NASA Astrophysics Data System (ADS)
Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.
2017-11-01
Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid
2017-02-01
Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.
Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
Chen, Duan
2017-11-01
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
Krivec, M; Dillert, R; Bahnemann, D W; Mehle, A; Štrancar, J; Dražić, G
2014-07-28
Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.
NASA Astrophysics Data System (ADS)
Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo
2014-02-01
We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.
Zhao, Kai; Zeng, Qingyi; Bai, Jing; Li, Jinhua; Xia, Ligang; Chen, Shuai; Zhou, Baoxue
2017-01-01
An enhanced result in organic pollutants degradation and simultaneous electricity production has been achieved by establishing a novel Fenton-photocatalytic fuel cell (Fenton-PFC) system in which TiO 2 nanotube arrays (TNA) was designed as a photoanode and ferrous ions were added. The proposed Fenton-PFC system can expand the radical reaction for organic pollutants degradation from the surface of electrodes to the whole solution system due to a continuous photoelectric Fenton reaction without continually adding any external voltage and ferrous ions. The cyclic reactions between ferrous ions (Fe 2+ /Fe 3+ ) and radicals and related species (HO, HO 2 , O 2 - and H 2 O 2 etc.) can be achieved at electrodes surface via a self-bias voltage yielded by the PFC. More importantly, the proposed Fenton-PFC system has hardly any sludge due to an effective radical reaction using a small amount of ferrous ions. The degradation rate of refractory organics, such as methyl orange, methylene blue, congo red and tetracycline, increased from 34.99%, 43.75%, 40.58% and 34.40% (the traditional PFC without Fe 2+ ) to 97.34%, 95.36%, 93.23% and 73.80% (the Fenton-PFC within Fe 2+ ) respectively after 60 min operation. Meanwhile, the electricity generation is up to 1.21-2.04 times larger than the traditional PFC. The proposed Fenton-PFC system provides a more economical and efficient way for energy recovery and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.
2015-12-01
In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.
A new compact structure for a high intensity low-energy heavy-ion accelerator
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng
2013-12-01
A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.
Online estimation of lithium-ion battery capacity using sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani
2015-09-01
Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.
2018-03-01
The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.
Removal of singularity in radial Langmuir probe models for non-zero ion temperature
NASA Astrophysics Data System (ADS)
Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo
2017-10-01
We solve a radial theoretical model that describes the ion sheath around a cylindrical Langmuir probe with finite non-zero ion temperature in which singularity in an a priori unknown point prevents direct integration. The singularity appears naturally in fluid models when the velocity of the ions reaches the local ion speed of sound. The solutions are smooth and continuous and are valid from the plasma to the probe with no need for asymptotic matching. The solutions that we present are valid for any value of the positive ion to electron temperature ratio and for any constant polytropic coefficient. The model is numerically solved to obtain the electric potential and the ion population density profiles for any given positive ion current collected by the probe. The ion-current to probe-voltage characteristic curves and the Sonin plot are calculated in order to use the results of the model in plasma diagnosis. The proposed methodology is adaptable to other geometries and in the presence of other presheath mechanisms.
Atomic oxygen ions as ionospheric biomarkers on exoplanets
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Withers, Paul; Dalba, Paul A.
2018-04-01
The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.
Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhao, Tianshou; Li, Zhigang
2017-09-01
Ultrafast ion transport in carbon nanotubes (CNTs) has been experimentally observed, but the underlying mechanism is unknown. In this work, we investigate ion transport in CNTs through molecular dynamics (MD) simulations. It is found that the flow in CNTs undergoes a transition from the passage of a continuous liquid chain to the transport of isolated ion-water clusters as the CNT length or the external electric filed strength is increased. The breakup of the liquid chain in CNTs greatly reduces the resistance caused by the hydrogen bonds of water and significantly enhances the ionic mobility, which explains the two-order-magnitude enhancement of ionic conductance in CNTs reported in the literature. A theoretical criterion for fluid breakup is proposed, which agrees well with MD results. The fluid breakup phenomenon provides new insights into enhancing ion transport in nanoconfinements.
Mechanisms involved in the transport of mercuric ions in target tissues
Bridges, Christy C.; Zalups, Rudolfs K.
2016-01-01
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.
Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V
2016-02-01
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.
Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong
2010-11-05
In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.
High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.
Agostini, Marco; Brutti, Sergio; Hassoun, Jusef
2016-05-04
The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery.
NASA Astrophysics Data System (ADS)
Lente, M. H.; Moreira, E. N.; Garcia, D.; Eiras, J. A.; Neves, P. P.; Doriguetto, A. C.; Mastelaro, V. R.; Mascarenhas, Y. P.
2006-02-01
The understanding of the structural origin of relaxor ferroelectrics has been doubtlessly a long-standing puzzle in the field of ferroelectricity. Thus, motivated by the interest in improving the comprehension of this important issue, it a framework is proposed for explaining the origin of the relaxor state in ordinary ferroelectrics induced via the isovalent-ion substitution. Based on the martensitic transformation concepts, it is proposed that the continuous addition of isovalent ions in a so-called normal ferroelectric decreases considerably the elastic strain energy. This results in a gradual transformation of ferroelectric domain patterns from a micrometer polydomain structure (twins), through single domains, to nanometer-polar-“tweed” structures with glasslike behavior, that are, in turn, strongly driven by point defects and surface effects. The electrical interaction between these weakly coupled polar-tweed structures leads to a wide spectrum of relaxation times, thus resulting in a dielectric relaxation process, the signature of relaxor ferroelectrics.
NASA Astrophysics Data System (ADS)
Trautmann, N.; Hauke, P.
2018-02-01
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called "environment-assisted quantum transport". Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our paper discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
The migration mechanism of transition metal ions in LiNi 0.5 Mn 1.5O 4
Xu, Gui-Liang; Qin, Yan; Ren, Yang; ...
2015-05-12
The migration of transition metal ions in the oxygen framework was recently proposed to be responsible for the continuous loss of average working potential of high energy density layered–layered composite cathodes for lithium-ion batteries. The potential migration pathway in a model material, LiNi 0.5 Mn 1.5O 4 spinel, was investigated using in situ high-energy X-ray diffraction and in situ neutron diffraction during the solid state synthesis process. It was found that the migration of transition metal ions among octahedral sites is possible by using tetrahedral vacancies as intermediate sites. It was also suggested that the number of electrons in 3dmore » orbitals has a significant impact on their mobility in the hosting oxygen framework.« less
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.
2016-02-15
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less
A continuously self regenerating high-flux neutron-generator facility
NASA Astrophysics Data System (ADS)
Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.
2013-10-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.
Practicality of quantum information processing
NASA Astrophysics Data System (ADS)
Lau, Hoi-Kwan
Quantum Information Processing (QIP) is expected to bring revolutionary enhancement to various technological areas. However, today's QIP applications are far from being practical. The problem involves both hardware issues, i.e., quantum devices are imperfect, and software issues, i.e., the functionality of some QIP applications is not fully understood. Aiming to improve the practicality of QIP, in my PhD research I have studied various topics in quantum cryptography and ion trap quantum computation. In quantum cryptography, I first studied the security of position-based quantum cryptography (PBQC). I discovered a wrong assumption in the previous literature that the cheaters are not allowed to share entangled resources. I proposed entanglement attacks that could cheat all known PBQC protocols. I also studied the practicality of continuous-variable (CV) quantum secret sharing (QSS). While the security of CV QSS was considered by the literature only in the limit of infinite squeezing, I found that finitely squeezed CV resources could also provide finite secret sharing rate. Our work relaxes the stringent resources requirement of implementing QSS. In ion trap quantum computation, I studied the phase error of quantum information induced by dc Stark effect during ion transportation. I found an optimized ion trajectory for which the phase error is the minimum. I also defined a threshold speed, above which ion transportation would induce significant error. In addition, I proposed a new application for ion trap systems as universal bosonic simulators (UBS). I introduced two architectures, and discussed their respective strength and weakness. I illustrated the implementations of bosonic state initialization, transformation, and measurement by applying radiation fields or by varying the trap potential. When comparing with conducting optical experiments, the ion trap UBS is advantageous in higher state initialization efficiency and higher measurement accuracy. Finally, I proposed a new method to re-cool ion qubits during quantum computation. The idea is to transfer the motional excitation of a qubit to another ion that is prepared in the motional ground state. I showed that my method could be ten times faster than current laser cooling techniques, and thus could improve the speed of ion trap quantum computation.
Kulak, Alex N; Iddon, Peter; Li, Yuting; Armes, Steven P; Cölfen, Helmut; Paris, Oskar; Wilson, Rory M; Meldrum, Fiona C
2007-03-28
Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.
NASA Astrophysics Data System (ADS)
Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.
2016-07-01
A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.
Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan
2014-06-25
Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.
Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.
Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P
2010-10-08
A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹ W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰ W/cm².
NASA Astrophysics Data System (ADS)
Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.
2017-05-01
A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulette, David; Besse, Nicolas
2013-05-15
Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less
Abbasi Tarighat, Maryam
2016-02-01
Simultaneous spectrophotometric determination of a mixture of overlapped complexes of Fe(3+), Mn(2+), Cu(2+), and Zn(2+) ions with 2-(3-hydroxy-1-phenyl-but-2-enylideneamino) pyridine-3-ol(HPEP) by orthogonal projection approach-feed forward neural network (OPA-FFNN) and continuous wavelet transform-feed forward neural network (CWT-FFNN) is discussed. Ionic complexes HPEP were formulated with varying reagent concentration, pH and time of color formation for completion of complexation reactions. It was found that, at 5.0 × 10(-4) mol L(-1) of HPEP, pH 9.5 and 10 min after mixing the complexation reactions were completed. The spectral data were analyzed using partial response plots, and identified non-linearity modeled using FFNN. Reducing the number of OPA-FFNN and CWT-FFNN inputs were simplified using dissimilarity pure spectra of OPA and selected wavelet coefficients. Once the pure dissimilarity plots ad optimal wavelet coefficients are selected, different ANN models were employed for the calculation of the final calibration models. The performance of these two approaches were tested with regard to root mean square errors of prediction (RMSE %) values, using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of metal ions in different vegetable and foodstuff samples. The results show that, OPA-FFNN and CWT-FFNN were effective in simultaneously determining Fe(3+), Mn(2+), Cu(2+), and Zn(2+) concentration. Also, concentrations of metal ions in the samples were determined by flame atomic absorption spectrometry (FAAS). The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ti diffusion in ion prebombarded MgO(100). I. A model for quantitative analysis
NASA Astrophysics Data System (ADS)
Lu, M.; Lupu, C.; Styve, V. J.; Lee, S. M.; Rabalais, J. W.
2002-01-01
Enhancement of Ti diffusion in MgO(100) prebombarded with 7 keV Ar+ has been observed. Diffusion was induced by annealing to 1000 °C following the prebombardment and Ti evaporation. Such a sample geometry and experimental procedure alleviates the continuous provision of freely mobile defects introduced by ion irradiation during annealing for diffusion, making diffusion proceed in a non-steady-state condition. Diffusion penetration profiles were obtained by using secondary ion mass spectrometry depth profiling techniques. A model that includes a depth-dependent diffusion coefficient was proposed, which successfully explains the observed non-steady-state radiation enhanced diffusion. The diffusion coefficients are of the order of 10-20 m2/s and are enhanced due to the defect structure inflected by the Ar+ prebombardment.
A theory of heating of quiet solar corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. S., E-mail: cszcwu@msn.com; Institute of Space Science, National Central University, Zhongli 32001, Taiwan; Insitute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
A theory is proposed to discuss the creation of hot solar corona. We pay special attention to the transition region and the low corona, and consider that the sun is quiet. The proposed scenario suggests that the protons are heated by intrinsic Alfvénic turbulence, while the ambient electrons are heated by the hot protons via collisions. The theory contains two prime components: the generation of the Alfvénic fluctuations by the heavy minor ions in the transition region and second, the explanation of the temperature profile in the low solar atmosphere. The proposed heating process operates continuously in time and globallymore » in space.« less
Borys, Przemysław
2012-06-01
Rat prostate cancer cells have been previously investigated using two cell lines: a highly metastatic one (Mat-Ly-Lu) and a nonmetastatic one (AT-2). It turns out that the highly metastatic Mat-Ly-Lu cells exhibit a phenomenon of cathodal galvanotaxis in an electric field which can be blocked by interrupting the voltage-gated sodium channel (VGSC) activity. The VGSC activity is postulated to be characteristic for metastatic cells and seems to be a reasonable driving force for motile behavior. However, the classical theory of cellular motion depends on calcium ions rather than sodium ions. The current research provides a theoretical connection between cellular sodium inflow and cathodal galvanotaxis of Mat-Ly-Lu cells. Electrical repulsion of intracellular calcium ions by entering sodium ions is proposed after depolarization starting from the cathodal side. The disturbance in the calcium distribution may then drive actin polymerization and myosin contraction. The presented modeling is done within a continuous one-dimensional Poisson-Nernst-Planck equation framework.
Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T
2017-05-19
A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20 nC) can be obtained at intensity 10^{22} W/cm^{2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amekura, Hiro, E-mail: amekura.hiroshi@nims.go.jp; Akhmadaliev, Shavkat; Zhou, Shengqiang
When ion irradiation introduces point-defects in semiconductors/insulators, discrete energy levels can be introduced in the bandgap, and then optical transitions whose energies are lower than the bandgap become possible. The electronic transitions between the discrete level and the continuous host band are observed as a continuous tail starting from the fundamental edge. This is the well-known mechanism of the absorption tail close to the band-edge observed in many semiconductors/insulators. In this paper, we propose another mechanism for the absorption tail, which is probably active in Nd-doped yttrium aluminum garnet (Nd:YAG) after ion irradiation and annealing. A Nd:YAG bulk crystal wasmore » irradiated with 15 MeV Au{sup 5+} ions to a fluence of 8 × 10{sup 14} ions/cm{sup 2}. The irradiation generates an amorphous layer of ∼3 μm thick with refractive index reduction of Δn = −0.03. Thermal annealing at 1000 °C induces recrystallization to randomly aligned small crystalline grains. Simultaneously, an extraordinarily long absorption tail appeared in the optical spectrum covering from 0.24 to ∼2 μm without fringes. The origin of the tail is discussed based on two models: (i) conventional electronic transitions between defect levels and YAG host band and (ii) enhanced light scattering by randomly aligned small grains.« less
Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza
2015-06-15
A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre
2017-07-01
Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Sampling based State of Health estimation methodology for Li-ion batteries
NASA Astrophysics Data System (ADS)
Camci, Fatih; Ozkurt, Celil; Toker, Onur; Atamuradov, Vepa
2015-03-01
Storage and management of energy is becoming a more and more important problem every day, especially for electric and hybrid vehicle applications. Li-ion battery is one of the most important technological alternatives for high capacity energy storage and related industrial applications. State of Health (SoH) of Li-ion batteries plays a critical role in their deployment from economic, safety, and availability aspects. Most, if not all, of the studies related to SoH estimation focus on the measurement of a new parameter/physical phenomena related to SoH, or development of new statistical/computational methods using several parameters. This paper presents a new approach for SoH estimation for Li-ion battery systems with multiple battery cells: The main idea is a new circuit topology which enables separation of battery cells into two groups, main and test batteries, whenever a SoH related measurement is to be conducted. All battery cells will be connected to the main battery during the normal mode of operation. When a measurement is needed for SoH estimation, some of the cells will be separated from the main battery, and SoH estimation related measurements will be performed on these units. Compared to classical SoH measurement methods which deal with whole battery system, the proposed method estimates the SoH of the system by separating a small but representative set of cells. While SoH measurements are conducted on these isolated cells, remaining cells in the main battery continue to function in normal mode, albeit in slightly reduced performance levels. Preliminary experimental results are quite promising, and validate the feasibility of the proposed approach. Technical details of the proposed circuit architecture are also summarized in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S. Y.; Blaskiewicz, M.
This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au 78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au 78+ beam from the Au 79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au 78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machinemore » operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.« less
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1993-01-01
During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.
The ATLAS multi-user upgrade and potential applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustapha, B.; Nolen, J. A.; Savard, G.
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existingmore » ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.« less
The ATLAS multi-user upgrade and potential applications
NASA Astrophysics Data System (ADS)
Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.
2017-12-01
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~1 MeV/u, isotope production and radiobiological studies at ~6 MeV/u and at the full ATLAS energy of ~15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be discussed. Future plans to enhance the flexibility of this upgrade will be presented.
Effects of vacuum and ageing on Zr4/Cr3 based conversion coatings on aluminium alloys
NASA Astrophysics Data System (ADS)
Thirupathi, Kalaivanan; Bárczy, Pál; Vad, Kálmán; Csik, Attila; Somosvári, Béla Márton
2018-05-01
In this study, we investigate the impact of ageing and high vacuum on existing environmentally friendly Zr4/Cr3-based conversion coatings. The freshly formed coating undergoes several changes during ageing and exposure to high vacuum. Based on the present data, we propose that the coating formed over AA6082 and AA7075 alloys is sol-gel in nature, confirmed by secondary neutral mass spectroscopy (SNMS) using the depth profiling technique. Our findings reveal that there are elemental level changes that result in shrinkage of the coating. Most Zr ions in the coating are in the solute form, with lesser number of Cr and Al ions that disappear under high vacuum over a certain period of time. The remaining Cr, Zr and O atoms exist in a gelatinous state. During ageing, there is a continuous transition of ions from solute to gelatinous state. In addition, the deposition of coating ions is directly influenced by the substrates and their constituents. The extent of dissolution of aluminium in the conversion bath determines both Zr and Cr ion deposition. For a highly alloyed metal like AA7075, the dissolution rate is disturbed by copper and zinc.
A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu
The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutralmore » physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.« less
Apparatus and methods for continuous beam fourier transform mass spectrometry
McLuckey, Scott A.; Goeringer, Douglas E.
2002-01-01
A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-01-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
NASA Astrophysics Data System (ADS)
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-02-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.
The continued development of the Spallation Neutron Source external antenna H- ion sourcea)
NASA Astrophysics Data System (ADS)
Welton, R. F.; Carmichael, J.; Desai, N. J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.
2010-02-01
The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ˜100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ˜35 mA (beam current required by the ramp up plan) with availability of ˜97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.
NASA Astrophysics Data System (ADS)
Han, Jin; Kim, Jong-Wook; Lee, Hiwon; Min, Byung-Kwon; Lee, Sang Jo
2009-02-01
A new microfabrication method that combines localized ion implantation and magnetorheological finishing is proposed. The proposed technique involves two steps. First, selected regions of a silicon wafer are irradiated with gallium ions by using a focused ion beam system. The mechanical properties of the irradiated regions are altered as a result of the ion implantation. Second, the wafer is processed by using a magnetorheological finishing method. During the finishing process, the regions not implanted with ion are preferentially removed. The material removal rate difference is utilized for microfabrication. The mechanisms of the proposed method are discussed, and applications are presented.
Method for Continuous Monitoring of Electrospray Ion Formation
NASA Astrophysics Data System (ADS)
Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard
2017-10-01
A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.
Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.
Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar
2010-09-01
A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.
Ion composition and temperature in the topside ionosphere.
NASA Technical Reports Server (NTRS)
Brace, L. H.; Dunham, G. S.; Mayr, H. G.
1967-01-01
Particle and energy continuity equations derived and solved by computer method ion composition and plasma temperature measured by Explorer XXII PARTICLE and energy continuity equations derived and solved by computer method for ion composition and plasma temperature measured by Explorer XXII
Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model
Wood, W.W.; Kraemer, T.F.; Shapiro, A.
2004-01-01
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil
2015-01-01
Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.
NASA Astrophysics Data System (ADS)
Cappelli, Mark; Young, Christopher
2016-10-01
We present continued efforts towards introducing physical models for cross-magnetic field electron transport into Hall thruster discharge simulations. In particular, we seek to evaluate whether such models accurately capture ion dynamics, both averaged and resolved in time, through comparisons with measured ion velocity distributions which are now becoming available for several devices. Here, we describe a turbulent electron transport model that is integrated into 2-D hybrid fluid/PIC simulations of a 72 mm diameter laboratory thruster operating at 400 W. We also compare this model's predictions with one recently proposed by Lafluer et al.. Introducing these models into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. The models are tested for their ability to capture the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. Model predictions are also more rigorously evaluated against recent laser-induced fluorescence measurements of time-resolved ion velocity distributions.
Exploring Molecular Complexity of the Diffuse and Translucent Gas and PhotoDissociation Regions
NASA Astrophysics Data System (ADS)
McCarthy, Michael
This proposal requests funds to continue a laboratory program in close coordination with radio astronomical observations dedicated to the study of highly reactive polyatomic molecular ions in low density regions and photo-dissociation regions (PDRs). In doing so, the proposed studies will advance our understanding of the chemistry beyond light ions that have been observed so successfully in these regions with Herschel and recently extended with SOFIA, and thereby critically address a significant but unresolved question in molecular astronomy: Are larger molecules formed in a bottom-up or top-down chemistry? The rotational spectra of most new molecular ions will be detected in the laboratory in a resonant microwave cavity, followed either by microwave/millimeterwave double resonance or millimeter/THz absorption to better characterize their spectrum in bands covered by the heterodyne receivers HIFI on Herschel and GREAT on SOFIA. In collaboration with radioastronomer colleagues, we will search for the new ions in the published survey of the PDR region of the Orion Bar and archival data of other PDRs observed with the IRAM 30 m telescope; retrieve and analyze archival data from Herschel; and undertake searches for some of the new ions in PDRs and low density regions with SOFIA. This work will also have a strong bearing on proposed Early Release Science (ERS) observations of dense PDRs with the James Webb Space Telescope (JWST). The laboratory effort will build on previous work on molecular ions , specifically detection of the rotational spectra of a number of positive ions of astronomical interest such as H2NCO+, CCCH+, the cis- and trans isomers of HOSO+, HNCOH+, and H2CC(H)CNH+. We will focus our efforts on positive ions derived from closed-shell neutral molecules, radicals, and carbenes whose rotational spectra have been observed in our laboratory, and nearly all of which have also been identified in galactic molecular clouds. Examples of the ions we seek include polyatomic ions such as CN+, HCCCN+, HNCO+, c-C3H2+, etc. Collaborations with leading theoretical groups to accurately predict spectroscopic constants of the new ions will enhance the proposed laboratory investigations. Instrumental refinement will also be undertaken with particular emphasis on construction of a new cryogenically cooled ( 6 K) buffer gas cell. This ultra-sensitive instrument will possess a system temperature that is nearly 50 times lower than our most sensitive cavity spectrometer, and one close to the fundamental limit set by modern technology, thereby greatly enhancing our ability to detect elusive molecular ions that are produced in very low steady state concentrations. The essential capabilities of this instrument have already been demonstrated in collaborative investigations. Our laboratory program is well aligned with NASA's overall mission, because we seek to understand the role of the chemical bond on a cosmic scale and to provide a firm chemical foundation by which more complicated questions of biological origins can be addressed. The work here also provides much basic information to aid subsequent astronomical searches, particularly in the infrared. Finally, our research program is an excellent vehicle for integrating research and education. It provides exposure to quite diverse areas of science in a setting which encourages student initiative and independent investigation.
