The bias of the log power spectrum for discrete surveys
NASA Astrophysics Data System (ADS)
Repp, Andrew; Szapudi, István
2018-03-01
A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.
Herrero-Martínez, José Manuel; Izquierdo, Pere; Sales, Joaquim; Rosés, Martí; Bosch, Elisabeth
2008-10-01
The retention behavior of a series of fat-soluble vitamins has been established on the basis of a polarity retention model: log k = (log k)(0) + p (P(m) (N) - P(s) (N)), with p being the polarity of the solute, P(m) (N) the mobile phase polarity, and (log k)(0) and P(m) (N) two parameters for the characterization of the stationary phase. To estimate the p-values of solutes, two approaches have been considered. The first one is based on the application of a QSPR model, derived from the molecular structure of solutes and their log P(o/w), while in the second one, the p-values are obtained from several experimental measurements. The quality of prediction of both approaches has also been evaluated, with the second one giving more accurate results for the most lipophilic vitamins. This model allows establishing the best conditions to separate and determine simultaneously some fat-soluble vitamins in dairy foods.
Chenglin, L.; Charpentier, R.R.
2010-01-01
The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.
Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1978-01-01
The film-parameter equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic of low-elastic-modulus materials, or isoviscous-elastic; and elastohydrodynamic, or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The film-parameter equations for the respective regimes come from earlier theoretical studies by the authors on elastohydrodynamic and hydrodynamic lubrication of elliptical conjunctions. These equations are restated and the results are presented as a map of the lubrication regimes, with film-thickness contours on a log-log grid of the viscosity and elasticity parameters for five values of the ellipticity parameter. The results present a complete theoretical film-parameter solution for elliptical contacts in the four lubrication regimes.
Beste, A; Harrison, R J; Yanai, T
2006-08-21
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
On the robustness of the Hβ Lick index as a cosmic clock in passive early-type galaxies
NASA Astrophysics Data System (ADS)
Concas, Alice; Pozzetti, L.; Moresco, M.; Cimatti, A.
2017-06-01
We examine the Hβ Lick index in a sample of ˜24 000 massive (log(M/M_{⊙})>10.75) and passive early-type galaxies extracted from the Sloan Digital Sky Survey at z < 0.3, in order to assess the reliability of this index to constrain the epoch of formation and age evolution of these systems. We further investigate the possibility of exploiting this index as `cosmic chronometer', I.e. to derive the Hubble parameter from its differential evolution with redshift, hence constraining cosmological models independently of other probes. We find that the Hβ strength increases with redshift as expected in passive evolution models, and shows at each redshift weaker values in more massive galaxies. However, a detailed comparison of the observed index with the predictions of stellar population synthesis models highlights a significant tension, with the observed index being systematically lower than expected. By analysing the stacked spectra, we find a weak [N II] λ6584 emission line (not detectable in the single spectra) that anti-correlates with the mass, which can be interpreted as a hint of the presence of ionized gas. We estimated the correction of the Hβ index by the residual emission component exploiting different approaches, but find it very uncertain and model dependent. We conclude that, while the qualitative trends of the observed Hβ-z relations are consistent with the expected passive and downsizing scenario, the possible presence of ionized gas even in the most massive and passive galaxies prevents us to use this index for a quantitative estimate of the age evolution and for cosmological applications.
Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.
2016-08-10
We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less
Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku
NASA Astrophysics Data System (ADS)
Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.
2010-08-01
We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.
Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN
NASA Astrophysics Data System (ADS)
Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.
2010-03-01
We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.
Collett, T.S.; Lewis, R.E.; Winters, W.J.; Lee, M.W.; Rose, K.K.; Boswell, R.M.
2011-01-01
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. ?? 2010.
Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.
Eneyskaya, Elena V; Ivanen, Dina R; Bobrov, Kirill S; Isaeva-Ivanova, Lyudmila S; Shabalin, Konstantin A; Savel'ev, Andrew N; Golubev, Alexander M; Kulminskaya, Anna A
2007-01-15
The beta-xylosidase from Aspergillus awamori X-100 belonging to the family 3 glycoside hydrolase revealed a distinctive transglycosylating ability to produce xylooligosaccharides with degree of polymerization more than 7. In order to explain this fact, the enzyme has been subjected to the detailed biochemical study. The enzymatic hydrolysis of p-nitrophenyl beta-D-xylopyranoside was found to occur with overall retention of substrate anomeric configuration suggesting cleavage of xylosidic bonds through a double-displacement mechanism. Kinetic study with aryl beta-xylopyranosides substrates, in which leaving group pK(a)s were in the range of 3.96-10.32, revealed monotonic function of log(k(cat)) and no correlation of log(k(cat)/Km) versus pKa values indicating deglycosylation as a rate-limiting step for the enzymatic hydrolysis. The classical bell-shaped pH dependence of k(cat)/Km indicated two ionizable groups in the beta-xylosidase active site with apparent pKa values of 2.2 and 6.4. The kinetic parameters of hydrolysis, Km and k(cat), of p-nitrophenyl beta-D-1,4-xylooligosaccharides were very close to those for hydrolysis of p-nitrophenyl-beta-D-xylopyranoside. Increase of p-nitrophenyl-beta-D-xylopyranoside concentration up to 80 mM led to increasing of the reaction velocity resulting in k(cat)(app)=81 s(-1). Addition of alpha-methyl D-xylopyranoside to the reaction mixture at high concentration of p-nitrophenyl-beta-D-xylopyranoside (50 mM) caused an acceleration of the beta-xylosidase-catalyzed reactions and appearance of a new transglycosylation product, alpha-methyl D-xylopyranosyl-1,4-beta-D-xylopyranoside, that was identified by 1H NMR spectroscopy. The kinetic model suggested for the enzymatic reaction was consistent with the results obtained.
NASA Astrophysics Data System (ADS)
Macfarlane, S. A.; Woudt, P. A.; Dufour, P.; Ramsay, G.; Groot, P. J.; Toma, R.; Warner, B.; Paterson, K.; Kupfer, T.; van Roestel, J.; Berdnikov, L.; Dagne, T.; Hardy, F.
2017-09-01
We present the discovery and follow-up observations of the second known variable warm DQ white dwarf OW J175358.85-310728.9 (OW J1753-3107). OW J1753-3107 is the brightest of any of the currently known warm or hot DQ and was discovered in the OmegaWhite Survey as exhibiting optical variations on a period of 35.5452 (2) min, with no evidence for other periods in its light curves. This period has remained constant over the last 2 yr and a single-period sinusoidal model provides a good fit for all follow-up light curves. The spectrum consists of a very blue continuum with strong absorption lines of neutral and ionized carbon, a broad He I λ4471 line and possibly weaker hydrogen lines. The C I lines are Zeeman split, and indicate the presence of a strong magnetic field. Using spectral Paschen-Back model descriptions, we determine that OW J1753-3107 exhibits the following physical parameters: Teff = 15 430 K, log (g) = 9.0, log (N(C)/N(He)) = -1.2 and the mean magnetic field strength is Bz =2.1 MG. This relatively low temperature and carbon abundance (compared to the expected properties of hot DQs) is similar to that seen in the other warm DQ SDSS J1036+6522. Although OW J1753-3107 appears to be a twin of SDSS J1036+6522, it exhibits a modulation on a period slightly longer than the dominant period in SDSS J1036+6522 and has a higher carbon abundance. The source of variations is uncertain, but they are believed to originate from the rotation of the magnetic white dwarf.
Analisis fotometrico del cumulo abierto NGC 6611
NASA Astrophysics Data System (ADS)
Suarez Nunez, Johanna
2007-08-01
Matlab programs were designed to apply differential aperture photometry. Two images were taken with a charge-couple device ( CCD ) in the visible V and blue filters, to calculate physical parameters (the flux( f ), the apparent magnitude ( m V ) and its reddening corrected value ( V 0 ), color index ( B- V ) and ( B-V ) 0 , the log of effective temperature (log T eff ), the absolute magnitude ( M V ), the bolometric magnitude ( M B ) & log(L [low *] /[Special characters omitted.] )) of each studied star pertaining to the open cluster NGC 6611. Upon obtaining the parameters, the color-magnitude diagram was graphed and by fitting to the main sequence, the distance modulus and thus the distance to the cluster was found. The stars were assumed to be at the same distance and born at approximately the same moment.
NASA Technical Reports Server (NTRS)
Bigger, J. T. Jr; Steinman, R. C.; Rolnitzky, L. M.; Fleiss, J. L.; Albrecht, P.; Cohen, R. J.
1996-01-01
BACKGROUND. The purposes of the present study were (1) to establish normal values for the regression of log(power) on log(frequency) for, RR-interval fluctuations in healthy middle-aged persons, (2) to determine the effects of myocardial infarction on the regression of log(power) on log(frequency), (3) to determine the effect of cardiac denervation on the regression of log(power) on log(frequency), and (4) to assess the ability of power law regression parameters to predict death after myocardial infarction. METHODS AND RESULTS. We studied three groups: (1) 715 patients with recent myocardial infarction; (2) 274 healthy persons age and sex matched to the infarct sample; and (3) 19 patients with heart transplants. Twenty-four-hour RR-interval power spectra were computed using fast Fourier transforms and log(power) was regressed on log(frequency) between 10(-4) and 10(-2) Hz. There was a power law relation between log(power) and log(frequency). That is, the function described a descending straight line that had a slope of approximately -1 in healthy subjects. For the myocardial infarction group, the regression line for log(power) on log(frequency) was shifted downward and had a steeper negative slope (-1.15). The transplant (denervated) group showed a larger downward shift in the regression line and a much steeper negative slope (-2.08). The correlation between traditional power spectral bands and slope was weak, and that with log(power) at 10(-4) Hz was only moderate. Slope and log(power) at 10(-4) Hz were used to predict mortality and were compared with the predictive value of traditional power spectral bands. Slope and log(power) at 10(-4) Hz were excellent predictors of all-cause mortality or arrhythmic death. To optimize the prediction of death, we calculated a log(power) intercept that was uncorrelated with the slope of the power law regression line. We found that the combination of slope and zero-correlation log(power) was an outstanding predictor, with a relative risk of > 10, and was better than any combination of the traditional power spectral bands. The combination of slope and log(power) at 10(-4) Hz also was an excellent predictor of death after myocardial infarction. CONCLUSIONS. Myocardial infarction or denervation of the heart causes a steeper slope and decreased height of the power law regression relation between log(power) and log(frequency) of RR-interval fluctuations. Individually and, especially, combined, the power law regression parameters are excellent predictors of death of any cause or arrhythmic death and predict these outcomes better than the traditional power spectral bands.
Spectral observations of the extreme ultraviolet background.
Labov, S E; Bowyer, S
1991-04-20
A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.
Virus removal efficiency of Cambodian ceramic pot water purifiers.
Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph
2011-06-01
Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedemeier, Heribert, E-mail: wiedeh@rpi.edu
The observed linear (Na-, K-halides) and near-linear (Mg-, Sr-, Zn-, Cd-, and Hg-chalcogenides) dependences of Schottky constants on reciprocal interatomic distances yield the relation logK{sub S}=((s{sub s}1/T)+i{sub s})1/d{sub (A−B)}+(s{sub i}1/T)+i{sub i}, where K{sub S} is the product of metal and non-metal thermal equilibrium vacancy concentrations, and s{sub s}, i{sub s}, s{sub i} and i{sub i} are the group specific slope and intercept values obtained from an extended analysis of the above log K{sub S} versus 1/d{sub (A−B)} data. The previously reported linear dependences of log K{sub S} on the Born–Haber lattice energies [1] are the basis for combining the earliermore » results [1] with the Born–Mayer lattice energy equation to yield a new thermodynamic relationship, namely logK{sub S}=−(2.303nRT){sup −1}(c{sub (B−M)}/d{sub (A−B)}−I{sub e}), where c{sub (B−M)} is the product of the constants of the Born–Mayer equation and I{sub e} is the metal ionization energy of the above compounds. These results establish a correlation between point defect concentrations and basic thermodynamic, coulombic, and structural solid state properties for selected I–VII and II–VI semiconductor materials. - Graphical abstract: Display Omitted.« less
Radio core dominance of Fermi blazars
NASA Astrophysics Data System (ADS)
Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He
2016-07-01
During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.
Chernetsova, Elena S; Morlock, Gertrud E
2011-01-01
Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Identification of D-region ledges of ionization by LF/VLF observations during a meteor shower
NASA Astrophysics Data System (ADS)
Rumi, G. C.
1982-09-01
It is shown that the perturbation produced by a meteor shower on a pair of LF and/or VLF standard frequency signals received after reflection on the lower ionosphere can be used for the detection of the nocturnal ledges which characterize the ionization profile of the D-region. The theoretical developments are applied to two specific sets of experimental data and the height and ionization of the ledges, together with other associated parameters, are determined.
H II Regions in the Disks of Spiral Galaxies
NASA Astrophysics Data System (ADS)
Rozas, M.
1997-06-01
The objective of the research presented in the thesis is to use photometrically calibrated high quality images in \\ha\\ of the disks of spiral galaxies to study their global star forming properties. In the first part of the study we catalog and study statistically the \\hii\\ regions in a set of spirals, imaged in \\ha\\ . The observed parameters of each region are its fluxes and diameters, from which we can also derive the mean surface brightness and its internal radial gradient (the latter for the largest most luminous regions). Plotting the luminosity function (LF) for a given galaxy (the number of regions versus \\ha\\ flux) we find a characteristic discontinuity: a peak accompanied by a change in gradient of the function, at a luminosity of 10$^{38.6}$ erg s$^{-1}$ per region. We attribute this to the change from ionization-bounded \\hii\\ regions, at luminosities below the transition, to density-bounded regions above the transition, and explain with a quantitative model based on this assumption why the transition takes place at a well-defined luminosity, and one which varies very little from galaxy to galaxy. In the six galaxies observed and analyzed in this way, the variance is 0.07 mag., making the transition a good prima facie candidate to be a powerful standard candle for accurate extragalactic distance measurements. Confirmation of the nature of the transition is provided by measurements of the internal brightness gradients, which show a jump from a constant value (predicted for ionization bounded regions) below the transition to a larger and increasing value above the transition. The theoretical model which can account for the transition was used to show how the gradients of the LF in the ionization bounded and the density bounded regimes can be used to derive the mass function of the ionizing stars in regions close to the transition luminosity, yielding a mean value for the slope of the MF in the galaxies observed of -2.4; the brightest stars in these regions are characteristically early O-types. Further evidence that the most luminous regions are density-bounded is provided by measuring the internal velocity dispersions of \\hii\\ regions across a galaxy, using the TAURUS Fabry-Perot spectral line imager. A plot of velocity dispersion v. luminosity in \\ha\\ is a scatter diagram in the log-log plane with a linear upper envelope having a slope of +2.6, on which lies the brightest regions: those above the transition. We explain these findings by assuming that a typical region does not show gas in virial equilibrium, since sporadic stellar events: winds and explosions, provide a non-negligible fraction of the \\ha\\ luminosity. However the locus of the upper envelope should correspond to a virial relation; the more massive regions show more rapid damping of impulsive energy input. The slope of the envelope is that predicted for regions whose mass rather than total luminosity is being sampled, i.e. density-bounded regions. The thesis is completed with a different application of our \\ha\\ observations: a technique to test the relation between the presence or absence of twofold symmetries in the star formation patterns of grand design spirals, and the strength of any bar which is present. We find that a strong bar inhibits the second degree of symmetry, implying more mixing in the disk. Finally we apply a dynamical model, using numerical simulations, to the spiral galaxy NGC 157, in order to determine its principal resonance. (SECTION: Dissertation Summaries)
Re-ionization and decaying dark matter
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Jubas, Jay M.
1991-01-01
Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.
FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules
NASA Astrophysics Data System (ADS)
Walters, Zachary B.; Smirnova, Olga
2010-08-01
In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.
Fundamental studies in X-ray astrophysics
NASA Technical Reports Server (NTRS)
Lamb, D. Q.; Lightman, A. P.
1982-01-01
An analytical model calculation of the ionization structure of matter accreting onto a degenerate dwarf was carried out. Self-consistent values of the various parameters are used. The possibility of nuclear burning of the accreting matter is included. We find the blackbody radiation emitted from the stellar surface keeps hydrogen and helium ionized out to distances much larger than a typical binary separation. Except for low mass stars or high accretion rates, the assumption of complete ionization of the elements heavier than helium is a good first approximation. For low mass stars or high accretion rates the validity of assuming complete ionization depends sensitivity on the distribution of matter in the binary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, J. A.; Morozov, V. S.; Derbenev, Ya. S.
Muon colliders have been proposed for the next generation of particle accelerators that study high-energy physics at the energy and intensity frontiers. In this paper we study a possible implementation of muon ionization cooling, Parametric-resonance Ionization Cooling (PIC), in the twin helix channel. The resonant cooling method of PIC offers the potential to reduce emittance beyond that achievable with ionization cooling with ordinary magnetic focusing. We examine optimization of a variety of parameters, study the nonlinear dynamics in the twin helix channel and consider possible methods of aberration correction.
Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant
NASA Astrophysics Data System (ADS)
Yushchenko, Alexander V.; Jeong, Yeuncheol; Gopka, Vira F.; Vasil`eva, Svetlana V.; Andrievsky, Sergey M.; Yushchenko, Volodymyr O.
2017-09-01
A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature Teff = 4,250 ± 50 K, the surface gravity log g = 0.16 ± 0.1, the microturbulent velocity vmicro = 2.5 km/s, the macroturbulence velocity vmacro = 9 km/s and the iron abundance [Fe/H] = -0.73 ± 0.11. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.
Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.
2010-05-01
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.
Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
Franco, Antonio; Fu, Wenjing; Trapp, Stefan
2009-03-01
The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.
BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35
NASA Technical Reports Server (NTRS)
Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.
2013-01-01
Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.
Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600
NASA Astrophysics Data System (ADS)
Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.
2018-06-01
Using VIsible MultiObject Spectrograph (VIMOS)-integral field unit (IFU) observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionized gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461, our results show that the ISM is fairly well mixed, at large scales; however, we find an off-centre and low-metallicity region with 12 + log(O/H) < 7.6 in the SW part of the brightest H II region, using the direct method. This result is consistent with the recent infall of a metal-poor H I cloud into the region now exhibiting the lowest metallicity, which also displays localized perturbed neutral and ionized gas kinematics. Mrk 600 in contrast, appears to be chemically homogeneous on both large and small scales. The intrinsic differences in the spatially resolved properties of the ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.
NASA Astrophysics Data System (ADS)
Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl
2007-07-01
This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
NASA Astrophysics Data System (ADS)
Xie, Xiaoyi; Zhou, Hongyan; Pan, Xiang; Jiang, Peng; Shi, Xiheng; Ji, Tuo; Zhang, Shaohua; Wu, Shengmiao; Zhong, Zhihao
2018-05-01
In this paper, we present an intercomparison study of two quasars, SDSS J145618.32+340037.2 and SDSS J215331.50–025514.1, which have proximate damped Lyα systems (PDLAs) with residual flux upon the Lyα absorption trough. Though they both have residual flux as luminous as 1043 erg s‑1, their PDLAs are quite different in, e.g., neutral hydrogen column density, metal line absorption strength, high-ionization absorption lines as well as residual flux strength. For J1456+3400, the H I column density is log(N H I /cm–2) = 20.6 ± 0.2, with z abs = 2.3138, nearly identical to the quasar redshift (z = 2.3142) determined from the [O III] emission line. The metallicity of this system is typical of DLAs and there is high ionization therein, suggesting that the PDLA system is multiphase, putting it in the quasar environment. For J2153–0255, we measure the H I column density to be log(N H I /cm–2) = 21.5 ± 0.1 at z abs = 3.511, slightly redshifted with respect to the quasar (z = 3.490) measured from C III]. The metallicity of this system is quite low and there is a lack of significant high-ionization absorption lines therein, suggesting that the system is beyond the quasar host galaxy. The residual flux is wide (∼1000 km s‑1) in J1456, with a significance of ∼8σ, while also wide (∼1500 km s‑1) but with a smaller significance of ∼3σ in J2153. Among many explanations, we find that Lyα fuzz or resonant scattering can be used to explain the residual flux in the two sources while partial coverage cannot be excluded for J1456. By comparing these two cases, together with a similar case reported previously, we suggest that the strength of the residual flux is related to properties such as metallicity and high-ionization absorption lines of PDLAs. The residual flux recorded upon the PDLA absorption trough opens a window for us to see the physical conditions and processes of the quasar environment, and their profile and strength further remind us of their spatial scales.
Diagnostic studies of ion beam formation in inductively coupled plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jenee L.
2015-01-01
This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 10 15 cm -3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M 2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO +)more » ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.« less
Ventilation-perfusion distribution in normal subjects.
Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A
2012-09-01
Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-04-01
The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.
NASA Astrophysics Data System (ADS)
Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max
2013-06-01
We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.; Trainor, Ryan F.; Pettini, Max; Reddy, Naveen A.
2017-02-01
We present a detailed study of the rest-optical (3600-7000 Å) nebular spectra of ˜380 star-forming galaxies at z≃ 2{--}3, obtained with Keck/Multi-object Spectrometer for Infrared Exploration (MOSFIRE) as part of the Keck Baryonic Structure Survey (KBSS). The KBSS-MOSFIRE sample is representative of star-forming galaxies at these redshifts, with stellar masses {M}* ={10}9{--}{10}11.5 {M}⊙ and star formation rates SFR = 3-1000 {M}⊙ yr-1. We focus on robust measurements of many strong diagnostic emission lines for individual galaxies: [O II]λλ3727, 3729, [Ne III]λ3869, Hβ, [O III]λ λ 4960, 5008, [N II]λλ 6549, 6585, Hα, and [S II]λλ6718, 6732. Comparisons with observations of typical local galaxies from the Sloan Digital Sky Survey and between subsamples of KBSS-MOSFIRE show that high-redshift galaxies exhibit a number of significant differences in addition to the well-known offset in log([O III]λ 5008/Hβ) and log([N II]λ 6585/Hα). We argue that the primary difference between H II regions in z˜ 2.3 galaxies and those at z˜ 0 is an enhancement in the degree of nebular excitation, as measured by [O III]/Hβ and {{R}}23\\equiv {log}[([O III]λ λ 4960,5008+[O II]λ λ 3727,3729)/Hβ]. At the same time, KBSS-MOSFIRE galaxies are ˜10 times more massive than z˜ 0 galaxies with similar ionizing spectra and have higher N/O (likely accompanied by higher O/H) at fixed excitation. These results indicate the presence of harder ionizing radiation fields at fixed N/O and O/H relative to typical z˜ 0 galaxies, consistent with Fe-poor stellar population models that include massive binaries, and highlight a population of massive, high-specific star formation rate galaxies at high redshift with systematically different star formation histories than galaxies of similar stellar mass today. The data presented in this paper were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Improved modeling on the RF behavior of InAs/AlSb HEMTs
NASA Astrophysics Data System (ADS)
Guan, He; Lv, Hongliang; Zhang, Yuming; Zhang, Yimen
2015-12-01
The leakage current and the impact ionization effect causes a drawback for the performance of InAs/AlSb HEMTs due to the InAs channel with a very narrow band gap of 0.35 eV. In this paper, the conventional HEMT small-signal model was enhanced to characterize the RF behavior for InAs/AlSb HEMTs. The additional gate leakage current induced by the impact ionization was modeled by adding two resistances RGh1 and RGh2 shunting the Cgs-Ri and Cgd-Rj branches, respectively, and the ionized-drain current was characterized by an additional resistance Rmi parallel with the output resistance Rds, meanwhile the influence of the impact ionization on the transconductance was modeled by an additional current source gmi controlled by Vgs. The additional inductance, evaluated as a function of f(ω, R), was introduced to characterize the frequency dependency of impact ionization by using the impact ionization effective rate 1/τi and a new frequency response rate factor n, which guaranteed the enhanced model reliable for a wide frequency range. As a result, the enhanced model achieved good agreement with the measurements of the S-parameters and Y-parameters for a wide frequency range, moreover, the simulated results of the stability factor K, the cutoff frequency fT, the maximum frequency of oscillation fmax, and the unilateral Mason's gain U were estimated to approach the experimental results with a high degree.
Zhao, Shizhen; Jones, Kevin C; Sweetman, Andrew J
2018-01-01
A wide range of studies have characterized different types of biosorbent, with regard to their interactions with chemicals. This has resulted in the development of poly-parameter linear free energy relationships (pp-LFERs) for the estimation of partitioning of neutral organic compounds to biological phases (e.g., storage lipids, phospholipids and serum albumins). The aims of this study were to explore and evaluate the influence of implementing pp-LFERs both into a one-compartment fish model and a multi-compartment physiologically based toxicokinetic (PBTK) fish model and the associated implications for chemical risk assessment. For this purpose, fish was used as reference biota, due to their important role in aquatic food chains and dietary exposure to humans. The bioconcentration factor (BCF) was utilized as the evaluation metric. Overall, our results indicated that models incorporating pp-LFERs (R 2 = 0.75) slightly outperformed the single parameter (sp) LFERs approach in the one-compartmental fish model (R 2 = 0.72). A pronounced enhancement was achieved for compounds with log K OW between 4 and 5 with increased R 2 from 0.52 to 0.71. The minimal improvement was caused by the overestimation of lipid contribution and underestimation of protein contribution by the sp-approach, which cancelled each other out. Meanwhile, a greater improvement was observed for multi-compartmental PBTK models with consideration of metabolism, making all predictions fall within a factor of 10 compared with measured data. For screening purposes, the K OW -based (sp-LFERs) approach should be sufficient to quantify the main partitioning characteristics. Further developments are required for the consideration of ionization and more accurate quantification of biotransformation in biota. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Versatile Integrated Ambient Ionization Source Platform.
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-30
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.
Ovchinnikova, Olga S; Van Berkel, Gary J
2010-06-30
An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.
A Versatile Integrated Ambient Ionization Source Platform
NASA Astrophysics Data System (ADS)
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-01
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.
A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA.
Calvo-Ortega, Juan F; Teke, Tony; Moragues, Sandra; Pozo, Miquel; Casals-Farran, Joan
2014-03-06
In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient-specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB-based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog-based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In-phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose-volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R² = 0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog-based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog-based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog-based reconstruction method described in this study is a suitable tool to perform a patient-specific IMRT QA. This method allows us to perform patient-specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH-based IMRT QA).
Quantitative ionization chamber alignment to a water surface: Theory and simulation.
Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric
2017-07-01
To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning and/or be applied retrospectively to scan data to quantify absolute IC depth. Utilization of the gCAP should yield accurate and reproducible depth calibration for clinical depth-ionization measurements between setups and between users. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Liu, S.; Pan, B.
2015-12-01
The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.
RICO: A NEW APPROACH FOR FAST AND ACCURATE REPRESENTATION OF THE COSMOLOGICAL RECOMBINATION HISTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendt, W. A.; Wandelt, B. D.; Chluba, J.
2009-04-15
We present RICO, a code designed to compute the ionization fraction of the universe during the epoch of hydrogen and helium recombination with an unprecedented combination of speed and accuracy. This is accomplished by training the machine learning code PICO on the calculations of a multilevel cosmological recombination code which self-consistently includes several physical processes that were neglected previously. After training, RICO is used to fit the free electron fraction as a function of the cosmological parameters. While, for example, at low redshifts (z {approx}< 900), much of the net change in the ionization fraction can be captured by loweringmore » the hydrogen fudge factor in RECFAST by about 3%, RICO provides a means of effectively using the accurate ionization history of the full recombination code in the standard cosmological parameter estimation framework without the need to add new or refined fudge factors or functions to a simple recombination model. Within the new approach presented here, it is easy to update RICO whenever a more accurate full recombination code becomes available. Once trained, RICO computes the cosmological ionization history with negligible fitting error in {approx}10 ms, a speedup of at least 10{sup 6} over the full recombination code that was used here. Also RICO is able to reproduce the ionization history of the full code to a level well below 0.1%, thereby ensuring that the theoretical power spectra of cosmic microwave background (CMB) fluctuations can be computed to sufficient accuracy and speed for analysis from upcoming CMB experiments like Planck. Furthermore, it will enable cross-checking different recombination codes across cosmological parameter space, a comparison that will be very important in order to assure the accurate interpretation of future CMB data.« less
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2015-12-01
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.
Sen, Swati; Kundagrami, Arindam
2015-12-14
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Kinetics of Hydrothermal Inactivation of Endotoxins ▿
Li, Lixiong; Wilbur, Chris L.; Mintz, Kathryn L.
2011-01-01
A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106 Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667
The requirements for low-temperature plasma ionization support miniaturization of the ion source.
Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia
2018-06-01
Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.
Paseiro-Cerrato, Rafael; Tongchat, Chinawat; Franz, Roland
2016-05-01
This study evaluated the influence of parameters such as temperature and type of low-density polyethylene (LDPE) film on the log Kp/f values of seven model migrants in food simulants. Two different types of LDPE films contaminated by extrusion and immersion were placed in contact with three food simulants including 20% ethanol, 50% ethanol and olive oil under several time-temperature conditions. Results suggest that most log Kp/f values are little affected by these parameters in this study. In addition, the relation between log Kp/f and log Po/w was established for each food simulant and regression lines, as well as correlation coefficients, were calculated. Correlations were compared with data from real foodstuffs. Data presented in this study could be valuable in assigning certain foods to particular food simulants as well as predicting the mass transfer of potential migrants into different types of food or food simulants, avoiding tedious and expensive laboratory analysis. The results could be especially useful for regulatory agencies as well as for the food industry.
Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc
NASA Astrophysics Data System (ADS)
Hahn, M.; Müller, A.; Savin, D. W.
2017-12-01
We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.
Method and apparatus for detecting combustion instability in continuous combustion systems
Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.
2006-08-29
An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.
NASA Astrophysics Data System (ADS)
Wen, Lin; Li, Yu-dong; Guo, Qi; Wang, Chao-min
2018-02-01
Total ionizing dose effect is a major threat to space applications of CCD, which leads to the decrease of CCD saturation output voltage and the increase of dark signal. This paper investigated CCD and its readout circuit for experimental samples of different channel width to length ratio of MOSFET, and readout circuit amplifier, and CCD. The irradiation source was 60Co- gamma ray. through testing the parameters degradation of MOSFET and amplifier degradation, the generation and annealing law of irradiation induced defects in MOS single tube are analyzed. Combined with the radiation effect of amplifier and CCD, The correlation of radiation damage of the MOSFET and the readout circuit amplifier and CCD parameter degradation is established. Finally, this paper reveals the physical mechanism of ionizing radiation damage of the readout circuit. The research results provide a scientific basis for the selection of anti-radiation technology and structure optimization of domestic CCD.
Parametrizing the Reionization History with the Redshift Midpoint, Duration, and Asymmetry
NASA Astrophysics Data System (ADS)
Trac, Hy
2018-05-01
A new parametrization of the reionization history is presented to facilitate robust comparisons between different observations and with theory. The evolution of the ionization fraction with redshift can be effectively captured by specifying the midpoint, duration, and asymmetry parameters. Lagrange interpolating functions are then used to construct analytical curves that exactly fit corresponding ionization points. The shape parametrizations are excellent matches to theoretical results from radiation-hydrodynamic simulations. The comparative differences for reionization observables are: ionization fraction | {{Δ }}{x}{{i}}| ≲ 0.03, 21 cm brightness temperature | {{Δ }}{T}{{b}}| ≲ 0.7 {mK}, Thomson optical depth | {{Δ }}τ | ≲ 0.001, and patchy kinetic Sunyaev–Zel’dovich angular power | {{Δ }}{D}{\\ell }| ≲ 0.1 μ {{{K}}}2. This accurate and flexible approach will allow parameter-space studies and self-consistent constraints on the reionization history from 21 cm, cosmic microwave background (CMB), and high-redshift galaxies and quasars.
