Science.gov

Sample records for ip beam parameters

  1. Reconstruction of IP Beam Parameters at the ILC From Beamstrahlung

    SciTech Connect

    White, G.; /SLAC /Queen Mary, U. of London

    2005-07-11

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  2. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    SciTech Connect

    Bolzon, Benoit; Jeremie, Andrea; Bai, Sha; Bambade, Philip; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  3. Pulse to pulse beam trajectory determination at the IP

    SciTech Connect

    Koska, W.; Wagner, S.

    1988-08-02

    It has long been known that a precise measurement of the SLC beam trajectory through the IP region is vital both from a machine and a detector point of view. One of the primary techniques used to maximize luminosity is the measurement of the deflection angle of one beam produced by the electromagnetic interaction with the other beam. In order to implement this procedure a pair of precision Beam Position Monitors (BPMs) were installed within the Final Triplet of quadrapoles on each side of the IP. Before the IP BPMs could be used to measure beam-beam deflection, a series of measurements were made of the coefficients which relate the setting of an orbit correction magnet to the position of the beam at a particular BPM (R/sub 12/s). The purpose was to expose any problems such as misconnected cables, etc., by comparing the measured R/sub 12/s with theoretical predictions from the model of the Final Focus region. A technique developed that uses position measurements in the long BPMs to determine a three parameter fit to the beam trajectory at the IP. The three parameters in the fit are the beam position, the incoming angle and the deflection angle. The result was very successful and allows the observation of beam-beam deflection even under marginal conditions. The purpose of this memo is to clear up the technical points and to demonstrate that the simplicity of the fit should allow the implementation of this procedure at the micro level, where it could provide trajectory information in real time which would go a long way toward making it useful as a fast feedback tool and in addition allow easy real time access to beam position data by the Mark II.

  4. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  5. Beam Losses in the NLC Extraction Line for High Luminosity Beam Parameters (LCC-0049)

    SciTech Connect

    Nosochkov, Y

    2004-03-19

    In this note we present results of beam tracking in the NLC extraction line for the NLC option with high luminosity beam parameters (option H). Particle losses for 0.5 TeV and 1 TeV cms energy beams have been computed and examined as a function of beam offset at the interaction point (IP). Updated tracking results for the NLC option A are presented as well.

  6. Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

    NASA Astrophysics Data System (ADS)

    Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan

    2016-12-01

    Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

  7. NLC Luminosity as a Function of Beam Parameters

    SciTech Connect

    Nosochkov, Yuri

    2002-06-06

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  8. NLC Luminosity as a Function of Beam Parameters

    NASA Astrophysics Data System (ADS)

    Nosochkov, Y.

    2002-06-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  9. Comparison of gating dynamics of different IP3R channels with immune algorithm searching for channel parameter distributions

    NASA Astrophysics Data System (ADS)

    Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei

    2016-10-01

    The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.

  10. The Influence of the AGS Beam Parameters on the Beam Parameters at the RHIC Injection Point

    SciTech Connect

    Xu, Jianming

    1988-01-03

    The change of the AGS ejected beam parameter will influence the injection efficiency of RHIC, cause phase space dilution and decrease the luminosity of RHIC. The changes of the beam parameters at the RHIC injection point caused by the changes of the AGS ejected beam parameters have been calculated and summarized in this note.

  11. Ion beam parameters of a plasma accelerator

    SciTech Connect

    Nazarov, V.G.; Vinogradov, A.M.; Veselovzorov, A.N.; Efremov, V.K.

    1987-08-01

    The aim of this investigation was to determine the dependences of the current density, the energy, and the divergence of the ion beams of an UZDP-type source (a plasma accelerator with closed electron drift in the accelerator channel and an extended zone of ion acceleration) on the parameters which determine its performance, and to establish qualitative relationships between these values.

  12. Parameter estimation in truss beams using Timoshenko beam model with damping

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Juang, J. N.

    1983-01-01

    Truss beams with members having viscous damping are modeled with a Timoshenko beam. Procedures for deriving the equivalent bending rigidity, transverse shear rigidity, and damping are presented. Explicit expressions for these equivalent beam properties are obtained for a specific truss beam. The beam model thus established is then used to investigate the effect of damping in free vibration. Finally, the beam is employed in the estimation of structural parameters in a simply-supported truss beam using a random search algorithm.

  13. Design of a multi beam klystron cavity from its single beam parameters

    NASA Astrophysics Data System (ADS)

    Kant, Deepender; Joshi, L. M.; Janyani, Vijay

    2016-03-01

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  14. Design of a multi beam klystron cavity from its single beam parameters

    SciTech Connect

    Kant, Deepender Joshi, L. M.; Janyani, Vijay

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  15. Measurement of diagnostic neutral beam parameters on J-TEXT.

    PubMed

    Wang, J R; Cheng, Z F; Li, Z; Li, Y; Luo, J; Zhang, X L; Zhuang, G

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  16. Measurement of diagnostic neutral beam parameters on J-TEXT

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Cheng, Z. F.; Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  17. Measurement of diagnostic neutral beam parameters on J-TEXT

    SciTech Connect

    Wang, J. R.; Cheng, Z. F. Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-15

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  18. Cumulative beam breakup with time-dependent parameters

    SciTech Connect

    Jean Delayen

    2004-08-01

    A general analytical formalism developed recently for cumulative beam breakup (BBU) in linear accelerators with arbitrary beam current profile and misalignments [1, 2] is extended to include time-dependent parameters such as energy chirp or rf focusing in order to reduce BBU-induced instabilities and emittance growth. Analytical results are presented and applied to practical accelerator configurations.

  19. Effect of noncircularity of experimental beam on CMB parameter estimation

    SciTech Connect

    Das, Santanu; Mitra, Sanjit; Paulson, Sonu Tabitha E-mail: sanjit@iucaa.ernet.in

    2015-03-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the PLANCK likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window functions obtained via Monte Carlo simulations starting from a fiducial spectrum, as implemented in PLANCK analyses for example, leads to only few percent of sigma deviation of the best-fit parameters. However, we notice more significant differences in the posterior distributions for some of the parameters, which would in turn lead to incorrect errorbars. These differences can be reduced, so that the errorbars match within few percent, by adding an iterative reanalysis step, where the beam window function would be recomputed using the best-fit spectrum estimated in the first step.

  20. Beam propagation factors and kurtosis parameters of a Lorentz-Gauss vortex beam.

    PubMed

    Zhou, Guoquan

    2014-06-01

    Based on the second-order and the higher-order moments, analytical expressions for the beam propagation factors of a Lorentz-Gauss vortex beam with l=1 have been derived, and analytical propagation expressions for the kurtosis parameters of a Lorentz-Gauss vortex beam with l=1 through a paraxial and real ABCD optical system have also been presented. The M² factor is determined by the parameters a and b and decreases with increasing the parameter a or b. The M² factor is validated to be larger than 2. The kurtosis parameters depend on the diffraction-free ranges of the Lorentz part, the parameters a and b, and the ratio A/B. The kurtosis parameters of a Lorentz-Gauss vortex beam propagating in free space are demonstrated in different reference planes. In the far field, the kurtosis parameter K decreases with increasing one of the parameters a and b. Upon propagation, the kurtosis parameter K first decreases, then increases, and finally tends to a saturated value. In any case, the kurtosis parameter K is larger than 2. This research is beneficial to optical trapping, guiding, and manipulation of microscopic particles and atoms using Lorentz-Gauss vortex beams.

  1. Nonintercepting diagnostics for transverse beam parameters: From rings to ERLs

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.