A Semianalytical Ion Current Model for Radio Frequency Driven Collisionless Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)
2001-01-01
We propose a semianalytical ion dynamics model for a collisionless radio frequency biased sheath. The model uses bulk plasma conditions and electrode boundary condition to predict ion impact energy distribution and electrical properties of the sheath. The proposed model accounts for ion inertia and ion current modulation at bias frequencies that are of the same order of magnitude as the ion plasma frequency. A relaxation equation for ion current oscillations is derived which is coupled with a damped potential equation in order to model ion inertia effects. We find that inclusion of ion current modulation in the sheath model shows marked improvements in the predictions of sheath electrical properties and ion energy distribution function.
A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.
1990-01-01
A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.
NASA Astrophysics Data System (ADS)
Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.
2017-09-01
A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.
Farzbod, Ali; Moon, Hyejin
2018-05-30
This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai
2016-10-01
To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.
Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai
2017-12-01
Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Feng, Xin; Wang, Xuelong
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
Liu, Shuai; Feng, Xin; Wang, Xuelong; ...
2018-02-12
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim
2017-06-01
Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion
Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth
2000-01-17
We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.
Coalson, Rob D; Cheng, Mary Hongying
2010-01-28
A discrete-state model of chloride ion motion in a ClC chloride channel is constructed, following a previously developed multi-ion continuous space model of the same system (Cheng, M. H.; Mamonov, A. B.; Dukes, J. W.; Coalson, R. D. J. Phys. Chem. B 2007, 111, 5956) that included a simplistic representation of the fast gate in this channel. The reducibility of the many-body continuous space to the eight discrete-state model considered in the present work is examined in detail by performing three-dimensional Brownian dynamics simulations of each allowed state-to-state transition in order to extract the appropriate rate constant for this process, and then inserting the pairwise rate constants thereby obtained into an appropriate set of kinetic master equations. Experimental properties of interest, including the rate of Cl(-) ion permeation through the open channel and the average rate of closing of the fast gate as a function of bulk Cl(-) ion concentrations in the intracellular and extracellular electrolyte reservoirs are computed. Good agreement is found between the results obtained via the eight discrete-state model versus the multi-ion continuous space model, thereby encouraging continued development of the discrete-state model to include more complex behaviors observed experimentally in these channels.
NASA Technical Reports Server (NTRS)
Pradhan, Anil K.
1992-01-01
According to the plan presented in the original proposal we have now completed most of the atomic calculations involving collision strengths and rate coefficients for electron impact excitation of C II, N III, and O IV ions. These have been reported in the first two publications appended with this report. We have now moved into the applications phase of the project with the new data being used to analyze the International Ultraviolet Explorer (IUE) observations of a variety of objects, as described in the third publication recently submitted (also appended). The analysis and interpretation of archival data will continue well into the next year with several collaborators that the PI and Co-PI are involved with. In addition, the atomic calculations on Si II have been started.
Single-ion quantum Otto engine with always-on bath interaction
NASA Astrophysics Data System (ADS)
Chand, Suman; Biswas, Asoka
2017-06-01
We demonstrate how the reciprocating heat cycle of a quantum Otto engine (QOE) can be implemented using a single ion and an always-on thermal environment. The internal degree of freedom of the ion is chosen as the working fluid, while the motional degree of freedom can be used as the cold bath. We show, that by adiabatically changing the local magnetic field, the work efficiency can be asymptotically made unity. We propose a projective measurement of the internal state of the ion that mimics the release of heat from the working fluid during the engine cycle. In our proposal, the coupling to the hot and the cold baths need not be switched off and on in an alternate fashion during the engine cycle, unlike other existing proposals of QOE. This renders the proposal experimentally feasible using the available tapped-ion engineering technology.
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
NASA Astrophysics Data System (ADS)
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.
The 25 mA continuous-wave surface-plasma source of H{sup −} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Gorbovsky, A.; Sanin, A.
The ion source with the Penning geometry of electrodes producing continuous-wave beam of H{sup −} ions with current up to 25 mA was developed. Several improvements were introduced to increase source intensity, reliability, and lifetime. The collar around the emission aperture increases the electrons filtering. The apertures’ diameters of the ion-optical system electrodes were increased to generate the beam with higher intensity. An optimization of electrodes’ temperature was performed.
A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
Chen, Duan
2016-08-01
In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.
New Evidence against Chromium as an Essential Trace Element.
Vincent, John B
2017-12-01
Nearly 60 y ago, chromium, as the trivalent ion, was proposed to be an essential element, but the results of new studies indicate that chromium currently can only be considered pharmacologically active and not an essential element. Regardless, articles still continue to appear in the literature claiming chromium is an essential element. Chromium has been marketed as an agent to reduce body mass and develop muscle; however, such marketing claims are no longer allowed in the United States because these claims, similar to claims of essential status, are not supported by experiments. Trivalent chromium has also been proposed as a therapeutic agent to increase insulin sensitivity and affect lipid metabolism. Although effective in certain rodent models, beneficial effects in humans have not been unequivocally established. Molecular mechanisms have been proposed for the beneficial effects but have not been definitively shown to occur in animals. © 2017 American Society for Nutrition.
Circuit for Full Charging of Series Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Ott, William E.; Saunders, David L.
2007-01-01
An advanced charger has been proposed for a battery that comprises several lithium-ion cells in series. The proposal is directed toward charging the cells in as nearly an optimum manner as possible despite unit-to-unit differences among the nominally identical cells. The particular aspect of the charging problem that motivated the proposal can be summarized as follows: During bulk charging (charging all the cells in series at the same current), the voltages of individual cells increase at different rates. Once one of the cells reaches full charge, bulk charging must be stopped, leaving other cells less than fully charged. To make it possible to bring all cells up to full charge once bulk charging has been completed, the proposed charger would include a number of top-off chargers one for each cell. The top-off chargers would all be powered from the same DC source, but their outputs would be DC-isolated from each other and AC-coupled to their respective cells by means of transformers, as described below. Each top-off charger would include a flyback transformer, an electronic switch, and an output diode. For suppression of undesired electromagnetic emissions, each top-off charger would also include (1) a resistor and capacitor configured to act as a snubber and (2) an inductor and capacitor configured as a filter. The magnetic characteristics of the flyback transformer and the duration of its output pulses determine the energy delivered to the lithium-ion cell. It would be necessary to equip the cell with a precise voltage monitor to determine when the cell reaches full charge. In response to a full-charge reading by this voltage monitor, the electronic switch would be held in the off state. Other cells would continue to be charged similarly by their top-off chargers until their voltage monitors read full charge.
Design of a CW high charge state heavy ion RFQ for SSC-LINAC
NASA Astrophysics Data System (ADS)
Liu, G.; Lu, Y. R.; He, Y.; Wang, Z.; Xiao, C.; Gao, S. L.; Yang, Y. Q.; Zhu, K.; Yan, X. Q.; Chen, J. E.; Yuan, Y. J.; Zhao, H. W.
2013-02-01
The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.
NASA Astrophysics Data System (ADS)
Prashanth, K. N.; Swamy, N.; Basavaiah, K.
2013-11-01
Considering the basic property of zolmitriptan (ZMT) to generate ion-pairs with sulfonephthalein dyes two methods have been developed for its assay in bulk drug and dosage form. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug:dye) of ZMT with bromocresol green (BCG) at pH 4.20 ± 0.01 and extraction of the complex into chloroform followed by measurement of the yellow ion-pair complex at 435 nm. In the second method (method B), the drug-dye ion-pair complex was treated with ethanolic potassium hydroxide in ethanolic medium and the resulting base form of the dye was measured at 630 nm. Beer's law was obeyed in the concentration range of 0.8-18.0 and 0.08-1.4 μg/ml for method A and B, respectively, and the corresponding molar absorptivity values were 1.50ṡ104 and 1.52ṡ105 l/(molṡcm). The Sandell sensitivity values were 0.0191 and 0.0019 μg/cm2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the drug and dye (1:1) was determined by Job's continuous variation method and the stability constant of the complex was also calculated. The proposed method was successfully extended to dosage form (tablets).
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water
Zhao, Xinyan; Dong, Tao
2013-01-01
A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. PMID:24300075
Han, Dong; Wu, Cuncun; Zhao, Yunbiao; Chen, Yi; Xiao, Lixin; Zhao, Ziqiang
2017-12-06
In recent years, perovskite solar cells have drawn a widespread attention. As an electrode material, fluorine-doped tin oxide (FTO) is widely used in various kinds of solar cells. However, the relatively low work function (WF) (∼4.6 eV) limits its application. The potential barrier between the transparent conductive oxide electrode and the hole transport layer (HTL) in inverted perovskite solar cells results in a decrease in device performance. In this paper, we propose a method to adjust WF of FTO by implanting zirconium ions into the FTO surface. The WF of FTO can be precisely and continuously tuned between 4.59 and 5.55 eV through different dopant concentration of zirconium. In the meantime, the modified FTO, which had a WF of 5.1 eV to match well the highest occupied molecular orbital energy level of poly(3,4-ethylenedioxylenethiophene):polystyrene sulfonate, was used as the HTL in inverted planar perovskite solar cells. Compared with the pristine FTO electrode-based device, the open circuit voltage increased from 0.82 to 0.91 V, and the power conversion efficiency increased from 11.6 to 14.0%.
NASA Astrophysics Data System (ADS)
Šantić, Branko; Gracin, Davor
2017-12-01
A new simple Monte Carlo method is introduced for the study of electrostatic screening by surrounding ions. The proposed method is not based on the generally used Markov chain method for sample generation. Each sample is pristine and there is no correlation with other samples. As the main novelty, the pairs of ions are gradually added to a sample provided that the energy of each ion is within the boundaries determined by the temperature and the size of ions. The proposed method provides reliable results, as demonstrated by the screening of ion in plasma and in water.
NASA Astrophysics Data System (ADS)
Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala
2008-11-01
The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.
NASA Astrophysics Data System (ADS)
Benettin, P.; Van Breukelen, B. M.
2017-12-01
The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, economic and management efforts can still be a barrier to high-resolution water quality instrumentation. We propose a new framework to investigate the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information on ion content which can be isolated to retrieve solute concentrations at high resolution. The approach can already be applied to a number of datasets worldwide where water quality campaigns are conducted, provided continuous EC measurements can be collected. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e. the specific contributions of the major ions which conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations during periods where solute measurements are not available. The approach is validated on a hydrochemical dataset from Plynlimon, Wales. Results show that the decomposition of EC is feasible and for at least two major elements the methodology provided improved estimates of high-frequency solute dynamics. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.
Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria
Steiner, Michael; Lazaroff, Norman
1974-01-01
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066
LLE Review, Volume 57. Quarterly report, October--December 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, A.
During this quarter, the visible fruits of long design labors on the OMEGA Upgrade began to appear. The target mirror structure was put in place, along with the target chamber itself. The laser bay structures were also installed, and the bay is now being prepared to receive optomechanical, control, and laser assemblies. Further details are in the OMEGA Upgrade Status Report in this issue. Theory and analysis of previous experiments continued during this reporting period. Articles contained herein describe an improved theory of the ablative Rayleigh-Taylor instability; a novel proposal for characterizing plasma-density profiles by using grid image refractometry; amore » much-improved treatment of the damping of ion sound waves in a mixture of light and heavy ions; and, finally, a new interpretation of measurements of 3/2-harmonic radiation emitted from the long-scale-length plasmas created in earlier OMEGA experiments.« less
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami
2018-01-01
A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.
Grant Proposal for the Continuation of the Voyager Interstellar Mission: LECP Investigation
NASA Technical Reports Server (NTRS)
Krimigis, Stamatios M.; Armstrong, Thomas P.; Lanzerotti, Louis J.; Ip, Wing-H.; Decker, Robert B.; Keath, Edwin P.; Mauk, Barry H.; McNutt, Ralph L., Jr.; Gloeckler, George; Hamilton, Douglas C.
1996-01-01
This proposal documents the plans of the Low Energy Charged Particle (LECP) investigation team for participation in NASA's Voyager Interstellar Mission (VIM) as the Voyager 1 and 2 spacecraft explore the outer reaches of the heliosphere and search for the termination shock and the heliopause. The proposal covers the four year period from 1 January 1997 to 31 December 2000. The LECP instruments on Voyager 1 and 2 measure in situ intensities of charged particles with energies from about 30 keV to 100 MeV for ions, and about 20 keV to greater than 10 MeV for electrons. The instruments provide detailed spectral, angular, and compositional information about the particles. Composition is available for greater than 200 keV/nuc using multi-parameter measurements. Angular information is obtained by a mechanically scanned platform that rotates at various commanded rates. Measurements of low energy ion and electron intensities versus time and spatial location within the heliosphere contain an abundance of information regarding various transport and acceleration processes on both local (approx. 1 hr, approx. 0.01 AU) and global (approx. 11 yrs, approx. 100 AU) scales. The LECP instruments provide unique observations of such dynamical processes, and we anticipate that it will return critical information regarding the boundaries of the heliosphere. Several recent and exciting discoveries based on LECP measurements emphasize the important role that low energy charged particle distributions play in physical processes in the interplanetary medium. Yet, at the same time, these discoveries also underscore the fact that our understanding of processes in the outer heliosphere is, in most cases, incomplete, and in others, only rudimentary at best. Among the discoveries referred to above are the following: (1) Shocks: Examination of greater than 30 keV ion intensities have revealed: (a) a total absence of acceleration beyond only -100-200 keV at a strong transient shock in May 1991 at 35 AU, despite an enhanced level of seed particles; (b) a large transient shock in September 1991 of global scale, with intensities of shock-accelerated ions greater than or equal to 30 keV to approx. 30 MeV showing complex, highly energy-dependent spatial evolution, and small-scale (approx. few gyroradii), often anisotropic, micro-structures; (c) recurrent intensity increases in greater than or equal to 30 keV to -few MeV ions, with structures that, in some cases, show no correlation with the associated corotating shock. (2) Superthermal ion pressure: A global merged interaction region with a leading shock, downstream of which the superthermal ion (greater than or equal to 30 keV to approx. 4 MeV) pressure is comparable to that of the thermal plasma, and the total particle pressure yields a plasma beta of order unity. (3) Pickup ions: Measurements of the C/O ratio within transient structures at 35-45 AU showing the first clear evidence that transient shocks can pre-accelerate interstellar pickup ions from approx. 1 keV/nuc to at least 1 MeV/nuc. (4) Seed particles: Injection of ions for acceleration to high energies at the termination shock is unlikely to be a problem, since interplanetary transient and recurrent shocks are continually accelerating ions, of solar wind or interstellar origin, to highly superthermal energies. (5) Precursor electrons: Ambient solar electrons (greater than or equal to few tens of keV) that exist in the outer heliosphere ca form a broad precursor, several days wide, that is upstream of the termination shock and potentially observable a few months prior to the shock crossing. (6) Solar wind velocity at Voyager 1: We can use LECP ion data to obtain the solar wind velocity at Voyager 1, enabling us to provide critical measurement of the plasma flow as we approach and encounter the termination shock and other regions (necessary due to the partial failure of the Voyager 1 PLS experiment). The work of the LECP investigator team during the VIM will include: (1) Continuing operations with regard to the receipt, processing, verification, cataloging, display, and distribution of the data from the LECP instruments on Voyager 1 and 2, (2) Monitoring the health and performance of the LECP instruments, and evaluating and characterizing the response of the LECP instruments to various energetic particle and plasma environments, (3) Participating in, and supporting Voyager Project planning exercises and other coordinated activities relevant to exploration of the outer heliosphere, (4) Developing analysis techniques and operational procedures suitable for searching for and characterizing the boundaries and unique regions of the outher heliosphere, (5) Continuing the preparation of data sets appropriate for submission to the National Space Sciences Data Center (NSSDC) and, where appropriate, the Planetary Data System (PDS), (6) Maintaining direct Web access to online LECP data through the JHU/APL Voyager LECP home page, (7) Performing scientific evaluations of the Voyager 1 and 2 LECP data sets in conjunction with other data sets and other investigators, with particular focus on the outer regions of the heliosphere, and (8) Publishing the results of these evaluations in the scientific literature and presenting the results in scientific conferences.
NASA Astrophysics Data System (ADS)
Tong, Junjie; Fang, Yunhui
2017-12-01
As a high-voltage cathode material, monoclinic Li3V2(PO4)3 has been proposed as the next-generation commercial electrode for lithium-ion batteries. Nevertheless, it remains a practical challenge to improve the poor electronic conductivity of Li3V2(PO4)3. Herein, we first design and fabricate the Li3V2(PO4)3@C (LVP@C) nanocrystals further modified by graphene and doped with Ce3+-ion via a facile sol-gel method. The Ce3+ doping can form a continuous conductive pathway in the electrode and thus improve the intrinsic electronic conductivity of Li3V2(PO4)3 material. Meanwhile, the residual carbon layer and graphene can also construct a conductive network, which is helpful to enhance the apparent conductivity of Li3V2(PO4)3. Therefore, the graphene and Ce3+ doping co-decorated LVP@C (G-LVCeP@C) composite exhibits better lithium storage capability than the LVP@C and Ce3+-doped LVP@C (LVCeP@C) materials. This novel design provides an effective strategy for the preparation of other electrodes for lithium-ion batteries.
Hawking Radiation from an Acoustic Black Hole on an Ion Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horstmann, B.; Cirac, J. I.; Reznik, B.
2010-06-25
In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.
Hawking radiation from an acoustic black hole on an ion ring.
Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I
2010-06-25
In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.
Effect of sharp maximum in ion diffusivity for liquid xenon
NASA Astrophysics Data System (ADS)
Lankin, A. V.; Orekhov, M. A.
2016-11-01
Ion diffusion in a liquid usually could be treated as a movement of an ion cluster in a viscous media. For small ions this leads to a special feature: diffusion coefficient is either independent of the ion size or increases with it. We find a different behavior for small ions in liquid xenon. Calculation of the dependence of an ion diffusion coefficient in liquid xenon on the ion size is carried out. Classical molecular dynamics method is applied. Calculated dependence of the ion diffusion coefficient on its radius has sharp maximums at the ion radiuses 1.75 and 2 Å. Every maximum is placed between two regions with different stable ion cluster configurations. This leads to the instability of these configurations in a small region between them. Consequently ion with radius near 1.75 or 2 Å could jump from one configuration to another. This increases the speed of the diffusion. A simple qualitative model for this effect is suggested. The decomposition of the ion movement into continuous and jump diffusion shows that continuous part of the diffusion is the same as for the ion cluster in the stable region.
NASA Astrophysics Data System (ADS)
Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat
2018-02-01
The samples of Polymethylmethacrylate (PMMA) have been implanted with 500 keV C+-ions at different ion fluences ranging from 9.3 × 1013 to 8.4 × 1014 ions/cm2. The structural modifications are examined by Fourier Transform Infrared and Raman spectral studies. For the investigation of optical, electrical and surface morphological properties of implanted samples UV-Visible spectrometer, four probe apparatus and optical microscope have been employed. The FTIR spectra confirmed the cleavage of chemicals bonds as a consequence of polymer chain scission, whereas, Raman studies revealed the transformation of PMMA structure into quasi-continuous amorphous carbon with increasing ion fluences. A continuous reduction has been observed in the optical band gap of PMMA from 3.16 to 1.42 eV. Moreover, the refractive index, extinction coefficient and electrical conductivity of implanted PMMA are found to be an increasing function of the ion fluence. The micrographic images revealed the signatures of ion-induced defects like cracking, dehydrogenation, stress and swelling on the surface of PMMA. These implanted samples have a potential to be used in the field of optical communications and thin plastic flexible electronics.
Schütz, G; Rembold, A; Pooch, A; Prochel, H; Stibor, A
2015-11-01
We propose an experiment for the first proof of the type I electric Aharonov-Bohm effect in an ion interferometer for hydrogen. The performances of three different beam separation schemes are simulated and compared. The coherent ion beam is generated by a single atom tip (SAT) source and separated by either two biprisms with a quadrupole lens, two biprisms with an einzel-lens or three biprisms. The beam path separation is necessary to introduce two metal tubes that can be pulsed with different electric potentials. The high time resolution of a delay line detector allows to work with a continuous ion beam and circumvents the pulsed beam operation as originally suggested by Aharonov and Bohm. We demonstrate that the higher mass and therefore lower velocity of ions compared to electrons combined with the high expected SAT ion emission puts the direct proof of this quantum effect for the first time into reach of current technical possibilities. Thereby a high detection rate of coherent ions is crucial to avoid long integration times that allow the influence of dephasing noise from the environment. We can determine the period of the expected matter wave interference pattern and the signal on the detector by determining the superposition angle of the coherent partial beams. Our simulations were tested with an electron interferometer setup and agree with the experimental results. We determine the separation scheme with three biprisms to be most efficient and predict a total signal acquisition time of only 80s to measure a phase shift from 0 to 2π due to the electric Aharonov-Bohm effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma
NASA Astrophysics Data System (ADS)
Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.
2018-04-01
Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G.-H.; Pesaran, A.; Smith, K.
The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.
Molecular Dynamics Investigation of Cl− and Water Transport through a Eukaryotic CLC Transporter
Cheng, Mary Hongying; Coalson, Rob D.
2012-01-01
Early crystal structures of prokaryotic CLC proteins identified three Cl– binding sites: internal (Sint), central (Scen), and external (Sext). A conserved external GLU (GLUex) residue acts as a gate competing for Sext. Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLUex competes instead for Scen. Here, we use molecular dynamics simulations to investigate Cl– transport through CmCLC. The gating and Cl–/H+ transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLUex in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl– ion from Sext to Sint, depending on the Cl– occupancy of other sites. Our simulations demonstrate that protonation of GLUex is essential for Cl– transport from Sext to Scen. The Scen site may be occupied by two Cl– ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl– ion to translocate from Scen to Sint. Binding two Cl– ions to Scen induces a continuous water wire from Scen to the extracellular solution through the side chain of the GLUex gate. This may initiate deprotonation of GLUex, which then drives the two Cl– ions out of Scen toward the intracellular side via two putative Cl– transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry. PMID:22455919
Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A
2016-01-01
A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635
Poisson-Boltzmann-Nernst-Planck model
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Wei, Guo-Wei
2011-05-01
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time.