Atmospheric stellar parameters from cross-correlation functions
NASA Astrophysics Data System (ADS)
Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.
2017-08-01
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
Paillet, Frederick; Hite, Laura; Carlson, Matthew
1999-01-01
Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.
Investigating the Metallicity–Mixing-length Relation
NASA Astrophysics Data System (ADS)
Viani, Lucas S.; Basu, Sarbani; Joel Ong J., M.; Bonaca, Ana; Chaplin, William J.
2018-05-01
Stellar models typically use the mixing-length approximation as a way to implement convection in a simplified manner. While conventionally the value of the mixing-length parameter, α, used is the solar-calibrated value, many studies have shown that other values of α are needed to properly model stars. This uncertainty in the value of the mixing-length parameter is a major source of error in stellar models and isochrones. Using asteroseismic data, we determine the value of the mixing-length parameter required to properly model a set of about 450 stars ranging in log g, {T}eff}, and [{Fe}/{{H}}]. The relationship between the value of α required and the properties of the star is then investigated. For Eddington atmosphere, non-diffusion models, we find that the value of α can be approximated by a linear model, in the form of α /{α }ȯ =5.426{--}0.101 {log}(g)-1.071 {log}({T}eff}) +0.437([{Fe}/{{H}}]). This process is repeated using a variety of model physics, as well as compared with previous studies and results from 3D convective simulations.
Phenomenology of wall-bounded Newtonian turbulence.
L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S
2006-01-01
We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.
Parameter estimation and forecasting for multiplicative log-normal cascades.
Leövey, Andrés E; Lux, Thomas
2012-04-01
We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing et al. [Physica D 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica D 193, 195 (2004)] and Kiyono et al. [Phys. Rev. E 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono et al.'s procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.
SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
2014-06-15
Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, andmore » cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc.« less
THE CROSS-RESISTANCE TO PENICILLIN AND RADIATION OF ESCHERICHIA COLI B (in Hungarian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutas, V.
The radiosensitivity of cultures resistant to 1500 IU/ml, 2000 IU/ml, 2500 IU/ml of penicillin, produced from strain E. coli B was examined. Cultures in the log-phase were streaked in monocellular layers on the agar surface and x irradiation was applied. As a result of penicillin treatment cell filaments consisting of several members were formed. Measuring the effect of ionizing radiation by the percentage survival, the cultures resistant to penicillin proved to be considerably more radioresistant than the parent strain B, non-treated with penicillin. (auth)
NASA Astrophysics Data System (ADS)
Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang
2017-10-01
CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.
Fujisawa, Seiichiro; Kadoma, Yoshinori
2012-01-01
We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates.
Fujisawa, Seiichiro; Kadoma, Yoshinori
2012-01-01
We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H50) or in vivo mouse intraperitoneal (ip) LD50 using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their 13C-NMR β-carbon chemical shift (δ). The log 1/H50 value for methacrylates was linearly correlated with the δCβ value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD50 for (meth)acrylates was linearly correlated with δCβ but not with log P. For (meth)acrylates, the δCβ value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using 1H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H50 value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates. PMID:22312284
Methods for performing fast discrete curvelet transforms of data
Candes, Emmanuel; Donoho, David; Demanet, Laurent
2010-11-23
Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.
An Analytic Formulation of the 21 cm Signal from the Early Phase of the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Raste, Janakee; Sethi, Shiv
2018-06-01
We present an analytic formulation to model the fluctuating component of the H I signal from the epoch of reionization during the phase of partial heating. During this phase, we assume self-ionized regions, whose size distribution can be computed using excursion set formalism, to be surrounded by heated regions. We model the evolution of the heating profile around these regions (near zone) and their merger into the time-dependent background (far zone). We develop a formalism to compute the two-point correlation function for this topology, taking into account the heating autocorrelation and heating-ionization cross-correlation. We model the ionization and X-ray heating using four parameters: efficiency of ionization, ζ number of X-ray photons per stellar baryon, N heat; spectral index of X-ray photons, α and minimum frequency of X-ray photons, ν min. We compute the H I signal in the redshift range 10 < z < 20 for the ΛCDM model for a set of these parameters. We show that the H I signal for a range of scales 1–8 Mpc shows a peak strength of 100–1000 (mK)2 during the partially heated era. The redshift at which the signal makes a transition to a uniformly heated universe depends on the modeling parameters; e.g., if ν min is changed from 100 eV to 1 keV, this transition moves from z ≃ 15 to z ≃ 12. This result, along with the dependence of the H I signal on the modeling parameters, is in reasonable agreement with existing results from N-body simulations.
Estimation of transformation parameters for microarray data.
Durbin, Blythe; Rocke, David M
2003-07-22
Durbin et al. (2002), Huber et al. (2002) and Munson (2001) independently introduced a family of transformations (the generalized-log family) which stabilizes the variance of microarray data up to the first order. We introduce a method for estimating the transformation parameter in tandem with a linear model based on the procedure outlined in Box and Cox (1964). We also discuss means of finding transformations within the generalized-log family which are optimal under other criteria, such as minimum residual skewness and minimum mean-variance dependency. R and Matlab code and test data are available from the authors on request.
[Investigation of Elekta linac characteristics for VMAT].
Luo, Guangwen; Zhang, Kunyi
2012-01-01
The aim of this study is to investigate the characteristics of Elekta delivery system for volumetric modulated arc therapy (VMAT). Five VMAT plans were delivered in service mode and dose rates, and speed of gantry and MLC leaves were analyzed by log files. Results showed that dose rates varied between 6 dose rates. Gantry and MLC leaf speed dynamically varied during delivery. The technique of VMAT requires linac to dynamically control more parameters, and these key dynamic variables during VMAT delivery can be checked by log files. Quality assurance procedure should be carried out for VMAT related parameter.
NASA Astrophysics Data System (ADS)
Zhang, Jianjing; Li, Hongjie
2018-06-01
To mitigate potential seismic disasters in the Yunnan region, China, building up suitable magnitude estimation scaling laws for an earthquake early warning system (EEWS) is in high demand. In this paper, the records from the main and after-shocks of the Yingjiang earthquake (M W 5.9), the Ludian earthquake (M W 6.2) and the Jinggu earthquake (M W 6.1), which occurred in Yunnan in 2014, were used to develop three estimators, including the maximum of the predominant period ({{τ }{{p}}}\\max ), the characteristic period (τ c) and the log-average period (τ log), for estimating earthquake magnitude. The correlations between these three frequency-based parameters and catalog magnitudes were developed, compared and evaluated against previous studies. The amplitude and period of seismic waves might be amplified in the Ludian mountain-canyon area by multiple reflections and resonance, leading to excessive values of the calculated parameters, which are consistent with Sichuan’s scaling. As a result, τ log was best correlated with magnitude and τ c had the highest slope of regression equation, while {{τ }{{p}}}\\max performed worst with large scatter and less sensitivity for the change of magnitude. No evident saturation occurred in the case of M 6.1 and M 6.2 in this study. Even though both τ c and τ log performed similarly and can well reflect the size of the Earthquake, τ log has slightly fewer prediction errors for small scale earthquakes (M ≤ 4.5), which was also observed by previous research. Our work offers an insight into the feasibility of a EEWS in Yunnan, China, and this study shows that it is necessary to build up an appropriate scaling law suitable for the warning region.
MID Plot: a new lithology technique. [Matrix identification plot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clavier, C.; Rust, D.H.
1976-01-01
Lithology interpretation by the Litho-Porosity (M-N) method has been used for years, but is evidently too cumbersome and ambiguous for widespread acceptance as a field technique. To set aside these objections, another method has been devised. Instead of the log-derived parameters M and N, the MID Plot uses quasi-physical quantities, (rho/sub ma/)/sub a/ and (..delta..t/sub ma/)/sub a/, as its porosity-independent variables. These parameters, taken from suitably scaled Neutron-Density and Sonic-Neutron crossplots, define a unique matrix mineral or mixture for each point on the logs. The matrix points on the MID Plot thus remain constant in spite of changes in mudmore » filtrate, porosity, or neutron tool types (all of which significantly affect the M-N Plot). This new development is expected to bring welcome relief in areas where lithology identification is a routine part of log analysis.« less
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
Prediction of kinase-inhibitor binding affinity using energetic parameters
Usha, Singaravelu; Selvaraj, Samuel
2016-01-01
The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052
Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans
Shuryak, Igor; Bryan, Ruth A.; Broitman, Jack; Marino, Stephen A.; Morgenstern, Alfred; Apostolidis, Christos; Dadachova, Ekaterina
2015-01-01
Introduction Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. Methods We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by 213Bi-labeled monoclonal antibodies), and sparsely-ionizing 137Cs γ-rays, on Cryptococus neoformans. Results The best-fit linear-quadratic parameters for clonogenic survival were the following: α=0.24×10−2 Gy−1 for γ-rays and 1.07×10−2 Gy−1 for external-beam α-particles, and β=1.44×10−5 Gy−2 for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. Conclusions These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies. PMID:25800676
NASA Astrophysics Data System (ADS)
Litvinov, I. I.
2015-11-01
A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedemeier, Heribert, E-mail: wiedeh@rpi.ed
Correlations of computed Schottky constants (K{sub S}=[V''{sub Zn}][V{sub S}{sup ..}]) with structural and thermodynamic properties showed linear dependences of log K{sub S} on the lattice energies for the Zn-, Cd-, Hg-, Mg-, and Sr-chalcogenides and for the Na- and K-halides. These findings suggest a basic relation between the Schottky constants and the lattice energies for these families of compounds from different parts of the Periodic Table, namely, {Delta}H{sub T,L}{sup o}=-(2.303nRT log K{sub S})+2.303nRm{sub b}+2.303nRTi{sub b}. {Delta}H{sub T,L}{sup o} is the experimental (Born-Haber) lattice energy (enthalpy), n is a constant approximately equal to the formal valence (charge) of the material, m{submore » b} and i{sub b} are the slope and intercept, respectively, of the intercept b (of the log K{sub S} versus {Delta}H{sub L}{sup o} linear relation) versus the reciprocal temperature. The results of this work also provide an empirical correlation between the Gibbs free energy of vacancy formation and the lattice energy. - Graphical abstract: For the Zn-chalcogenides, the quantities n and I{sub e} are 2.007 and 650.3 kcal (2722 kJ), respectively. For the other groups of compounds, they are approximately equal to the formal valences and ionization energies of the metals: Log K{sub S{approx}}-(2.303nRT){sup -1} (0.99{Delta}H{sup o}{sub T,L}-I{sub e}).« less
Golovenko, N Ya; Larionov, V B; Karpova, O V
2016-01-01
Preparation Methadoxine is equimolar salt, which cationic component (pyridoxine) is 3-oxypyridine derivative, possessing B6-vitamine like activity, while anionic component is the cyclic lactame of glutamic acid. Since biopharmaceutical and pharmacological properties of this drug depend on biochemical transformation its components, of the aim of this work was to determine the structure of possible ionized pyridoxine and pyrrolidone carboxylate forms and their reaction ability in biochemical processes. Physical-chemical properties of compounds (pKa, logP, logD, proton donor/acceptor quantity, solubility (g/l)) were calculated with ACD/pKaDB program or obtained from Pub-Med physical/chemical properties database. UV spectra of compounds were obtained after dissolution in different pH solutions (1.0, 4.5 and 6.8). It was found that at different pH values one can observe changes of the absorption spectra due to the presence of prevailing amount of the protonated form. An analysis of both pKa, logP and logD indicators and reactive functional groups of Methadoxine components has revealed that they can be protonated in different regions of gastro-intestinal tract, that influences their solubility in hydrophilic and lypophilic media. Pharmacological properties of pyridoxine and pyrrolidone carboxylate themselves are performed after their preliminary biotransformation to active metabolites. Only ionic interaction between Methadoxine components in the substance composition can appear, that provides its pharmaceutical stability and ensures its activity only in the organism conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegfried, M.
2015-10-14
The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less
NASA Astrophysics Data System (ADS)
Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.
2012-04-01
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the "ionization cone" scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Photoemission and photoionization time delays and rates
Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.
2017-01-01
Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414
Stromgren photometry of A-stars - A test of physical parameter determination
NASA Astrophysics Data System (ADS)
Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.
1990-08-01
By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.
Dual-cone double-helical downhole logging device
Yu, Jiunn S.
1984-01-01
A broadband downhole logging device includes a double-helix coil wrapped over a dielectric support and surrounded by a dielectric shield. The device may also include a second coil longitudinally aligned with a first coil and enclosed within the same shield for measuring magnetic permeability of downhole formations and six additional coils for accurately determining downhole parameters.
James F. Taulman; Kimberly G. Smith; Ronald E. Thill
1998-01-01
This study investigated responses of populations of southern flying squirrels to a range of experimental even-aged and uneven-aged timber-harvest practices along a gradient of increasing disturbance intensity. The goals were to determine whether measurable demographic parameters of squirrels in experimental forests would change after logging; whether a disturbance...
Summary:Background. It is widely accepted that substances that cannot penetrate through the skin will not be sensitisers. Thresholds based on relevant physicochemical parameters such as a LogKow > 1 and a MW < 500, are assumed and widely accepted as self-evident truths. Objective...
Shining a light on star formation driven outflows: the physical conditions within galactic outflows
NASA Astrophysics Data System (ADS)
Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei
2016-01-01
Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.
Renormalization group method based on the ionization energy theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006
2011-03-15
Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less
Modelling of the hole-initiated impact ionization current in the framework of hydrodynamic equations
NASA Astrophysics Data System (ADS)
Lorenzini, Martino; Van Houdt, Jan
2002-02-01
Several research papers have shown the feasibility of the hydrodynamic transport model to investigate impact ionization in semiconductor devices by means of mean-energy-dependent generation rates. However, the analysis has been usually carried out for the case of the electron-initiated impact ionization process and less attention has been paid to the modelling of the generation rate due to impact ionization events initiated by holes. This paper therefore presents an original model for the hole-initiated impact ionization in silicon and validates it by comparing simulation results with substrate currents taken from p-channel transistors manufactured in a 0.35 μm CMOS technology having three different channel lengths. The experimental data are successfully reproduced over a wide range of applied voltages using only one fitting parameter. Since the impact ionization of holes triggers the mechanism responsible for the back-bias enhanced gate current in deep submicron nMOS devices, the model can be exploited in the development of non-volatile memories programmed by secondary electron injection.
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.
2018-04-01
The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
Log-Normal Turbulence Dissipation in Global Ocean Models
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Measuring firm size distribution with semi-nonparametric densities
NASA Astrophysics Data System (ADS)
Cortés, Lina M.; Mora-Valencia, Andrés; Perote, Javier
2017-11-01
In this article, we propose a new methodology based on a (log) semi-nonparametric (log-SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm's assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is
2014-06-28
Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.
Investigation of critical parameters controlling the efficiency of associative ionization
NASA Astrophysics Data System (ADS)
Le Padellec, A.; Launoy, T.; Dochain, A.; Urbain, X.