    2006-02-01

    The characterization of particle-beam parameters in accelerators and transport lines is important to the experiment's success. The development of nonintercepting (NI) diagnostics is of growing interest in the community due to top-up operations for storage rings such as the Advanced Photon Source (APS), as well as the rapidly developing energy recovering linacs (ERLs). In both areas beam position and beam quality are relevant, and the ability to measure these in an NI manner is critical. Beam transverse size and divergence are more of a challenge, and examples of the minimally intercepting or NI measurements based on optical transition radiation (OTR), optical synchrotron radiation (OSR), X-ray synchrotron radiation (XSR), optical diffraction radiation (ODR), and undulator radiation (UR) will be presented as space permits. These are relevant to the various ERL parameter spaces and operating modes.

  2. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  3. Measurement and simulation of the TRR BNCT beam parameters

    NASA Astrophysics Data System (ADS)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  4. Reference systems for laser beam quality and parameter measurements

    SciTech Connect

    Xu Dagang; Ma Chong; Guo Zhengqiang; Lu Zheng

    1996-12-31

    Three reference systems for the calibration and comparison of beam parameter measurements and beam quality of cw and pulsed lasers at NIM are described. While the cross-sectional power/energy density distribution function of TEM{sub 00} He-Ne laser and pulsed Nd:YAG laser are detected by a CCD-camera, the power density distribution function of cw CO{sub 2} laser is scanned by a liquid nitrogen cooled TeCdHg detector. Test procedures and evaluations are refer to ISO/DIS 11146 document. From the measured cross-sectional distribution function, the first and second spatial moments as well as the beam width are calculated. The waist location and width are determined by a hyperbolic fit to different measurements of the beam width along the propagation axis. The error evaluation equations for beam parameter measurement have been derived. Measurement agreements using different test methods and instruments are studied. Varieties of beam characteristics and measurement uncertainty for two measuring apparatus are given.

  5. Beam configuration and physical parameters of clinical high energy photon beam for total body irradiation (TBI).

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichi; Davis, Chirayathmanjiyil Antony; Sivakumar, Somangali Sathiyamurthy; Krishnamurthy, Kammari; Mandhari, Zahid Al; Rajan, Balakrishnan

    2011-07-01

    To start total body irradiation (TBI) treatments, physical parameters are measured for a magna field irradiation. 6 MV photon beam from Clinac 600 CD linear accelerator (Varian, USA) with fully opened collimator at 45° and gantry at 270° provided a diamond shaped magna field with diagonal dimension 224 cm at 4.0 m source skin distance (SSD). The flatness of the radiation field was measured in the presence of locally designed acrylic beam spoiler and beam flatness filter. Central Axis Depth dose data (CADD), tissue maximum ratios and entrance dose pattern are measured using large phantoms. Methods for clinical dose estimation using semi-conductor diodes and TLD were standardized. PVC beam flattener at the shielding tray position and the presence of acrylic beam spoiler in the radiation field provided a flatness of 100.15% ± 0.44% compared to open beam flatness 101.6 ± 1.5%. A reduction of 2% in percentage depth dose was observed at 10 cm depth in the presence of 15 mm acrylic beam spoiler. However, no changes are observed in the TMRs with presence of beam spoiler. The measured ionization ratios clearly showed change of beam quality with the introduction of beam spoiler. The presence of 15 mm beam spoiler ensured entrance dose 100% at skin and remaining unchanged within 1% upto a depth of 10 mm. Phantom measurements show good agreement between calculated and measured doses. The paper recommends use of modified CADD parameters for treatment planning, if calibration of output is carried out in the presence of beam spoiler. Copyright © 2010. Published by Elsevier Ltd.

  6. Optimal vibration control of curved beams using distributed parameter models

    NASA Astrophysics Data System (ADS)

    Liu, Fushou; Jin, Dongping; Wen, Hao

    2016-12-01

    The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.

  7. Beam Diagnostics Based on AC Modulation of System Parameters

    SciTech Connect

    Michael Tiefenback

    2004-11-10

    To improve the performance of operating accelerators, quantities such as lattice functions, beam transfer functions, betatron frequencies, etc, can be measured turn by turn with beam position monitors or from difference measurements using step changes in system parameters. Spectral measurements in closed orbit machines provide accurate values for some properties. But for open-ended systems and some measurements in closed-orbit machines, periodic modulation can be very useful for obtaining information about the beam line. Using examples from existing machines, we compare and contrast beam based modulation techniques and step function or passive measurements. For example, large amplitude dipole modulation in rings can be used in dedicated exploration of nonlinear optical properties without beam degradation, even allowing for tune spread effects. Low-level modulation can provide real-time system monitoring with no adverse effect on beam users. Examples considered include fully resonant dipole modulation in storage rings such as RHIC (hadrons) and PEP-II (electrons), and the continuous low-level modulation used in the CEBAF recirculating electron linac for real-time feedback to improve availability.

  8. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    SciTech Connect

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-07-15

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 {+-} 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  9. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  10. Flattening filter free beams from TrueBeam and Versa HD units: Evaluation of the parameters for quality assurance.

    PubMed

    Fogliata, Antonella; Fleckenstein, Jens; Schneider, Frank; Pachoud, Marc; Ghandour, Sarah; Krauss, Harald; Reggiori, Giacomo; Stravato, Antonella; Lohr, Frank; Scorsetti, Marta; Cozzi, Luca

    2016-01-01

    Flattening filter free (FFF) beams generated by medical linear accelerators are today clinically used for stereotactical and non-stereotactical radiotherapy treatments. Such beams differ from the standard flattened beams (FF) in the high dose rate and the profile shape peaked on the beam central axis. Definition of new parameters as unflatness and slope for FFF beams has been proposed based on a renormalization factor for FFF profiles. The present study aims to assess the dosimetric differences between FFF beams generated by linear accelerators from different vendors, and to provide renormalization and parameter data of the two kinds of units. Dosimetric data from two Varian TrueBeam and two Elekta Versa HD linear accelerators, all with 6 and 10 MV nominal accelerating potentials, FF and FFF modes have been collected. Renormalization factors and related fit parameters according to Fogliata et al. ["Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy," Med. Phys. 39, 6455-6464 (2012)] have been evaluated for FFF beams of both units and energies. Unflatness and slope parameters from profile curves were evaluated. Dosimetric differences in terms of beam penetration and near-the-surface dose were also assessed. FFF profile parameters have been updated; renormalization factors and unflatness from the Varian units are consistent with the published data. Elekta FFF beam qualities, different from the Varian generated beams, tend to express similar behaviour as the FF beam of the corresponding nominal energy. TPR20,10 for 6 and 10 MV FF and FFF TrueBeam beams are 0.665, 0.629 (6 MV) and 0.738, 0.703 (10 MV). The same figures for Versa HD units are 0.684, 0.678 (6 MV) and 0.734, 0.721 (10 MV). Renormalization factor and unflatness parameters evaluated from Varian and Elekta FFF beams are provided, in particular renormalization factors table and fit parameters.

  11. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    SciTech Connect

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  12. Signal processing for longitudinal parameters of the Tevatron beam

    SciTech Connect

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.; /Fermilab

    2005-05-01

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz.

  13. Effects of e-beam parameters on coherent electron cooling

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.; Wang, G.

    2011-03-28

    Coherent Electron Cooling (CeC) requires detailed control of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. Coherent Electron Cooling (CeC) [1] is a new concept in intense, high energy hadron beamcooling, in which the Debye screened charge perturbation calculated in [2] is used to seed a high-gain free electron laser (FEL). Using delays to give the perturbing hadron an energy-dependent longitudinal displacement relative to its frequencymodulated charge perturbation, the hadron receives an energy-dependent kick which reduces its energy variation from the design energy. The equations of motion in [1] assume that the electron bunch is the same physical size as the hadron bunch, and has a homogeneous charge density across the entire bunch. In practice, the electron bunches will be much shorter than the hadron bunch, and this local spacial inhomogeneity in the charge distribution will alter the gain length of the FEL, resulting in both a change in the amplification of the initial signal and a phase shift. In this paper we consider these inhomogeneity effects, determining cooling equations for bunched beam CeC consistent with these effects and determining thresholds for the cooling parameters.