Poisson-Boltzmann-Nernst-Planck model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Qiong; Wei Guowei; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species inmore » the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time.« less
Poisson–Boltzmann–Nernst–Planck model
Zheng, Qiong; Wei, Guo-Wei
2011-01-01
The Poisson–Nernst–Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst–Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst–Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst–Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson–Boltzmann and Nernst–Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current–voltage (I–V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I–V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time. PMID:21599038
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time. © 2011 American Institute of Physics.
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dendy, R.O.; McClements, K.G.; Lashmore-Davies, C.N.
1994-10-01
A mechanism is proposed for the excitation of waves at harmonics of the injected ion cyclotron frequencies in neutral beam-heated discharges in the Tokamak Fusion Test Reactor (TFTR) [[ital Proceedings] [ital of] [ital the] 17[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating] (European Physical Society, Petit-Lancy, Switzerland, 1990), p. 1540]. Such waves are observed to originate from the outer midplane edge of the plasma. It is shown that ion cyclotron harmonic waves can be destabilized by a low concentration of sub-Alfvenic deuterium or tritium beam ions, provided these ions havemore » a narrow distribution of speeds parallel to the magnetic field. Such a distribution is likely to occur in the edge plasma, close to the point of beam injection. The predicted instability gives rise to wave emission at propagation angles lying almost perpendicular to the field. In contrast to the magnetoacoustic cyclotron instability proposed as an excitation mechanism for fusion-product-driven ion cyclotron emission in the Joint European Torus (JET) [Phys. Plasmas [bold 1], 1918 (1994)], the instability proposed here does not involve resonant fast Alfven and ion Bernstein waves, and can be driven by sub-Alfvenic energetic ions. It is concluded that the observed emission from TFTR can be driven by beam ions.« less
NASA Astrophysics Data System (ADS)
Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.
2003-03-01
For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.
Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2014-01-13
Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.
Reduction of angular divergence of laser-driven ion beams during their acceleration and transport
NASA Astrophysics Data System (ADS)
Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.
2015-05-01
Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.
Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate.
Wang, Liang-Yu; Zhang, Yun-Hong; Zhao, Li-Jun
2005-02-03
Raman spectroscopy was used to study structural changes, in particular, the formation of contact-ion pairs in supersaturated aqueous NaCH(3)COO and Mg(CH(3)COO)(2) droplets at ambient temperatures. The single droplets levitated in an electrodynamic balance (EDB), lost water, and became supersaturated when the relative humidity (RH) decreased. For NaCH(3)COO droplet the water-to-solute molar ratio (WSR) was 3.87 without solidification when water molecules were not enough to fill in the first hydration layer of Na(+), in favor of the formation of contact-ion pairs. However, the symmetric stretching vibration band (nu(3) mode) of free -COO(-) constantly appeared at 1416 cm(-1), and no spectroscopic information related to monodentate, bidentate, or bridge bidentate contact-ion pairs was observed due to the weak interactions between the Na(+) and acetate ion. On the other hand, the band of methyl deformation blue shifted from 1352 to 1370 cm(-1) (at RH = 34.2%, WSR = 2.43), corresponding to the solidification process of a novel metastable phase in the highly supersaturated solutions. With further decreasing RH, a small amount of supersaturated solution still existed and was proposed to be hermetically covered by the metastable phase of the particle. In contrast, the interaction between Mg(2+) and acetate ion is much stronger. When WSR decreased from 21.67 to 2.58 for the Mg(CH(3)COO)(2) droplet, the band of C-C-symmetric stretching (nu(4) mode) had a blue shift from 936 to 947 cm(-1). The intensity of the two new shoulders (approximately 1456 and approximately 1443 cm(-1)) of the nu(3) band of free -COO(-) at 1420 cm(-1) increased with the decrease of WSR. These changes were attributed to the formation of contact-ion pairs with bidentate structures. In particular, the small frequency difference between the shoulder at approximately 1443 cm(-1) and the nu(3) band of the free -COO(-) group (approximately 1420 cm(-1)) was proposed to be related to the formation of a chain structure based on the contact-ion pairs of bridge bidentate. The continuous formation of various contact-ion pairs started at higher WSR value (WSR = 15.5) greatly reduced the hygroscopic properties of Mg(CH(3)COO)(2) droplet, so that the WSR of Mg(CH(3)COO)(2) droplets was even lower than that of NaCH(3)COO in the RH range of 40-60%.
Chen, Yan; Ding, Jiawang; Qin, Wei
2012-12-01
A potentiometric biosensor for the determination of trypsin is described based on current-controlled reagent delivery. A polymeric membrane protamine-sensitive electrode with dinonylnaphthalene sulfonate as cation exchanger is used for in situ generation of protamine. Diffusion of protamine across the polymeric membrane can be controlled precisely by applying an external current. The hydrolysis catalyzed with trypsin in sample solution decreases the concentration of free protamine released at the sample-membrane interface and facilitates the stripping of protamine out of the membrane surface via the ion-exchange process with sodium ions from the sample solution, thus decreasing the membrane potential, by which the protease can be sensed potentiometrically. The influences of anodic current amplitude, current pulse duration and protamine concentration in the inner filling solution on the membrane potential response have been studied. Under optimum conditions, the proposed protamine-sensitive electrode is useful for continuous and reversible detection of trypsin over the concentration range of 0.5-5UmL(-1) with a detection limit of 0.3UmL(-1). The proposed detection strategy provides a rapid and reagentless way for the detection of protease activities and offers great potential in the homogeneous immunoassays using proteases as labels. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo
2002-12-01
To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.
Quightness: A proposed figure of merit for sources of low-energy, high-charge-state ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmieder, R.W.
A variety of ion sources, including the EBIS and ECRIS, are distinguished by their ability to produce low-energy ions of very high charge state. It would be useful to have some figure of merit that is particularly sensitive to this performance. I propose here such a quantity, called Quightness,'' which is related to brightness but which enhances the contrast between sources supplying multicharged ions of low energy. The rationale for introducing this quantity, its etymology and relationship to other figures of merit, and some representative values are presented.
BC3 as electrode for Mg ion batteries
NASA Astrophysics Data System (ADS)
Joshi, Rajendra; Barone, Veronica; Peralta, Juan
We propose layered BC3 a novel electrode material for rechargeable magnesium ion batteries. Using dispersion-corrected density functional theory calculations, we show that layered BC3 can intercalate Mg ions between its layers to form the stoichoimetry Mg0.5BC3, which corresponds to a theoretical capacity of 572 mAh/g. We also propose a three step staging mechanism for Mg ion intercalation in BC3 and show that it presents a moderate open circuit voltage in the range of 0.82 to 0.96 V with respect to metallic Mg anode. NSF DMR-1206920, NSF CBET-1335944.
Effects of air ions on the neonatal growth of laboratory rats
NASA Astrophysics Data System (ADS)
Hinsull, S. M.; Bellamy, D.; Head, E. L.
1981-12-01
The effect of continuous positive and negative ionization on the growth of rats during the pre and post natal period, up to 10 weeks of age was investigated. It was found that continuous exposure to 1.0×104 pos. ions/ml had no detrimental effect on the animals at any stage of their development. In contrast, exposure to 1.0×104 neg. ions/ml, during gestation and the early post natal period, resulted in some adverse effects on growth and development. However, when exposure to this level of negative ions began at the time of weaning, no adverse effects were observed.
Temperature field of dielectric films under continuous ion-beam irradiation
NASA Astrophysics Data System (ADS)
Salikhov, T. Kh.; Abdurahmonov, A. A.
2017-11-01
In the present study, we theoretically examine the formation process of the steady-state temperature field in dielectrics under irradiation with a continuous ion beam in air with allowance for the temperature dependence of thermophysical quantities. Analytical expressions for the temperature field were obtained. An interconnected system of nonlinear algebraic equations for the steady-state temperatures at the front (irradiated) and rear surfaces of the sample, and the steady-state temperature at the interface between the ion-damaged and non-damaged region was obtained; by numerical solution of this system, a nonlinear dependence of the mentioned temperatures on the characteristics of incident ion flux was revealed.
Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes
2016-11-01
Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions. Copyright © 2016 Elsevier Ltd. All rights reserved.
An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques
NASA Astrophysics Data System (ADS)
Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh
2016-07-01
The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.
The collective gyration of a heavy ion cloud in a magnetized plasma
NASA Technical Reports Server (NTRS)
Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.
1990-01-01
In both the ionospheric barium injection experiments CRIT 1 and CRIT 2, a long duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomena which was proposed for the CRIT 1 experiment is compared to the results from CRIT 2 which made a much more complete set of measurements. The model follows the motion of a low Beta ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction v sub i but slightly tilted towards the self polarization direction E sub p = -V sub i by B. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by Delta E/Delta B approximately equal to V sub A. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT 2. The possibility to extend the model to the active region, where the ions are produces in this type of self-ionizing injection experiments, is discussed.
Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study
NASA Astrophysics Data System (ADS)
March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.
1992-01-01
Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken into consideration and ion kinetic energies during the sorting period were found to be sufficiently great that dissociative losses may be appreciable in a collisional system. A possible strategy for reducing kinetic energy during this process has been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru
The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less
NASA Astrophysics Data System (ADS)
Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang
2016-01-01
Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h
Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms
NASA Astrophysics Data System (ADS)
Keesee, A. M.; Scime, E. E.
2012-12-01
The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.
Dipole Excitation With A Paul Ion Trap Mass Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A.
Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion withmore » numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.« less
Cooling rates and intensity limitations for laser-cooled ions at relativistic energies
NASA Astrophysics Data System (ADS)
Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal
2018-04-01
The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.
Jun, Sangmi; Gillespie, Joel R; Shin, Byong-kyu; Saxena, Sunil
2009-11-17
The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.
Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.
Tsuda, I; Kato, K; Nozaki, K
1996-12-01
Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economou, Demetre J.
As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less
Electron Bombardment Ion Thruster
1970-08-21
Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.
López-Alías, José F; Martinez-Gomis, Jordi; Anglada, Josep M; Peraire, Maria
2006-09-01
The aims of this study were to quantify the metallic ions released by various dental alloys subjected to a continuous flow of saliva and to estimate the nutritional and toxicological implications of such a release. Four pieces of three nickel-based, one noble, one high-noble and two copper-aluminum alloys were cast and then immersed in a continuous flow of artificial saliva for 15 days. To simulate three meals a day, casts were subjected to thrice-daily episodes, lasting 30 min each and consisting of pH decreases and salinity increases. After 15 days, the metallic ions in the artificial saliva were analyzed. Data were expressed as averaged release rate: microg/cm2/day of ion released for each alloy. The highest value of 95% Cl of each ion was adapted to a hypothetical worst scenario of a subject with 100 cm2 of exposed metal surface. The results were compared with the tolerable upper daily intake level of each ion. The copper-aluminum alloys released copper, aluminum, nickel, manganese and iron. The nickel-based alloys essentially released nickel and chromium, while the beryllium-containing alloy released beryllium and significantly more nickel. The noble and high-noble alloys were very resistant to corrosion. The amount of ions released remained far below the upper tolerable intake level, with the exception of nickel, released by beryllium-containing nickel-based alloy, whose levels approach 50% of this threshold. The daily amount of ions released seems to be far below the tolerable upper intake levels for each ion.
NASA Astrophysics Data System (ADS)
Bagheri Gh., A.; Yosefi rad, A.; Rezvani, M.; Roshanzamir, S.
2012-04-01
The complexation reaction of cephalosporins namely cefotaxime (CTX), cefuroxime (CRX), and cefazolin (CEFAZ) with palladium (II) ions have been studied in water and DMF in 25 °C by the spectrophotometric methods. The method is based on the formation of yellow to yellowish brown complex between palladium (II) chloride and the investigated cephalosporins in the presence of sodium lauryl sulfate (SLS) as surfactant. The complexation process was optimized in terms of pH, temperature and contact time. The stoichiometry of all the complexes was found to be 2:1 (metal ion/ligand) for CTX, CRX, and 1:2 for CEFAZ. The stoichiometry of palladium (II)-cephalosporins was estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. These drugs could be determined by measuring the absorbance of each complex at its specific λmax. The results obtained are in good agreement with those obtained using the official methods. The proposed method was successfully applied for the determination of these compounds in their dosage forms.
Electrical Heart Defibrillation with Ion Channel Blockers
NASA Astrophysics Data System (ADS)
Feeney, Erin; Clark, Courtney; Puwal, Steffan
Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
Radioactive ion beams at ISOLDE/CERN recent developments and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georg, U.; Catherall, R.; Giles, T.
1999-11-16
Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less
Radioactive Ion Beams at ISOLDE/CERN Recent Developments and Perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. Georg; J.R.J. Bennett; U.C. Bergmann
1999-12-31
Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, Mikhail E.; Prasad, Satendra; Prior, David C.
2011-02-23
Liquid chromatography (LC)-triple quadrupole mass spectrometers operating in a Multiple Reaction Monitoring (MRM) mode are increasingly used for quantitative analysis of low abundance analytes in highly complex biochemical matrices. After development and selection of optimum MRM transition, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an Ion Funnel Trapmore » (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several reference peptides. The sensitivity improvement observed with the IFT coupled to the triple quadrupole instrument is based on several unique features. First, ion accumulation in the radio frequency (RF) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density per unit time compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed up to 5-fold enhanced peak amplitude and 2-3 fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~ 4 to ~ 8.« less
New Designs of Biofuel Cells and Their Work Testing
NASA Astrophysics Data System (ADS)
Stom, D. I.; Zhdanova, G. O.; Kashevskii, A. V.
2017-11-01
The developed designs and modifications of biofuel elements (BFC) are presented. The approbation of their work using strains and consortia of microorganisms is given. The proposed designs made it possible to solve a number of problems that arise when working with BFC: 1) gain access to the contents of the anode BFC space without disturbing its sterility and anaerobic environment; 2) take samples from the anode space for chemical and microbiological analysis without interrupting the BFC operation; 3) conduct continuous monitoring of electrochemical processes directly in the anode space (Ox-Red media, electrode charge, concentration of hydrogen and other ions by means of potentiometry).
Detection and clearing of trapped ions in the high current Cornell photoinjector
Full, S.; Bartnik, A.; Bazarov, I. V.; ...
2016-03-03
Here, we have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence ofmore » bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.« less
Zhang, Huacheng; Hou, Xu; Yang, Zhe; Yan, Dadong; Li, Lin; Tian, Ye; Wang, Huanting; Jiang, Lei
2015-02-18
Inspired by biological asymmetric ion channels, new shape-tunable and pH-responsive asymmetric hourglass single nanochannel systems demonstrate unique ion-transport properties. It is found that the change in shape and pH cooperatively control the ion transport within the nanochannel ranging from asymmetric shape with asymmetric ion transport, to asymmetric shape with symmetric ion transport and symmetric shape with symmetric ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei
We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design aremore » summarized.« less
Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.
Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong
2014-04-01
A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
New continuous recording procedure of holographic information on transient phenomena
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Nishihara, H. Keith; Murakami, Terutoshi
1992-09-01
A new method for continuous recording of holographic information, 'streak holography,' is proposed. This kind of record can be useful for velocity and acceleration measurement as well as for observing a moving object whose trajectory cannot be predicted in advance. A very high speed camera system has been designed and constructed for streak holography. A ring-shaped 100-mm-diam film has been cut out from the high-resolution sheet film and mounted on a thin duralmin disk, which has been driven to rotate directly by an air-turbine spindle. Attainable streak velocity is 0.3 mm/microsecond(s) . A direct film drive mechanism makes it possible to use a relay lens system of extremely small f number. The feasibility of the camera system has been demonstrated by observing several transient events, such as the forced oscillation of a wire and the free fall of small glass particles, using an argon-ion laser as a light source.
Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations
NASA Astrophysics Data System (ADS)
Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.
2017-11-01
Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.
NASA Astrophysics Data System (ADS)
Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo
2018-01-01
In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.
Study of Early Transition Metal Carbides for Energy Storage Applications
NASA Astrophysics Data System (ADS)
Dall'Agnese, Yohan
An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the study of MXene electrodes for supercapacitors in an organic electrolyte; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) in acetonitrile. High volumetric capacitances, up to 245 F/cm 3, were achieved by using carbon nanotubes as an additive to improve ion accessibility to Ti3C2 layers. The redox intercalation of large EMI+ cations between Ti3C2 layers at -0.4 V vs. Ag was observed by X-ray diffraction.
Development and characterization of a high-reliability, extended-lifetime H- ion source
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Barrows, Preston; Sherman, Joseph
2015-11-01
Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.
Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)
2017-05-16
This public data set contains openly-documented, machine readable digital research data corresponding to figures published in M.G. Burke et. al., 'Continuous, Edge Localized Ion Heating During Non-Solenoidal Plasma Startup and Sustainment in a Low Aspect Ratio Tokamak,' Nucl. Fusion 57, 076010 (2017).
Mechanically Activated Ion Channels
Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem
2015-01-01
Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...
2017-12-12
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less
NASA Astrophysics Data System (ADS)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.
2017-12-01
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less
Colorimetric Detection of Mercury(II) Ion in Aqueous Solution Using Silver Nanoparticles.
Firdaus, M Lutfi; Fitriani, Ikka; Wyantuti, Santhy; Hartati, Yeni W; Khaydarov, Renat; McAlister, Jason A; Obata, Hajime; Gamo, Toshitaka
2017-01-01
Novel green-chemistry synthesis of silver nanoparticles (AgNPs) is introduced as a low-cost, rapid and easy-to-use analytical method for mercury ion detection. Aqueous fruit extract of water apple (Syzygium aqueum) was used for the first time as bioreductant to synthesize stable AgNPs. The prepared AgNPs have a yellowish-brown color with a surface plasmon resonance peak at 420 nm. The addition of Hg(II) ions then changes the AgNPs color to colorless. The color change was in proportion to the concentration of Hg(II) ions. The presence of other metal ions in the system was also evaluated. The proposed method shows good selectivity and sensitivity towards Hg(II) ions. Using UV-visible spectrophotometry, the detection limit of the developed method was 8.5 × 10 -7 M. The proposed method has been successfully applied for determination of Hg(II) ions in tap and lake water samples with precision better than 5%.
INTRODUCTION One proposed mechanism of action of electromagnetic fields (EMFs) on biological systems is the Ion Parametric Resonance (IPR) model, which has been experimentally validated in neuronal PC-12 cells [1, 2]. It proposes that when applied EMFs are tuned to resonate with...
NASA Astrophysics Data System (ADS)
Miller, Mitchell
Ions dissolved in solution are known to interact in remarkable ways with charged Langmuir monolayers. The organic monolayer can be used as a molecular template for ordered nucleation of inorganic crystals (biomineralization) and functional nanoparticles. However, the clear majority of experiments demonstrating these behaviors have been performed with divalent ions. Trivalent ions are present in several important processes that are unique from previously studied divalent systems. We will demonstrate that trivalent ions under floating monolayers can model two important systems: charge inversion and liquid-liquid solvent extraction. Using in situ synchrotron x-ray scattering and emission methods, we can make direct, nanoscale observations of the interactions between ion and monolayer. Charge inversion is a fascinating phenomenon in which small ions of an opposite charge to some large object (colloidal particle, DNA molecule, etc.) will attach to and reverse the object's charge, rather than simply neutralizing it. There are many experimental systems demonstrating this behavior and an enormous body of theoretical work to explain it. Two classes of explanation exist for how charge inversion may occur, "chemical" and "physical" mechanism. Using grazing incidence diffraction (GID), we have found that ions can form an ordered lattice which is incommensurate to a floating, charged monolayer. Because the ions are incommensurate, they cannot be specifically attached to molecules in the monolayer and must be, therefore, held in place by "physical" means. Solvent extraction can be an extremely complex procedure, so our approach to studying it is to simplify the system into a basic model. Ordinarily, two immiscible liquids--an aqueous phase containing some desired species and other impurities and an organic phase, which sometimes contains extractant molecules that improve efficiency--are mixed together and allowed to separate again. While the liquids are being mixed together, the target species from the aqueous phase is pulled across the interface into the organic phase. The mechanism by which the transfer occurs is very poorly understood and very difficult to study directly since it is a very dynamic process and obscured by the bulk of the liquids. Here we propose that the air-water interface is a model of the liquid-liquid interface; in our model, the hydrophobic "organic" phase is the air above the water. This lets us make direct observations of the interactions between ions dissolved in the aqueous phase and the extractant molecules in the organic phase with x-rays, something which would be impossible in an ordinary solvent extraction experiment. We observed a sharp transition in ordering as the atomic weight of the ion dissolved in solution is increased. One would expect a continuous variation, since the size of the ions varies continuously. Second, using x-ray fluorescence, we find that heavier lanthanides are much more strongly attracted to the monolayer than light ones. The unexpected nature of our results emphasizes the need for bottom-up approaches to understanding these systems rather than the top-down method used for the last century. In addition, our results demonstrate that it is, indeed, possible to overcome the experimental difficulties and make the types of measurements necessary for this approach.
Separation of metal ions in nitrate solution by ultrasonic atomization
NASA Astrophysics Data System (ADS)
Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka
2004-11-01
In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.
Miniature Electrostatic Ion Thruster With Magnet
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
2006-01-01
A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.
Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard
2016-01-21
The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.
77 FR 17566 - Notice of Proposed Buy America Waivers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... their ongoing process to secure a domestic supplier of Lithium Ion batteries. FTA seeks public comment... ongoing process to secure and qualify a domestic supplier of Lithium Ion batteries. The ESU is one of five... Hydride (NiMH) batteries with Lithium Ion and determined Lithium Ion was appropriate for transit bus...
Improved Linear-Ion-Trap Frequency Standard
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.
Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong
2013-08-01
The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochems, P.; Kirk, A. T.; Bunert, E.
Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less
Pseudo-Random Sequence Modifications for Ion Mobility Orthogonal Time of Flight Mass Spectrometry
Clowers, Brian H.; Belov, Mikhail E.; Prior, David C.; Danielson, William F.; Ibrahim, Yehia; Smith, Richard D.