2017-05-01
This paper compiles our merged-beam experimental findings for the associative ionization (AI) process from charged reactants, with the aim of guiding future investigations with e.g. the double electrostatic ion storage ring DESIREE in Stockholm. A reinvestigation of the isotopic effect in H-(D-) + He+ collisions is presented, along with a review of {{{H}}}3+ and NO+ production by AI involving ion pairs or excited neutrals, and put in perspective with the mutual neutralization and radiative association reactions. Critical parameters are identified and evaluated for their systematic role in controlling the magnitude of the cross section: isotopic substitution, exothermicity, electronic state density, and spin statistics.
Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV
NASA Astrophysics Data System (ADS)
Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans
2016-05-01
Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.
Denis, Julie; Machouart, Marie; Morio, Florent; Sabou, Marcela; Kauffmann-LaCroix, Catherine; Contet-Audonneau, Nelly; Candolfi, Ermanno; Letscher-Bru, Valérie
2017-01-01
The genus Malassezia comprises commensal yeasts on human skin. These yeasts are involved in superficial infections but are also isolated in deeper infections, such as fungemia, particularly in certain at-risk patients, such as neonates or patients with parenteral nutrition catheters. Very little is known about Malassezia epidemiology and virulence. This is due mainly to the difficulty of distinguishing species. Currently, species identification is based on morphological and biochemical characteristics. Only molecular biology techniques identify species with certainty, but they are time-consuming and expensive. The aim of this study was to develop and evaluate a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) database for identifying Malassezia species by mass spectrometry. Eighty-five Malassezia isolates from patients in three French university hospitals were investigated. Each strain was identified by internal transcribed spacer sequencing. Forty-five strains of the six species Malassezia furfur, M. sympodialis, M. slooffiae, M. globosa, M. restricta, and M. pachydermatis allowed the creation of a MALDI-TOF database. Forty other strains were used to test this database. All strains were identified by our Malassezia database with log scores of >2.0, according to the manufacturer's criteria. Repeatability and reproducibility tests showed a coefficient of variation of the log score values of <10%. In conclusion, our new Malassezia database allows easy, fast, and reliable identification of Malassezia species. Implementation of this database will contribute to a better, more rapid identification of Malassezia species and will be helpful in gaining a better understanding of their epidemiology. Copyright © 2016 Denis et al.
Medvedovici, Andrei; Albu, Florin; Sora, Iuliana Daniela; Udrescu, Stefan; Galaon, Toma; David, Victor
2009-10-01
A sensitive method for determination of free captopril as monobromobimane derivative in plasma samples is discussed. The internal standard (IS) was 5-methoxy-1H-benzimidazole-2-thiol. Derivatization with monobromobimane immediately after blood collection and plasma preparation prevents oxidation of captopril to the corresponding disulfide compound and enhances the ionization yield. Consequently, derivatization enhances sample stability and detection sensitivity. Addition of the internal standard was made immediately after plasma preparation. The internal standard was also derivatized by monobromobimane, as it contains a thiol functional group. Preparation of plasma samples containing captopril and IS derivatives was based upon protein precipitation through addition of acetonitrile, in a volumetric ratio 1:2. The reversed-phase liquid chromatographic separation was achieved on a rapid resolution cartridge Zorbax SB-C(18), monitored through positive electrospray ionization and tandem MS detection using the multiple-reaction monitoring mode. Transitions were 408-362 amu for the captopril derivative and 371-260 amu for the internal standard derivative. The kinetics of captopril oxidation to the corresponding disulfide compound in plasma matrix was also studied using the proposed method. A linear log-log calibration was obtained over the concentration interval 2.5-750 ng/mL. A low limit of quantitation in the 2.5 ng/mL range was obtained. The analytical method was fully validated and successfully applied in a three-way, three-period, single-dose (50 mg), block-randomized bioequivalence study for two pharmaceutical formulations (captopril LPH 25 and 50 mg) against the comparator Capoten 50 mg. Copyright (c) 2009 John Wiley & Sons, Ltd.
SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.
2016-04-20
The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.
2017-12-01
The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.
Watt, Timothy J; Duan, Jian J
2014-08-01
Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae) is a recently discovered gregarious idiobiont larval ectoparasitoid currently being evaluated for biological control against the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in the United States. To aid in the development of laboratory rearing protocols, we assessed the influence of various emerald ash borer stages on critical fitness parameters of S. galinae. We exposed gravid S. galinae females to emerald ash borer host larvae of various ages (3.5, 5, 7, and 10 wk post egg oviposition) that were reared naturally in tropical (evergreen) ash (Fraxinus uhdei (Wenzig) Lingelsh) logs, or to field-collected, late-stage emerald ash borers (nonfeeding J-shaped larvae termed "J-larvae," prepupae, and pupae) that were artificially inserted into green ash logs. When exposed to larvae in tropical ash logs, S. galinae attacked 5 and 7 wk hosts more frequently (68-76%) than 3.5 wk (23%) and 10 wk (12%) hosts. Subsample dissections of the these logs revealed that 3.5, 5, 7 and 10 wk host logs contained mostly second, third, fourth, and J-larvae, respectively, that had already bored into the sapwood for diapause. No J-larvae were attacked by S. galinae when naturally reared in tropical ash logs. When parasitized by S. galinae, 7 and 10 wk hosts produced the largest broods (approximately 6.7 offspring per parasitized host), and the progenies that emerged from these logs had larger anatomical measurements and more female-biased sex ratios. When exposed to emerald ash borer J-larvae, prepupae, or pupae artificially inserted into green ash logs, S. galinae attacked 53% ofJ-larvae, but did not attack any prepupae or pupae. We conclude that large (fourth instar) emerald ash borer larvae should be used to rear S. galinae.
Observations of absorption lines from highly ionized atoms. [of interstellar medium
NASA Technical Reports Server (NTRS)
Jenkins, Edward B.
1987-01-01
In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.
Observations of Absorption Lines from Highly Ionized Atoms
NASA Technical Reports Server (NTRS)
Jenkins, E. B.
1984-01-01
In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.
Kallinteri, P; Antimisiaris, S G
2001-06-19
The solubility of seven drugs (nitrofurantoin, chlorothiazide, phenobarbital, prednisolone, griseofulvin, diazepam and piroxicam) in the absence and presence of gelatin was measured, at three different pH values (3.7, 5.0 and 7.0) at 37 degrees C. Drugs studied had different physicochemical properties (log P, pK(a), aqueous solubility) and their solubility in presence of 0.1 and 0.5% (w/v) hydrolyzed (and in some cases common) gelatin was estimated. Results show that the solubility of all drugs is significantly enhanced, especially in the presence of 0.5% gelatin. This gelatin-induced enhancement in drug solubility is higher in the pH in which acidic drugs are less ionized, especially for the less lipophilic acidic drugs (nitrofurantoin, chlorothiazide). In all cases, drug solubility in presence of gelatin is correlated with their aqueous solubility. Therefore, the established relationships between aqueous and gelatin solubility can be employed to derive an estimate of the drug solubility in presence of gelatin once its aqueous solubility is known. With the exception of piroxicam which is highly ionized and phenobarbital which is relatively soluble, there seems to be a tendency for larger gelatin-induced increases in solubility as drug lipophilicity increases or aqueous solubility decreases.
Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
Liu, C.; Charpentier, R.R.; Su, J.
2011-01-01
Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.
Film thickness for different regimes of fluid-film lubrication. [elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.
NASA Astrophysics Data System (ADS)
Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Raassen, A. J. J.; Gu, Liyi; Miller, J. M.
2017-11-01
Context. Ionized outflows in active galactic nuclei (AGNs) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modeled ionization parameters. Aims: We perform a theoretical study of density diagnostics of ionized outflows using absorption lines from metastable levels in Be-like to C-like cosmic abundant ions. Methods: With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1-2000 Å wavelength range. Results: In the broad density range of nH ∈ (106, 1020) m-3, the metastable levels 2s2p (3P0-2) in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s22p (2P3/2) can be used as a density probe. For C-like ions, the first two excited levels 2s22p2 (3P1 and 3P2) are better density probes than the next two excited levels 2s22p2 (1S0 and 1D2). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameters, but also a wide range of density values. On the other hand, within the same isonuclear sequence, those less ionized ions probe lower density and smaller ionization parameters. Finally, we reanalyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002 using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components based on the presence (or absence) of the metastable absorption lines. Once atomic data from N-like to F-like ions are available, combined with the next generation of spectrometers that cover both X-ray and UV wavelength ranges with higher spectral resolution and larger effective areas, tight constraints on the density and thus the location and kinetic power of AGN outflows can be obtained.
Fallon, Nevada FORGE Lithology Logs and Well 21-31 Drilling Data
Blankenship, Doug; Hinz, Nicholas; Faulds, James
2018-03-11
This submission includes lithology logs for all Fallon FORGE area wells; determined from core, cuttings, and thin section. Wells included are 84-31, 21-31, 82-36, FOH-3D, 62-36, 18-5, 88-24, 86-25, FOH-2, 14-36, 17-16, 34-33, 35A-11, 51A-20, 62-15, 72-7, 86-15, Carson_Strat_1_36-32, and several others. Lithology logs last updated 3/13/2018 with confirmation well 21-31 data, and revisited existing wells. Also included is well logging data for Fallon FORGE 21-31. Well logging data includes daily reports, well logs (drill rate, lithology, fractures, mud losses, minerals, temperature, gases, and descriptions), mud reports, drilling parameter plots, daily mud loss summaries, survey reports, progress reports, plan view maps (easting, northing), and wireline logs (caliper [with GR], triple combo [GR, caliper, SP, resistivity, array induction, density, photoelectric factor, and neutron porosity], array induction with linear correlation [GR, SP, Array Induction, caliper, conductivity], and monopole compression dipole shear [GR, SP, Caliper, sonic porosity, delta-T compressional, and delta-T shear])
Parameter estimation and forecasting for multiplicative log-normal cascades
NASA Astrophysics Data System (ADS)
Leövey, Andrés E.; Lux, Thomas
2012-04-01
We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing [Physica DPDNPDT0167-278910.1016/0167-2789(90)90035-N 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica DPDNPDT0167-278910.1016/j.physd.2004.01.020 193, 195 (2004)] and Kiyono [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.76.041113 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono 's procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.
Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
Larsen, D H; Fredholt, K; Larsen, C
2000-09-01
The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).
Bentley, T William
2006-08-25
A recently proposed, multi-parameter correlation: log k (25 degrees C)=s(f) (Ef + Nf), where Ef is electrofugality and Nf is nucleofugality, for the substituent and solvent effects on the rate constants for solvolyses of benzhydryl and substituted benzhydryl substrates, is re-evaluated. A new formula (Ef=log k (RCl/EtOH/25 degrees C) -1.87), where RCl/EtOH refers to ethanolysis of chlorides, reproduces published values of Ef satisfactorily, avoids multi-parameter optimisations and provides additional values of Ef. From the formula for Ef, it is shown that the term (sfxEf) is compatible with the Hammett-Brown (rho+sigma+) equation for substituent effects. However, the previously published values of N(f) do not accurately account for solvent and leaving group effects (e.g. nucleofuge Cl or X), even for benzhydryl solvolyses; alternatively, if the more exact, two-parameter term, (sfxNf) is used, calculated effects are less accurate. A new formula (Nf=6.14 + log k(BX/any solvent/25 degrees C)), where BX refers to solvolysis of the parent benzhydryl as electrofuge, defines improved Nf values for benzhydryl substrates. The new formulae for Ef and Nf are consistent with an assumption that sf=1.00(,) and so improved correlations for benzhydryl substrates can be obtained from the additive formula: log k(RX/any solvent/25 degrees C)=(Ef + Nf). Possible extensions of this approach are also discussed.
NASA Astrophysics Data System (ADS)
Lawler, James E.; Sneden, Chris; Nave, Gillian; Den Hartog, Elizabeth; Emrahoglu, Nuri; Cowan, John J.
2017-01-01
New laser induced fluorescence (LIF) data for eight levels of singly ionized chromium (Cr) and emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) are reported. A goal of this study is to reconcile Solar and stellar Cr abundance values based on Cr I and Cr II lines. Analyses of eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high resolution echelle spectrometer yield the BF measurements. Radiative lifetimes from LIF measurements are used to convert the BFs to absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log eps in the Sun and metal-poor star HD 84937. The mean result in the Sun is
Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot.
Teng, Fei; Zhu, Qunyan; Wang, Yalei; Du, Juan; Lu, Nan
2018-03-01
Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI TOF MS) has become one of the most important analytical methods due to its less interference at low molecular weight range. However, it is still a challenge to obtain a good reproducibility of SALDI TOF MS because of the inhomogeneous distribution of analyte molecules induced by coffee ring effect. We propose a universal and reliable method to eliminate the coffee ring effect by concentrating all the analyte molecules within the laser spot. This method exhibits an excellent reproducibility of spot-to-spot and substrate-to-substrate, and the relative standard deviations (RSDs) for different concentrations are lower than 12.6%. It also performs good linear dependency (R 2 > 0.98) in the log-log plot with the concentration range of 1nM to 1μM, and the limit of detection for R6G is down to 1fmol. Copyright © 2017 Elsevier B.V. All rights reserved.
Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe
2018-05-07
In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...
Activity and the Li abundances in the FGK dwarfs⋆
NASA Astrophysics Data System (ADS)
Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.
2012-11-01
Aims: The aim of the present study is to determine the Li abundances for a large set of the FGK dwarfs and to analyse the connections between the Li content, stellar parameters, and activity. Methods: The atmospheric parameters, rotational velocities and the Li abundances were determined from a homogeneous collection of the echelle spectra with high resolution and a high signal-to-noise ratio. The rotational velocities vsini were determined by calibrating the cross-correlation function. The effective temperatures Teff were estimated by the line-depth ratio method. The surface gravities log g were computed by two methods: the iron ionization balance and the parallax. The LTE Li abundances were computed using synthetic spectra method. The behaviour of the Li abundance was examined in correlation with Teff, [Fe/H] , as well as with vsini and the level of activity in three stellar groups of the different temperature range. Results: The stellar parameters and the Li abundances are presented for 150 slow rotating stars of the lower part of the main sequence. The studied stars show a decline in the Li abundance with decreasing temperature Teff and a significant spread, which should be due to the difference of age of stars. The correlations between the Li abundances, rotational velocities vsini, and the level of the chromospheric activity were discovered for the stars with 6000 > Teff > 5700 K, and it is tighter for the stars with 5700 > Teff > 5200 K. The target stars with Teff < 5200 K do not show any correlation between log A(Li) and vsini. The relationship between the chromospheric and coronal fluxes in active with detected Li as well as in less active stars gives a hint that there exist different conditions in the action of the dynamo mechanism in those stars. Conclusions: We found that the Li-activity correlation is evident only in a restricted temperature range and the Li abundance spread seems to be present in a group of low chromospheric activity stars that also show a broad spread in the chromospheric vs. coronal activity. Based on the spectra collected with the ELODIE spectrograph using the 1.93-m telescope at the Observatoire de Haute Provence (CNRS, France).Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A106
Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A
2015-11-01
2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 8
2007-01-01
parameter dimension between the two models). 93 were tested.3 Model 1 log( pHits 1− pHits ) = α + β1 ∗ MetricScore (6.6) The results for each of the...505.67 oTERavg .357 .13 .007 log( pHits 1− pHits ), that is, log-odds of correct task performance, of 2.79 over the intercept only model. All... pHits 1− pHits ) = −1.15− .418× I[MT=2] − .527× I[MT=3] + 1.78×METEOR+ 1.28×METEOR × I[MT=2] + 1.86×METEOR × I[MT=3] (6.7) Model 3 log( pHits 1− pHits
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
Development of a subway operation incident delay model using accelerated failure time approaches.
Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang
2014-12-01
This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2018-03-01
Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular phases of their pulsations. We identified convective inhomogeneities as the main driver behind potential biases. To obtain a complete view on the effects when determining stellar parameters with 1D models, multidimensional Cepheid atmosphere models are necessary for variables of longer period than investigated here.
Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...