  14. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    NASA Astrophysics Data System (ADS)

    Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torromé, R. G.; Wolski, A.

    2014-05-01

    In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  15. A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam

    NASA Astrophysics Data System (ADS)

    F, Khannous; A, A. A. Ebrahim; A, Belafhal

    2016-04-01

    Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre-Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.

  16. Flattening filter free beams from TrueBeam and Versa HD units: Evaluation of the parameters for quality assurance

    SciTech Connect

    Fogliata, Antonella Reggiori, Giacomo; Stravato, Antonella; Scorsetti, Marta; Cozzi, Luca; Fleckenstein, Jens; Schneider, Frank; Lohr, Frank; Pachoud, Marc; Ghandour, Sarah; Krauss, Harald

    2016-01-15

    Purpose: Flattening filter free (FFF) beams generated by medical linear accelerators are today clinically used for stereotactical and non-stereotactical radiotherapy treatments. Such beams differ from the standard flattened beams (FF) in the high dose rate and the profile shape peaked on the beam central axis. Definition of new parameters as unflatness and slope for FFF beams has been proposed based on a renormalization factor for FFF profiles. The present study aims to assess the dosimetric differences between FFF beams generated by linear accelerators from different vendors, and to provide renormalization and parameter data of the two kinds of units. Methods: Dosimetric data from two Varian TrueBeam and two Elekta Versa HD linear accelerators, all with 6 and 10 MV nominal accelerating potentials, FF and FFF modes have been collected. Renormalization factors and related fit parameters according to Fogliata et al. [“Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy,” Med. Phys. 39, 6455–6464 (2012)] have been evaluated for FFF beams of both units and energies. Unflatness and slope parameters from profile curves were evaluated. Dosimetric differences in terms of beam penetration and near-the-surface dose were also assessed. Results: FFF profile parameters have been updated; renormalization factors and unflatness from the Varian units are consistent with the published data. Elekta FFF beam qualities, different from the Varian generated beams, tend to express similar behaviour as the FF beam of the corresponding nominal energy. TPR{sub 20,10} for 6 and 10 MV FF and FFF TrueBeam beams are 0.665, 0.629 (6 MV) and 0.738, 0.703 (10 MV). The same figures for Versa HD units are 0.684, 0.678 (6 MV) and 0.734, 0.721 (10 MV). Conclusions: Renormalization factor and unflatness parameters evaluated from Varian and Elekta FFF beams are provided, in particular renormalization factors table and fit parameters.

  17. Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees

    PubMed Central

    2014-01-01

    Background One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms presents unique challenges. In this paper we discuss some of these challenges for ChIP-seq and RNA-seq experiments using the undomesticated tree species of the genus Populus. Results We describe specific challenges associated with experimental design in Populus, including selection of optimal genotypes for different technical approaches and development of antibodies against Populus transcription factors. Execution of the experimental design included the generation and analysis of Chromatin immunoprecipitation-sequencing (ChIP-seq) data for RNA polymerase II and transcription factors involved in wood formation. We discuss criteria for analyzing the resulting datasets, determination of appropriate control sequencing libraries, evaluation of sequencing coverage needs, and optimization of parameters. We also describe the evaluation of ChIP-seq data from Populus, and discuss the comparison between ChIP-seq and RNA-seq data and biological interpretations of these comparisons. Conclusions These and other "lessons learned" highlight the challenges but also the potential insights to be gained from extending next generation sequencing-supported network analyses to undomesticated non-model species. PMID:25081589

  18. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.

    2014-08-15

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  19. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy

    SciTech Connect

    Fogliata, A.; Garcia, R.; Knoeoes, T.; Nicolini, G.; Clivio, A.; Vanetti, E.; Khamphan, C.; Cozzi, L.

    2012-10-15

    Purpose: Flattening filter free (FFF) beams generated by medical linear accelerators have recently started to be used in radiotherapy clinical practice. Such beams present fundamental differences with respect to the standard filter flattened (FF) beams, making the generally used dosimetric parameters and definitions not always viable. The present study will propose possible definitions and suggestions for some dosimetric parameters for use in quality assurance of FFF beams generated by medical linacs in radiotherapy. Methods: The main characteristics of the photon beams have been analyzed using specific data generated by a Varian TrueBeam linac having both FFF and FF beams of 6 and 10 MV energy, respectively. Results: Definitions for dose profile parameters are suggested starting from the renormalization of the FFF with respect to the corresponding FF beam. From this point the flatness concept has been translated into one of 'unflatness' and other definitions have been proposed, maintaining a strict parallelism between FFF and FF parameter concepts. Conclusions: Ideas for quality controls used in establishing a quality assurance program when introducing FFF beams into the clinical environment are given here, keeping them similar to those used for standard FF beams. By following the suggestions in this report, the authors foresee that the introduction of FFF beams into a clinical radiotherapy environment will be as safe and well controlled as standard beam modalities using the existing guidelines.

  20. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams.

    PubMed

    Simpson, Emma; Gajewski, Romuald; Flower, Emily; Stensmyr, Rachel

    2015-07-21

    Removal of the flattening filter alters the energy spectrum of the photon beam such that current beam quality specifiers may not correctly account for this change when predicting the Spencer-Attix restricted water-to-air mass collision stopping-power ratio, (L/ρ)(water)(air). Johnsson et al (2000 Phys. Med. Biol. 45 2733-45) proposed a beam quality specifier, known as the dual parameter beam quality specifier, which was calculated via Monte Carlo (MC) simulations using transmission data of primary kerma through two differing thicknesses of water material. Ceberg et al (2010 Med. Phys. 37 1164-8) extended this MC study to include relevant flattening filter free (FFF) beam data. Experimental investigations of this dual parameter beam quality specifier have not previously been published, therefore the purpose of this work was to validate that the dual parameter beam quality specifier could be measured experimentally for clinical beams (both with a flattening filter (WFF) and without (FFF)). Transmission measurements of primary kerma were performed by employing the setup outlined in Johnsson et al (1999 Phys. Med. Biol. 44 2445-50). Varying absorber thicknesses, in 5 cm increments from 5 to 40 cm, were placed at isocentre with the chamber positioned at an extended source to chamber distance of 300 cm. Experimental setup for TPR20,10 and %dd(10)x followed the methodology outlined in IAEA TRS398 (2004) and TG-51 (1999) with AAPM Addendum to TG-51 (2014) respectively. The maximum difference of (L/ρ)(water)(air) determined using the different beam quality specifiers was found to be 0.35%. Analysis of the absorber thickness combination found that small thicknesses (<10 cm) for the first absorber and absorbers similar in thickness (<10 cm) should be avoided. Stopping-power ratios of the beams investigated were determined using three different beam quality specifiers. The results demonstrated successful experimental determination of the dual parameter beam quality

  1. Using transient waveform recorders to measure and store beam parameters

    SciTech Connect

    Stege, R.E. Jr.; Jobe, R.K.; Ross, M.

    1993-05-01

    Transient waveform digitizers are used to measure the tunes in the Stanford Liner Collider (SLC) damping rings. Since the beam injection and extraction from these rings occurs at a high rate (120 Hz) and because of the stringent extracted beam stability requirements, simpler asynchronous resonant excitation spectrum analyzer measurements are not possible. The beam position monitor signals are processed, digitized, and a Fast Fourier Transform (FFT) is applied to find the tunes. The coherent beam motion at injection, even though it damps quickly, is large enough to provide a strong tune signal. Recently, this technique has also been applied to several longitudinal signals. The results from these monitors are recorded at six-minute intervals in the SLC control system history buffers. This paper will describe the hardware setup and the software used to process the data, and will present some of the results.