2008-01-01
Due to the inherently low duty cycle of ion mobility spectrometry (IMS) experiments that sample from continuous ion sources, a range of experimental advances have been developed to maximize ion utilization efficiency. The use of ion trapping mechanisms prior to the ion mobility drift tube has demonstrated significant gains over discrete sampling from continuous sources; however, these technologies have traditionally relied upon a signal averaging to attain analytically relevant signal-to-noise ratios (SNR). Multiplexed (MP) techniques based upon the Hadamard transform offer an alternative experimental approach by which ion utilization efficiency can be elevated to ∼ 50 %. Recently, our research group demonstrated a unique multiplexed ion mobility time-of-flight (MP-IMS-TOF) approach that incorporates ion trapping and can extend ion utilization efficiency beyond 50 %. However, the spectral reconstruction of the multiplexed signal using this experiment approach requires the use of sample-specific weighing designs. Though general weighing designs have been shown to significantly enhance ion utilization efficiency using this MP technique, such weighing designs cannot be applied to all samples. By modifying both the ion funnel trap and the pseudo random sequence (PRS) used for the MP experiment we have eliminated the need for complex weighing matrices. For both simple and complex mixtures SNR enhancements of up to 13 were routinely observed as compared to the SA-IMS-TOF experiment. In addition, this new class of PRS provides a two fold enhancement in ion throughput compared to the traditional HT-IMS experiment. PMID:18311942
Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.
1996-03-01
The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less
NASA Astrophysics Data System (ADS)
Borovkov, V. I.; Ivanishko, I. S.
2011-04-01
This study deals with the geminate ion recombination in the presence of bulk scavengers, that is the so-called scavenger problem, as well as with the effect of the scavenging reaction on the radiation-induced recombination fluorescence. Borovkov and Velizhanin (2004) have proposed a method to determine the rate constant of the bulk reaction between neutral scavengers and one of the geminate ions if the ion-molecular reaction prevented the formation of electronically excited states upon recombination involving a newly formed ion. If such pre-recombination quenching of the radiation-induced fluorescence took place, it manifested itself as a progressive decrease in the decay of the fluorescence intensity. The relative change in the fluorescence decay as caused by the scavengers was believed to be closely related to the kinetics of the scavenging reaction. The goal of the present study is to support this method, both computationally and experimentally because there are two factors, which cast doubt on the intuitively obvious approach to the scavenger problem: spatial correlations between the particles involved and the drift of the charged reagent in the electric field of its geminate partner. Computer simulation of geminate ions recombination with an explicit modeling of the motion trajectories of scavengers has been performed for media of low dielectric permittivity, i.e. for the maximal Coulomb interaction between the ions. The simulation has shown that upon continuous diffusion of the particles involved, the joint effect of the two above factors can be considered as insignificant with a high accuracy. Besides, it is concluded then that the method of pre-recombination quenching could be applied to study parallel and consecutive reactions where the yields of excited states in the reaction pathways are different with the use of very simple analytical relations of the formal chemical kinetics. The conclusion has been confirmed experimentally by the example of the reactions of electron transfer from the diphenylacetylene radical anion to dibromoethane and hexafluorobenzene in n-dodecane solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orendorff, Christopher J.; Nagasubramanian, Ganesan; Fenton, Kyle R.
As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improvemore » lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.« less
Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Centera)
NASA Astrophysics Data System (ADS)
Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.; Scheloske, S.; Spädtke, P.; Tinschert, K.
2008-02-01
Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year.
NASA Astrophysics Data System (ADS)
Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.
2018-03-01
Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.
Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile.
Miller, S W; Prince, B D; Bemish, R J
2017-10-01
A combined experimental and modeling effort is undertaken to assess a detection system composed of an orthogonal extraction time-of-flight (TOF) mass spectrometer coupled to a continuous ion source emitting an ion beam with kinetic energy of several hundred eV. The continuous ion source comprises an electrospray capillary system employing an undiluted ionic liquid emitting directly into vacuum. The resulting ion beam consists of ions with kinetic energy distributions of width greater than a hundred of eV and mass-to-charge (m/q) ratios ranging from 111 to 500 000 amu/q. In particular, the investigation aims to demonstrate the kinetic energy resolution along the ion beam axis (axial) of orthogonally extracted ions in measurements of the axial kinetic energy-specific mass spectrum, mass flow rate, and total ion current. The described instrument is capable of simultaneous measurement of a broad m/q range in a single acquisition cycle with approximately 25 eV/q axial kinetic energy resolution. Mass resolutions of ∼340 (M/ΔM, FWHM) were obtained for ions at m/q = 1974. Comparison of the orthogonally extracted TOF mass spectrum to mass flow and ion current measurements obtained with a quartz-crystal microbalance and Faraday cup, respectively, shows reasonable numeric agreement and qualitative agreement in the trend as a function of energy defect.
NASA Astrophysics Data System (ADS)
Xue, Junjun; Cai, Qing; Zhang, Baohua; Ge, Mei; Chen, Dunjun; Zheng, Jianguo; Zhi, Ting; Tao, Zhikuo; Chen, Jiangwei; Wang, Lianhui; Zhang, Rong; Zheng, Youdou
2017-11-01
Incubation and shape transition are considered as two essential processes for nucleating of self-assembly InGaN nanocolumns (NCs) in traditional way. We propose a new approach for nuclei forming directly by in-situ annealing and ion irradiating the InGaN template during growing process. The nanoislands, considered as the nuclei of NCs, were formed by a combinational effect of thermal and ion etching (TIE), which made the gaps of the V-pits deeper and wider. On account of the decomposition of InGaN during TIE process, more nitride-rich amorphous alloys would intent to accumulate in the corroded V-pits. The amorphous alloys played a key role to promote the following growth from 2D regime into Volmer-Weber growth regime so that the NC morphology took place, rather than a compact film. As growth continued, the subsequently epitaxial InGaN alloys on the annealed NC nuclei were suffered in biaxial compressive stress for losing part of indium content from the NC nuclei during the TIE process. Strain relaxation, accompanied by thread dislocations, came up and made the lattice planes misoriented, which prevented the NCs from coalescence into a compact film at later period of growing.
Electronic and Ionic Transport in Processable Conducting Polymers
1991-05-28
doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5
Recombination of H3(+) and D3(+) Ions in a Flowing Afterglow Plasma
NASA Technical Reports Server (NTRS)
Gougousi, T.; Johnsen, R.; Golde, M. F.
1995-01-01
The analysis of flowing afterglow plasmas containing H3(+) or D3(+) ions indicates that the de-ionization of such plasmas does not occur by simple dissociative recombination of ions with electrons. An alternative model of de-ionization is proposed in which electrons are captured into H3(**) auto-ionization Rydberg states that are stabilized by collisional mixing of the Rydberg molecules' angular momenta. The proposed mechanism would enable de-ionization to occur without the need for dissociative recombination by the mechanisms of potential-surface crossings.
Elkin, Kyle; Riviello, John; Small, Hamish
2015-07-17
This work describes a membrane based electrodialytic ion reflux device (IRD), which uses water as the pumped phase and integrates isocratic and gradient eluent generation and suppression. The current design incorporates several ion exchange membranes to create discrete chambers for suppression and eluent generation, while isolating the electrodes from the analytical stream. A small volume of recycled water can be used as the pumped phase while continuously refluxing the eluent ions. This current design permits electronically controlled eluent generation of at least 16.4μeq KOHmin(-1), while maintaining low suppressed background conductivity (<0.5μS/cm). The device was operated in gradient or isocratic mode continuously for up to 6 weeks. During this period, over 500 gradient and isocratic injections were performed, showing peak retention time precision below 1.5% RSD. Published by Elsevier B.V.
Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.
McCarren, D; Scime, E
2015-10-01
We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.
Michelmore, Andrew; Bryant, Paul M; Steele, David A; Vasilev, Krasimir; Bradley, James W; Short, Robert D
2011-10-04
New data shed light on the mechanisms of film growth from low power, low pressure plasmas of organic compounds. These data rebalance the widely held view that plasma polymer formation is due to radical/neutral reactions only and that ions play no direct role in contributing mass at the surface. Ion reactions are shown to play an important role in both the plasma phase and at the surface. The mass deposition rate and ion flux in continuous wave hexamethyl disiloxane (HMDSO) plasmas have been studied as a function of pressure and applied RF power. Both the deposition rate and ion flux were shown to increase with applied power; however, the deposition rate increased with pressure while the ion flux decreased. Positive ion mass spectrometry of the plasma phase demonstrates that the dominant ionic species is the (HMDSO-CH(3))(+) ion at m/z 147, but significant fragmentation and subsequent oligomerization was also observed. Chemical analysis of the deposits by X-ray photoelectron spectroscopy and secondary ion mass spectrometry show that the deposits were consistent with deposits reported by previous workers grown from plasma and hyperthermal (HMDSO-CH(3))(+) ions. Increasing coordination of silicon with oxygen in the plasma deposits reveals the role of ions in the growth of plasma polymers. Comparing the calculated film thicknesses after a fixed total fluence of 1.5 × 10(19) ions/m(2) to results for hyperthermal ions shows that ions can contribute significantly to the total absorbed mass in the deposits. © 2011 American Chemical Society
In-plant testing of membranes to treat electroplating wastewater
NASA Technical Reports Server (NTRS)
Shah, D. B.; Talu, Orhan
1995-01-01
This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form.
Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti
2014-06-15
A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO4)2; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni(2+) ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni(2+) ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni(2+) ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni(2+) ions and/or other heavy metal ions from wastewater in various industrial processes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Ki-Yong; Epureanu, Bogdan I.
2017-10-01
A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy
2016-05-01
The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.
Ice matrix in reconfigurable microfluidic systems
NASA Astrophysics Data System (ADS)
Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.
2013-07-01
Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.
Assessment of metal ion concentration in water with structured feature selection.
Naula, Pekka; Airola, Antti; Pihlasalo, Sari; Montoya Perez, Ileana; Salakoski, Tapio; Pahikkala, Tapio
2017-10-01
We propose a cost-effective system for the determination of metal ion concentration in water, addressing a central issue in water resources management. The system combines novel luminometric label array technology with a machine learning algorithm that selects a minimal number of array reagents (modulators) and liquid sample dilutions, such that enable accurate quantification. The algorithm is able to identify the optimal modulators and sample dilutions leading to cost reductions since less manual labour and resources are needed. Inferring the ion detector involves a unique type of a structured feature selection problem, which we formalize in this paper. We propose a novel Cartesian greedy forward feature selection algorithm for solving the problem. The novel algorithm was evaluated in the concentration assessment of five metal ions and the performance was compared to two known feature selection approaches. The results demonstrate that the proposed system can assist in lowering the costs with minimal loss in accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Curtis, S. A.; Grebowsky, J. M.
1980-07-01
Potentially serious environmental effects exist when cargo orbital transfer vehicle (COTV) ion propulsion is used on the scale proposed in the preliminary definition studies of the Satellite Power System. These effects of the large scale injections of ion propulsion exhaust in the plasmasphere and in the outer magnetosphere were shown to be highly model dependent with major differences existing in the predicted effects of two models, the ion cloud model and the ion sheath model. The expected total number density deposition of the propellant Ar(+) in the plasmasphere, the energy spectra of the deposited Ar(+) and time dependent behavior of the Ar(+) injected into the plasmasphere by a fleet of COTV vehicles differ drastically between the two models. The ion sheath model was demonstrated to be applicable to the proposed Ar(+) beam physics if the beam was divergent and turbulent whereas the ion cloud model was not a realistic approximation for such a beam because the "frozen-field" assumption on which it is based is not valid.
Ion transferring in polyelectrolyte networks in electric fields
NASA Astrophysics Data System (ADS)
Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica
Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.
Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.
2012-01-01
The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.
Ion implantation for manufacturing bent and periodically bent crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it
2015-08-10
Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to producemore » X-ray beams.« less
Semi-empirical calculations for the ranges of fast ions in silicon
NASA Astrophysics Data System (ADS)
Belkova, Yu. A.; Teplova, Ya. A.
2018-04-01
A semi-empirical method is proposed to calculate the ion ranges in energy region E = 0.025-10 MeV/nucleon. The dependence of ion ranges on the projectile nuclear charge, mass and velocity is analysed. The calculations presented for ranges of ions with nuclear charges Z = 2-10 in silicon are compared with SRIM results and experimental data.
A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-02-04
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.
A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-01-01
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412
NASA Astrophysics Data System (ADS)
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-01
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-15
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel δ-doped partially insulated junctionless transistor for mixed signal integrated circuits
NASA Astrophysics Data System (ADS)
Patil, Ganesh C.; Bonge, Vijaysinh H.; Malode, Mayur M.; Jain, Rahul G.
2016-02-01
In this paper, δ-doped partially insulated junctionless transistor (δ-Pi-OXJLT) has been proposed which shows that, employing highly doped δ-region below the channel not only reduces the off-state leakage current (IOFF) and short channel effects (SCEs) but also reduce the requirements of scaling channel thickness of junctionless transistor (JLT). The comparative analysis of digital and analog circuit performance of proposed δ-Pi-OXJLT, bulk planar (BP) JLT and silicon-on-insulator (SOI) JLT has also been carried out. The digital parameters analyzed in this work are, on-state drive current (ION), IOFF, ION/IOFF ratio, static power dissipation (PSTAT) whereas the analog parameters analyzed includes, transconductance (GM), transconductance generation factor (GM/IDS), intrinsic gain (GMRO) and cut-off frequency (fT) of the devices. In addition, scaling behavior of the devices is studied for various channel lengths by using the parameters such as drain induced barrier lowering (DIBL) and sub-threshold swing (SS). It has been found that, the proposed δ-Pi-OXJLT shows significant reduction in IOFF, DIBL and SS over BPJLT and SOIJLT devices. Further, ION and ION/IOFF ratio in the case of proposed δ-Pi-OXJLT also improves over the BPJLT device. Furthermore, the improvement in analog figures of merit, GM, GM/IDS, GMRO and fT in the case of proposed δ-Pi-OXJLT clearly shows that the proposed δ-Pi-OXJLT is the promising device for mixed signal integrated circuits.
Scalable implementation of boson sampling with trapped ions.
Shen, C; Zhang, Z; Duan, L-M
2014-02-07
Boson sampling solves a classically intractable problem by sampling from a probability distribution given by matrix permanents. We propose a scalable implementation of boson sampling using local transverse phonon modes of trapped ions to encode the bosons. The proposed scheme allows deterministic preparation and high-efficiency readout of the bosons in the Fock states and universal mode mixing. With the state-of-the-art trapped ion technology, it is feasible to realize boson sampling with tens of bosons by this scheme, which would outperform the most powerful classical computers and constitute an effective disproof of the famous extended Church-Turing thesis.
The High Power Electric Propulsion (HiPEP) Ion Thruster
NASA Technical Reports Server (NTRS)
Foster, John E.; Haag, Tom; Patterson, Michael; Williams, George J., Jr.; Sovey, James S.; Carpenter, Christian; Kamhawi, Hani; Malone, Shane; Elliot, Fred
2004-01-01
Practical implementation of the proposed Jupiter Icy Moon Orbiter (JIMO) mission, which would require a total delta V of approximately 38 km/s, will require the development of a high power, high specific impulse propulsion system. Initial analyses show that high power gridded ion thrusters could satisfy JIMO mission requirements. A NASA GRC-led team is developing a large area, high specific impulse, nominally 25 kW ion thruster to satisfy both the performance and the lifetime requirements for this proposed mission. The design philosophy and development status as well as a thruster performance assessment are presented.
NASA Astrophysics Data System (ADS)
Neiner, C.; Hubert, A.-M.; Floquet, M.; Jankov, S.; Henrichs, H. F.; Foing, B.; Oliveira, J.; Orlando, S.; Abbott, J.; Baldry, I. K.; Bedding, T. R.; Cami, J.; Cao, H.; Catala, C.; Cheng, K. P.; Domiciano de Souza, A., Jr.; Janot-Pacheco, E.; Hao, J. X.; Kaper, L.; Kaufer, A.; Leister, N. V.; Neff, J. E.; O'Toole, S. J.; Schäfer, D.; Smartt, S. J.; Stahl, O.; Telting, J.; Tubbesing, S.; Zorec, J.
2002-06-01
omega Ori (HD 37490, HR 1934) is a Be star known to have presented variations. In order to investigate the nature and origin of its short-term and mid-term variability, a study is performed of several spectral lines (Hα , Hdelta , ion {He}i 4471, 4713, 4921, 5876, 6678, ion {C}{ii} 4267, 6578, 6583, ion {Mg}{ii} 4481, ion {Si}{iii} 4553 and ion {Si}{ii} 6347), based on 249 high signal-to-noise high-resolution spectra taken with 8 telescopes over 22 consecutive nights during the MuSiCoS (Multi SIte COntinuous Spectroscopy) campaign in November-December 1998. The stellar parameters are revisited and the projected rotational velocity (vsin i = 179 km s-1) is redetermined using several methods. With the MuSiCoS 98 dataset, a time series analysis of line-profile variations (LPVs) is performed using the Restricted Local Cleanest (RLC) algorithm and a least squares method. The behaviour of the velocity of the centroid of the lines, the equivalent widths and the apparent vsini for several lines, as well as Violet and Red components of photospheric lines affected by emission (red ion {He}i lines, ion {Si}{ii} 6347, ion {C}{ii} 6578, 6583) are analyzed. The non-radial pulsation (NRP) model is examined using phase diagrams and the Fourier-Doppler Imaging (FDI) method. The LPVs are consistent with a NRP mode with l = 2 or 3, |m| = 2 with frequency 1.03 c d-1. It is shown that an emission line outburst occurred in the middle of the campaign. Two scenarios are proposed to explain the behaviour of a dense cloud, temporarily orbiting around the star with a frequency 0.46 c d-1, in relation to the outburst. Based on observations taken during the MuSiCoS 98 campaign at OHP (France), La Silla (ESO, Chile, ID 62.H-0270), Mount Stromlo (Australia), Xinglong Station (China), Kitt Peak (USA), MCT/LNA (Brazil) and INT (Isaac Newton Group, La Palma Island).
Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu
2015-10-15
We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.
NASA Astrophysics Data System (ADS)
Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying
2018-05-01
Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.
The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)
NASA Technical Reports Server (NTRS)
Novak, Howard L.
2003-01-01
This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.
A new tritium monitor design based on plasma source ion implantation technique
NASA Astrophysics Data System (ADS)
Nassar, Rafat Mohammad
Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.
Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2014-02-03
SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled
Laser-desorption tandem time-of-flight mass spectrometry with continuous liquid introduction
NASA Astrophysics Data System (ADS)
Williams, Evan R.; Jones, Glenn C., Jr.; Fang, LiLing; Nagata, Takeshi; Zare, Richard N.
1992-05-01
A new method to combine aqueous sample introduction with matrix assisted laser desorption mass spectrometry (MS) for interfacing liquid-chromatographic techniques, such as capillary electrophoresis, to MS is described. Aqueous sample solution is introduced directly into the ion source of a time-of-. flight (TOF) mass spectrometer through a fused silica capillary; evaporative cooling results in ice formation at the end of the capillary. The ice can be made to extrude continuously by using localized resistive heating. With direct laser desorption, molecular ions from proteins as large as bovine insulin (5734 Da) can be produced. Two-step desorption/photoionization with a variety of wavelengths is demonstrated, and has the advantages of improved resolution and shot-to-shot reproducibility. Ion structural information is obtained using surface-induced dissociation with an in-line collision device in the reflectron mirror of the TOF instrument. Product ion resolution of ~70 is obtained at m/z77. Extensive fragmentation can be produced with dissociation efficiencies between 7-15% obtained for molecular ions of small organic molecules. Efficiencies approaching 30% are obtained for larger peptide ions.
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W; Sherer, Edward C; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M 2+ - R 1 + or R 2 + ] + in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H] + was also observed. Only a small amount of the doubly charged M 2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H] + was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular E i elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W.; Sherer, Edward C.; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M2+ - R1 + or R2 +]+ in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H]+ was also observed. Only a small amount of the doubly charged M2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H]+ was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular Ei elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations.
A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon
2017-06-01
This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.
Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation
NASA Technical Reports Server (NTRS)
Blaise, G.; Slodzian, G.
1977-01-01
Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.
Electron-less negative ion extraction from ion-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro; Aanesland, Ane
2015-03-09
This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids aremore » biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.« less
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions
NASA Astrophysics Data System (ADS)
Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif
2018-02-01
Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2015-02-01
We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.
Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu
2016-02-01
It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro
2015-04-28
An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.
Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei
2018-06-01
The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.
NASA Astrophysics Data System (ADS)
Saquilayan, G. Q.; Wada, M.
2017-08-01
A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.
Fast quantum logic gates with trapped-ion qubits
NASA Astrophysics Data System (ADS)
Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.
2018-03-01
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
Fast quantum logic gates with trapped-ion qubits.
Schäfer, V M; Ballance, C J; Thirumalai, K; Stephenson, L J; Ballance, T G; Steane, A M; Lucas, D M
2018-02-28
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
NASA Astrophysics Data System (ADS)
Treindl, Ľudovít; Nagy, Arpád
1987-07-01
The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.
Study of storm time fluxes of heavy ions
NASA Technical Reports Server (NTRS)
Sharp, R. D.; Quinn, J. M.
1985-01-01
Ion composition data sets from Lockheed instruments on a variety of spacecraft were used in combination with each other and with data from other instruments to address a variety of problems regarding plasma sources, energization and transport within the magnetosphere. The availability of data from several differing orbits has given a highly flexible approach to attacking the continually evolving questions of magnetospheric physics. This approach is very successful and should be continued in the future.
NASA Technical Reports Server (NTRS)
Singh, Nagendra
1995-01-01
During the grant period starting July 1, 1994, our major effort has been on the following two problems: (1) Temporal behavior of heavy Oxygen ion outflow in response to a transverse heating event; and (2) Continued effort on ion heating by lower hybrid waves. We briefly describe here the research performed under these topics.
Measuring Light Air Ions in a Speleotherapeutic Cave
NASA Astrophysics Data System (ADS)
Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.
2017-02-01
The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.
Mathematical Models of Cobalt and Iron Ions Catalyzed Microwave Bacterial Deactivation
Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Williams, Arthur L.
2007-01-01
Time differences for Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli survival during microwave irradiation (power 130 W) in the presence of aqueous cobalt and iron ions were investigated. Measured dependencies had “bell” shape forms with maximum bacterial viability between 1 – 2 min becoming insignificant at 3 minutes. The deactivation time for E. faecalis, S. aureus and E.coli in the presence of metal ions were smaller compared to a water control (4–5 min). Although various sensitivities to the metal ions were observed, S. aureus and E. coli and were the most sensitive for cobalt and iron, respectively. The rapid reduction of viable bacteria during microwave treatment in the presence of metal ions could be explained by increased metal ion penetration into bacteria. Additionally, microwave irradiation may have increased the kinetic energy of the metal ions resulting in lower survival rates. The proposed mathematical model for microwave heating took into account the “growth” and “death” factors of the bacteria, forming second degree polynomial functions. Good relationships were found between the proposed mathematical models and the experimental data for bacterial deactivation (coefficient of correlation 0.91 – 0.99). PMID:17911658
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige
2006-01-01
Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.