A NLTE line formation for neutral and singly ionized calcium in model atmospheres of B-F stars
NASA Astrophysics Data System (ADS)
Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.
2018-07-01
We present non-local thermodynamic equilibrium (NLTE) line formation calculations for Ca I and Ca II in B-F stars. The sign and the magnitude of NLTE abundance corrections depend on line and stellar parameters. We determine calcium abundances for nine stars with reliable stellar parameters. For all stars, where the lines of both species could be measured, the NLTE abundances are found to be consistent within the error bars. We obtain consistent NLTE abundances from Ca II lines in the visible and near infra-red (IR, 8912-27, 9890 Å) spectrum range, in contrast with LTE, where the discrepancy between the two groups of lines ranges from -0.5 to 0.6 dex for different stars. Our NLTE method reproduces the Ca II 8912-27, 9890 Å lines observed in emission in the late B-type star HD 160762 with the classical plane-parallel and LTE model atmosphere. NLTE abundance corrections for lines of Ca I and Ca II were calculated in a grid of model atmospheres with 7000 ≤ Teff ≤ 13 000 K, 3.2 ≤ log g ≤ 5.0, -0.5 ≤ [Fe/H] ≤0.5, ξt = 2.0 km s-1. Our NLTE results can be applied for calcium NLTE abundance determination from Gaia spectra, given that accurate continuum normalization and proper treatment of the hydrogen Paschen lines are provided. The NLTE method can be useful to refine calcium underabundances in Am stars and to provide accurate observational constraints on the models of diffusion.
Characterizing Circumgalactic Gas around Massive Ellipticals at z ˜ 0.4 I. Initial Results
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.; Pierce, Rebecca M.; Huang, Yun-Hsin; Weiner, Benjamin J.; Gauthier, Jean-René
2018-06-01
We present a new Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) absorption-line survey to study halo gas around 16 luminous red galaxies (LRGs) at z = 0.21 - 0.55. The LRGs are selected uniformly with stellar mass {{M_star}}>10^{11} M_{⊙} and no prior knowledge of the presence/absence of any absorption features. Based on observations of the full Lyman series, we obtain accurate measurements of neutral hydrogen column density N(H I) and find that high-N(H I) gas is common in these massive quiescent halos with a median of ⟨ log N(H I)> = 16.6 at projected distances d<_{˜ }160 kpc. We measure a mean covering fraction of optically-thick gas with log N(H I)>_{˜ }17.2 of < κ > _LLS=0.44^{+0.12}_{-0.11} at d<_{˜ }160 kpc and < κ > _LLS=0.71^{+0.11}_{-0.20} at d<_{˜ }100 kpc. The line-of-sight velocity separations between the H I absorbing gas and LRGs are characterized by a mean and dispersion of ⟨ vgas - gal> = 29 km s-1 and σ _{< v_{gas-gal}> }=171 km s-1. Combining COS FUV and ground-based echelle spectra provides an expanded spectral coverage for multiple ionic transitions, from low-ionization Mg II and Si II, to intermediate ionization Si III and C III, and to high-ionization O VI absorption lines. We find that intermediate ions probed by C III and Si III are the most prominent UV metal lines in LRG halos with a mean covering fraction of < κ (C III)> _{0.1}=0.75^{+0.08}_{-0.13} for Wr(977) ≥ 0.1 Å at d < 160 kpc, comparable to what is seen for C III in L* and sub-L* star-forming and red galaxies but exceeding Mg II or O VI in quiescent halos. The COS-LRG survey shows that massive quiescent halos contain widespread chemically-enriched cool gas and that little distinction between LRG and star-forming halos is found in their H I and C III content.
Photospheric properties and fundamental parameters of M dwarfs
NASA Astrophysics Data System (ADS)
Rajpurohit, A. S.; Allard, F.; Teixeira, G. D. C.; Homeier, D.; Rajpurohit, S.; Mousis, O.
2018-02-01
Context. M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. Aim. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere. Methods: The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-Settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g, and [Fe/H]), respectively. Results: We have determined Teff, log g, and [Fe/H] for 45 M dwarfs using high-resolution H-band spectra. The derived Teff for the sample ranges from 3100 to 3900 K, values of log g lie in the range 4.5 ≤ log g ≤ 5.5, and the resulting metallicities lie in the range ‑0.5 ≤ [Fe/H] ≤ +0.5. We have explored systematic differences between effective temperature and metallicity calibrations with other studies using the same sample of M dwarfs. We have also shown that the stellar parameters determined using the BT-Settl model are more accurate and reliable compared to other comparative studies using alternative models.
NASA Astrophysics Data System (ADS)
Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.
2012-12-01
Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total dissolved, particulate, and total P) has been evident. Incremental impacts of management intervention by salvage logging over wildfire alone were observed for most water quality parameters. Sedimentary geology, glacial history of this region, along with predominance of fine fluvial sediments are likely implicated in both the strong sediment-P coupling and longevity of wildfire impacts observed in this region.
Electron Impact Multiple Ionization Cross Sections for Solar Physics
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.; Mueller, A.
2017-12-01
We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.
NASA Astrophysics Data System (ADS)
Hollett, Joshua W.; Pegoretti, Nicholas
2018-04-01
Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.
Chen, G; Wong, P; Cooks, R G
1997-09-01
Substituted 1,2-diphenylethanes undergo competitive dissociations upon electron ionization (EI) to generate substituted benzyl cation and benzyl radical pairs. Application of the kinetic method to the previous reported EI mass spectra of these covalently bound precursor ions (data are taken from McLafferty et al. J. Am. Chem. Soc. 1970, 92, 6867)) is used to estimate the ionization energies of substituted benzyl free radicals. A correlation is observed between the Hammett σ constant of the substituents and the kinetic method parameter, ln(k(x)/k(H)), where k(x) is the rate of fragmentation to give the substituted product ion and k(H) is the rate to give the benzyl ion itself. Systems involving weakly bound cluster ions, including proton-bound dimers of meta- and para-substituted pyridines and meta- and para-substituted anilines, and electron-bound dimers of meta- and para-substituted nitrobenzenes, also show good correlations between the kinetic method parameter and the Hammett σ constant.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
The accuracy of seminumerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-06-01
We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
How well can we measure supermassive black hole spin?
NASA Astrophysics Data System (ADS)
Bonson, K.; Gallo, L. C.
2016-05-01
Being one of only two fundamental properties black holes possess, the spin of supermassive black holes (SMBHs) is of great interest for understanding accretion processes and galaxy evolution. However, in these early days of spin measurements, consistency and reproducibility of spin constraints have been a challenge. Here, we focus on X-ray spectral modelling of active galactic nuclei (AGN), examining how well we can truly return known reflection parameters such as spin under standard conditions. We have created and fit over 4000 simulated Seyfert 1 spectra each with 375±1k counts. We assess the fits with reflection fraction of R = 1 as well as reflection-dominated AGN with R = 5. We also examine the consequence of permitting fits to search for retrograde spin. In general, we discover that most parameters are overestimated when spectroscopy is restricted to the 2.5-10.0 keV regime and that models are insensitive to inner emissivity index and ionization. When the bandpass is extended out to 70 keV, parameters are more accurately estimated. Repeating the process for R = 5 reduces our ability to measure photon index (˜3 to 8 per cent error and overestimated), but increases precision in all other parameters - most notably ionization, which becomes better constrained (±45 erg cm s^{-1}) for low-ionization parameters (ξ < 200 erg cm s^{-1}). In all cases, we find the spin parameter is only well measured for the most rapidly rotating SMBHs (I.e. a > 0.8 to about ±0.10) and that inner emissivity index is never well constrained. Allowing our model to search for retrograde spin did not improve the results.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.
Reionization of Hydrogen and Helium by Early Stars and Quasars
NASA Astrophysics Data System (ADS)
Wyithe, J. Stuart B.; Loeb, Abraham
2003-04-01
We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.
NASA Astrophysics Data System (ADS)
Boersma, C.; Bregman, J.; Allamandola, L. J.
2016-11-01
Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μm PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction (f I ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μm PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov
Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g.,more » the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f {sub i} ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheva, Genoveva; Oey, M. S.; Jaskot, Anne E.
We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H ii region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. Themore » spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the ≲1 Myr-old, enshrouded SSC Knot A, which has ∼10 times higher ionizing luminosity. Very massive stars (>100 M {sub ⊙}) may be present in this remarkable object. Ionization-parameter mapping indicates that the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. Mrk 71/NGC 2366 does differ from GPs in that it is one to two orders of magnitude less luminous. The presence of this faint GP analog and candidate LyC emitter (LCE) so close to us suggests that LCEs may be numerous and commonplace, and therefore could significantly contribute to the cosmic ionizing budget. Mrk 71/NGC 2366 offers an unprecedentedly detailed look at the viscera of a candidate LCE, and could clarify the mechanisms of LyC escape.« less
The ionizing radiation of Seyfert 2 galactic nuclei
NASA Technical Reports Server (NTRS)
Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.
1993-01-01
We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.
Numerical quasi-linear study of the critical ionization velocity phenomenon
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.
1993-01-01
The critical ionization velocity (CIV) for a neutral barium (Ba) gas cloud moving across the static magnetic field is studied numerically using quasi-linear equations and a parameter range which is typical for the shaped-charge Ba gas release experiments in space. For consistency the charge exchange between the background oxygen ions and neutral atoms and its reverse process, as well as the excitation of the neutral Ba atoms, are included. The numerical results indicate that when the ionization rate due to CIV becomes comparable to the charge exchange rate the energy lost to the ionization and excitation collisions by the superthermal electrons exceeds the energy gain from the waves that are excited by the ion beam. This results in a CIV yield less than the yield by the charge exchange process.
Salazar, Gary; Ognibene, Ted
2013-01-01
We designed and optimized a novel device "target" that directs a CO 2 gas pulse onto a Ti surface where a Cs + beam generates C - from the CO 2 . This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO 2 in the negative mode to measure 14 C/ 12 C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO 2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12 C - produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs + beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.
NASA Astrophysics Data System (ADS)
Lehner, N.; O'Meara, J. M.; Fox, A. J.; Howk, J. C.; Prochaska, J. X.; Burns, V.; Armstrong, A. A.
2014-06-01
We present the first results from our NASA Keck Observatory Database of Ionized Absorbers toward Quasars (KODIAQ) survey which aims to characterize the properties of the highly ionized gas of galaxies and their circumgalactic medium (CGM) at 2 < z < 4. We select absorbers optically thick at the Lyman limit (τLL > 1, log N_{H\\,\\scriptsize{I}} \\textgreater 17.3) as probes of these galaxies and their CGM where both transitions of the O VI doublet have little contamination from the Lyα, β forests. We found 20 absorbers that satisfy these rules: 7 Lyman limit systems (LLSs), 8 super-LLSs (SLLSs) and 5 damped Lyα (DLAs). The O VI detection rate is 100% for the DLAs, 71% for the LLSs, and 63% for the SLLSs. When O VI is detected, log \\langle N_{O\\,\\scriptsize{VI}} \\rangle = 14.9 +/- 0.3, an average O VI column density substantially larger and with a smaller dispersion than found in blind O VI surveys at similar redshifts. Strong O VI absorption is therefore nearly ubiquitous in the CGM of z ~ 2-3 galaxies. The total velocity widths of the O VI profiles are also large (200 \\le \\Delta v_{O\\,\\scriptsize{VI}} \\le 400 km s-1). These properties are quite similar to those seen for O VI in low-z star-forming galaxies, and therefore we hypothesize that these strong CGM O VI absorbers (with τLL > 1) at 2 < z <~ 3.5 also probe outflows of star-forming galaxies. The LLSs and SLLSs with no O VI absorption have properties consistent with those seen in cosmological simulations tracing cold streams feeding galaxies. When the highly ionized (Si IV and O VI) gas is taken into account, we determine that the τLL > 1 absorbers could contain as much as 3%-14% of the cosmic baryon budget at z ~ 2-3, only second to the Lyα forest. We conservatively show that 5%-20% of the metals ever produced at z ~ 2-3 are in form of highly ionized metals ejected in the CGM of galaxies. We dedicate this paper and the KODIAQ project to the memory and families of Wal Sargent and Arthur M. Wolfe. Without the vision and terrific efforts of these two scientists, this survey would not exist. Their careers have greatly inspired and influenced our own, and we hope that their work continues to flourish with this archival data set.
Polar exponential sensor arrays unify iconic and Hough space representation
NASA Technical Reports Server (NTRS)
Weiman, Carl F. R.
1990-01-01
The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, David H.; Young, Peter R.; Warren, Harry P., E-mail: dhbrooks@ssd5.nrl.navy.mil
2011-04-01
With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(T{sub e} /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, andmore » Fe VIII is the main contributor to the AIA 131 A channel at low temperatures. Furthermore, the strong Fe VIII 185.213 A and Si VII 275.368 A lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(T{sub e} /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 A and Si VII 275.368 A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log ({sigma}{sub Te}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission measure magnitude, and thermal distribution in the fans, though sometimes the AIA data suggest a relatively larger thermal width. The result is that both the Fe VIII 185.213 A and Si VII 275.368 A lines are formed at log(T{sub e} /K){approx} 5.9 in the fans, and the AIA 131 A response also shifts to this temperature.« less
NASA Astrophysics Data System (ADS)
Segers, Marijke C.; Oppenheimer, Benjamin D.; Schaye, Joop; Richings, Alexander J.
2017-10-01
We study the effect of a fluctuating active galactic nucleus (AGN) on the abundance of circumgalactic O VI in galaxies selected from the Evolution and Assembly of GaLaxies and their Environments simulations. We follow the time-variable O VI abundance in post-processing around four galaxies - two at z = 0.1 with stellar masses of M* ˜ 1010 M⊙ and M* ˜ 1011 M⊙, and two at z = 3 with similar stellar masses - out to impact parameters of twice their virial radii, implementing a fluctuating central source of ionizing radiation. Due to delayed recombination, the AGN leave significant 'AGN proximity zone fossils' around all four galaxies, where O VI and other metal ions are out of ionization equilibrium for several megayears after the AGN fade. The column density of O VI is typically enhanced by ≈0.3-1.0 dex at impact parameters within 0.3Rvir, and by ≈0.06-0.2 dex at 2Rvir, thereby also enhancing the covering fraction of O VI above a given column density threshold. The fossil effect tends to increase with increasing AGN luminosity, and towards shorter AGN lifetimes and larger AGN duty cycle fractions. In the limit of short AGN lifetimes, the effect converges to that of a continuous AGN with a luminosity of (fduty/100 per cent) times the AGN luminosity. We also find significant fossil effects for other metal ions, where low-ionization state ions are decreased (Si IV, C IV at z = 3) and high-ionization state ions are increased (C IV at z = 0.1, Ne viii, Mg x). Using observationally motivated AGN parameters, we predict AGN proximity zone fossils to be ubiquitous around M* ˜ 1010-11 M⊙ galaxies, and to affect observations of metals in the circumgalactic medium at both low and high redshifts.
NASA Technical Reports Server (NTRS)
Deprince, J.; Fritzsche, S.; Kallman, T. R.; Palmeri, P.; Quinet, P.
2017-01-01
The influence of plasma environment on the atomic parameters associated with the K-vacancy states has been investigated theoretically for several iron ions. To do this, a time-averaged Debye-Huckel potential for both the electron-nucleus and electron-electron interactions has been considered in the framework of relativistic multiconfiguration Dirac-Fock computations. More particularly, the plasma screening effects on ionization potentials, K-thresholds, transition energies, and radiative rates have been estimated in the astrophysical context of accretion disks around black holes. In the present paper, we describe the behavior of those atomic parameters for Ne-, Na-, Ar-, and K-like iron ions.