  2. Specialty flat-top beam delivery fibers with controlled beam parameter product

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  3. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  4. LASER BEAMS: On the reconstruction of parameters of quasi-Gaussian pump beams during transient SBS

    NASA Astrophysics Data System (ADS)

    Dementjev, Aleksandr S.; Kosenko, E. K.; Murauskas, E.; Girdauskas, V.

    2006-08-01

    The radii and radii of curvature of Stokes stimulated Brillouin scattering (SBS) beams are measured by the method of moments for smooth nearly Gaussian focused pump beams with the propagation ratio M2σp<=1.2. It is shown that in the case of sufficiently deeply focused pump radiation, the propagation ratio M2σS of Stokes beams near the threshold of the transient SBS is smaller than M2σp and approaches it with increasing the pump pulse energy. It is also found that the radii of Stokes beams at the output from a nonlinear medium are smaller than the radii of pump beams, while the radii of wave-front curvature are close (in modulus) to the radii of wave-front curvature for pump beams.

  5. Markov chain beam randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Rocha, G.; Pagano, L.; Górski, K. M.; Huffenberger, K. M.; Lawrence, C. R.; Lange, A. E.

    2010-04-01

    We introduce a new method to propagate uncertainties in the beam shapes used to measure the cosmic microwave background to cosmological parameters determined from those measurements. The method, called markov chain beam randomization (MCBR), randomly samples from a set of templates or functions that describe the beam uncertainties. The method is much faster than direct numerical integration over systematic “nuisance” parameters, and is not restricted to simple, idealized cases as is analytic marginalization. It does not assume the data are normally distributed, and does not require Gaussian priors on the specific systematic uncertainties. We show that MCBR properly accounts for and provides the marginalized errors of the parameters. The method can be generalized and used to propagate any systematic uncertainties for which a set of templates is available. We apply the method to the Planck satellite, and consider future experiments. Beam measurement errors should have a small effect on cosmological parameters as long as the beam fitting is performed after removal of 1/f noise.

  6. Parameters estimation of sandwich beam model with rigid polyurethane foam core

    NASA Astrophysics Data System (ADS)

    Barbieri, Nilson; Barbieri, Renato; Winikes, Luiz Carlos

    2010-02-01

    In this work, the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained using the finite element method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm (GA). The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters estimated are Young's modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene.

  7. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  8. Head-on beam-beam compensation in RHIC

    SciTech Connect

    Fischer, W.; Heimerle, M.; Luo, Y.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes., M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, w.

    2010-07-29

    Head-on beam-beam compensation with electron lenses had been proposed for the SSC, LHC, and the Tevatron [1,2]. Two electron lenses are installed in the Tevatron [2-4], where they are routinely used as gap cleaner and have been tested in many other configurations. In RHIC there are 2 head-on beam-beam interactions at IP6 and IP8, and 4 long-range beam-beam interactions with large separation (10 mm) at the other IPs. We consider the partial indirect compensation of the head-on beam-beam effect with one electron lens in each ring. Together with intensity and emittance upgrades [5,6] our goal is to approximately double the luminosity over what can be achieved without these upgrades. A RHIC electron lens consists of: a DC electron gun, an electron beam transport to the main solenoid, the superconducting main solenoid in which the interaction with the hadron beam occurs, an electron beam transport to the collector, and an electron collector. The 2 electron lenses are located in IR10 between the DX beam separation dipoles. The proton beams pass through the main solenoids of both electron lenses, and interact head-on with one of them. The following is a slightly modified version of Ref. [7]. The table shows the main parameters of the proton beam and the electron lenses. References [8-11] present simulations for and discuss beam dynamics problems.

  9. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect

    Abernathy, Douglas L; Niedziela, Jennifer L; Stone, Matthew B

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  10. Concepts for laser beam parameter monitoring during industrial mass production

    NASA Astrophysics Data System (ADS)

    Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard

    2017-02-01

    In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.

  11. Measurements of the longitudinal beam parameters in the Fermilab Linac

    SciTech Connect

    Popovic, M.; Junck, K.; Kroc, T.; Mccrory, E.; Ostroumov, P.

    1994-08-01

    The Fermilab Linac Upgrade has increased the energy of the H{sup {minus}} linac from 201 to 401.5 MeV. This is achieved by replacing the last four 201.24 MHz drift-tube linac cavities with seven 804.96 MHz side-coupled cavity modules. Each accelerator module is powered with a 12 MW klystron-based power supply. The purpose of this report is to present a body of representative methods and data used to characterize longitudinal properties of the beam after each accelerating tank and module. These various methods proved useful in the commissioning of the Fermilab Linac Upgrade.

  12. Timoshenko beam modeling for parameter estimation of NASA Mini-Mast truss

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Huang, Jen-Kuang; Taylor, L. W., Jr.

    1993-01-01

    In this paper a distributed parameter model for the estimation of modal characteristics of NASA Mini-Mast truss is proposed. A closed-form solution of the Timoshenko beam equation, for a uniform cantilevered beam with two concentrated masses, is derived so that the procedure and the computational effort for the estimation of modal characteristics are improved. A maximum likelihood estimator for the Timoshenko beam model is also developed. The resulting estimates from test data by using Timoshenko beam model are found to be comparable to those derived from other approaches.

  13. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGES

    Okamura, M.; Sekine, M.; Ikeda, S.; ...

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  14. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters

    SciTech Connect

    Schaefer, B.; Luebbecke, M.; Mann, K.

    2006-05-15

    The suitability of the Hartmann-Shack technique for the determination of the propagation parameters of a laser beam is faced against the well known caustic approach according to the ISO 11146 standard. A He-Ne laser (543 nm) was chosen as test beam, both in its fundamental mode as well as after intentional distortion, introducing a moderate amount of spherical aberration. Results are given for the most important beam parameters M{sup 2}, divergence, and beam widths, indicating an agreement of better than 10% and for adapted beam diameter <5%. Furthermore, the theoretical background, pros and cons, as well as some features of the software implementation for the Hartmann-Shack sensor are briefly reviewed.

  15. Electron beam treatment parameters for control of stored product insects

    NASA Astrophysics Data System (ADS)

    Cleghorn, D. A.; Nablo, S. V.; Ferro, D. N.; Hagstrum, D. W.

    2002-03-01

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil ( S. oryzae), the lesser grain borer ( R. dominica) and the red flour beetle ( T. castaneum). The major challenge to this process lies in those "protected" life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kV×200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated.

  16. A statistical analysis of ionometrically measured 6-MV x-ray beam parameters.

    PubMed

    Dawson, D J; Gribble, M A

    1984-01-01

    A statistical analysis has been made of ionometrically measured parameters related to the central-axis output, the beam symmetry, the beam flatness, and the depth dose for the 6-MV x-ray beam from the Therac-6 linear accelerator. The means and coefficients of variation of the measurements are determined on a monthly basis for each parameter. Mean coefficients of variation less than +/- 1% have been determined and are useful in establishing the optimal limits of acceptance of these parameters. The results of this study indicate that the long-term stability of the radiation parameters associated with this unit can be maintained within acceptable limits with a consistent quality-assurance program.

  17. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  18. An analysis of beam parameters on proton-acoustic waves through an analytic approach

    NASA Astrophysics Data System (ADS)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Burcin Unlu, Mehmet

    2017-06-01

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  19. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  20. Numeric estimation of the possibilities of ionizing detectors for monitoring SR beam space parameters

    NASA Astrophysics Data System (ADS)

    Artemiev, A. N.; Artemiev, N. A.; Ioudin, L. I.; Mikhailov, V. G.; Moryakov, V. P.; Odintsov, D. G.; Rezvov, V. A.; Cerenius, Y.; Svensson, A.