Behbahani, Mohammad; Bagheri, Akbar; Taghizadeh, Mohsen; Salarian, Mani; Sadeghi, Omid; Adlnasab, Laleh; Jalali, Kobra
2013-06-01
This paper describes the preparation of new Pb(II)-imprinted polymeric particles using 2-vinylpyridine as a functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2'- azobisisobutyronitrile as the initiator, diphenylcarbazone as the ligand, acetonitril as the solvent, and Pb(NO(3))(2) as the template ion, through bulk polymerisation technique. The imprinted lead ions were removed from the polymeric matrix using 5 mL of HCl (2 mol.L(-1)) as the eluting solvent. The lead ion concentration was determined by flame atomic absorption spectrometry. Optimum pH for maximum sorption was obtained at 6.0. Sorption and desorption of Pb(II) ions on the IIP particles were quite fast and achieved fully over 5 min. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 75.4 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 245, 2.1%, and 0.42 ng mL(-1), respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This ion-imprinted polymer is an efficient solid phase for extraction and preconcentration of lead ions in complex matrixes. For proving that the proposed method is reliable, a wide range of food samples with different and complex matrixes was used. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modular Universal Scalable Ion-trap Quantum Computer
2016-06-02
SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, K. G.; Wetteland, C. J.; Cao, G.
2013-04-19
The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less
Novel H+-Ion Sensor Based on a Gated Lateral BJT Pair
Yuan, Heng; Zhang, Jixing; Cao, Chuangui; Zhang, Gangyuan; Zhang, Shaoda
2015-01-01
An H+-ion sensor based on a gated lateral bipolar junction transistor (BJT) pair that can operate without the classical reference electrode is proposed. The device is a special type of ion-sensitive field-effect transistor (ISFET). Classical ISFETs have the advantage of miniaturization, but they are difficult to fabricate by a single fabrication process because of the bulky and brittle reference electrode materials. Moreover, the reference electrodes need to be separated from the sensor device in some cases. The proposed device is composed of two gated lateral BJT components, one of which had a silicide layer while the other was without the layer. The two components were operated under the metal-oxide semiconductor field-effect transistor (MOSFET)-BJT hybrid mode, which can be controlled by emitter voltage and base current. Buffer solutions with different pH values were used as the sensing targets to verify the characteristics of the proposed device. Owing to their different sensitivities, both components could simultaneously detect the H+-ion concentration and function as a reference to each other. Per the experimental results, the sensitivity of the proposed device was found to be approximately 0.175 μA/pH. This experiment demonstrates enormous potential to lower the cost of the ISFET-based sensor technology. PMID:26703625
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... Series Airplanes; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration... rechargeable lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or... Specialists, Inc., proposes to use rechargeable lithium-ion batteries in a dual Class 3 EFB system on Boeing...
Microdose Induced Drain Leakage Effects in Power Trench MOSFETs: Experiment and Modeling
NASA Astrophysics Data System (ADS)
Zebrev, Gennady I.; Vatuev, Alexander S.; Useinov, Rustem G.; Emeliyanov, Vladimir V.; Anashin, Vasily S.; Gorbunov, Maxim S.; Turin, Valentin O.; Yesenkov, Kirill A.
2014-08-01
We study experimentally and theoretically the micro-dose induced drain-source leakage current in the trench power MOSFETs under irradiation with high-LET heavy ions. We found experimentally that cumulative increase of leakage current occurs by means of stochastic spikes corresponding to a strike of single heavy ion into the MOSFET gate oxide. We simulate this effect with the proposed analytic model allowing to describe (including Monte Carlo methods) both the deterministic (cumulative dose) and stochastic (single event) aspects of the problem. Based on this model the survival probability assessment in space heavy ion environment with high LETs was proposed.
Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ying; Smith, Kandler; Wood, Eric
Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model,more » which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.« less
NASA Astrophysics Data System (ADS)
Choi, Yong Seok; Kang, Dal Mo
2014-12-01
Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.
Hybrid Methods in Quantum Information
NASA Astrophysics Data System (ADS)
Marshall, Kevin
Today, the potential power of quantum information processing comes as no surprise to physicist or science-fiction writer alike. However, the grand promises of this field remain unrealized, despite significant strides forward, due to the inherent difficulties of manipulating quantum systems. Simply put, it turns out that it is incredibly difficult to interact, in a controllable way, with the quantum realm when we seem to live our day to day lives in a classical world. In an effort to solve this challenge, people are exploring a variety of different physical platforms, each with their strengths and weaknesses, in hopes of developing new experimental methods that one day might allow us to control a quantum system. One path forward rests in combining different quantum systems in novel ways to exploit the benefits of different systems while circumventing their respective weaknesses. In particular, quantum systems come in two different flavours: either discrete-variable systems or continuous-variable ones. The field of hybrid quantum information seeks to combine these systems, in clever ways, to help overcome the challenges blocking the path between what is theoretically possible and what is achievable in a laboratory. In this thesis we explore four topics in the context of hybrid methods in quantum information, in an effort to contribute to the resolution of existing challenges and to stimulate new avenues of research. First, we explore the manipulation of a continuous-variable quantum system consisting of phonons in a linear chain of trapped ions where we use the discretized internal levels to mediate interactions. Using our proposed interaction we are able to implement, for example, the acoustic equivalent of a beam splitter with modest experimental resources. Next we propose an experimentally feasible implementation of the cubic phase gate, a primitive non-Gaussian gate required for universal continuous-variable quantum computation, based off sequential photon subtraction. We then discuss the notion of embedding a finite dimensional state into a continuous-variable system, and propose a method of performing quantum computations on encrypted continuous-variable states. This protocol allows for a client, of limited quantum ability, to outsource a computation while hiding their information. Next, we discuss the possibility of performing universal quantum computation on discrete-variable logical states encoded in mixed continuous-variable quantum states. Finally, we present an account of open problems related to our results, and possible future avenues of research.
A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.
Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui
2017-12-11
In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.
Scalable Loading of a Two-Dimensional Trapped-Ion Array
2015-11-25
ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser
A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions
NASA Astrophysics Data System (ADS)
Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun
2018-03-01
In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.
Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J
2017-05-01
Gas-phase hydrogen/deuterium exchange (HDX) using D 2 O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.
ER@CEBAF: A test of 5-pass energy recovery at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, S. A.; Douglas, D.; Dubbe, C.
2016-06-06
Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energymore » ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.« less
Gurram, Raghu N; Menkhaus, Todd J
2014-07-01
Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1988-01-01
This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1989-01-01
This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
Li, Yen-Hsien; Chen, Chung-Yu; Kuo, Cheng-Hsiung; Lee, Maw-Rong
2016-09-28
During the electrospray ionization (ESI) process, ions move through a heated capillary aperture to be detected on arrival at a mass analyzer. However, the ESI process creates an ion plume, which expands into an ion cloud with an area larger than that of the heated capillary aperture, significantly contributing to an ion loss of 50% due to coulombic repulsion. The use of DC and RF fields to focus ions from the ion source into the vacuum chamber has been proposed in the literature, but the improvement of ion transmission efficiency is limited. To improve ion transmission, in this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball. The ion plume produced by the ESI process passes through the golf ball will reduce the size of the ion cloud then be focused and most of them flowed into the mass analyzer. Therefore, the sensitivity will be improved, the aim of this investigation is to study the enhancing of the signal using golf ball-assisted electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 20 trace amino acids in complex samples, including tea, urine and serum. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than that of a commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2-2700, 11-2525, and 31-342680 in oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1-9%, 0.4-9% and 0.4-8% at low, medium and high concentration levels of amino acids, respectively. The home-made golf ball-assisted ESI source effectively increased the signal intensity and enhanced the ion transmission efficiency and is also an easy, convenient and economical device. This technique can be applied to the analysis of trace compounds in complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.
Boldin, Ivan A; Nikolaev, Eugene N
2009-10-01
Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses. Copyright (c) 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gyergyek, T.; Kovačič, J.
2016-06-01
Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .
Plasma-surface interaction in negative hydrogen ion sources
NASA Astrophysics Data System (ADS)
Wada, Motoi
2018-05-01
A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.
Potential immobilized Saccharomyces cerevisiae as heavy metal removal
NASA Astrophysics Data System (ADS)
Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua
2015-05-01
Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.
Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen
2014-07-01
Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamics of ions in a water drop using the AMOEBA polarizable force field
NASA Astrophysics Data System (ADS)
Thaunay, Florian; Ohanessian, Gilles; Clavaguéra, Carine
2017-03-01
Various ions carrying a charge from -2 to +3 were confined in a drop of 100 water molecules as a way to model coordination properties inside the cluster and at the interface. The behavior of the ions has been followed by molecular dynamics with the AMOEBA polarizable force field. Multiply charged ions and small singly charged ions are found to lie inside the droplet, while bigger monovalent ions sit near the surface. The results provide a coherent picture of average structural properties as well as residence times for which a general trend is proposed, especially for the anions.
NASA Astrophysics Data System (ADS)
Leggett, Graham J.; Vickerman, John C.
1992-12-01
Some of the models that have been proposed to account for ion formation during sputtering are reviewed. Particular attention is paid to models describing polyatomic ion formation. Aspects of these models that are relevant to ion formation from molecular materials are discussed. Reports describing the sputtering of polymeric materials are reviewed, and the bearing of recent tandem studies on attempts to formulate a model for ion formation from polymer materials is discussed. Some of the characteristics that a suitable model would possess are identified from the experimental data.
Development and flight history of SERT 2 spacecraft
NASA Technical Reports Server (NTRS)
Kerslake, William R.; Ignaczak, Louis R.
1992-01-01
A 25-year historical review of the Space Electric Rocket Test 2 (SERT 2) mission is presented. The Agena launch vehicle; the SERT 2 spacecraft; and mission-peculiar spacecraft hardware, including two ion thruster systems, are described. The 3 1/2-year development period, from 1966 to 1970, that was needed to design, fabricate, and qualify the ion thruster system and the supporting spacecraft components, is documented. Major testing of two ion thruster systems and related auxiliary experiments that were conducted in space after the 3 Feb. 1970, launch are reviewed. Extended ion thruster restarts from 1973 to 1981 are reported, in addition to cross-neutralization tests. Tests of a reflector erosion experiment were continued in 1989 to 1991. The continuing performance of spacecraft subsystems, including the solar arrays, over the 1970-1991 period is summarized. Finally, the knowledge of thruster-spacecraft interactions learned from SERT 2 is listed.
Measurement-induced operation of two-ion quantum heat machines
NASA Astrophysics Data System (ADS)
Chand, Suman; Biswas, Asoka
2017-03-01
We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.
Measurement-induced operation of two-ion quantum heat machines.
Chand, Suman; Biswas, Asoka
2017-03-01
We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.
Two-stage energy storage equalization system for lithium-ion battery pack
NASA Astrophysics Data System (ADS)
Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.
2017-11-01
How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Ling, James (Technical Monitor)
2001-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona where these ion charge states are formed. The goal of the proposed research was to determine solar wind models and coronal observations that are necessary tools for the interpretation of the ion charge state observations made in situ in the solar wind.
Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene
2017-08-01
Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.
Xu, Yan; Zhang, Dong-Yang; Meng, Xiang-Yun; Liu, Xi; Sheng, Sheng; Wu, Guo-Hua; Wang, Jun; Wu, Fu-An
2017-04-15
Today, continuous processing is regarded as an effective on-demand production technique of pharmaceuticals. Homemade microreactors packed with immobilized lipase under continuous-flow conditions were first applied to tailor the production of high-value caffeic acid phenethyl ester (CAPE) from methyl caffeate (MC) and 2-phenylethanol (PE) in cyclohexane via transesterification; however, this method is challenging due to the lack of a rapid platform for monitoring caffeates in microfluidic biocatalysis. The reactants were directly analyzed using Direct Analysis in Real Time Mass Spectrometry (DART-MS), and the corresponding ionization parameters were investigated. Special ions produced from MC (parent ion m/z 192.87 and product ion m/z 133.44) and CAPE (parent ion m/z 282.93 and product ion m/z 178.87) were determined using DART-MS 2 in the negative ion mode. The peak areas of the select reaction monitoring (SRM) signals were calculated to develop the standard curves for quantitative analyses of the concentration. Reasonable linear regression equations of MC and CAPE were obtained in the range of 3.125-50.000mg/L, with linear coefficients (R 2 ) of 0.9515 and 0.9973, limits of detection (LOD) of 0.005 and 0.003mg/L, limits of quantification (LOQ) of 0.02 and 0.01mg/L, and recovery ranges of 92.50-97.11% and 90.11-97.60%, respectively. The results using DART-MS 2 were in good agreement with those using conventional High-Performance Liquid Chromatography with a UV detector (HPLC-UV) and were successfully applied to monitor the kinetics constants and mass transfer coefficients in a continuous-flow packed bed microreactor. Thus, the DART-MS 2 method is an efficient tool for analyzing caffeates in microfluidic biocatalysis with limited sample preparation and short operating time. Copyright © 2017 Elsevier B.V. All rights reserved.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux.
The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon
2002-03-01
The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less
Hsu, Keng-Chang; Lee, Cheng-Fa; Tseng, Wei-Chang; Chao, Yu-Ying; Huang, Yeou-Lih
2014-10-01
In this study we developed an on-line, eco-friendly, and highly selective method using a gold nanoparticle (AuNP)-coated polydimethylsiloxane (PDMS) composite microfluidic (MF) chip coupled to inductively coupled plasma mass spectrometry (ICP-MS) to separate trace Hg(2+) ions from aqueous samples. Because Hg(2+) ions interact with AuNPs to form Hg-Au complexes, we were able to separate Hg(2+) ions from aqueous samples. We prepared the AuNPs-PDMS composite through in situ synthesis using a PDMS cross-linking agent to both reduce and embed AuNPs onto PDMS microchannels so that no additional reductants were required for either AuNP synthesis or the PDMS surface modification (2% HAuCl4, room temperature, 48 h). To optimize the proposed on-line system, we investigated several factors that influenced the separation of Hg(2+) ions in the AuNPs-PDMS/MF, including adsorption pH, adsorption and elution flow rates, microchannel length, and interferences from coexisting ions. Under optimized conditions (pH 6.0; adsorption/elution flow rates: 0.05/0.5 mL min(-1); channel length: 840 mm), we evaluated the accuracy of the system using a standard addition method; the measured values had agreements of ≥ 93.0% with certified values obtained for Hg(2+) ions. The relative standard deviations of the proposed method ranged from 2.24% to 6.21%. The limit of detection for Hg(2+) for the proposed on-line AuNPs-PDMS/MF/ICP-MS analytical method was as low as 0.07 µg L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Discontinuous/continuous metal films grown on photosensitive glass
NASA Astrophysics Data System (ADS)
Trotter, D. M., Jr.; Smith, D. W.
1984-07-01
A new effect which allows direct formation of thin metal films of controlled morphology is described. Patterns of glass-ceramic opal are developed in photosensitive glass samples by UV irradiation and heat treatment. The samples are then ion exchanged in molten salt baths containing Ag+ or Cu+ ions. On subsequent firing in a hydrogen atmosphere, continuous films with typical thin metal films properties grow on the opal regions of the samples. Discontinuous films, characterized by activated resistivities and switching, grow on the glassy regions.
Lu, Fang-Min
2017-01-01
Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when cytoplasmic Na rises and suppresses pump activity when cytoplasmic Na declines. PMID:28606910
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
Use of Proton SEE Data as a Proxy for Bounding Heavy-Ion SEE Susceptibility
NASA Technical Reports Server (NTRS)
Ladbury, Raymond L.; Lauenstein, Jean-Marie; Hayes, Kathryn P.
2015-01-01
Although heavy-ion single-event effects (SEE) pose serious threats to semiconductor devices in space, many missions face difficulties testing such devices at heavy-ion accelerators. Low-cost missions often find such testing too costly. Even well funded missions face issues testing commercial off the shelf (COTS) due to packaging and integration. Some missions wish to fly COTS systems with little insight into their components. Heavy-ion testing such parts and systems requires access to expensive and hard-to-access ultra-high energy ion accelerators, or significant system modification. To avoid these problems, some have proposed using recoil ions from high-energy protons as a proxy to bound heavy-ion SEE rates.
ModFossa: A library for modeling ion channels using Python.
Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C
2016-06-01
The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.
Liquid metal ion source and alloy for ion emission of multiple ionic species
Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.
1987-06-02
A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.
Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun
2018-03-15
In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.
Proceedings of the 20th International Conference on Ion Beam Modification of Materials (IBMM 2016)
NASA Astrophysics Data System (ADS)
Kennedy, John; Elliman, Robert; Mccallum, Jeffrey; Ionescu, Mihail; Markwitz, Andreas
2017-10-01
The papers in this issue of NIMB were presented at the 20th international conference on Ion Beam Modification of Materials (IBMM) held at Te Papa Museum, Wellington, New Zealand from October 30th until November 4th, 2016. This conference continued the proud legacy of New Zealand-born Lord Rutherford and his pioneering research in ion beam physics.
The Formation and Thermochemical Properties of Multiligand Complexes
1987-08-25
SUBJECT TERMS (Continue on revers, if necessary and identify by block numoer) FIELD GROUP SUB-GROUP Ion-molecule reactions, clusters, multiligand...mercaptans, and phosphonates for which the results may be useful in the development of detection techniques that employ ion mobility analyzers or... field involve the use of ion mobility and mass spectrometers. Detection of a species by such instruments in an atmospheric environment requires that the
The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex; Nissen, Edward
Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8more » GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.« less
Spacelab energetic ion mass spectrometer
NASA Technical Reports Server (NTRS)
Whalen, B. A.; Mcdiarmid, I. B.; Burrows, J. R.; Sharp, R. D.; Johnson, R. G.; Shelley, E. G.
1980-01-01
Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatomi, T.; Kuwayama, T.; Takai, Y.
2008-02-25
An experimental approach was proposed for the measurement of the surface potential (SP) induced on an insulator surface during ion irradiation by ion scattering spectroscopy (ISS). The resultant ISS spectra obtained for a MgO thin film of 600 nm thickness on a Si substrate under 950 eV He{sup +} irradiation revealed that the surface is positively charged by approximately 230 V. In addition, the onset energy of a secondary ion peak indicated a SP of approximately 205 V. The present results confirmed that ISS is an effective technique for measuring the SP during ion irradiation.
Padhi, Siladitya; Burri, Raghunadha Reddy; Jameel, Shahid; Priyakumar, U. Deva
2014-01-01
The viral protein U (Vpu) encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu – modeled and validated based on available experimental data – umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs) were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel. PMID:25392993
Photodetachment Studies Of Atomic Negative Ions Through Velocity-Map Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Chartkunchand, Kiattichart
The technique of velocity-map imaging (VMI) spectroscopy as been adapted to a keV-level negative ion beamline for studies of photon-negative ion collisions. The design and operation of the VMI spectrometer takes into consideration the use of continuous, fast-moving (5 keV to 10 keV) ion beams, as well as a continuous wave (CW) laser as the source of photons. The VMI spectrometer has been used in photodetachment studies of the Group 14 negative ions Ge--, Sn--, and Pb-- at a photon wavelength of 532 nm. Measurements of the photoelectron angular distributions and asymmetry parameters for Ge-- and Sn-- were benchmarked against those measured previously [W. W. Williams, D. L. Carpenter, A. M. Covington, and J. S. Thompson, Phys. Rev. A 59, 4368 (1999), V. T. Davis, J. Ashokkumar, and J. S. Thompson, Phys. Rev. A 65, 024702 (2002)], while fine-structure-resolved asymmetry parameters for Pb-- were measured for the first time. Definitive evidence of a "forbidden" 4S 3/2→1D2 transition was observed in both the Ge-- and Sn-- photoelectron kinetic energy spectra. This transition is explained in terms of the inadequacy of the single-configuration description for the 1D2 excited state in the corresponding neutral. Near-threshold photodetachment studies of S-- were carried out in order to measure the spectral dependence of the photoelectron angular distribution. The resulting asymmetry parameters were measured at several photon wavelengths in the range of 575 nm (2.156 eV photon energy) to 615 nm (2.016 eV photon energy). Comparison of the measurements to a qualitative model of p-electron photodetachment [D. Hanstorp, C. Bengtsson, and D. J. Larson, Phys. Rev. A 40, 670 (1989)] were made. Deviations of the measured asymmetry parameters from the Hanstorp model near photodetachment thresholds suggests a reduced degree of suppression of d partial-waves than predicted by models. Measurement of the electron affinity of terbium was performed along with a determination of the structure of Tb--. The energy scale for the Tb-- photoelectron kinetic energy spectrum was calibrated to the photoelectron kinetic energy spectrum of Cs-- , whose electron affinity is well-known [T. A. Patterson, H. Hotop, A. Kasdan, D. W. Norcross, and W. C. Lineberger, Phys. Rev. Lett. 32 , 189 (1974)]. Comparison to a previous experimental measurement of the electron affinity of terbium [S. S. Duvvuri, Ph. D. dissertation, University of Nevada, Reno (2006)] and to theoretical calculations of the electron affinity [S. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009)] were made. In contrast to the [Xe]4f106 s2 5I8 ground state configuration proposed in the experimental study and the [Xe]4f 85d6s26p 9G7 ground state configuration proposed in the theoretical study, the present study suggests a Tb-- ground state of [Xe]4f96s 26p 7I3 and an electron affinity of 0.13 +/- 0.07 eV for terbium.
Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio
2014-01-01
A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686
NASA Technical Reports Server (NTRS)
Baumback, J. I.; Davies, A. N.; Vonirmer, A.; Lampen, P. H.
1995-01-01
To assist peak assignment in ion mobility spectrometry it is important to have quality reference data. The reference collection should be stored in a database system which is capable of being searched using spectral or substance information. We propose to build such a database customized for ion mobility spectra. To start off with it is important to quickly reach a critical mass of data in the collection. We wish to obtain as many spectra combined with their IMS parameters as possible. Spectra suppliers will be rewarded for their participation with access to the database. To make the data exchange between users and system administration possible, it is important to define a file format specially made for the requirements of ion mobility spectra. The format should be computer readable and flexible enough for extensive comments to be included. In this document we propose a data exchange format, and we would like you to give comments on it. For the international data exchange it is important, to have a standard data exchange format. We propose to base the definition of this format on the JCAMP-DX protocol, which was developed for the exchange of infrared spectra. This standard made by the Joint Committee on Atomic and Molecular Physical Data is of a flexible design. The aim of this paper is to adopt JCAMP-DX to the special requirements of ion mobility spectra.