NASA Astrophysics Data System (ADS)
Deng, Chengxiang; Pan, Heping; Luo, Miao
2017-12-01
The Chinese Continental Scientific Drilling (CCSD) main hole is located in the Sulu ultrahigh-pressure metamorphic (UHPM) belt, providing significant opportunities for studying the metamorphic strata structure, kinetics process and tectonic evolution. Lithology identification is the primary and crucial stage for above geoscientific researches. To release the burden of log analyst and improve the efficiency of lithology interpretation, many algorithms have been developed to automate the process of lithology prediction. While traditional statistical techniques, such as discriminant analysis and K-nearest neighbors classifier, are incompetent in extracting nonlinear features of metamorphic rocks from complex geophysical log data; artificial intelligence algorithms are capable of solving nonlinear problems, but most of the algorithms suffer from tuning parameters to be global optimum to establish model rather than local optimum, and also encounter challenges in making the balance between training accuracy and generalization ability. Optimization methods have been applied extensively in the inversion of reservoir parameters of sedimentary formations using well logs. However, it is difficult to obtain accurate solution from the logging response equations of optimization method because of the strong overlapping of nonstationary log signals when applied in metamorphic formations. As oxide contents of each kinds of metamorphic rocks are relatively less overlapping, this study explores an approach, set in a metamorphic formation model and using the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm to identify lithology from oxide data. We first incorporate 11 geophysical logs and lab-collected geochemical data of 47 core samples to construct oxide profile of CCSD main hole by using backwards stepwise multiple regression method, which eliminates irrelevant input logs step by step for higher statistical significance and accuracy. Then we establish oxide response equations in accordance with the metamorphic formation model and employ BFGS algorithm to minimize the objective function. Finally, we identify lithology according to the composition content which accounts for the largest proportion. The results show that lithology identified by the method of this paper is consistent with core description. Moreover, this method demonstrates the benefits of using oxide content as an adhesive to connect logging data with lithology, can make the metamorphic formation model more understandable and accurate, and avoid selecting complex formation model and building nonlinear logging response equations.
LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
NASA Astrophysics Data System (ADS)
Ospina-Londoño, D. A.; Fulla, M. R.; Marín, J. H.
2013-03-01
In this work it is considered a versatile model to study two different ionization processes starting from a D20 homonuclear hydrogenic molecule confined in double concentric quantum donuts. Very narrow quantum donut circular cross sections are considered to separate the radial and angular variables in the D20 Hamiltonian by using the well-known adiabatic approximation D20 total energy as a function of the inter donor spacing and the outer donut center line radius is calculated. The salient features of an artificial D20 hydrogenic molecule such as the dissociation energy and the equilibrium length are strongly dependent on the quantum donut geometrical parameters. By increasing systematically the quantum donut outer center line radius, it is possible to understand a first ionization process: D20→D2++e-. A second ionization process D20→D-+D+ can be carried out by fixing the first donor position and gradually moving away the second one. The results obtained in this study are in good agreement with those previously obtained in the limiting cases of very large inter donor separation. The model proposed here is computationally economical and provides a realistic description of both ionization processes and the few-particle system confined in double concentric quantum donuts.
Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media
NASA Astrophysics Data System (ADS)
Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger
2005-03-01
In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.
Influence of ionization on the Gupta and on the Park chemical models
NASA Astrophysics Data System (ADS)
Morsa, Luigi; Zuppardi, Gennaro
2014-12-01
This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta; using the Gupta model, in the design of a thermal protection system, is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Hoversten, G.M.
2011-09-15
Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less
Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M
2016-10-01
There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2 and R2NNO2 functional groups in the ABSOLV fragment database. Copyright © 2016. Published by Elsevier Ltd.
Lethal photosensitization of periodontal pathogens by a red-filtered Xenon lamp in vitro.
Matevski, Donco; Weersink, Robert; Tenenbaum, Howard C; Wilson, Brian; Ellen, Richard P; Lépine, Guylaine
2003-08-01
The ability of Helium-Neon (He-Ne) laser irradiation of a photosensitizer to induce localized phototoxic effects that kill periodontal pathogens is well documented and is termed photodynamic therapy (PDT). We investigated the potential of a conventional light source (red-filtered Xenon lamp) to activate toluidine blue O (TBO) in vitro and determined in vitro model parameters that may be used in future in vivo trials. Porphyromonas gingivalis 381 was used as the primary test bacterium. Treatment with a 2.2 J/cm2 light dose and 50 micro g/ml TBO concentration resulted in a bacterial kill of 2.43 +/- 0.39 logs with the He-Ne laser control and 3.34 +/- 0.24 logs with the lamp, a near 10-fold increase (p = 0.028). Increases in light intensity produced significantly higher killing (p = 0.012) that plateaued at 25 mW/cm2. There was a linear relationship between light dose and bacterial killing (r2 = 0.916); as light dose was increased bacterial survival decreased. No such relationship was found for the drug concentrations tested. Addition of serum or blood at 50% v/v to the P. gingivalis suspension prior to irradiation diminished killing from approximately 5 logs to 3 logs at 10 J/cm2. When serum was washed off, killing returned to 5 logs for all species tested except Bacteroides forsythus (3.92 +/- 0.68 logs kill). The data indicate that PDT utilizing a conventional light source is at least as effective as laser-induced treatment in vitro. Furthermore, PDT achieves significant bactericidal activity in the presence of serum and blood when used with the set parameters of 10 J/cm2, 100 mW/cm2 and 12.5 micro g/ml TBO.
The mathematical formulation of a generalized Hooke's law for blood vessels.
Zhang, Wei; Wang, Chong; Kassab, Ghassan S
2007-08-01
It is well known that the stress-strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic-exponential (log-exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola-Kirchhoff stresses by differentiating the potential with respect to the log-exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log-exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log-exp strains. In this paper, the proposed linear stress-strain relation is shown to represent the pseudoelastic Fung model very well.
Is skin penetration a determining factor in skin sensitization ...
Summary:Background. It is widely accepted that substances that cannot penetrate through the skin will not be sensitisers. Thresholds based on relevant physicochemical parameters such as a LogKow > 1 and a MW 1 is a true requirement for sensitisation.Methods. A large dataset of substances that had been evaluated for their skin sensitisation potential, together with measured LogKow values was compiled from the REACH database. The incidence of skin sensitisers relative to non-skin sensitisers below and above the LogKow = 1 threshold was evaluated. Results. 1482 substances with associated skin sensitisation outcomes and measured LogKow values were identified. 305 substances had a measured LogKow < 0 and of those, 38 were sensitisers.Conclusions. There was no significant difference in the incidence of skin sensitisation above and below the LogKow = 1 threshold. Reaction chemistry considerations could explain the skin sensitisation observed for the 38 sensitisers with a LogKow < 0. The LogKow threshold is a self-evident truth borne out from the widespread misconception that the ability to efficiently penetrate the stratum corneum is a key determinant of skin sensitisation potential and potency. Using the REACH data extracted to test out the validity of common assumptions in the skin sensitization AOP. Builds on trying to develop a proof of concept IATA
Collett, T.S.
1999-01-01
The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.
Interference substructure of above-threshold ionization peaks in the stabilization regime
NASA Astrophysics Data System (ADS)
Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi
2008-09-01
The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.
2017-12-01
Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Niemczura, E.; Polińska, M.; Hełminiak, K. G.; Lampens, P.; Molenda-Żakowicz, J.; Ukita, N.; Kambe, E.
2017-10-01
δ Scuti stars are remarkable objects for asteroseismology. In spite of decades of investigations, there are still important questions about these pulsating stars to be answered, such as their positions in log Teff-log g diagram, or the dependence of the pulsation modes on atmospheric parameters and rotation. Therefore, we performed a detailed spectroscopic study of 41 δ Scuti stars. The selected objects are located near the γ Doradus instability strip to make a reliable comparison between both types of variables. Spectral classification, stellar atmospheric parameters (Teff, log g, ξ) and v sin I values were determined. The spectral types and luminosity classes of stars were found to be A1-F5 and III-V, respectively. The Teff ranges from 6600 to 9400 K, whereas the obtained log g values are from 3.4 to 4.3. The v sin I values were found between 10 and 222 km s-1. The derived chemical abundances of δ Scuti stars were compared to those of the non-pulsating stars and γ Doradus variables. It turned out that both δ Scuti and γ Doradus variables have similar abundance patterns, which are slightly different from the non-pulsating stars. These chemical differences can help us to understand why there are non-pulsating stars in classical instability strip. Effects of the obtained parameters on pulsation period and amplitude were examined. It appears that the pulsation period decreases with increasing Teff. No significant correlations were found between pulsation period, amplitude and v sin I.
INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.
Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein
2018-02-01
The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Physically based Model of the Ionizing Radiation from Active Galaxies for Photoionization Modeling
NASA Astrophysics Data System (ADS)
Thomas, A. D.; Groves, B. A.; Sutherland, R. S.; Dopita, M. A.; Kewley, L. J.; Jin, C.
2016-12-01
We present a simplified model of active galactic nucleus (AGN) continuum emission designed for photoionization modeling. The new model oxaf reproduces the diversity of spectral shapes that arise in physically based models. We identify and explain degeneracies in the effects of AGN parameters on model spectral shapes, with a focus on the complete degeneracy between the black hole mass and AGN luminosity. Our reparametrized model oxaf removes these degeneracies and accepts three parameters that directly describe the output spectral shape: the energy of the peak of the accretion disk emission {E}{peak}, the photon power-law index of the non-thermal emission Γ, and the proportion of the total flux that is emitted in the non-thermal component {p}{NT}. The parameter {E}{peak} is presented as a function of the black hole mass, AGN luminosity, and “coronal radius” of the optxagnf model upon which oxaf is based. We show that the soft X-ray excess does not significantly affect photoionization modeling predictions of strong emission lines in Seyfert narrow-line regions. Despite its simplicity, oxaf accounts for opacity effects where the accretion disk is ionized because it inherits the “color correction” of optxagnf. We use a grid of mappings photoionization models with oxaf ionizing spectra to demonstrate how predicted emission-line ratios on standard optical diagnostic diagrams are sensitive to each of the three oxaf parameters. The oxaf code is publicly available in the Astrophysics Source Code Library.
Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J
2007-01-01
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.
Log-amplitude variance and wave structure function: A new perspective for Gaussian beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W.B.; Ricklin, J.C.; Andrews, L.C.
1993-04-01
Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.
2017-12-01
Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).
Detection of lower tropospheric responses to solar energetic particles at midlatitudes.
Nicoll, K A; Harrison, R G
2014-06-06
Solar energetic particles (SEPs) occasionally contribute additional atmospheric ionization beyond that arising from the usual galactic cosmic ray background. During an SEP event associated with a solar flare on April 11, 2013, the vertical ionization rate profile obtained using a balloon-borne detector showed enhanced ionization with a 26% increase at 20 km, over Reading, United Kingdom. Fluctuations in atmospheric electrical parameters were also detected at the surface, beneath the balloon's trajectory. As no coincident changes in geomagnetism occurred, the electrical fluctuations are very likely to be associated with increased ionization, as observed by the balloon measurements. The lack of response of surface neutron monitors during this event indicates that energetic particles that are not detected at the surface by neutron monitors can nevertheless enter and influence the atmosphere's weather-generating regions.
Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.
2018-05-01
The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.
Chandra imaging of the kpc extended outflow in 1H 0419-577
NASA Astrophysics Data System (ADS)
Di Gesu, L.; Costantini, E.; Piconcelli, E.; Kaastra, J. S.; Mehdipour, M.; Paltani, S.
2017-12-01
The Seyfert 1 galaxy 1H 0419-577 hosts a kpc extended outflow that is evident in the [O III] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a 30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least 16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [O III] outflow. Our spectral analysis indicates that one of the possible explanations for the extended emission is thermal emission from a low-density (nH 10-3 cm-3) hot plasma (Te 0.22 keV). If this is the case, we may be witnessing the cooling of a shock-heated wind bubble. In this scenario, the [O III] emission line and the X-ray/UV absorption lines may trace cooler clumps that are entrained in the hot outflow. Alternatively, the extended emission could be to due to a blend of emission lines from a photoionized gas component having a hydrogen column density of NH 2.1 × 1022 cm-2 and an ionization parameter of log ξ 1.3. Because the source is viewed almost edge-on we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.
2017-01-01
Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384
NASA Technical Reports Server (NTRS)
Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.
2013-01-01
We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.
NASA Technical Reports Server (NTRS)
Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.
2013-01-01
We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.
NASA Astrophysics Data System (ADS)
Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki
2018-02-01
We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.
NASA Astrophysics Data System (ADS)
Chung, Kee-Choo; Park, Hwangseo
2016-11-01
The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (Δ G sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because Δ G sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient ( R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for Δ G sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental Δ G sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental Δ G sol data for organic solvents.
NASA Technical Reports Server (NTRS)
Ly, Chun; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Hayashi, Masao
2013-01-01
Using deep narrow-band (NB) imaging and optical spectroscopy from the Keck telescope and the Multi Mirror Telescope (MMT), we identify a sample of 20 emission-line galaxies (ELGs) at z = 0.065-0.90 where the weak auroral emission line, [O iii] lambda4363, is detected at >=3sigma. These detections allow us to determine the gas-phase metallicity using the "direct" method. With electron temperature measurements, and dust attenuation corrections from Balmer decrements, we find that 4 of these low-mass galaxies are extremely metal-poor with 12+log(O/H) <= 7.65 or one-tenth solar. Our most metal-deficient galaxy has 12+log(O/H)= 7.24(+0.45 / -0.30) (95% confidence), similar to some of the lowest metallicity galaxies identified in the local universe. We find that our galaxies are all undergoing significant star formation with average specific star formation rate (SFR) of (100 Myra)(exp -1), and that they have high central SFR surface densities (average of 0.5 Solar M / yr/ sq. kpc). In addition, more than two-thirds of our galaxies have between one and four nearby companions within a projected radius of 100 kpc, which we find is an excess among star-forming galaxies at z =0.4 -- 0.85. We also find that the gas-phase metallicities for a given stellar mass and SFR lie systematically lower than the local stellar M-Z-(SFR) relation by approx. = 0.2 dex (2 sigma significance). These results are partly due to selection effects, since galaxies with strong star formation and low metallicity are more likely to yield [O iii] lambda4363 detections. Finally, the observed higher ionization parameter and high electron density suggest that they are lower redshift analogs to typical z approx. > 1 galaxies.
Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop
NASA Astrophysics Data System (ADS)
Archuleta, Ralph J.; Ji, Chen
2016-12-01
We have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA-West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays f- 1. Significant attenuation along the raypath results in a Brune-like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non-self-similar scaling M0∝fC3.3 and weak stress drop scaling Δσ∝M00.091. This aMRF can explain why stress drop is different from the stress parameter used to predict high-frequency ground motion.
Biological activity of aldose reductase and lipophilicity of pyrrolyl-acetic acid derivatives
NASA Astrophysics Data System (ADS)
Kumari, A.; Kumari, R.; Kumar, R.; Gupta, M.
2011-12-01
Quantitative Structure-Activity Relationship modeling is a powerful approach for correlating an organic compound to its lipophilicity. In this paper QSAR models are established for estimation of correlation of the lipophilicity of a series of pyrrolyl-acetic acid derivatives, inhibitors of the aldose reductase enzyme, in the n-octanol-water system with biological activity of aldose reductase. Lipophilicity, expressed by the logarithm of n-octnol-water partition coefficient log P and biological activity of aldose reductase inhibitory activity by log it. Result obtained by QSAR modeling of compound series reveal a definite trend in biological activity and a further improvement in quantitative relationships are established if, beside log P, Hammett electronic constant σ and connectivity index chi-3 (3 χ) term included in the regression equation. The tri-parametric model with log P, 3 χ and σ as correlating parameters have been found to be the best which gives a variance of 87% ( R 2 = 0.8743). A compound has been found to be serious outlier and when the same has been excluded the model explains about 94% variance of the data set ( R 2 = 0.9447). The topological index (3 χ) has been found to be a good parameter for modeling the biological activity.