    2000-06-01

    An ionizing detector for on-line registration and representation of the geometric SR beam parameters was developed in RRC KI. The detector analyses the products of the residual gas ionization, which was done by the investigated beam. Special electrostatic optics and open image converter tube (ICT) form optical image of the real beam on the screen of ICT. The detector was checked on SR beams of the next storage rings: DCI (LURE, Orsey, France), KSRS (RRC KI, Moscow, Russia) and MAX-2 (MAX-lab, Lund, Sweden). The codes for TV image processing give a possibility for numeric estimation of the beam size, the width of its horizontal and vertical profiles and position of the beam gravity. Statistic processing of the beam gravity center using big amount of TV frames gives uncertainty in the beam position of about 2 μm while the width of the beam is about 2 mm. Summation of big amount of TV frames was used. This method significantly increases signal-to-noise ratio.

  1. On Monte Carlo modeling of megavoltage photon beams: A revisited study on the sensitivity of beam parameters

    SciTech Connect

    Chibani, Omar; Moftah, Belal; Ma, C.-M. Charlie

    2011-01-15

    Purpose: To commission Monte Carlo beam models for five Varian megavoltage photon beams (4, 6, 10, 15, and 18 MV). The goal is to closely match measured dose distributions in water for a wide range of field sizes (from 2x2 to 35x35 cm{sup 2}). The second objective is to reinvestigate the sensitivity of the calculated dose distributions to variations in the primary electron beam parameters. Methods: The GEPTS Monte Carlo code is used for photon beam simulations and dose calculations. The linear accelerator geometric models are based on (i) manufacturer specifications, (ii) corrections made by Chibani and Ma [''On the discrepancies between Monte Carlo dose calculations and measurements for the 18 MV Varian photon beam,'' Med. Phys. 34, 1206-1216 (2007)], and (iii) more recent drawings. Measurements were performed using pinpoint and Farmer ionization chambers, depending on the field size. Phase space calculations for small fields were performed with and without angle-based photon splitting. In addition to the three commonly used primary electron beam parameters (E{sub AV} is the mean energy, FWHM is the energy spectrum broadening, and R is the beam radius), the angular divergence ({theta}) of primary electrons is also considered. Results: The calculated and measured dose distributions agreed to within 1% local difference at any depth beyond 1 cm for different energies and for field sizes varying from 2x2 to 35x35 cm{sup 2}. In the penumbra regions, the distance to agreement is better than 0.5 mm, except for 15 MV (0.4-1 mm). The measured and calculated output factors agreed to within 1.2%. The 6, 10, and 18 MV beam models use {theta}=0 deg., while the 4 and 15 MV beam models require {theta}=0.5 deg. and 0.6 deg., respectively. The parameter sensitivity study shows that varying the beam parameters around the solution can lead to 5% differences with measurements for small (e.g., 2x2 cm{sup 2}) and large (e.g., 35x35 cm{sup 2}) fields, while a perfect agreement is

  2. Key clinical beam parameters for nanoparticle-mediated radiation dose amplification

    PubMed Central

    Detappe, Alexandre; Kunjachan, Sijumon; Drané, Pascal; Kotb, Shady; Myronakis, Marios; Biancur, Douglas E.; Ireland, Thomas; Wagar, Matthew; Lux, Francois; Tillement, Olivier; Berbeco, Ross

    2016-01-01

    As nanoparticle solutions move towards human clinical trials in radiation therapy, the influence of key clinical beam parameters on therapeutic efficacy must be considered. In this study, we have investigated the clinical radiation therapy delivery variables that may significantly affect nanoparticle-mediated radiation dose amplification. We found a benefit for situations which increased the proportion of low energy photons in the incident beam. Most notably, “unflattened” photon beams from a clinical linear accelerator results in improved outcomes relative to conventional “flat” beams. This is measured by significant DNA damage, tumor growth suppression, and overall improvement in survival in a pancreatic tumor model. These results, obtained in a clinical setting, clearly demonstrate the influence and importance of radiation therapy parameters that will impact clinical radiation dose amplification with nanoparticles. PMID:27658637

  3. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    PubMed

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-08-04

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (TBDT ) were compared with the BDTs recorded in the treatment delivery log files (TLog ): ∆t = TLog -TBDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide

  4. Spatial Distributions Of Acoustic Parameters In Nonlinear Focused Beams Of Various Geometry

    NASA Astrophysics Data System (ADS)

    Bessonova, Olga V.; Khokhlova, Vera A.

    2008-06-01

    In this work, numerical simulations are performed and spatial distributions of specific parameters of nonlinear focused ultrasound beams of various geometry are compared. The numerical algorithm is based on the solution of the Khokhlov-Zabolotskaya (KZ) equation. Focused acoustic beams of periodic waves with an initially uniform amplitude distribution, typical for medical therapeutic transducers, and with Gaussian amplitude shading are considered. Numerical solutions are obtained and analyzed for nonlinear acoustic field in various regimes of linear, quasilinear, and nonlinear propagation when shock fronts are developed in the waveform close to the focus and while propagating to the focus of the beam.

  5. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  6. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  7. Gaussian beam reflection characteristics on 2D randomly rough sea surface influenced by incident laser parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2014-12-01

    Laser reflection characteristics from the two-dimensional randomly rough sea surface are affected by the sea state, weather conditions, the incident laser parameters and other factors. All of the factors could not be artificially changed except the incident laser parameters. Therefore, the research of the relationship between laser reflection characteristics from 2-D randomly rough sea surface and incident laser parameters will give support to laser detection on the sea surface. This paper deals with the simulated calculation of the Gaussian beam reflection characteristics from the 2-D randomly rough sea surface with different incident laser parameters. In this paper, the 2-D rough sea surface is simulated with fractal method, after which the sea surface is divided into a lot of small planes, the width or length of which is much greater than the wavelength of the incident laser. Then the geometrical optics method is used to calculate the Gaussian beam reflection from 2-D randomly and rough sea surface. After that, the Gaussian beam reflection characteristics varies different incident laser parameters are numerical calculated. Finally, the detailed discussion of some factors including the divergence angle and the incident angle of the Gaussian beam which have influences on reflection properties is given.

  8. Exploring the energy/beam current parameter space for the isotope production facility (IPF) at LANSCE

    SciTech Connect

    Gulley, Mark S; Bach, Hong; Nortier, Francis M; Pillai, Chandra; Bitteker, Leo J; John, Kevin D; Valdez, Frank O; Seifter, Achim

    2010-09-07

    IPF has recently investigated isotope production with proton beams at energies other than the 100-MeV currently available to the IPF beam line. To maximize the yield of a particular isotope, it is necessary to measure the production rate and cross section versus proton beam energy. Studies were conducted at 800 MeV and 197 MeV to determine the cross section of Tb-159. Also, the ability to irradiate targets at different proton beam energies opens up the possibility of producing other radioisotopes. A proof-of-principle test was conducted to develop a 40-MeV tune in the 100-MeV beam line. Another parameter explored was the beam current, which was raised from the normal limit of 250 {mu}A up to 356 {mu}A via both power and repetition rate increase. This proof-of-principle test demonstrated the capability of the IPF beam line for high current operation with potential for higher isotope yields. For the full production mode, system upgrades will need to be in place to operate at high current and high duty factor. These activities are expected to provide the data needed for the development of a new and unique isotope production capability complementing the existing 100-MeV IPF facility.

  9. A PARMELA model of the CEBAF injector valid over a wide range of beam parameters

    SciTech Connect

    Yuhong Zhang; Kevin Beard; Jay Benesch; Yu-Chiu Chao; Arne Freyberger; Joseph Grames; Reza Kazimi; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Byung Yunn

    2004-07-01

    A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used for simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.