Thiol surface complexation on growing CdS clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swayambunathan, V.; Hayes, D.; Schmidt, K.H.
1990-05-09
The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less
Miniature Ion-Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
2006-01-01
The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.
Characteristics of water-soluble ions before, during and after fog events
NASA Astrophysics Data System (ADS)
Li, P.; Du, H.; Yang, C.; Yao, J.; Du, J.; Chen, J.
2010-07-01
Two atmospheric processes of rain-fog-haze and haze-fog-rain were observed on Feb.8th and Mar. 14th, 2010 in urban Shanghai. On-line characterization of water-soluble ions of aerosol was performed before, during and after two fog episodes by an instrument of Monitoring AeRosoles and GAses (MARGA). Fog water samples were also collected to study the chemical ion characteristics for identifying the property of fogs. After rain, total water-soluble ion concentration in PM2.5 increased by 71.9%. Afterwards, a fog formation was observed as a frontal fog. Six fog water samples were collected to measure concentration of water-soluble ions, whose total concentrations decreased from beginning to end of fog. At the end of fog, the total water-soluble ion concentration of aerosol was continually increased. Meanwhile with a sharp decline of RH down to 70% in two hours, and a haze episode was observed. The reverse process, haze-fog-rain process, was also investigated. After the haze episode, total water-soluble ions concentration of aerosol rarely increased, but fog appeared with sharp increase of RH. Concentration of water-soluble ions in the fog water sample was higher than mean concentration of samples in 2009. When the fog started to disperse, the ion concentration hardly changed. As water vapor continued to increase, rain was observed. The inorganic compositions of aerosol in both fog events were dominated by sulfate and ammonium. The in situ investigation clearly illustrated that fog water mainly influenced by continental sources was dirtier and contained more sediment comparing with fog water influenced by marine sources.
King, R.F.; Moak, C.D.; Parker, V.E.
1960-10-11
A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.
Shao, Lin; Wei, C. -C.; Gigax, J.; ...
2014-06-10
Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore » to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less
A Collison nebulizer as an ion source for mass spectrometry analysis
NASA Astrophysics Data System (ADS)
Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.
2014-12-01
It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.
Measuring an entropy in heavy ion collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.; Wosiek, J.
1999-03-01
We propose to use the coincidence method of Ma to measure an entropy of the system created in heavy ion collisions. Moreover we estimate, in a simple model, the values of parameters for which the thermodynamical behaviour sets in.
Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hördemann, C.; Anand, H.; Gillner, A.
2017-08-01
Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
Cycle life performance of rechargeable lithium ion batteries and mathematical modeling
NASA Astrophysics Data System (ADS)
Ning, Gang
Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.
Varas, Lautaro R; Pontes, F C; Santos, A C F; Coutinho, L H; de Souza, G G B
2015-09-15
The ion-ion-coincidence mass spectroscopy technique brings useful information about the fragmentation dynamics of doubly and multiply charged ionic species. We advocate the use of a matrix-parameter methodology in order to represent and interpret the entire ion-ion spectra associated with the ionic dissociation of doubly charged molecules. This method makes it possible, among other things, to infer fragmentation processes and to extract information about overlapped ion-ion coincidences. This important piece of information is difficult to obtain from other previously described methodologies. A Wiley-McLaren time-of-flight mass spectrometer was used to discriminate the positively charged fragment ions resulting from the sample ionization by a pulsed 800 eV electron beam. We exemplify the application of this methodology by analyzing the fragmentation and ionic dissociation of the dimethyl disulfide (DMDS) molecule as induced by fast electrons. The doubly charged dissociation was analyzed using the Multivariate Normal Distribution. The ion-ion spectrum of the DMDS molecule was obtained at an incident electron energy of 800 eV and was matrix represented using the Multivariate Distribution theory. The proposed methodology allows us to distinguish information among [CH n SH n ] + /[CH 3 ] + (n = 1-3) fragment ions in the ion-ion coincidence spectra using ion-ion coincidence data. Using the momenta balance methodology for the inferred parameters, a secondary decay mechanism is proposed for the [CHS] + ion formation. As an additional check on the methodology, previously published data on the SiF 4 molecule was re-analyzed with the present methodology and the results were shown to be statistically equivalent. The use of a Multivariate Normal Distribution allows for the representation of the whole ion-ion mass spectrum of doubly or multiply ionized molecules as a combination of parameters and the extraction of information among overlapped data. We have successfully applied this methodology to the analysis of the fragmentation of the DMDS molecule. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ion source issues for the DAEδALUS neutrino experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jose R., E-mail: JRAlonso@LBL.gov; Barletta, William A.; Toups, Matthew H.
2014-02-15
The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.
Integrated Arrays of Ion-Sensitive Electrodes
NASA Technical Reports Server (NTRS)
Buehler, Martin; Kuhlman, Kimberly
2003-01-01
The figure depicts an example of proposed compact water-quality sensors that would contain integrated arrays of ion-sensitive electrodes (ISEs). These sensors would serve as electronic "tongues": they would be placed in contact with water and used to "taste" selected dissolved ions (that is, they would be used to measure the concentrations of the ions). The selected ions could be any or all of a variety of organic and inorganic cations and anions that could be regarded as contaminants or analytes, depending on the specific application. In addition, some of the ISEs could be made sensitive to some neutral analytes
Anion dependent ion pairing in concentrated ytterbium halide solutions
NASA Astrophysics Data System (ADS)
Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina
2018-06-01
We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.
NASA Astrophysics Data System (ADS)
Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki
The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.
Design and Performance of 40 cm Ion Optics
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.
Plasma sheath effects on ion collection by a pinhole
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Snyder, David B.
1993-01-01
This work presents tables to assist in the evaluation of pinhole collection effects on spacecraft. These tables summarize results of a computer model which tracks particle trajectories through a simplified electric field in the plasma sheath. A technique is proposed to account for plasma sheath effects in the application of these results and scaling rules are proposed to apply the calculations to specific situations. This model is compared to ion current measurements obtained by another worker, and the agreement is very good.
Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, John G., E-mail: jeley@som.umaryland.edu; University of Texas Graduate School of Biomedical Sciences, Houston, Texas; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
Purpose: This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. Methods and Materials: We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breastmore » by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. Results: For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, , to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). Conclusions: Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.« less
Proposal for a common nomenclature for fragment ions in mass spectra of lipids
Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304
Proposal for a common nomenclature for fragment ions in mass spectra of lipids.
Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.
A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations
Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang
2008-01-01
Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033
Power Processing for a Conceptual Project Prometheus Electric Propulsion System
NASA Technical Reports Server (NTRS)
Scina, Joseph E., Jr.; Aulisio, Michael; Gerber, Scott S.; Hewitt, Frank; Miller, Leonard; Elbuluk, Malik; Pinero, Luis R. (Technical Monitor)
2005-01-01
NASA has proposed a bold mission to orbit and explore the moons of Jupiter. This mission, known as the Jupiter Icy Moons Orbiter (JIMO), would significantly increase NASA s capability to explore deep space by making use of high power electric propulsion. One electric propulsion option under study for JIMO is an ion propulsion system. An early version of an ion propulsion system was successfully used on NASA's Deep Space 1 mission. One concept for an ion thruster system capable of meeting the current JIMO mission requirement would have individual thrusters that are 16 to 25 kW each and require voltages as high as 8.0 kV. The purpose of this work is to develop power processing schemes for delivering the high voltage power to the spacecraft ion thrusters based upon a three-phase AC distribution system. In addition, a proposed DC-DC converter topology is presented for an ion thruster ancillary supply based upon a DC distribution system. All specifications discussed in this paper are for design convenience and are speculative in nature.
Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy.
Eley, John G; Friedrich, Thomas; Homann, Kenneth L; Howell, Rebecca M; Scholz, Michael; Durante, Marco; Newhauser, Wayne D
2016-05-01
This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, S. M., E-mail: weng-sm@ile.osaka-u.ac.jp; Murakami, M.; Azechi, H.
It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effectivemore » energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5 g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65 kJ.« less
Laser ion source for heavy ion inertial fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, Masahiro
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
Etching and structure changes in PMMA coating under argon plasma immersion ion implantation
NASA Astrophysics Data System (ADS)
Kondyurin, Alexey; Bilek, Marcela
2011-06-01
A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10 15 ions/cm 2 was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.
Laser ion source for heavy ion inertial fusion
Okamura, Masahiro
2018-01-10
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.
Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure,more » interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.« less
NASA Astrophysics Data System (ADS)
Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas
2018-01-01
Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.
The Effect of Variable End of Charge Battery Management on Small-Cell Batteries
NASA Technical Reports Server (NTRS)
Neubauer, Jeremy S.; Bennetti, Andrea; Pearson, Chris; Simmons, Nick; Reid, Concha; Manzo, Michelle
2007-01-01
Batteries are critical components for spacecraft, supplying power to all electrical systems during solar eclipse. These components must be lightweight due to launch vehicle limitations and the desire to fly heavier, more capable payloads, and must show excellent capacity retention with age to support the ever growing durations of space missions. ABSL's heritage Lithium Ion cell, the ABSL 18650HC, is an excellent low mass solution to this problem that has been proven capable of supporting long mission durations. The NASA Glenn Research Center recently proposed and initiated a test to study the effects of reduced end of charge voltage on aging of the ABSL 18650HC and other Lithium Ion cells. This paper presents the testing details, a method to analyze and compare capacity fade between the different cases, and a preliminary analysis of the to-date performance of ABSL s cells. This initial analysis indicates that employing reduced end of charge techniques could double the life capabilities of the ABSL 18650HC cell. Accordingly, continued investigation is recommended, particularly at higher depths of discharge to better assess the method s potential mass savings for short duration missions.
Ion mobility spectrometry evaluation of cocaine occupational exposure in forensic laboratories.
Armenta, Sergio; de la Guardia, Miguel; Alcalà, Manel; Blanco, Marcelo; Perez-Alfonso, Clara; Galipienso, Nieves
2014-12-01
An approach, based on ion mobility spectrometry (IMS) has been developed for the control of cocaine in air of the breathing zone of operators, in laboratory surfaces and in nasal mucus of employees to evaluate cocaine exposure in a forensic laboratory. The analytical methodology has been validated in terms of accuracy, precision and limits of detection and results obtained were statistically comparable with those obtained by liquid chromatography. Cocaine concentration in laboratory air increases from 100 ± 35 ng m(-3) of a normal day to 10,000 ng m(-3) during the manipulation of cocaine seizures. The occupational exposure limit (OEL) for cocaine has not been established which difficult the evaluation of the health effects of continuous exposition to very small doses of cocaine. Cocaine was also found in almost all the analyzed sample surfaces and also was found in nasal mucus of the police officers that were present during the manipulation of cocaine seizures without using a face mask. In summary, cocaine concentrations could present a health hazard to the employees and therefore warrants remediation and some modifications of the manipulation operations have been proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S
2008-04-01
Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in this paper, together with our previously published results for non-biological particles, demonstrate the feasibility of the newly developed approach.
Ion penetration depth in the plant cell wall
NASA Astrophysics Data System (ADS)
Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.
2003-05-01
This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.
Interchange mode excited by trapped energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
2015-07-15
The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less
A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model.
Moradi, N; Scholkmann, F; Salari, V
2015-03-01
The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called "selectivity filter" inside the ion channel, which can be controlled by electrical interactions. The selectivity filter (SF) is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the "external gate", which is the voltage sensitive gate, and the "internal gate" which is the selectivity filter gate (SFG). Some quantum effects are expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.
Oita, Azusa; Tsuboi, Yuuri; Date, Yasuhiro; Oshima, Takahiro; Sakata, Kenji; Yokoyama, Akiko; Moriya, Shigeharu; Kikuchi, Jun
2018-04-24
There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dong, Z. Q.; Li, P.; Yang, J. C.; Yuan, Y. J.; Xie, W. J.; Zheng, W. H.; Liu, X. J.; Chang, J. J.; Luo, C.; Meng, J.; Wang, J. C.; Wang, Y. M.; Yin, Y.; Chai, Z.
2017-10-01
Heavy ion beam lost on the accelerator vacuum wall will release quantity of gas molecules and make the vacuum system deteriorate seriously. This phenomenon is called dynamic vacuum effect, observed at CERN, GSI and BNL, leading to the decrease of beam lifetime when increasing beam intensity. Heavy ion-induced gas desorption, which results in dynamic vacuum effect, becomes one of the most important problems for future accelerators proposed to operate with intermediate charge state beams. In order to investigate the mechanism of this effect and find the solution method for the IMP future project High Intensity heavy-ion Accelerator Facility (HIAF), which is designed to extract 1 × 1011 uranium particles with intermediate charge state per cycle, two dedicated experiment setups have been installed at the beam line of the CSR and the 320 kV HV platform respectively. Recently, experiment was performed at the 320 kV HV platform to study effective gas desorption with oxygen-free copper target irradiated with continuous Xe10+ beam and O+ beam in low energy regime. Gas desorption yield in this energy regime was calculated and the link between gas desorption and electronic energy loss in Cu target was proved. These results will be used to support simulations about dynamic vacuum effect and optimizations about efficiency of collimators to be installed in the HIAF main synchrotron BRing, and will also provide guidance for future gas desorption measurements in high energy regime.
Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC
NASA Astrophysics Data System (ADS)
Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong
2018-01-01
An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.
Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha
2015-11-01
We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
Entropy and charge in molecular evolution--the case of phosphate
NASA Technical Reports Server (NTRS)
Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)
1997-01-01
Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.
A molecular level prototype for mechanoelectrical transducer in mammalian hair cells
Park, Jinkyoung
2013-01-01
The mechanoelectrical transducer (MET) is a crucial component of mammalian auditory system. The gating mechanism of the MET channel remains a puzzling issue, though there are many speculations, due to the lack of essential molecular building blocks. To understand the working principle of mammalian MET, we propose a molecular level prototype which constitutes a charged blocker, a realistic ion channel and its surrounding membrane. To validate the proposed prototype, we make use of a well-established ion channel theory, the Poisson-Nernst-Planck equations, for three-dimensional (3D) numerical simulations. A wide variety of model parameters, including bulk ion concentration, applied external voltage, blocker charge and blocker displacement, are explored to understand the basic function of the proposed MET prototype. We show that our prototype prediction of channel open probability in response to blocker relative displacement is in a remarkable accordance with experimental observation of rat cochlea outer hair cells. Our results appear to suggest that tip links which connect hair bundles gate MET channels. PMID:23625048
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.
An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less
Walch, Nicole; Jungbauer, Alois
2017-06-01
Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distinguishing between pulsed and continuous reconnection at the dayside magnetopause.
Trattner, K J; Onsager, T G; Petrinec, S M; Fuselier, S A
2015-03-01
Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar-orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low-velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the "time since reconnection occurred." The "time since reconnection" is used to determine the "reconnection time" for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology.
Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes
NASA Technical Reports Server (NTRS)
Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.;
2012-01-01
The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.
A versatile MOF-based trap for heavy metal ion capture and dispersion.
Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli
2018-01-15
Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.
NASA Astrophysics Data System (ADS)
Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin
2018-05-01
In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.
Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R
2008-06-15
Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.
4th Generation ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyneis, Claude M.; Leitner, D.; Todd, D.S.
2008-12-01
The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less
Live cell imaging at the Munich ion microbeam SNAKE - a status report.
Drexler, Guido A; Siebenwirth, Christian; Drexler, Sophie E; Girst, Stefanie; Greubel, Christoph; Dollinger, Günther; Friedl, Anna A
2015-02-18
Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.
Capillarity ion concentration polarization as spontaneous desalting mechanism.
Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae
2016-04-01
To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.
Ion-Selective Electrodes for Basic Drugs.
1981-01-01
coated wire ion selective electrodes for methadone , methylamphetamine, J cocaine, protriptyline i 20. ABSTRACT (Continue on reverse side If neeeeary...end Identify by block number) Coated-wire ion-selective electrodes based on dinonylnaphthalene u-i sulfonic acid (DNNS) are prepared for methadone ...range from 10- 5.5M for cocaine and methylamphetamine electrodes to 10Ś.0M for methadone , and 10-6.5M for DD I 1473 EDITION OF I NOV 5 IS OBSOLETE
Conversion of fullerenes to diamond
Gruen, Dieter M.
1993-01-01
A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.
Conversion of fullerenes to diamond
Gruen, Dieter M.
1994-01-01
A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.
Environmental Assessment of the Trinity River Discharge on Productivity in Trinity Bay.
1972-09-15
3 Metallic Ion Concentrations ...... .................. ... 33 Mercury ........... .......................... 36 Arsenic...TB 25 SE 8-10 27.0 -- 35 TB 26 SE 12 27.0 -- 25 TB 27 SE 10-12 30.0 -- 37 TB 28 SE 6-10 -- 28 18 TABLE I (continued) Eh* H2S Mg Ca Mg/Ca Mercury ...the Houston Ship Channel. Metallic ion Concentrations Concentrations of mercury , arsenic, calcium, and magnesium ions were determined for each bottom
Novel high-energy physics studies using intense lasers and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric
2015-06-29
In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less
Production of multi-, oligo- and single-pore membranes using a continuous ion beam
NASA Astrophysics Data System (ADS)
Apel, P. Yu.; Ivanov, O. M.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacik, J.; Dmitriev, S. N.
2015-12-01
Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6-8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.
Time-of-flight scattering and recoiling spectrometer (TOF-SARS) for surface analysis
NASA Astrophysics Data System (ADS)
Grizzi, O.; Shi, M.; Bu, H.; Rabalais, J. W.
1990-02-01
A UHV spectrometer system has been designed and constructed for time-of-flight scattering and recoiling spectrometry (TOF-SARS). The technique uses a pulsed primary ion beam and TOF methods for analysis of both scattered and recoiled neutrals (N) and ions (I) simultaneously with continuous scattering angle variation over a flight path of ≊1 m. The pulsed ion beam line uses an electron impact ionization source with acceleration up to 5 keV; pulse widths down to 20 ns with average current densities of 0.05-5.0 nA/mm2 have been obtained. Typical current densities used herein are ≊0.1 nA/mm2 and TOF spectra can be collected with a total ion dose of <10-3 ions/surface atom. A channel electron multiplier detector, which is sensitive to both ions and fast neutrals, is mounted on a long tube connected to a precision rotary motion feedthru, allowing continuous rotation over a scattering angular range 0°<θ<165°. The sample is mounted on a precision manipulator, allowing azimuthal δ and incident α angle rotation, as well as translation along three orthogonal axes. The system also accommodates standard surface analysis instrumentation for LEED, AES, XPS, and UPS. The capabilities of the system are demonstrated by the following examples: (A) TOF spectra versus scattering angle θ; (B) comparison to LEED and AES; (C) surface and adsorbate structure determinations; (D) monitoring surface roughness; (E) surface semichanneling measurements; (F) measurements of scattered ion fractions; and (G) ion induced Auger electron emission.
An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC
NASA Astrophysics Data System (ADS)
Torres, Erick Omar
Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz mechanical variable capacitor. The precharger, harvester, monitoring, and control microelectronics of the first prototype draw sufficient power to operate and at the same time produce experimentally 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which with 30-Hz vibrations produce 38.1, 64.2, and 86.1 nW. By incorporating into the system a self-tuning loop that adapts optimally the inductor-based precharger to varying battery voltages, the second prototype harnessed and gained 1.93, 2.43, and 3.89 nJ per vibration cycle at battery voltages 2.7, 3.5, and 4.2 V, generating 57.89, 73.02, and 116.55 nW at 30 Hz. The harvester ultimately charges from 2.7 to 4.2 V a 1-muF capacitor (which emulates a small thin-film Li Ion) in approximately 69 s, harnessing in the same length of time 47.9% more energy than with a non-adapting harvester.
APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON
Lawrence, E.O.
1958-01-01
ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.
Mechanics of torque generation in the bacterial flagellar motor
Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George
2015-01-01
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959
Mechanics of torque generation in the bacterial flagellar motor.
Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George
2015-08-11
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.
Properties of Minor Ions In the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2002-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. The goal of the proposal is to determine coronal plasma conditions that produce the in situ observed charge states. This study is carried out using solar wind models, coronal observations, ion fraction calculations and in situ observations.
Nonvolatile Ionic Two-Terminal Memory Device
NASA Technical Reports Server (NTRS)
Williams, Roger M.
1990-01-01
Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.
On- and off-line monitoring of ion beam treatment
NASA Astrophysics Data System (ADS)
Parodi, Katia
2016-02-01
Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.
Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-04-06
Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.
Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo
2014-01-01
This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.
United in Diversity: Mechanosensitive Ion Channels in Plants
Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.
2015-01-01
Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
Ion trap simulations of quantum fields in an expanding universe.
Alsing, Paul M; Dowling, Jonathan P; Milburn, G J
2005-06-10
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.
Water-water correlations in electrolyte solutions probed by hyper-Rayleigh scattering
NASA Astrophysics Data System (ADS)
Shelton, David P.
2017-12-01
Long-range ion-induced correlations between water molecules have been observed by second-harmonic or hyper-Rayleigh scattering experiments with conflicting results. The most recent work observed a large difference between the results for H2O and D2O, and large discrepancies with the previously proposed theory. However, the present observations are in quantitative agreement with the model where the ion electric field induces second harmonic generation by the water molecules, and ion-ion correlations given by the Debye-Huckel theory account for intensity saturation at high ion concentration. This work compares experimental results with theory and addresses the apparent discrepancies with previous experiments.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... Amend the Quantitative Continued Listing Standards Applicable to Companies Listed Under Sections 102.01C... Proposed Rule Change The Exchange proposes to harmonize the quantitative continued listing standards... Proposed Rule Change 1. Purpose The Exchange proposes to harmonize the quantitative continued listing...
Mass-dependent channel electron multiplier operation. [for ion detection
NASA Technical Reports Server (NTRS)
Fields, S. A.; Burch, J. L.; Oran, W. A.
1977-01-01
The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.
ERIC Educational Resources Information Center
Logerwell, Mollianne G.; Sterling, Donna R.
2007-01-01
Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…
Eltron Research & Development, Inc. (Eltron) proposes to develop an ion-selective, polymer membrane electrode capable of detecting perchlorate in water at low parts per billion (ppb) concentrations. With the discovery of perchlorate contamination in an increasing number of...