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul
2018-04-01
We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.
NASA Astrophysics Data System (ADS)
Engel, Thierry; Kane, M.; Fontaine, Joel
1997-08-01
During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.
NASA Astrophysics Data System (ADS)
Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo
2016-12-01
We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.
A Massive X-ray Outflow From The Quasar PDS 456
NASA Technical Reports Server (NTRS)
Reeves, J. N.; O'Brien, P. T.; Ward, M. J.
2003-01-01
We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.
NASA Astrophysics Data System (ADS)
Sommers, Christopher H.; Boyd, Glenn
2006-07-01
Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other "heat and eat" multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a "frankfurter on a roll", a "beef cheeseburger on a bun" and a "vegetarian cheeseburger on a bun" was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 10 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat" sandwich products.
NASA Astrophysics Data System (ADS)
Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.
2017-08-01
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.
A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151
NASA Astrophysics Data System (ADS)
Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.
2017-10-01
We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.
Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms.
Karlsson, Maja V; Marshall, Stuart; Gouin, Todd; Boxall, Alistair B A
2016-04-01
The present study investigated the route and degree of uptake of 2 ionizable pharmaceuticals (diclofenac and fluoxetine) and 1 ionizable compound used in personal care products (triclosan) into the sediment-dwelling worm Lumbriculus variegatus. Studies were done on complete worms ("feeding") and worms where the head was absent ("nonfeeding") using (14) C-labeled ingredients. Biota sediment accumulation factors (BSAF), based on uptake of (14) C, for feeding worms increased in the order fluoxetine (0.3) < diclofenac (0.5) < triclosan (9), which is correlated with a corresponding increase in log octanol-water partition coefficient. Biota sediment accumulation factor estimates are representative of maximum values because the degree of biotransformation in the worms was not quantified. Although no significant differences were seen between the uptake of diclofenac and that of fluoxetine in feeding and nonfeeding worms, uptake of the more hydrophobic antimicrobial, triclosan, into the feeding worms was significantly greater than that in the nonfeeding worms, with the 48-h BSAF for feeding worms being 36% higher than that for the nonfeeding worms. The results imply that dietary uptake contributes to the uptake of triclosan, which may be a result of the high hydrophobicity of the compound. Models that estimate exposure of ionizable substances may need to consider uptake from both the water column and food, particularly when assessing risks from dynamic exposures to organic contaminants. © 2015 SETAC.
A method to describe inelastic gamma field distribution in neutron gamma density logging.
Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang
2017-11-01
Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dobiásová, M; Frohlich, J
2001-10-01
To evaluate if logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (Log[TG/HDL-C]) correlates with cholesterol esterification rates in apoB-lipoprotein-depleted plasma (FER(HDL)) and lipoprotein particle size. We analyzed previous data dealing with the parameters related to the FER(HDL) (an indirect measure of lipoprotein particle size). In a total of 1433 subjects from 35 cohorts with various risk of atherosclerosis (cord plasma, children, healthy men and women, pre- and postmenopausal women, patients with hypertension, type 2 diabetes, dyslipidemia and patients with positive or negative angiography findings) were studied. The analysis revealed a strong positive correlation (r = 0.803) between FER(HDL) and Log(TG/HDL-C). This parameter, which we propose to call "atherogenic index of plasma" (AIP) directly related to the risk of atherosclerosis in the above cohorts. We also confirmed in a cohort of 35 normal subjects a significant inverse correlation of LDL size with FER(HDL) (r = -0.818) and AIP (r = -0.776). Values of AIP correspond closely to those of FER(HDL) and to lipoprotein particle size and thus could be used as a marker of plasma atherogenicity.
NASA Astrophysics Data System (ADS)
Cairós, L. M.; González-Pérez, J. N.
2017-12-01
Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions: The morphology of the galaxy and the two different episodes of SF suggest a scenario of triggered (induced by supernova shock waves) SF acting in Tololo 1937-423. The inferred ages for the different SF episodes ( 13-80 Myr for the central post-starburst and 5-7 Myr for the ongoing SF) are consistent with triggered SF, with the most recent SF episode caused by the collective effect of stellar winds and supernova explosions from the central post-starburst. The velocity dispersion pattern, with higher velocity dispersions found at the edges of the SF regions, and shocked regions in the galaxy, also favor this scenario. Based on observations made with ESO Telescopes at Paranal Observatory under programme ID 079.B-0445.
Tracing the Cosmic Metal Evolution in the Low-redshift Intergalactic Medium
NASA Astrophysics Data System (ADS)
Shull, J. Michael; Danforth, Charles W.; Tilton, Evan M.
2014-11-01
Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z <= 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ~10 from z ≈ 5.5 to the present. We derive ion mass densities, ρion ≡ Ωionρcr, with Ωion expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) = 0.67+0.35-0.19, (C III/C IV) = 0.70+0.43-0.20, and (Ω C \\scriptsize{III} + Ω C \\scriptsize{IV}) / (Ω _Si \\scriptsize{III} + Ω _Si \\scriptsize{IV}) = 4.9+2.2-1.1, are consistent with the photoionization parameter log U = -1.5 ± 0.4, hydrogen photoionization rate ΓH = (8 ± 2) × 10-14 s-1 at z < 0.4, and specific intensity I 0 = (3 ± 1) × 10-23 erg cm-2 s-1 Hz-1 sr-1 at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ0 = 104 cm-2 s-1, baryon overdensity Δ b ≈ 200 ± 50, and "alpha-enhancement" (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 105 M ⊙ Mpc-3 in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 105 M ⊙ Mpc-3 in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ Z = (1.5 ± 0.8) × 106 M ⊙ Mpc-3 or Ω Z ≈ 10-5. This represents 10% ± 5% of the metals produced by (6 ± 2) × 108 M ⊙ Mpc-3 of integrated star formation with yield ym = 0.025 ± 0.010. The missing metals at low redshift may reside within galaxies and in undetected ionized gas in galactic halos and circumgalactic medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS5-26555.
Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John
2013-01-01
Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.
NASA Astrophysics Data System (ADS)
Shivaei, Irene; Reddy, Naveen A.; Siana, Brian; Shapley, Alice E.; Kriek, Mariska; Mobasher, Bahram; Freeman, William R.; Sanders, Ryan L.; Coil, Alison L.; Price, Sedona H.; Fetherolf, Tara; Azadi, Mojegan; Leung, Gene; Zick, Tom
2018-03-01
We combine Hα and Hβ spectroscopic measurements and UV photometry for a sample of 673 galaxies from the MOSDEF survey to constrain hydrogen-ionizing photon production efficiencies ({ξ }ion}) at z = 1.4–2.6. We find < {log}({ξ }ion}/[{{{s}}}-1/{erg} {{{s}}}-1 {Hz}}-1])> = 25.06 (25.34), assuming the Calzetti (SMC) curve for the UV dust correction and a scatter of 0.28 dex in the {ξ }ion} distribution. After accounting for observational uncertainties and variations in dust attenuation, we conclude that the remaining scatter in {ξ }ion} is likely dominated by galaxy-to-galaxy variations in stellar populations, including the slope and upper-mass cutoff of the initial mass function, stellar metallicity, star formation burstiness, and stellar evolution (e.g., single/binary star evolution). Moreover, {ξ }ion} is elevated in galaxies with high ionization states (high [O III]/[O II]) and low oxygen abundances (low [N II]/Hα and high [O III]/Hβ) in the ionized ISM. However, {ξ }ion} does not correlate with the offset from the z ∼ 0 star-forming locus in the BPT diagram, suggesting no change in the hardness of the ionizing radiation accompanying the offset from the z ∼ 0 sequence. We also find that galaxies with blue UV spectral slopes (< β > =-2.1) have {ξ }ion} elevated by a factor of ∼2 relative to the average {ξ }ion} of the sample (< β > =-1.4). If these blue galaxies are similar to those at z > 6, our results suggest that a lower Lyman-continuum escape fraction is required for galaxies to maintain reionization, compared to the canonical {ξ }ion} predictions from stellar population models. Furthermore, we demonstrate that even with robustly dust-corrected Hα, the UV dust attenuation can cause on average a ∼0.3 dex systematic uncertainty in {ξ }ion} calculations.
NASA Astrophysics Data System (ADS)
Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.
2015-02-01
In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
NASA Astrophysics Data System (ADS)
Jiang, Siyuan; Kececioglu, Dimitri
1992-06-01
A new algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of maximum likelihood estimate (MLE) through the expectation and maximization (EM) algorithm, and it is derived for both postmortem and nonpostmortem time-to-failure data. It is concluded that the concept of the EM algorithm is easy to understand and apply (only elementary statistics and calculus are required). The log-likelihood function cannot decrease after an EM sequence; this important feature was observed in all of the numerical calculations. The MLEs of the nonpostmortem data were obtained successfully for mixed-Weibull distributions with up to 14 parameters in a 5-subpopulation, mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore, the algorithm should start at several initial guesses of the parameter set.
Energy dependence of effective electron mass and laser-induced ionization of wide band-gap solids
NASA Astrophysics Data System (ADS)
Gruzdev, V. E.
2008-10-01
Most of the traditional theoretical models of laser-induced ionization were developed under the assumption of constant effective electron mass or weak dependence of the effective mass on electron energy. Those assumptions exclude from consideration all the effects resulting from significant increase of the effective mass with increasing of electron energy in real the conduction band. Promotion of electrons to the states with high effective mass can be done either via laserinduced electron oscillations or via electron-particle collisions. Increase of the effective mass during laser-material interactions can result in specific regimes of ionization. Performing a simple qualitative analysis by comparison of the constant-mass approximation vs realistic dependences of the effective mass on electron energy, we demonstrate that the traditional ionization models provide reliable estimation of the ionization rate in a very limited domain of laser intensity and wavelength. By taking into account increase of the effective mass with electron energy, we demonstrate that special regimes of high-intensity photo-ionization are possible depending on laser and material parameters. Qualitative analysis of the energy dependence of the effective mass also leads to conclusion that the avalanche ionization can be stopped by the effect of electron trapping in the states with large values of the effective mass.
A Bayesian Surrogate for Regional Skew in Flood Frequency Analysis
NASA Astrophysics Data System (ADS)
Kuczera, George
1983-06-01
The problem of how to best utilize site and regional flood data to infer the shape parameter of a flood distribution is considered. One approach to this problem is given in Bulletin 17B of the U.S. Water Resources Council (1981) for the log-Pearson distribution. Here a lesser known distribution is considered, namely, the power normal which fits flood data as well as the log-Pearson and has a shape parameter denoted by λ derived from a Box-Cox power transformation. The problem of regionalizing λ is considered from an empirical Bayes perspective where site and regional flood data are used to infer λ. The distortive effects of spatial correlation and heterogeneity of site sampling variance of λ are explicitly studied with spatial correlation being found to be of secondary importance. The end product of this analysis is the posterior distribution of the power normal parameters expressing, in probabilistic terms, what is known about the parameters given site flood data and regional information on λ. This distribution can be used to provide the designer with several types of information. The posterior distribution of the T-year flood is derived. The effect of nonlinearity in λ on inference is illustrated. Because uncertainty in λ is explicitly allowed for, the understatement in confidence limits due to fixing λ (analogous to fixing log skew) is avoided. Finally, it is shown how to obtain the marginal flood distribution which can be used to select a design flood with specified exceedance probability.
Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.
Timmer, Niels; Droge, Steven T J
2017-03-07
This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D MW,PBS ) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D MW values above 4. Renewal of the medium resulted in linear sorption isotherms. D MW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D MW,PBS . Log D MW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D MW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.
NASA Technical Reports Server (NTRS)
Fan, Xiao-Ming; Tytler, David
1994-01-01
We present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar abundances. We see C II*(lambda 1335) offset by 15 km/sec with respect to C II(lambda 1334), presumably because the gas density varies from 2 to 8 cm(exp -3) with changing velocity in the DLA system. These densities imply that the damped component is 6-25 pc thick, which is reasonable for a single cloud in a cold spiral disk. They also imply that the cloud is relatively highly ionized with more C III than C II, more O III than O I, and log N(H I) = 20.72, which is 3 times the H I column. The system at z(abs) = 1.7382 is also believed to be damped with N(H I) approximately equals 10(exp 21) cm(exp -2), because we see Cr II, but its Ly alpha line will never be seen because it is below the Lyman limit of the other DLA system. We see a 2.6 sigma lack of Ly alpha forest lines well away from the QSO redshift, which may be a chance fluctuation. We also see a correlation between column density N(H I) and Doppler parameter b for 96 unsaturated Ly Alpha forest absorption lines, and although this correlation persists in the 36 Ly alpha lines which lie in regions where the SNR approximately equals 8-16, we agree with Rauch et al. (1993) that it is probably a bogus effect of low supernova remnant (SNR). The same applies to lines with very low b values: in regions where SNR less than or equal to 8 we see many Ly alpha lines which appear to have 10 less than or equal to b less than or equal to 20, but when 8 less than or equal to SNR less than or equal to 16 we see only one line with b less than or equal to 15 km/sec, and two others which we believe have b less than or equal to 20, with values of 20 and 16 km/sec. Traditional Ly alpha line samples which include all lines which have W/sigma(W) greater than or equal to 4 are not adequate to explore the distribution of the properties of individual clouds, because we need much higher (W/sigma(W)) and SNR to avoid the strong biases.
A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM
NASA Astrophysics Data System (ADS)
Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui
2014-12-01
Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.
Probability distribution functions for unit hydrographs with optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh
2017-05-01
A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.
The Alpha Centauri binary system. Atmospheric parameters and element abundances
NASA Astrophysics Data System (ADS)
Porto de Mello, G. F.; Lyra, W.; Keller, G. R.
2008-09-01
Context: The α Centauri binary system, owing to its duplicity, proximity and brightness, and its components' likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. Aims: We report a new spectroscopic analysis of both components of the α Centauri system, compare published analyses of the system, and attempt to quantify the discrepancies still extant in the determinations of the atmospheric parameters and abundances of these stars. Methods: The analysis is differential with respect to the Sun, based on spectra with R = 35 000 and signal-to-noise ratio ≥1000, and employed spectroscopic and photometric methods to obtain as many independent T_eff determinations as possible. We also check the atmospheric parameters for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. Results: The spectroscopic atmospheric parameters of the system are found to be T_eff = (5847 ± 27) K, [Fe/H] = +0.24 ± 0.03, log g = 4.34 ± 0.12, and ξt = 1.46 ± 0.03 km s-1, for α Cen A, and T_eff = (5316 ± 28) K, [Fe/H] = +0.25 ± 0.04, log g = 4.44 ± 0.15, and ξt = 1.28 ± 0.15 km s^-1 for α Cen B. The parameters were derived from the simultaneous excitation & ionization equilibria of Fe I and Fe II lines. T_effs were also obtained by fitting theoretical profiles to the Hα line and from photometric calibrations. Conclusions: We reached good agreement between the three criteria for α Cen A. For α Cen B the spectroscopic T_eff is ~140 K higher than the other two determinations. We discuss possible origins of this inconsistency, concluding that the presence of non-local thermodynamic equilibrium effects is a probable candidate, but we note that there is as yet no consensus on the existence and cause of an offset between the spectroscopic and photometric T_eff scales of cool dwarfs. The spectroscopic surface gravities also agree with those derived from directly measured masses and radii. An average of three independent T_eff criteria leads to T_eff (A) = (5824 ± 26) K and T_eff (B) = (5223 ± 62) K. The abundances of Na, Mg, Si, Mn, Co, and Ni and, possibly, Cu are significantly enriched in the system, which also seems to be deficient in Y and Ba. This abundance pattern can be deemed normal in the context of recent data on metal-rich stars. The position of α Cen A in an up-to-date theoretical evolutionary diagram yields a good match of the evolutionary mass and age (in the 4.5 to 5.3 Gyr range) with those from the dynamical solution and seismology, but only marginal agreement for α Cen B, taking into account its more uncertain T_eff. Based on observations collected at Observatório do Pico dos Dias (OPD), operated by the Laboratório Nacional de Astrofísica, CNPq, Brazil. Table 2 is only available in electronic form at http://www.aanda.org
On star formation in stellar systems. I - Photoionization effects in protoglobular clusters
NASA Technical Reports Server (NTRS)
Tenorio-Tagle, G.; Bodenheimer, P.; Lin, D. N. C.; Noriega-Crespo, A.