  10. Characterization Of Real Laser Beam Profiles With Few Parameters For Metallurgical Applications

    NASA Astrophysics Data System (ADS)

    Merlin, Jacques; Dietz, Jean; Oliveira, Carlos

    1989-01-01

    In first approximation the material induced effects after laser beam interaction are function of the whole transmitted energy and of the local "irradiance" (in W.cm-2) levels and gradients. Consequently 3 informations may be able to describe this beam : carried power, shape and dimensions in the interaction zone. Thus shape and dimensions of a real beam would be simply and universaly described. If we are interested by the induced effects in the straight of the beam axis, 3 parameters are sufficient to describe the beam : the incident power P, an equivalent radius r+, and an axial "spread" factor of energy distribution g(E). These parameters have been mathematically defined but they are also experimentally measurable (in particular from transmitted power through a small aperture or a slit localised in the vicinity of the work zone). The experimental characterization of a 4 kW c.w. CO2 laser (CILAS CI 4000) has been carried out for several powers (between 200 W and 3 kW). When the power increases it has been find that r+ increases and g(E) stays nearly constant in spite of mode evolution. Presently the real-time evaluation of these parameters is investigating. Moreover these 3 parameters can be directly introduced in simplified analytical tridimensional thermal model, and so the behaviour expectation and the working parameters fluctuations effects (for example "mode" changes) become easier. At last this approach may be able to carry out "objective" comparison between the various high power lasers in different laboratories.

  11. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    NASA Astrophysics Data System (ADS)

    Daftari, Inder K.; Castaneda, Carlos M.; Essert, Timothy; Phillips, Theodore L.; Mishra, Kavita K.

    2012-09-01

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5×5×5 cm3 to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements and good agreement was observed. The peak

  12. A method for determination of parameters of the initial electron beam hitting the target in linac

    NASA Astrophysics Data System (ADS)

    Tai, D. T.; Son, N. D.; Loan, T. T. H.; Tuan, H. D.

    2017-05-01

    Detailed characteristics of the electron beam incident on the target of the Linac are almost impossible to be measured. With Monte Carlo technique it is possible to simulate the transport of radiation through the accelerator head and find out the initial beam parameters. These parameters, such as energy spectrum and spatial distribution can be ascertained by matching the simulated dose distributions with the measured dose distributions using trial and error. In this work, a Monte Carlo modeling of the HPD Siemens Primus linear accelerator in 6 MV photon beams at Dong Nai general hospital was performed. The simulated Percent depth doses (PDD) and beam profiles (OCR) were then compared with the measured ones. Excellent agreements were obtained between simulations and measurements with an average difference of 0.7% for PDD less than 2% for OCR. The percentage gamma passing rate is 100% with 1% dose difference and 1 mm distance to agreement as acceptance criteria. The best suited energy and radius of the electron beam incident on the target were found at 6.04 MeV and at FWHM = 1.2 mm respectively.

  13. Transferring Electron Beam Welding Parameters Between DIfferent Machines and Facilities Using Advanced Diagnostics

    SciTech Connect

    Elmer, J W; Palmer, T A; Terrill, P; Knicklas, K D; Mustaleski, T M; Burgardt, P

    2004-06-17

    Transferring electron beam (EB) welding parameters between different welders can be a costly and time consuming process requiring the completion of expensive weld parameter studies. In order to modernize and streamline this process, the LLNL Beam Profiler diagnostic tool, which has been developed and tested at Lawrence Livermore National Laboratory (LLNL) to measure the size, shape, and power density distribution of electron beams, is currently being used to characterize the performance of EB machines at several U.S. Department of Energy facilities. The characterization of these machines involves performing defocus studies on each welder to measure the properties of 1 kW beams made at constant current, voltage, and work distance settings. Using these carefully characterized beams, autogenous welds on 304L stainless steel were then made at LLNL and replicated on the other machines. A key finding from these studies was that the widespread use of work distance values measured from the surface of the part being welded to the top of the EB vacuum chamber are suitable only for machines with a similar upper column design. Otherwise, the focus-lens to part distance must be determined and controlled. A simple method for determining the focus-lens to part distance with the LLNL Beam Profiler diagnostic tool is presented. The ability to transfer EB welds between machines represents a major accomplishment in the development and more widespread use of this diagnostic tool. This work also serves as a basis for the continuing development of procedures and equipment for characterizing electron beams and as a precursor to the development of a modern weld transfer procedure.

  14. Generalized Stokes parameters of a stochastic electromagnetic beam propagating through a paraxial ABCD optical system.

    PubMed

    Zhu, Yingbin; Zhao, Daomu

    2008-08-01

    On the basis of the generalized diffraction integral formula for an ABCD optical system in the spatial domain, a propagation law for the generalized Stokes parameters of a stochastic electromagnetic beam passing through an ABCD optical system is obtained. We describe the Stokes parameters of the source as linear combinations of the elements of the cross-spectral density matrix, and study the changes in the spectral degree of polarization and in the state of the polarization ellipse of a stochastic electromagnetic Gaussian Schell-model beam propagating through a gradient-index fiber with the help of generalized Stokes parameters and the cross-spectral density matrix. The medium has significant effect on the change of the spectral degree of polarization. However, when the correlation coefficients of the source satisfy the relation delta(xx)=delta(yy)=delta(xy)=delta(yx), the medium does not influence the spectral degree of polarization.

  15. Influence of ion beam assisted deposition parameters on the growth of MgO and CoFeB

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; Petrova, Rumyana; McVitie, Stephen

    2012-04-01

    The effect of the kinetic parameters of an assistance ion beam on the crystallization of ion beam deposited MgO was investigated. It is shown that the crystallization of MgO in the as-deposited state is strongly dependent on the assistance beam parameters. Furthermore, two deposition regimes corresponding to different ranges of the assistance beam energy are found. XRD and TEM studies of CoFeB/MgO/CoFeB with MgO deposited in the two regimes show that CoFeB crystallization is favored when low energy assist beams are used, despite no differences being found in the MgO.

  16. Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters.

    PubMed

    Fairchild, R G; Saraf, S K; Kalef-Ezra, J; Laster, B H

    1990-01-01

    Epithermal neutron beams are under development in a number of locations in the U.S. and abroad. The increased penetration in tissue provided by these neurons should circumvent problems associated with the rapid attenuation of thermal neutron beams encountered in previous clinical trials of neutron capture therapy (NCT). Physical and radiobiological experiments with two "intermediate energy" or "epithermal" beams have been reported. A comparison is made here between the 24-keV iron-filtered beam at Harwell, England, and the broad-spectrum Al2 O3 moderated beam at the Brookhaven Medical Research Reactor (BMRR). In addition, parameters which are relevant for NCT, and which are best suited for evaluation and comparison of beams, are discussed. Particular attention is paid to the mean neutron energy which can be tolerated without significant reduction of therapeutic gain (TG), where TG is the ratio of tumor dose to maximum normal tissue dose. It is suggested that the simplest and most meaningful parameters for comparison of beam intensity and purity are the epithermal neutron fluence rate, and the fast neutron dose per epithermal neutron (4.2 X 10(-11) rad/neutron for the broad-spectrum beam and 29 X 10(-11) rad/neutron for the 24-keV beam). While the Al2O3 beam is close to optimal, the 24-keV beam produces a significant fast neutron dose which results in a lower TG.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  18. Optimizing the parameters for laser beam welding of aluminum-lithium alloy 2195

    SciTech Connect

    Jan, R.; Howell, P.R.; Martukanitz, R.P.