Ye, Zhongfei; Wang, Pei; Dong, Hong; Li, Dianzhong; Zhang, Yutuo; Li, Yiyi
2016-01-01
Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations. PMID:27734928
Kinetic Features in the Ion Flux Spectrum
NASA Astrophysics Data System (ADS)
Vafin, S.; Riazantseva, M.; Yoon, P. H.
2017-11-01
An interesting feature of solar wind fluctuations is the occasional presence of a well-pronounced peak near the spectral knee. These peaks are well investigated in the context of magnetic field fluctuations in the magnetosheath and they are typically related to kinetic plasma instabilities. Recently, similar peaks were observed in the spectrum of ion flux fluctuations of the solar wind and magnetosheath. In this paper, we propose a simple analytical model to describe such peaks in the ion flux spectrum based on the linear theory of plasma fluctuations. We compare our predictions with a sample observation in the solar wind. For the given observation, the peak requires ˜10 minutes to grow up to the observed level that agrees with the quasi-linear relaxation time. Moreover, our model well reproduces the form of the measured peak in the ion flux spectrum. The observed lifetime of the peak is about 50 minutes, which is relatively close to the nonlinear Landau damping time of 30-40 minutes. Overall, our model proposes a plausible scenario explaining the observation.
Hu, Kang; Fiedler, Thorsten; Blanco, Laura; Geissen, Sven-Uwe; Zander, Simon; Prieto, David; Blanco, Angeles; Negro, Carlos; Swinnen, Nathalie
2017-11-10
A pilot-scale reverse osmosis (RO) followed behind a membrane bioreactor (MBR) was developed for the desalination to reuse wastewater in a PVC production site. The solution-diffusion-film model (SDFM) based on the solution-diffusion model (SDM) and the film theory was proposed to describe rejections of electrolyte mixtures in the MBR effluent which consists of dominant ions (Na + and Cl - ) and several trace ions (Ca 2+ , Mg 2+ , K + and SO 4 2- ). The universal global optimisation method was used to estimate the ion permeability coefficients (B) and mass transfer coefficients (K) in SDFM. Then, the membrane performance was evaluated based on the estimated parameters which demonstrated that the theoretical simulations were in line with the experimental results for the dominant ions. Moreover, an energy analysis model with the consideration of limitation imposed by the thermodynamic restriction was proposed to analyse the specific energy consumption of the pilot-scale RO system in various scenarios.
Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin
2014-02-18
Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.
The formation of magnetic silicide Fe3Si clusters during ion implantation
NASA Astrophysics Data System (ADS)
Balakirev, N.; Zhikharev, V.; Gumarov, G.
2014-05-01
A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.
Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.
Hu, S X; Starace, Anthony F
2006-06-01
The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.
Removal of copper(II) ions from aqueous solutions by Azolla rongpong: batch and continuous study.
Nedumaran, B; Velan, M
2008-01-01
Batch and packed bed continuous biosorption studies were conducted to investigate the kinetics and isotherms of Cu(II) ions on the biomass of blue green alga Azolla rongpong. It is observed that the biosorption capacity of algae depends on initial pH and dosage. The biosorption capacity increases with increasing concentration and follows Freundlich isotherm model well with k and n values 0.06223 and 0.949 respectively. The optimum pH of 3.5 with an algae dosage of 1 g/L was observed. The results indicate that with the advantage of high metal biosorption capacity and recovery of Cu(II) ions, A. rongpong can be used as an efficient and economic biosorbent for the removal and recovery of toxic heavy metals from aqueous wastes even at higher concentration.
1977-09-01
On 24 June 1974 Packer applied to the St. Paul District, Corps of Engineers (Corps) for a DOA permit under Section 10 of the River and Harbor Act of...exercised jurisdiction under Section 404 of P.L. 92-500 to the ordinary high water mark of the • Mississippi River, Thu’, even though the proposed project...Corps of Engineers was to expand their regulatory IT ril ct ion under Sect ion 404 of P.l.. 92-500 ,nd to promulgate new r- ’~giiI.,t .; ill conjunct
HITRAP: A Facility for Experiments with Trapped Highly Charged Ions
NASA Astrophysics Data System (ADS)
Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.
2001-01-01
HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Chauhan, Manvendra Singh; Chauhan, R. K.
2018-04-01
This paper demonstrates a Junction-less Double Gate n-p-n Impact ionization MOS transistor (JLDG n-IMOS) on a very light doped p-type silicon body. Device structure proposed in the paper is based on charge plasma concept. There is no metallurgical junctions in the proposed device and does not need any impurity doping to create the drain and source regions. Due to doping-less nature, the fabrication process is simple for JLDG n-IMOS. The double gate engineering in proposed device leads to reduction in avalanche breakdown via impact ionization, generating large number of carriers in drain-body junction, resulting high ION current, small IOFF current and great improvement in ION/IOFF ratio. The simulation and examination of the proposed device have been performed on ATLAS device simulatorsoftware.
Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster
NASA Technical Reports Server (NTRS)
Gruber, R. P.
1977-01-01
A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Dai, Yunqian; Formo, Eric; Li, Haoxuan; Xue, Jiajia; Xia, Younan
2016-10-20
Precious metals are widely used as catalysts in industry. It is of critical importance to keep the precious metal ions leached from catalysts at a level below one part per million (ppm) in the final products and to recycle the expensive precious metals. Here we demonstrate a simple and effective method for scavenging precious metal ions from an aqueous solution and thereby reduce their concentrations down to the parts per billion (ppb) level. The key component is a filtration membrane comprised of titania (TiO 2 ) nanofibers whose surface has been functionalized with a silane bearing amino or thiol group. When operated under continuous flow at a rate of 1 mL min -1 and at room temperature, up to 99.95 % of the Pd 2+ ions could be removed from a stock solution with an initial concentration of 100 ppm. This work offers a viable strategy not only for the removal of precious metal ions but also for recovering and further recycling them for use as catalysts. For example, the captured Pd 2+ ions could be converted to nanoparticles and used as catalysts for organic reactions such as Suzuki coupling in a continuous flow reactor. This system can be potentially applied to pharmaceutical industry and waste stream treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
Interaction of boron cluster ions with water: Single collision dynamics and sequential etching
NASA Astrophysics Data System (ADS)
Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.
1990-01-01
Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.
Ultrasensitive sliver nanorods array SERS sensor for mercury ions.
Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui
2017-01-15
With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg 2+ , which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.
2006-07-01
Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.
NASA Astrophysics Data System (ADS)
Stefanov, Ivan L.; Hadjichristov, Georgi B.
2012-03-01
Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.
Growth and certain chemical constituents of tobacco plants exposed to air ions
NASA Astrophysics Data System (ADS)
Barthakur, N. N.; Arnold, N. P.
1988-06-01
Controlled experiments were performed in Faraday cages on the effects of positive and negative air ions on flue-cured tobacco plants. Continuous exposures for 15 days to air ions showed no significant differences in any plant growth characteristic between the treated and control plants. Standard errors in the measurement of the growth parameters for ion exposed plants were, however, consistently higher than those of control plants. Spatial variation in concentration gradients of air ions produced by corona discharge might have contributed to masking of the relatively small effects of air ions on biological organisms observed in previous experiments in this laboratory. No significant difference was observed between the experimental and control plants in nicotine, total alkaloid, and reducing sugar contents. Total nitrogen content was slightly higher for treated than control plants.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser
NASA Astrophysics Data System (ADS)
Tang, Bin; Zhao, Wuduo; Wang, Weiguo; Hua, Lei; Chen, Ping; Hou, Keyong; Huang, Yunguang; Li, Haiyang
2016-03-01
The dependence of multiply charged ions on laser ellipticity in methyl iodide clusters with 532 nm nanosecond laser was measured using a time-of-flight mass spectrometer. The intensities of multiply charged ions Iq+(q = 2-4) with circularly polarised laser pulse were clearly higher than those with linearly polarised laser pulse but the intensity of single charged ions I+ was inverse. And the dependences of ions on the optical polarisation state were investigated and a flower petal and square distribution for single charged ions (I+, C+) and multiply charged ions (I2+, I3+, I4+, C2+) were observed, respectively. A theoretical calculation was also proposed to simulate the distributions of ions and theoretical results fitted well with the experimental ones. It indicated that the high multiphoton ionisation probability in the initial stage would result in the disintegration of big clusters into small ones and suppress the production of multiply charged ions.
The Narodny ion accelerator as an injector for a small cyclotron
NASA Astrophysics Data System (ADS)
Derenchuk, V.
1985-01-01
A 120 keV electrostatic accelerator is currently in use at the University of Manitoba as an ion implanter. It is proposed to use this accelerator (called the Narodny ion accelerator or NIA), upgraded to 200 keV, as an injector for a small light ion cyclotron. This "minicyclotron" will consist of 6 sectors with four dees operating at 60 kV and variable frequency. The ions will be extracted at about 50 cm radius. The types of ions to be accelerated are H -, H +, D -1, 3He 2+, 4He 2+, 6Li 3+, and 7Li 3+ with a maximum energy of about 4 MeV for the Li ions and between 2 and 3 MeV for the He ions. A beam current of close to 0.5 mA is anticipated for H + and D + ions and high energy resolution ( ΔE/ E ~ 10 -3) is expected for all ions. The marriage of these two accelerators will give a very wide range of ion implantation energies (for certain ion species) as well as a source of particles for Rutherford backscatter analysis.
Space-Time Crystals of Trapped Ions
2012-10-15
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space- time crystal of...fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space- time crystal . We
NASA Technical Reports Server (NTRS)
1974-01-01
A low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications is described. The ion thrusters provide the satellite with precise north-south and east-west stationkeeping capabilities. In addition, the thrusters are used to unload the reaction wheels used for attitude control and for other purposes described in the report. The proposed satellite is named TADPOLE. (Technology Application Demonstration Program of Low Energy).
Evaluation of ion collection area in Faraday probes.
Brown, Daniel L; Gallimore, Alec D
2010-06-01
A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan, E-mail: guoyuan@nwu.edu.cn; Institut de Chimie Organique et Analytique, Université d’Orléans, 45067 Orléans Cedex 2; An, Jing
2015-03-15
Graphical abstract: Visual fluorescence emission of probe 3a. - Highlights: • Five novel coumarin-based fluorescent probes were developed. • A reasonable reaction mechanism was proposed and verified. • All the probes showed excellent optical properties. - Abstract: In this work, five novel coumarin-based fluorescent probes for mercury ions were developed. The recognition of mercury ions was performed via the mercury(II)-promoted desulfurization of the probes and a reasonable reaction mechanism was proposed and verified by thin layer chromatography (TLC), {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and fluorescence intensity measurements. All the probes showed excellent optical properties and exclusively distinguishmore » mercury ions from various metal ions in aqueous solutions at pH 7.4. The linear response of the fluorescence emission intensity for all the probes to the concentration of mercury ions was obtained over a wide range of 0.06–1.5 μM (0.06–0.9 μM for probe 3e). In addition, the biological toxicity and the confocal fluorescence images of probe 3a were also tested on MCF-7 cells.« less
NASA Astrophysics Data System (ADS)
Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana
2018-01-01
This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
NASA Technical Reports Server (NTRS)
2008-01-01
The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato
2016-03-14
We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Nakano, Shusuke; Yokoyama, Yuta; Aoyagi, Satoka; Himi, Naoyuki; Fletcher, John S; Lockyer, Nicholas P; Henderson, Alex; Vickerman, John C
2016-06-08
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolution images. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat brain tissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral microinfarction can be detected by ToF-SIMS.
NASA Astrophysics Data System (ADS)
Haaks, Michael; Martin, Steve W.; Vogel, Michael
2017-09-01
We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.
NASA Astrophysics Data System (ADS)
Talicska, Courtney; Porambo, Michael; McCall, Benjamin J.
2015-06-01
The low temperatures and pressures of the interstellar medium provide an ideal environment for gas phase ion-neutral reactions that play an essential role in the chemistry of the universe. High-precision laboratory spectra of molecular ions are necessary to facilitate new astronomical discoveries and provide a deeper understanding of interstellar chemistry, but forming ions in measurable quantities in the laboratory has proved challenging. Even when cryogenically cooled, the high temperatures and pressures of typical discharge cells lead to diluted and congested spectra from which extracting chemical information is difficult. Here we overcome this challenge by coupling an electric discharge to a continuous supersonic expansion source to form ions cooled to low temperatures. The ion production abilities of the source have been demonstrated previously as ion densities on the order of 1010-1012 cm-3 have been observed for H3+.a With a smaller rotational constant and the expectation that it will be formed with comparable densities, HN2+ is used as a reliable measure of the cooling abilities of the source. Ions are probed through the use of a widely tunable mid-infrared (3-5 μm) spectrometer based on light formed by difference frequency generation and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS).b To improve the sensitivity of the instrument the discharge is electrically modulated and the signal is fed into a lock-in amplifier before being recorded by a custom data acquisition program. Rovibrational transitions of H3+ and HN2+ have been recorded, giving rotational temperatures of 80-120 K and 35-40 K, respectively. With verification that the source is producing rotationally cold ions, we move toward the study of primary ions of more astronomical significance, including H2CO+. aK. N. Crabtree, C. A. Kaufman, and B. J. McCall, Rev. Sci. Instrum. 81, 086103 (2010). bM. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, Opt. Lett. 37, 4422 (2012)
A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.
Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia
2013-03-01
In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas
1995-01-01
It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit. Moreover, at the high energies observed in HIIS, these ions can penetrate typical amounts of shielding. We discuss the significance of the HIIS results for estimates of the radiation hazard posed by large SEP events to satellites in low-Earth orbit, including the proposed Space Station orbit. Finally, we comment on previous reports of low-energy below-cutoff Fe-group ions, which some authors have interpreted as evidence for partially-ionized galactic cosmic rays. The LDEF flux levels are much smaller than the corresponding fluxes in these previous reports, implying that the source of these ions has an unusual solar-cycle variation and/or strongly increases with decreasing altitude.
NASA Astrophysics Data System (ADS)
Greczynski, Grzegorz
2016-09-01
High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic heavy-metal ions to densify the dilute TiTaN and/or TiAlTaN alloys. No external heating is used and the substrate temperature does not exceed 120 °C. This development allows for widening the application range of hard TM nitride coatings to new classes of technologically-relevant temperature-sensitive substrates, such as components made by plastics, glasses, aluminum alloys, and tempered steels. Author wants to acknowledge the financial support from VINN Excellence Center Functional Nanoscale Materials (FunMat) Grant 2005 02666.
NASA Technical Reports Server (NTRS)
Schulz, J. R.; Anselmi, R. T.
1976-01-01
The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.
Chemical stabilization of graphite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bistrika, Alexander A.; Lerner, Michael M.
Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditionsmore » for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.« less
Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.
Costa, Joana F de Sá S; Vilar, Vítor J P; Botelho, Cidália M S; da Silva, Eduardo A B; Boaventura, Rui A R
2010-07-01
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+). Copyright 2010 Elsevier Ltd. All rights reserved.
Development of a 10 Ah, Prismatic, Lithium-Ion Cell for NASA/GSFC
NASA Technical Reports Server (NTRS)
Stein, Brian; Baker, John W.; George, Douglas S.; Isaacs, Nathan D.; Shah, Pinakin M.; Rao, Gopalakrishna M.; Day, John H. (Technical Monitor)
2001-01-01
MSA's 10 Ah Li-ion cell is a rugged design suitable for the stringent requirements of aerospace applications. Eighteen cells demonstrate consistent cycling performance over a wide range of rates and temperatures. The cell passes qualification requirements for vibration survivability technology improvements at MSA continue to enhance cell performance.
Vadim Ptitsyn
2018-04-18
"E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.
Distinguishing between pulsed and continuous reconnection at the dayside magnetopause
Onsager, T. G.; Petrinec, S. M.; Fuselier, S. A.
2015-01-01
Abstract Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar‐orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low‐velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the “time since reconnection occurred.” The “time since reconnection” is used to determine the “reconnection time” for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology. PMID:27656333
NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary
NASA Technical Reports Server (NTRS)
Pencil, Eirc S.; Benson, Scott W.
2008-01-01
This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... products (lithium-ion hybrid battery pack assemblies, electrical power steering modules, and electronic...-HK would be able to choose the duty rates during customs entry procedures that apply to lithium-ion..., alternators, distributors, other static converters, inverter modules, rotors/stators, batteries, ignition...
Bunch Splitting Simulations for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satogata, Todd J.; Gamage, Randika
2016-05-01
We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.
NASA Astrophysics Data System (ADS)
Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.
2016-02-01
We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.
NASA Astrophysics Data System (ADS)
Kumar, Mithlesh; Mohapatra, M.
2016-04-01
Zinc aluminate (ZAO), a member of spinel class of inorganic compounds has been of much interest of late due to its wide range of use in catalysis, optical, electronic and ceramic industries. When doped with several lanthanides, this material has proved to be a potential host matrix for phosphors. As lanthanides suffer from poor (direct) excitation and emission cross sections, the use of a co-dopant ion can help to circumvent this and extract better emission from a lanthanide doped ZAO system. In this connection, energy transfer mechanism from uranium to europium in the ZAO host was investigated by photoluminescence spectroscopic technique. It was seen that uranium gets stabilized in the hexavalent state as UO66 - (octahedral uranate) where as the lanthanide ion, Eu is stabilized in its trivalent state in the ZAO host. In the co-doped system, an efficient energy transfer pathway from the uranate to europium ion was observed. Based upon emission and life time data a suitable mechanism was proposed for the energy transfer (quenching) process. It was proposed that after excitation by photons, the uranate ions transfer their energy to nearby 5D1 level of Eu3 + ions which non-radiatively de-excites to the corresponding lower levels of 5D0. Further this 5D0 level decays in a radiative mode to the 7F manifold giving the characteristic emission profile of trivalent Eu. It was proposed that both static and dynamic types of energy transfer mechanism were responsible for this process.
[Potentiometric concentration determination of cyanide ions in waste water].
Börner, J; Martin, G; Götz, C
1990-06-01
Electrodic systems, consist of gold or silver and metals of the IV, or V, subsidiary groups of the periodic system of elements are qualified for that, because they based strength of their electrodic steepness, selectivity, potentionel stability and sensibility by destination of cyanid ions in waste-water. We are going to introduce a fast-analysis-method for cyanid ions in waste-water of technical processes, which had been tested practically by the continuous control of limits, demanded by the legislator.
Advanced GaAs Process Modeling. Volume 1
1989-05-01
COSATI CODES 18 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Gallium Arsenide, MESFET, Process...Background 9 3.2 Model Calculations 10 3.3 Conclusions 17 IV. ION-IMPLANTATION INTO GaAs PROFILE DETERMINATION 18 4.1 Ion Implantation Profile...Determination in GaAs 18 4.1.1. Background 18 4.1.2. Experimental Measurements 20 4.1.3. Results 22 4.1.3.1 Ion-Energy Dependence 22 4.1.3.2. Tilt and Rotation
1987-10-13
AD-A±95 686 PHOTOIONIZATION OF ATOMS AND IONS: APPLICATION OF III TIME-DEPENDENT RESPONSE..(U) NAVAL RESEARCH LAB WASHINGTON DC U GUPTA ET AL. 13 OCT...on revere if ncemy and idmntify by block number) FIELD GROUP SUBGROUP Photoionization Density functional Atoms Time dependent 1 S. (Continue on...reverse if necenary and identify by block numnbw) The photoionization cross-section of several atoms (AT, Xe, Rn, Cs) and ions (Ne-like Ar, H-like and Li
Advantage of spatial map ion imaging in the study of large molecule photodissociation
NASA Astrophysics Data System (ADS)
Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung
2017-07-01
The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.
A 5 x 40 cm rectangular-beam multipole ion source
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.
1981-01-01
A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.
Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J
2014-11-01
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
Poteshin, S S; Zarakovsky, A I
2017-03-15
Original orthogonal acceleration (OA) electrostatic sector time of flight (TOF) mass analyzer is proposed those allows the second order focusing of time of flight by initial ions position. Resolving power aberration limit exceeding 80,000 FW (full width mass peak) was shown to be obtainable for mass analyzer with the total length of flight L=133.2cm, the average ion energy 3700V and the ion energy spread of 2.5% on the entrance of sector field. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Youchun
Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.
A low-temperature electrolyte for lithium and lithium-ion batteries
NASA Astrophysics Data System (ADS)
Plichta, E. J.; Behl, W. K.
An electrolyte consisting of 1 M solution of lithium hexafluorophosphate in 1:1:1 ethylene carbonate(EC)-dimethyl carbonate(DMC)-ethyl methyl carbonate(EMC) is proposed for low temperature applications of lithium and lithium-ion cells. The new electrolyte has good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to -40°C. The paper also reports on the electrochemical stability of aluminum metal, which is used as a substrate for the positive electrodes in lithium-ion cells, in the new electrolyte.
Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis
Brabham, Robin
2016-01-01
Abstract The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β‐mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α‐glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide‐based carbohydrate synthesis. PMID:26744250
Trace analysis of pollutants in water using the photothermal interferometry as HPLC detector.
Seidel, B S; Dübel, O; Faubel, W; Ache, H J
1996-03-01
A new procedure including high performance liquid chromatography in combination with photothermal interference spectroscopy as detection device (HPLC/PIS) has been proposed, optimized and its figures of merit for pesticide residue analysis are shown. The flowing sample under study is set in one arm of a Mach-Zehnder interferometer, and its refractive index is modulated by a periodically chopped continuous wave argon ion laser. As chopper, an acousto optical modulator has been introduced to switch the excitation laser beam between different lines (457 nm, 488 nm, 514 nm) simultaneously. Thus a multi component analysis can be realized either by using an HPLC-system in front of the PIS device or by a multi line Ar(+)-laser, directly. The limit of detection of the HPLC/PIS system reached 71 microg/l of the pesticide di-nitro-ortho-cresol (DNOC).
Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J
2018-02-09
A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser acceleration of electrons to giga-electron-volt energies using highly charged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.; Starace, Anthony F.
2006-06-15
The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components--are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highlymore » charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.« less
Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.
Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V
2010-11-05
The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.
Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh
Heinzelmann, Germano; Baştuğ, Turgut; Kuyucak, Serdar
2011-01-01
Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters. PMID:22098736
NASA Astrophysics Data System (ADS)
Moribayashi, Kengo
2018-05-01
Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.
Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution
NASA Astrophysics Data System (ADS)
Borgohain, D. R.; Saharia, K.