1986-01-01
The progressive ionization and subsequent dynamical evolution of nonhomogeneously distributed low-metal-abundance diffuse gas after star formation in globular clusters are investigated analytically, taking the gravitational acceleration due to the stars into account. The basic equations are derived; the underlying assumptions, input parameters, and solution methods are explained; and numerical results for three standard cases (ionization during star formation, ionization during expansion, and evolution resulting in a stable H II region at its equilibrium Stromgren radius) are presented in graphs and characterized in detail. The time scale of residual-gas loss in typical clusters is found to be about the same as the lifetime of a massive star on the main sequence.
NASA Technical Reports Server (NTRS)
Kallman, T.
2010-01-01
Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.
NASA Astrophysics Data System (ADS)
Zaghloul, Mofreh R.
2018-03-01
We present estimates of the critical properties, thermodynamic functions, and principal shock Hugoniot of hot dense aluminum fluid as predicted from a chemical model for the equation-of-state of hot dense, partially ionized and partially degenerate plasma. The essential features of strongly coupled plasma of metal vapors, such as multiple ionization, Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion are taken into consideration. Internal partition functions of neutral, excited, and multiply ionized species are carefully evaluated in a statistical-mechanically consistent way. Results predicted from the present model are presented, analyzed and compared with available experimental measurements and other theoretical predictions in the literature.
Orbital-resolved nonadiabatic tunneling ionization
NASA Astrophysics Data System (ADS)
Zhang, Qingbin; Basnayake, Gihan; Winney, Alexander; Lin, Yun Fei; Debrah, Duke; Lee, Suk Kyoung; Li, Wen
2017-08-01
In this theoretical work, we show that both the orbital helicity (p+ vs p-) and the adiabaticity of tunneling have a significant effect on the initial conditions of tunneling ionization. We developed a hybrid quantum (numerical solution of the time-dependent Schrödinger equation) and classical (back propagation of trajectories) approach to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical insight connecting these initial conditions with the final momentum and deflection angles of electrons are presented. Moreover, the adiabaticity of tunneling ionization is characterized by comparing the initial conditions with those with a static field. Significant nonadiabatic tunneling is found to persist beyond a Keldysh parameter of less than 0.5.
Empirical Observations on the Sensitivity of Hot Cathode Ionization Type Vacuum Gages
NASA Technical Reports Server (NTRS)
Summers, R. L.
1969-01-01
A study of empirical methods of predicting tile relative sensitivities of hot cathode ionization gages is presented. Using previously published gage sensitivities, several rules for predicting relative sensitivity are tested. The relative sensitivity to different gases is shown to be invariant with gage type, in the linear range of gage operation. The total ionization cross section, molecular and molar polarizability, and refractive index are demonstrated to be useful parameters for predicting relative gage sensitivity. Using data from the literature, the probable error of predictions of relative gage sensitivity based on these molecular properties is found to be about 10 percent. A comprehensive table of predicted relative sensitivities, based on empirical methods, is presented.
SU-F-T-177: Impacts of Gantry Angle Dependent Scanning Beam Properties for Proton Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Clasie, B; Lu, H
Purpose: In pencil beam scanning (PBS), the delivered spot MU, position and size are slightly different at different gantry angles. We investigated the level of delivery uncertainty at different gantry angles through a log file analysis. Methods: 34 PBS fields covering full 360 degrees gantry angle spread were collected retrospectively from 28 patients treated at our institution. All fields were delivered at zero gantry angle and the prescribed gantry angle, and measured at isocenter with the MatriXX 2D array detector at the prescribed gantry angle. The machine log files were analyzed to extract the delivered MU per spot and themore » beam position from the strip ionization chambers in the treatment nozzle. The beam size was separately measured as a function of gantry angle and beam energy. Using this information, the dose was calculated in a water phantom at both gantry angles and compared to the measurement using the 3D γ-index at 2mm/2%. Results: The spot-by-spot difference between the beam position in the log files from the delivery at the two gantry angles has a mean of 0.3 and 0.4 mm and a standard deviation of 0.6 and 0.7 mm for × and y directions, respectively. Similarly, the spot-by-spot difference between the MU in the log files from the delivery at the two gantry angles has a mean 0.01% and a standard deviation of 0.7%. These small deviations lead to an excellent agreement in dose calculations with an average γ pass rate for all fields being approximately 99.7%. When each calculation is compared to the measurement, a high correlation in γ was also found. Conclusion: Using machine logs files, we verified that PBS beam delivery at different gantry angles are sufficiently small and the planned spot position and MU. This study brings us one step closer to simplifying our patient-specific QA.« less
On the Nature of SEM Estimates of ARMA Parameters.
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2002-01-01
Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…
Rapid ionization of the environment of SN 1987A
NASA Technical Reports Server (NTRS)
Raga, A. C.
1987-01-01
It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization
NASA Astrophysics Data System (ADS)
Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung
2017-10-01
Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.
A complex Lyman limit system at z=1.9 towards HS 1103+6416
NASA Astrophysics Data System (ADS)
Köhler, S.; Reimers, D.; Tytler, D.; Hagen, H.-J.; Barlow, T.; Burles, S.
1999-02-01
We analyse absorption lines in optical and ultraviolet spectra of the bright (V=15.8, z=2.19) QSO HS 1103+6416. High-resolution (FWHM =8 km s(-1) ) optical spectra have been obtained with the Keck 10 m telescope in the range from 3180 to 5780 Angstroms. Ultraviolet observations in the range from 1150 to 3280 Angstroms were performed with the FOS and the GHRS onboard the Hubble Space Telescope (HST). In this paper we concentrate our discussion on a complex Lyman limit system (LLS) at z=1.89. Absorption lines by carbon, silicon and aluminum in the optical spectra reveal a complex velocity structure with at least 11 components spanning a velocity range of 200 km s(-1) . From the Lyman limit in the ultraviolet spectra we derive a total neutral hydrogen column density of log N(H i) =17.46 cm(-2) . Column densities of heavy elements in the individual components were derived by Voigt profile fitting. The eleven components can be subdivided roughly into three groups: Components 2, 3 and 6 with radial velocities v = -129... -95 km s(-1) with low ionization (L), components 4, 5, 7, 8 (v = -75... +2) with intermediate ionization (I), and components 1, 9, 10, 11 (v = -129, +34... +57) with high ionization (H). In order to study the ionization and abundances in these systems we compare the observed column densities with photoionization models. The observed absorption in the optical data can be explained by individual clouds with slightly varying metal abundances photoionized by slightly different radiation fields. Highly ionized components favour the extragalactic radiation field as calculated by Haardt & Madau (\\cite{Haardt96}) while the components of low and intermediate ionization are better reproduced with a harder ionizing radiation field. Obviously local sources like stars can therefore be excluded as the main ionizing sources. Observational parameters for HST spectra of HS 1103+6416. <~bel{obs} Detector/Grating Exposure time Resolution Observed range Date Offset S/N_{subs{max}} [s] FWHM [Angstroms] [Angstroms] [Angstroms] AMBER/G270H 5336 2 2223-3277 Oct 31 1995 0.5 46 AMBER/G190H 8628 1.44 1572-2311 Oct 31 1995 1.24 21 DET1/G140L 17408 0.77 1415-1700 Jul 9 1996 0.66 8 DET1/G140L 22739 0.77 1150-1436 Jul 9 1996 0.66 12 Abundances in components L and I appear to be slightly different from those in the high ionization component H. In L and I we find roughly [C/H] = -0.9 while H has [C/H] = -1.2, consistent with the expectation that in a galaxy or groups of galaxies the abundances in the higher ionized `Halo' component are lower. The relative element abundances are also different. While in components L and I [Si/C] ~ 0.2, barely significant, and [S/C] and [O/C] ~ 0 within the uncertainties, component H shows [Si/C] = 0.5 and in addition [O/C] and [S/C] = 0.4 (both from HST spectra). [Al/C] measurable only in L and I is always ~ 0. The tendency of enhanced alpha element (O, Si, S) abundances at low C abundance is consistent with what is known from nucleosynthesis theory (SNII dominant at the beginning of galactic evolution), from metal deficient stars in our galaxy and from QSO absorption line systems. If all components were ionized by the same radiation field the relative overabundances of O and S in the highly ionized components would be even larger. We show that HS 1103+6416 will offer in the future for the first time the possibility to measure the cosmic He abundance at high redshift. Detailed calculations of He i absorption using the multicomponent model which explains the metal lines shows consistency with the observed first seven series members of the He i 584, 537, 522 Angstroms ... series for a helium abundance Y=0.24, the expected cosmic He abundance from Big Bang nucleosynthesis modified by stellar nucleosynthesis at ~ 1/10 solar metallicity. The presence of O i and possibly O vi absorption cannot be explained by our photoionization models and might hint at the existence of additional mainly neutral components with relatively low H i column density and further ionization mechanisms like, e.g., collisional ionization. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Aura, Inc., under NASA contract NAS 5--26\\,555. Optical data presented herein were obtained at the W.M.\\ Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M.\\ Keck Foundation.
Brytten E. Steed; Michael R. Wagner
2004-01-01
Pine engraver, Ips pini (Say), often use thinning slash, and their populations are known to be influenced by the condition of this material. In our study, we evaluated the importance of three log diameters (5, 10, and 20 cm) and three lengths (60, 120, and 240 cm) on various parameters of bark beetle host attack, development, and emergence....
The Extent of Chemically Enriched Gas around Star-forming Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.; Schaye, Joop; Straka, Lorrie A.
2017-11-01
Supernova driven winds are often invoked to remove chemically enriched gas from dwarf galaxies to match their low observed metallicities. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circumgalactic medium, CGM) and pollute the intergalactic medium (IGM). Here, we present a survey of the CGM and IGM around 18 star-forming field dwarfs with stellar masses of {log} {M}* /{M}⊙ ≈ 8{--}9 at z≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than that of the host virial radius, {R}{{h}}. Ten are probed in the surrounding IGM at d/{R}{{h}}=1{--}3. The absorption measurements include neutral hydrogen, the dominant silicon ions for diffuse cool gas (T ˜ 104 K; Si II, Si III, and Si IV), moderately ionized carbon (C IV), and highly ionized oxygen (O VI). Metal absorption from the CGM of the dwarfs is less common and ≈ 4× weaker compared to massive star-forming galaxies, though O VI absorption is still common. None of the dwarfs probed at d/{R}{{h}}=1{--}3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM of the dwarfs accounts for only 2%-6% of the expected silicon budget from the yields of supernovae associated with past star formation. The highly ionized O VI accounts for ≈8% of the oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of ≲0.2, the highly ionized CGM may represent a significant metal reservoir even for dwarfs not expected to maintain gravitationally shock heated hot halos.
NASA Astrophysics Data System (ADS)
Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.
2017-07-01
The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.
Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R
2016-02-12
Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). Copyright © 2016 Elsevier B.V. All rights reserved.
Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip
2009-04-01
A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.
Complex Lyα Profiles in Redshift 6.6 Ultraluminous Lyα Emitters
NASA Astrophysics Data System (ADS)
Songaila, A.; Hu, E. M.; Barger, A. J.; Cowie, L. L.; Hasinger, G.; Rosenwasser, B.; Waters, C.
2018-06-01
We report on a search for ultraluminous Lyα-emitting galaxies (LAEs) at z = 6.6 using the NB921 filter on the Hyper Suprime-Cam on the Subaru telescope. We searched a 30 deg2 area around the north ecliptic pole, which we observed in broadband g‧, r‧, i‧, z‧, and y‧ and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z‧-NB921 > 1.3. This corresponds to a selection of log L(Lyα) > 43.5 erg s‑1. We followed up seven candidate LAEs (out of 13) with the Keck DEIMOS spectrograph and confirmed five z = 6.6 LAEs, one z = 6.6 AGN with a broad Lyα line and a strong red continuum, and one low-redshift ([O III] 5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower-luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z = 6.6 ultraluminous LAEs are systematically different from those of lower-luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyα profile of the galaxy—including any blue wings—to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ∼ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei
2017-12-01
We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.
2018-03-01
The reanalysis of the previously published abundance pattern of mild barium star HD202109 (ζ Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.
Ionization correction factors for H II regions in blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Holovatyi, V. V.; Melekh, B. Ya.
2002-08-01
Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.
NASA Astrophysics Data System (ADS)
Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne
2017-04-01
Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.
Charge states of low energy ions from the sun. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sciambi, R. K.
1975-01-01
Measurements of ionization states and energy spectra of carbon, oxygen, and iron accelerated in ten solar flare particle events are reported, for energies between 15 keV per nucleon and 600 keV per nucleon. The ionization states were remarkably constant from flare to flare, despite great variations in other event parameters. The mean ionization state for carbon was 5.7, for oxygen 6.2, and for iron 11.7, values which are similar to the respective ionization states in the solar wind. The time profile of the He/C+N+O ratio was examined, and it was found that the ratio was small early in the event, and increased with time. The energy spectra of the medium ions showed a flattening below 100 keV per nucleon, which was highly correlated with event size as measured by the event averaged flux of 130 to 220 keV protons.
Detection limits of organic compounds achievable with intense, short-pulse lasers.
Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B
2015-06-21
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
Single electron dynamics in a Hall thruster electromagnetic field profile
NASA Astrophysics Data System (ADS)
Marini, Samuel; Pakter, Renato
2017-05-01
In this work, the single electron dynamics in a simplified three dimensional Hall thruster model is studied. Using Hamiltonian formalism and the concept of limiting curves, one is able to determine confinement conditions for the electron in the acceleration channel. It is shown that as a given parameter of the electromagnetic field is changed, the particle trajectory may transit from regular to chaotic without affecting the confinement, which allows one to make a detailed analysis of the role played by the chaos. The ionization volume is also computed, which measures the probability of an electron to ionize background gas atoms. It is found that there is a great correlation between chaos and increased effective ionization volume. This indicates that a complex dynamical behavior may improve the device efficiency by augmenting the ionization capability of each electron, requiring an overall lower electron current.
Tracking the Disk Wind Behavior of MAXI J1305-704
NASA Astrophysics Data System (ADS)
Sinclair, Kimberly Poppy; Miller, Jon M.
2017-01-01
There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration
2017-10-01
We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
NASA Astrophysics Data System (ADS)
Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong
2014-10-01
The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.
Fast ionized X-ray absorbers in AGNs
NASA Astrophysics Data System (ADS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2016-05-01
We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikia, Partha, E-mail: partha.008@gmail.com; Institute of Physics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago; Saikia, Bipul Kumar
2016-04-15
We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO{sub 2} films. The parameters of the hydrogen-added Ar/O{sub 2} plasma influence the properties and the structural phases of the deposited TiO{sub 2} film. Therefore, the variation of plasma parameters such as electron temperature (T{sub e}), electron density (n{sub e}), ion density (n{sub i}), degree of ionization of Ar and degree of dissociation of H{sub 2} as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma.more » On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO{sub 2} film.« less
Massive stars in the Sagittarius Dwarf Irregular Galaxy
NASA Astrophysics Data System (ADS)
Garcia, Miriam
2018-02-01
Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre
2018-02-01
We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.