    1996-12-31

    Aluminum-lithium alloy 2195 is of considerable interest in the aerospace industry because of its high strength, high stiffness, and low density. Laser processing of this material offers potential advantages in processing speed and material cost savings. An investigation was conducted to determine the effect of laser beam process and material parameters on weld characteristics. The issues addressed were coupling efficiency, process stability, solidification cracking, and strengthening mechanisms. The results indicated that coupling of a laser beam with aluminum alloys is enhanced by lithium additions; and process stability and crack sensitivity is improved when using a defocused laser beam and silicon-rich filler alloys. In addition, the fusion zone exhibits a high degree of solute partitioning but not strengthening precipitates.

  19. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  20. HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Golkowski, M.; Lehtinen, N. G.; Inan, U. S.; McCarrick, M. J.

    2012-05-01

    ELF/VLF (0.3-30 kHz) wave generation is achievable via modulated HF (3-30 MHz) heating of the lower ionosphere in the presence of natural currents such as the auroral electrojet. Using the 3.6 MW High Frequency Active Auroral Research Program (HAARP) facility near Gakona, AK, we investigate the effect of HF frequency and beam size on the generated ELF/VLF amplitudes, as a function of modulation frequency, and find that generation in the Earth-ionosphere waveguide generally decreases with increasing HF frequency between 2.75-9.50 MHz. HAARP is also capable of spreading the HF power over a wider area, and we find that a larger beam area yields larger generated amplitudes on the ground. Measurements are shown to generally agree with a theoretical model, which is then applied to also predict the effect of HF beam parameters on magnetospheric injection with HAARP.

  1. Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin; Fan, Tieshuan; Zhang, Xing; Zhang, Cheng; Ren, Qilong; Hu, Chundong

    2010-12-01

    A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.

  2. CONTROL OF LASER RADIATION PARAMETERS: Beam structure of a diode-side-pumped Nd:YVO4 slab laser

    NASA Astrophysics Data System (ADS)

    Novikov, A. A.; Zinov'ev, A. P.; Antipov, Oleg L.

    2009-11-01

    The beam spatial structure of a diode-side-pumped Nd:YVO4 slab laser with grazing-incidence bounce geometry is studied. It is found how the mode structure changes with changing the cavity parameters in the cw and active Q-switching regimes. The parameters that allow one to improve the output beam quality retaining high output laser power are found.

  3. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  4. Automatic determination of primary electron beam parameters in Monte Carlo simulation

    SciTech Connect

    Pena, Javier; Gonzalez-Castano, Diego M.; Gomez, Faustino; Sanchez-Doblado, Francisco; Hartmann, Guenther H.

    2007-03-15

    In order to obtain realistic and reliable Monte Carlo simulations of medical linac photon beams, an accurate determination of the parameters that define the primary electron beam that hits the target is a fundamental step. In this work we propose a new methodology to commission photon beams in Monte Carlo simulations that ensures the reproducibility of a wide range of clinically useful fields. For such purpose accelerated Monte Carlo simulations of 2x2, 10x10, and 20x20 cm{sup 2} fields at SSD=100 cm are carried out for several combinations of the primary electron beam mean energy and radial FWHM. Then, by performing a simultaneous comparison with the correspondent measurements for these same fields, the best combination is selected. This methodology has been employed to determine the characteristics of the primary electron beams that best reproduce a Siemens PRIMUS and a Varian 2100 CD machine in the Monte Carlo simulations. Excellent agreements were obtained between simulations and measurements for a wide range of field sizes. Because precalculated profiles are stored in databases, the whole commissioning process can be fully automated, avoiding manual fine-tunings. These databases can also be used to characterize any accelerators of the same model from different sites.

  5. PVM and IP multicast

    SciTech Connect

    Dunigan, T.H.; Hall, K.A.

    1996-12-01

    This report describes a 1994 demonstration implementation of PVM that uses IP multicast. PVM`s one-to-many unicast implementation of its pvm{_}mcast() function is replaced with reliable IP multicast. Performance of PVM using IP multicast over local and wide-area networks is measured and compared with the original unicast implementation. Current limitations of IP multicast are noted.

  6. Calculation of electron-beam induced displacement in thin films by using parameter-reduced formulas

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; Chen, Di; Wang, Qingyu; Li, Zhongyu; Shao, Lin

    2017-03-01

    Based on the Mott cross sections of relativistic electron collisions with atoms, we calculate displacement creation by electron beams of arbitrary energies (up to 100 MeV) in thin films of arbitrary atomic numbers (up to Z = 90). In a comparison with Mont Carlo full damage cascade simulations, we find that total number of displacements in a film can be accurately estimated as the product of average displacements created per collision and average collision numbers in the film. To calculate average displacements per electron-atom collision, energy transfer from Mott cross section is combined with NRT model. To calculate collision numbers, mean deflection angles and multi-scattering theory are combined to extract collision number dependence on film thickness. For each key parameter, parameter-reduced formulas are obtained from data fitting. The fitting formulas provide a quick and accurate method to estimate radiation damage caused by electron beams.

  7. SU-D-19A-04: Parameter Characterization of Electron Beam Monte Carlo Phase Space of TrueBeam Linacs

    SciTech Connect

    Rodrigues, A; Yin, F; Wu, Q; Sawkey, D

    2014-06-01

    Purpose: For TrueBeam Monte Carlo simulations, Varian does not distribute linac head geometry and material compositions, instead providing a phase space file (PSF) for the users. The PSF has a finite number of particle histories and can have very large file size, yet still contains inherent statistical noises. The purpose of this study is to characterize the electron beam PSF with parameters. Methods: The PSF is a snapshot of all particles' information at a given plane above jaws including type, energy, position, and directions. This study utilized a preliminary TrueBeam PSF, of which validation against measurement is presented in another study. To characterize the PSF, distributions of energy, position, and direction of all particles are analyzed as piece-wise parameterized functions of radius and polar angle. Subsequently, a pseudo PSF was generated based on this characterization. Validation was assessed by directly comparing the true and pseudo PSFs, and by using both PSFs in the down-stream MC simulations (BEAMnrc/DOSXYZnrc) and comparing dose distributions for 3 applicators at 15 MeV. Statistical uncertainty of 4% was limited by the number of histories in the original PSF. Percent depth dose (PDD) and orthogonal (PRF) profiles at various depths were evaluated. Results: Preliminary results showed that this PSF parameterization was accurate, with no visible differences between original and pseudo PSFs except at the edge (6 cm off axis), which did not impact dose distributions in phantom. PDD differences were within 1 mm for R{sub 7} {sub 0}, R{sub 5} {sub 0}, R{sub 3} {sub 0}, and R{sub 1} {sub 0}, and PRF field size and penumbras were within 2 mm. Conclusion: A PSF can be successfully characterized by distributions for energy, position, and direction as parameterized functions of radius and polar angles; this facilitates generating sufficient particles at any statistical precision. Analyses for all other electron energies are under way and results will be

  8. Determination of the initial beam parameters in Monte Carlo linac simulation

    SciTech Connect

    Aljarrah, Khaled; Sharp, Greg C.; Neicu, Toni; Jiang, Steve B.