2018-01-01
The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.
NASA Astrophysics Data System (ADS)
Wang, Wei; Yuan, Hang; Wang, Xiangqin; Yu, Zengliang
2008-02-01
An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.
Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi
2004-01-01
A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.
Falsification of the ionic channel theory of hair cell transduction.
Rossetto, Michelangelo
2013-11-01
The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.
Falsification of the ionic channel theory of hair cell transduction
Rossetto, Michelangelo
2013-01-01
The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment. PMID:24563711
Status report of the heavy ions source research and development for Spiral2.
Thuillier, T; Lamy, T; Peaucelle, C; Sortais, P
2010-02-01
The physics background requiring a very intense multicharged heavy ion source for Spiral2 is explained. The new Spiral2 low energy beam line dedicated to the heavy ions production and equipped with PHOENIX V2 ECRIS is presented. A status of the A-PHOENIX commissioning at 18 GHz is summarized. A new hybrid ECRIS concept with a cryogenic permanent magnet hexapole is proposed as an improvement of A-PHOENIX technology.
Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition
NASA Astrophysics Data System (ADS)
Dearnaley, G.
1992-03-01
This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).
Rogue Waves in Multi-Ion Cometary Plasmas
NASA Astrophysics Data System (ADS)
Sreekala, G.; Manesh, M.; Neethu, T. W.; Anu, V.; Sijo, S.; Venugopal, C.
2018-01-01
The effect of pair ions on the formation of rogue waves in a six-component plasma composed of two hot and one colder electron component, hot ions, and pair ions is studied. The kappa distribution, which provides an unambiguous replacement for a Maxwellian distribution in space plasmas, is connected with nonextensive statistical mechanics and provides a continuous energy spectrum. Hence, the colder and one component of the hotter electrons is modeled by kappa distributions and the other hot electron component, by a q-nonextensive distribution. It is found that the rogue wave amplitude is different for various pair-ion components. The magnitude, however, increases with increasing spectral index and nonextensive parameter q. These results may be useful in understanding the basic characteristics of rogue waves in cometary plasmas.
The LEBIT ion cooler and buncher
NASA Astrophysics Data System (ADS)
Schwarz, S.; Bollen, G.; Ringle, R.; Savory, J.; Schury, P.
2016-04-01
This paper presents a detailed description of the ion cooler and buncher, installed at the Low Energy Beam and Ion Trap Facility (LEBIT) at the National Superconducting Cyclotron Laboratory (NSCL). NSCL uses gas stopping to provide rare isotopes from projectile fragmentation for its low-energy physics program and to the re-accelerator ReA. The LEBIT ion buncher converts the continuous rare-isotope beam, delivered from the gas stopping cell, into short, low-emittance ion pulses, required for high-precision mass measurements with a 9.4 T Penning trap mass spectrometer. Operation at cryogenic temperatures, a simplified electrode structure and dedicated rugged electronics contribute to the high performance and reliability of the device, which have been essential to the successful LEBIT physics program since 2005.
Laser ablation of human atherosclerotic plaque without adjacent tissue injury
NASA Technical Reports Server (NTRS)
Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.
1985-01-01
Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.
NASA Astrophysics Data System (ADS)
McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl
2013-10-01
Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.
The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water
NASA Astrophysics Data System (ADS)
Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.
2014-12-01
Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.
Extended linear ion trap frequency standard apparatus
NASA Technical Reports Server (NTRS)
Prestage, John D. (Inventor)
1995-01-01
A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.
Initial Thrust Measurements of Marshall's Ion-ioN Thruster
NASA Technical Reports Server (NTRS)
Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2015-01-01
Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.
Radio frequency sustained ion energy
Jassby, Daniel L.; Hooke, William M.
1977-01-01
Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.
Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe
2018-05-07
In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
NASA Astrophysics Data System (ADS)
Heile, A.; Muhmann, C.; Lipinsky, D.; Arlinghaus, H. F.
2012-07-01
In static SIMS, the secondary ion yield, defined as detected ions per primary ion, can be increased by altering several primary ion parameters. For many years, no quantitative predictions could be made for the secondary ion yield enhancement of molecular ions. For thick samples of organic compounds, a power dependency of the secondary ion yield on the sputtering yield was shown. For this article, samples with thick molecular layers and (sub-)monolayers composed of various molecules were prepared on inorganic substrates such as silicon, silver, and gold, and subsequently analyzed. For primary ion bombardment, monoatomic (Ne+, Ar+, Ga+, Kr+, Xe+, Bi+) as well as polyatomic (Bin+, Bin++) primary ions were used within an energy range of 10-50 keV. The power dependency was found to hold true for the different samples; however, the exponent decreased with increasing stopping power. Based on these findings, a rule of thumb is proposed for the prediction of the lower limit of the secondary ion yield enhancement as a function of the primary ion species. Additionally, effects caused by the variation of the energy deposition are discussed, including the degree of molecular fragmentation and the non-linear increase of the secondary ion yield when polyatomic primary ions are used.
Ferrielectricity in DyMn2O5: A golden touchstone for multiferroicity of RMn2O5 family
NASA Astrophysics Data System (ADS)
Liu, J.-M.; Dong, S.
2015-06-01
The RMn2O5 manganite compounds represent one class of multiferroic family with magnetic origins, which has been receiving continuous attention in the past decade. So far, our understanding of the magnetic origins for ferroelectricity in RMn2O5 is associated with the nearly collinear antiferromagnetic structure of Mn ions, while the exchange striction induced ionic displacements are the consequence of the spin frustration competitions. While this scenario may be applied to almost all RMn2O5 members, its limitation is either clear: the temperature-dependent behaviors of electric polarization and its responses to external stimuli are seriously materials dependent. These inconsistences raise substantial concern with the state-of-the-art physics of ferroelectricity in RMn2O5. In this mini-review, we present our recent experimental results on the roles of the 4f moments from R ions which are intimately coupled with the 3d moments from Mn ions. DyMn2O5 is a golden figure for illustrating these roles. It is demonstrated that the spin structure accommodates two nearly collinear sublattices which generate respectively two ferroelectric (FE) sublattices, enabling DyMn2O5 an emergent ferrielectric (FIE) system rarely identified in magnetically induced FEs. The evidence is presented from several aspects, including FIE-like phenomena and magnetoelectric responses, proposed structural model, and experimental check by nonmagnetic substitutions of the 3d and 4f moments. Additional perspectives regarding possible challenges in understanding the multiferroicity of RMn2O5 as a generalized scenario are discussed.
NASA Astrophysics Data System (ADS)
Gedalin, M.; Liverts, M.; Balikhin, M. A.
2008-05-01
Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).
Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets
Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.
2008-01-01
We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311
A double-layer based model of ion confinement in electron cyclotron resonance ion source.
Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G
2014-02-01
The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.
Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier
Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu
2015-01-01
Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147
Retarding field energy analyzer for the Saskatchewan Torus-Modified plasma boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreval, M.; Rohraff, D.; Xiao, C.
2009-10-15
The retarding field energy analyzer (RFA) is a simple and reliable diagnostic technique to measure the ion temperature in the scrape-off layer and edge of magnetic fusion devices. Design and operation features of a single-sided (facing the ion flow) RFA for ion temperature measurements in the Saskatchewan Torus-Modified (STOR-M) tokamak are described. Its compact size (21x15x20 mm{sup 3}) allows RFA measurements without perturbing plasma significantly. Both ion and electron temperature have been measured by RFA in the STOR-M tokamak. A method is proposed to correct the effects of ion flow on the ion temperature using the simultaneously measured Mach number.more » The measured electron temperature is consistent with the previously reported Langmuir probe data. Abnormal behavior of the RFA has been observed in both ion and electron modes when RFA is inserted deep into the plasma.« less
Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence
NASA Astrophysics Data System (ADS)
Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher
2018-04-01
We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bermudez, A.; Martin-Delgado, M. A.; Solano, E.
2007-10-15
We study the dynamics of the 2+1 Dirac oscillator exactly and find spin oscillations due to a Zitterbewegung of purely relativistic origin. We find an exact mapping of this quantum-relativistic system onto a Jaynes-Cummings model, describing the interaction of a two-level atom with a quantized single-mode field. This equivalence allows us to map a series of quantum optical phenomena onto the relativistic oscillator and vice versa. We make a realistic experimental proposal, in reach with current technology, for studying the equivalence of both models using a single trapped ion.
The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent
2011-01-21
Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.
Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo
2016-12-28
Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g -1 , which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less
NASA Astrophysics Data System (ADS)
Hao, N.; Moysey, S. M.; Powell, B. A.; Ntarlagiannis, D.
2014-12-01
Spectral Induced Polarization (SIP) has been used to monitor subsurface biogeochemical processes in a variety of lab and field studies. However, there are several competing mechanisms that have been proposed to explain the SIP effect. This work targets the influence of ion sorption to mineral surfaces as a controlling factor on SIP utilizing a pH dependent surface adsorption experiment. In this experiment we use silica gel as an idealized medium where the number of available sites for cation sorption, which in this case is limited to Na+ and H+ ions, is influenced by changes in pH via protonation/deprotonation of silanol groups. The experiment uses 22Na as an in situ tracer as the radioactive decay of this nuclide can be continuously and non-invasively monitored using sensors placed outside of a column. The experiment was conducted by continuously pumping a 0.01M NaCl solution spiked with of 1μCi/L 22Na in to the column under three pH conditions (pH 5.0, 6.0 and 8.0). In the experiment, we observed an increasing number of gamma counts caused by the accumulation of sorbed 22Na in the column as we increased the pH from 5.0 to 6.5, and finally to 8.0. Simultaneously, we observed a linearly correlated (R2 = 0.99) rise in the imaginary conductivity response of the SIP measurements. Using the triple layer electrochemical polarization model for grain polarization to simulate our experimental SIP responses, we found that the estimated surface site density is within a factor of two of that estimated from the mass accumulation of sodium. Since the accumulation of sodium on the silica gel surface is responsible for both the increase in gamma radiation and the change in the electrical response, these observations support the theory that mobile ions in the Stern layer of mineral surfaces provide the primary control on SIP signals in silicate materials.
NASA Astrophysics Data System (ADS)
Pickard, Heidi M.; Criscitiello, Alison S.; Spencer, Christine; Sharp, Martin J.; Muir, Derek C. G.; De Silva, Amila O.; Young, Cora J.
2018-04-01
Perfluoroalkyl acids (PFAAs) are persistent, in some cases, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport (LRT) through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs in polar or mountainous regions, as well as in understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977-2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from < LOD to 141 ng m-2 yr-1. Our results demonstrate that the PFCAs and perfluorooctane sulfonate (PFOS) have continuous and increasing deposition on the Devon Ice Cap, despite recent North American and international regulations and phase-outs. We propose that this is the result of on-going manufacture, use and emissions of these compounds, their precursors and other newly unidentified compounds in regions outside of North America. By modelling air mass transport densities, and comparing temporal trends in deposition with production changes of possible sources, we find that Eurasian sources, particularly from Continental Asia, are large contributors to the global pollutants impacting the Devon Ice Cap. Comparison of PFAAs to their precursors and correlations of PFCA pairs showed that deposition of PFAAs is dominated by atmospheric formation from volatile precursor sources. Major ion analysis confirmed that marine aerosol inputs are unimportant to the long-range transport mechanisms of these compounds. Assessments of deposition, homologue profiles, ion tracers, air mass transport models, and production and regulation trends allow us to characterize the PFAA depositional profile on the Devon Ice Cap and further understand the LRT mechanisms of these persistent pollutants.
Wheelan, P; Zirrolli, J A; Clay, K L
1992-01-01
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.
Acceleration and heating of heavy ions in high speed solar wind streams
NASA Technical Reports Server (NTRS)
Gomberoff, L.; Gratton, F. T.; Gnavi, G.
1995-01-01
Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the dispersion relation, the one which goes to the Doppler-shifted alpha particle gyrofrequency. The Alfven waves continue to propagate along the first branch of the dispersion relation and proceed to accelerate and heat the alpha particles.
Annual Progress Report, Fiscal Year 1980
1980-10-01
Stress Rating Scales Heat Stroke Respiratory Control Hepatic Necrosis Survey Analysis Load Carriage Sustained/Continuous Operations Human Performances...wire placed percutaneously into one of the external jugular veins, under local anesthesia. Ventilatory measurements were made with the goat wearing a...electrical apparatus that produces positive air ions or in closed artificial environments which deplete negative air ions. Local positive ionization may
Energy and material balance of CO2 capture from ambient air.
Zeman, Frank
2007-11-01
Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.
Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; ...
2016-01-01
The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li 2CO 3, LiF and Li 3PO 4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tensionmore » and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.« less
Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments
NASA Astrophysics Data System (ADS)
Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration
2016-09-01
As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.
NASA Astrophysics Data System (ADS)
Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu
2018-02-01
Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Kurucz, Robert L.
2004-01-01
I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.
2010-07-01
urbulcncc altitude. A ,~ l,;on ll;ural on ’I urbu enee Condilion:. Num""r Trombone t’W t’o"llIon I’W ~ Iep l’ropagM Ion ’nUb. "’-elncUy , Ensemble of Len
Formation and Detoxification of Reactive Oxygen Species
ERIC Educational Resources Information Center
Kuciel, Radoslawa; Mazurkiewicz, Aleksandra
2004-01-01
A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…
CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, G.S.; Legvold, S.
1958-11-01
The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)
Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon
2012-01-01
A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry
Hill, David A; Desai, Sanjay A
2010-01-01
Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831
Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos
2011-09-15
A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Marek, Aleš; Tureček, František
2014-05-01
Gas-phase dissociations were investigated for several peptide ions containing the Gly-Leu* N-terminal motif where Leu* was a modified norleucine residue containing the photolabile diazirine ring. Collisional activation of gas-phase peptide cations resulted in facile N₂ elimination that competed with backbone dissociations. A free lysine ammonium group can act as a Brønsted acid to facilitate N₂ elimination. This dissociation was accompanied by insertion of a lysine proton in the side chain of the photoleucine residue, as established by deuterium labeling and gas-phase sequencing of the products. Electron structure calculations were used to provide structures and energies of reactants, intermediates, and transition states for Gly-Leu*-Gly-Gly-Lys amide ions that were combined with RRKM calculations of unimolecular rate constants. The calculations indicated that Brønsted acid-catalyzed eliminations were kinetically preferred over direct loss of N₂ from the diazirine ring. Mechanisms are proposed to explain the proton-initiated reactions and discuss the reaction products. The non-catalyzed diazirine ring cleavage and N₂ loss is proposed as a thermometer dissociation for peptide ion dissociations.
Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*
Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan
2012-01-01
Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759
Dousty, Faezeh; O'Brien, Rob
2015-06-15
As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.
Continuous Modeling of Calcium Transport Through Biological Membranes
NASA Astrophysics Data System (ADS)
Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.
2016-08-01
In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh
Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less
The influence of projectile ion induced chemistry on surface pattern formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in; Satpati, Biswarup
We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurementsmore » that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.« less
Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...
2018-03-20
Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less
Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.
The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.
New gas phase inorganic ion cluster species and their atmospheric implications
NASA Technical Reports Server (NTRS)
Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.
1980-01-01
Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.
Axial and Radial Compression of Ion Beams.
1980-03-01
is found to be Jbn/Jb - 1 - 5 x 10 for proposed fusion systems. Since this low level of noise is probably not achievable, some hollowing out of the...that the ion beam was assumed to have about 1 cm2 cross section that is a little smaller than the confining low density plasma. The plasma was chosen...after many ripple wavelengths due to the weak dependence of the betatron frequency on the small spread in ion injection angles. Other mechanisms, such
NASA Astrophysics Data System (ADS)
Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.
2018-02-01
We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using Rutherford backscattering technique which showed the satisfactory functioning of the system. The accuracy of the fluence measurements is found to be less than 2% which meets the demands of the irradiation experiments undertaken using the developed set up. The system was incorporated for regular use at the existing ultra high vacuum (UHV) ion irradiation chamber of 1.7 MV Tandem accelerator and several ion implantation experiments on a variety of samples like SS304, D9, ODS alloys have been successfully carried out.
Explicit ions/implicit water generalized Born model for nucleic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
Ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model, and utilizes a non-standard approach to defining the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes – disconnected dielectric boundary around the solute-ion or ion-ion pairs. Fully analytical description of all energymore » components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force (PMF) for Na+-Cl− ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of DNA duplex; these differences in the counterion binding patters were shown earlier to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with homopolymeric poly(dA·dT) DNA duplex with modified (de-methylated) and native Thymine bases are used to explore the physics behind CoHex-Thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-Thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range, and may be important to consider in the context of methylation effects on DNA condensation.« less
Explicit ions/implicit water generalized Born model for nucleic acids
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
2018-05-01
The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de-methylated) and native thymine bases are used to explore the physics behind CoHex-thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range and may be important to consider in the context of methylation effects on DNA condensation.
Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.
Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel
2015-09-01
We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.
Demkowska, Ilona; Polkowska, Żaneta; Kiełbratowska, Bogumiła; Namieśnik, Jacek
2010-11-01
Tobacco smoking constitutes a significant source of indoor air pollution. Various chemical compounds that are emitted during tobacco smoking can have a direct cytotoxic effect on spermatozoa by damaging DNA. There is some evidence that tobacco smoking in men could affect male fertility. The goals of this study were to find relationships between thiocyanates (as biomarkers of environmental tobacco smoke exposure) and other inorganic ions in human semen samples and present the effectiveness of the proposed sample preparation procedure combined with ion chromatography technique for the determination of inorganic ions, especially thiocyanates, in human semen samples collected from heavy, moderate, and passive smokers, as well as nonsmoking individuals.
A thermalized ion explosion model for high energy sputtering and track registration
NASA Technical Reports Server (NTRS)
Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.
1980-01-01
A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.
Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force
NASA Astrophysics Data System (ADS)
Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.
2018-01-01
In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.
Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption
NASA Astrophysics Data System (ADS)
Konovalov, Konstantin; Sachkov, Victor
2017-11-01
In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.
NASA Astrophysics Data System (ADS)
Russo, G.; Attili, A.; Battistoni, G.; Bertrand, D.; Bourhaleb, F.; Cappucci, F.; Ciocca, M.; Mairani, A.; Milian, F. M.; Molinelli, S.; Morone, M. C.; Muraro, S.; Orts, T.; Patera, V.; Sala, P.; Schmitt, E.; Vivaldo, G.; Marchetto, F.
2016-01-01
The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.
Microstructure, hardness and modulus of carbon-ion-irradiated new SiC fiber (601-4)
NASA Astrophysics Data System (ADS)
Huang, Qing; Lei, Guanhong; Liu, Renduo; Li, Jianjian; Yan, Long; Li, Cheng; Liu, Weihua; Wang, Mouhua
2018-05-01
Two types of SiC fibers, one is low-oxygen and carbon-rich fiber denoted by 601-4 and the other is low-oxygen and near-stoichiometric Tyranno SA, were irradiated with 450 keV C+ ions at room temperature. The Raman spectra indicate that irradiation induced distortion and amorphization of SiC crystallites in fibers. TEM characterization of Tyranno SA suggests that SiC crystallites undergo a continued fragmentation into smaller crystalline islands and a continued increase of surrounding amorphous structure. The SiC nano-crystallites (<15 nm) in 601-4 fiber are more likely to be amorphized than larger crystallites (∼200 nm) in Tyranno SA. The hardness and modulus of 601-4 continuously decreases with increasing fluence, while that of Tyranno SA first increases and then decreases.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2003-01-01
Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams.
Alejo, A; Kar, S; Tebartz, A; Ahmed, H; Astbury, S; Carroll, D C; Ding, J; Doria, D; Higginson, A; McKenna, P; Neumann, N; Scott, G G; Wagner, F; Roth, M; Borghesi, M
2016-08-01
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams
NASA Astrophysics Data System (ADS)
Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.
2016-08-01
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.
NASA Astrophysics Data System (ADS)
Mirzaei, Mohammad; Saeed, Jaber
2011-11-01
A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM ( r2 = 0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% ( n = 7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
A role for ion implantation in quantum computing
NASA Astrophysics Data System (ADS)
Jamieson, David N.; Prawer, Steven; Andrienko, Igor; Brett, David A.; Millar, Victoria
2001-04-01
We propose to create arrays of phosphorus atoms in silicon for quantum computing using ion implantation. Since the implantation of the ions is essentially random, the yield of usefully spaced atoms is low and therefore some method of registering the passage of a single ion is required. This can be accomplished by implantation of the ions through a thin surface layer consisting of resist. Changes to the chemical and/or electrical properties of the resist will be used to mark the site of the buried ion. For chemical changes, the latent damage will be developed and the atomic force microscope (AFM) used to image the changes in topography. Alternatively, changes in electrical properties (which obviate the need for post-irradiation chemical etching) will be used to register the passage of the ion using scanning tunneling microscopy (STM), the surface current imaging mode of the AFM. We address the central issue of the contrast created by the passage of a single ion through resist layers of PMMA and C 60.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.
2016-08-15
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species.more » Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.« less
NASA Astrophysics Data System (ADS)
Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.
2018-05-01
Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.
Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein
2017-03-01
A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L -1 . Detection limit and relative standard deviation of the proposed method were 0.009 μg L -1 and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g -1 , a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants K f and n of 6.075 mg 1-1/n L 1/n g -1 and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.
NASA Astrophysics Data System (ADS)
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Cheng, Qian; Okamoto, Yasuharu; Tamura, Noriyuki; Tsuji, Masayoshi; Maruyama, Shunya; Matsuo, Yoshiaki
2017-11-01
Here we propose the use of a carbon material called graphene-like-graphite (GLG) as anode material of lithium ion batteries that delivers a high capacity of 608 mAh/g and provides superior rate capability. The morphology and crystal structure of GLG are quite similar to those of graphite, which is currently used as the anode material of lithium ion batteries. Therefore, it is expected to be used in the same manner of conventional graphite materials to fabricate the cells. Based on the data obtained from various spectroscopic techniques, we propose a structural GLG model in which nanopores and pairs of C-O-C units are introduced within the carbon layers stacked with three-dimensional regularity. Three types of highly ionic lithium ions are found in fully charged GLG and stored between its layers. The oxygen atoms introduced within the carbon layers seem to play an important role in accommodating a large amount of lithium ions in GLG. Moreover, the large increase in the interlayer spacing observed for fully charged GLG is ascribed to the migration of oxygen atoms within the carbon layer introduced in the state of C-O-C to the interlayer space maintaining one of the C-O bonds.
Dalgaard; McKenzie
1999-10-01
Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.
Grevillot, L; Stock, M; Vatnitsky, S
2015-10-21
This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.