    2006-04-15

    For Monte Carlo linac simulations and patient dose calculations, it is important to accurately determine the phase space parameters of the initial electron beam incident on the target. These parameters, such as mean energy and radial intensity distribution, have traditionally been determined by matching the calculated dose distributions with the measured dose distributions through a trial and error process. This process is very time consuming and requires a lot of Monte Carlo simulation experience and computational resources. In this paper, we propose an easy, efficient, and accurate method for the determination of the initial beam parameters. We hypothesize that (1) for one type of linacs, the geometry and material of major components of the treatment head are the same; the only difference is the phase space parameters of the initial electron beam incident on the target, and (2) most linacs belong to a limited number of linac types. For each type of linacs, Monte Carlo treatment planning system (MC-TPS) vendors simulate the treatment head and calculate the three-dimensional (3D) dose distribution in water phantom for a grid of initial beam energies and radii. The simulation results (phase space files and dose distribution files) are then stored in a data library. When a MC-TPS user tries to model their linac which belongs to the same type, a standard set of measured dose data is submitted and compared with the calculated dose distributions to determine the optimal combination of initial beam energy and radius. We have applied this method to the 6 MV beam of a Varian 21EX linac. The linac was simulated using EGSNRC/BEAM code and the dose in water phantom was calculated using EGSNRC/DOSXYZ. We have also studied issues related to the proposed method. Several common cost functions were tested for comparing measured and calculated dose distributions, including {chi}{sup 2}, mean absolute error, dose difference at the penumbra edge point, slope of the dose difference of

  9. Improvement of the precision of lattice parameter determination by nano-beam electron diffraction.

    PubMed

    Saitoh, Koh; Nakahara, Hirotaka; Tanaka, Nobuo

    2013-01-01

    A highly precise determination of lattice parameters using higher-order Laue zone (HOLZ) reflections observed in nano-beam electron diffraction is presented. The introduction of more than 40 HOLZ reflections, whose positions are corrected by considering the aberration of the electron optics and are determined with an accuracy of 0.04 nm⁻¹, allows us to achieve a remarkable high precision of a 0.02% error, which is four times higher than the precision without HOLZ reflections.

  10. GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ghotra, Harjit Singh; Kant, Niti

    2017-01-01

    Electron acceleration due to a circularly polarized (CP) Gaussian laser field has been investigated theoretically in magnetized plasma. A Gaussian laser beam possesses trapping forces on electrons during its propagation through plasma. A single particle simulation indicates a resonant enhancement of electron acceleration with a Gaussian laser beam. The plasma is magnetized with an axial magnetic field in same direction as that of laser beam propagation. The dependence of laser beam width parameter on electron energy gain with propagation distance has been presented graphically for different values of laser intensity. Electron energy gain is relatively high where the laser beam parameter is at its minimum value. Enhanced energy gain of the order of GeV is reported with magnetic field under 20 MG in plasma. It is also seen that the axial magnetic field maintains the electron acceleration for large propagation distance even with an increasing beam width parameter.

  11. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering

    SciTech Connect

    Cooke, M.S.

    2005-04-11

    A precision measurement of the parity nonconserving left-right asymmetry, A{sub LR}, in Moeller scattering (e{sup -}e{sup -} {yields} e{sup -}e{sup -}) is currently in progress at the Stanford Linear Accelerator Center (SLAC). This experiment, labeled SLAC-E158, scatters longitudinally polarized electrons off atomic electrons in an unpolarized hydrogen target at a Q{sup 2} of 0.03 (GeV/c){sup 2}. The asymmetry, which is the fractional difference in the scattering cross-sections, measures the effective pseudo-scalar weak neutral current coupling, g{sub ee}, governing Moeller scattering. This quantity is in turn proportional to (1/4 - sin{sup 2} {theta}{sub w}), where {theta}{sub w} is the electroweak mixing angle. The goal is to measure the asymmetry to a precision of 1 x 10{sup -8} which corresponds to {delta}(sin{sup 2} {theta}{sub w}) {approx} 0.0007. Since A{sub LR} is a function of the cross-sections, and the cross-sections depend on the beam parameters, the desired precision of A{sub LR} places stringent requirements on the beam parameters. This paper investigates the requirements on the beam parameters and discusses the means by which they are monitored and accounted for.

  12. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  13. Parameters of the beam plasma formed by a forevacuum plasma source of a ribbon beam in zero-field transportation system

    NASA Astrophysics Data System (ADS)

    Klimov, A. S.; Lomaev, M. I.; Oks, E. M.; Andreichik, A. P.

    2017-02-01

    We have studied the generation of the beam plasma formed by a forevacuum plasma source of a ribbon electron beam in the conditions of its transportation without an accompanying magnetic field. The ignition conditions in the beam transportation region of the beam-plasma discharge producing a plasma formation of the plasma sheet type with a plasma concentration of 1016 m-3 and an electron temperature of 1-2.5 eV have been determined. The attained values of parameters and the sizes of the plasma formation make it possible to use it in technologies of the surface modification of planar extended articles.

  14. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method

    NASA Astrophysics Data System (ADS)

    Sedighi, Hamid M.; Shirazi, Kourosh H.

    2013-04-01

    This paper presents a new asymptotic procedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric field. The nonlinear equation of motion includes both even and odd nonlinearities. A powerful analytical method called Parameter Expansion Method (PEM) is employed to obtain the approximated solution and frequency-amplitude relationship. It is demonstrated that the first two terms in series expansions are sufficient to produce an acceptable solution of mentioned system. The obtained results from numerical methods verify the soundness of the analytical procedure. Finally, the influences of basic parameters on pull-in instability and natural frequency are investigated.

  15. Experimental study on modulation of Stokes parameters on propagation of a Gaussian Schell model beam in free space.

    PubMed

    Verma, Manish; Senthilkumaran, P; Joseph, Joby; Kandpal, H C

    2013-07-01

    The effect on the Stokes parameters of a Gaussian Schell model beam on propagation in free space is studied experimentally and results are matched with the theory [X. H. Zhao, et al. Opt. Express 17, 17888 (2009)] that in general the degree of polarization of a Gaussian Schell model beam doesn't change on propagation if the three spectral correlation widths δ xx, δ yy, δ xy are equal and the beam width parameters σ x =σ y. It is experimentally shown that all the four Stokes parameters at the center of the beam decrease on propagation while the magnitudes of the normalized Stokes parameters and the spectral degree of polarization at the center of the beam remain constant for different propagation distances.

  16. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    SciTech Connect

    Andreev, V. V. Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  17. Effect of light source parameters on the polarization properties of the beam

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  18. Parameters of Runaway Electron Beams at a Subnanosecond Breakdown of Gases at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor; Institute of High Current Electronics Collaboration; National Research Tomsk Polytechnic University Collaboration

    2016-09-01

    The generation of runaway electrons in gases at atmospheric pressure is a fundamental physical phenomenon. The aim of this work is to determine the main parameters of runaway electron beams at a subnanosecond breakdown of gases at atmospheric pressure from experiments performed with the highest currently achieved time resolution. Studies were performed with five experimental setups and three generators of nanosecond pulses with the duration of the voltage pulse front from 0.1 to 1 ns and the amplitude of the voltage pulse in the incident wave from 40 to 200 kV. It has been proven that the duration of the current pulse of the runaway electron beam detected behind the foil of the gas diode in air and other gases at atmospheric pressure was 100 ps. It has been shown that the use of a collimator with a hole with a diameter of 1 mm or smaller, short interelectrode gaps, and cathodes with a small area of a sharp edge makes it possible to separate a fraction of runaway electrons of the beam and to detect pulses with a FWHM of about 25 ps. The number of electrons detected behind the anode foil was correspond to a current amplitude of the runaway electron beam of 100 A. This work was supported by the Russian Science Foundation under the Grant Number 14-29-00052.

  19. Effects of ultrasound beam angle and surface roughness on the quantitative ultrasound parameters of articular cartilage.

    PubMed

    Kaleva, E; Saarakkala, S; Jurvelin, J S; Virén, T; Töyräs, J

    2009-08-01

    High-resolution arthroscopic ultrasound imaging provides a potential quantitative technique for the diagnostics of early osteoarthritis. However, an uncontrolled, nonperpendicular angle of an ultrasound beam or the natural curvature of the cartilage surface may jeopardize the reliability of the ultrasound measurements. We evaluated systematically the effect of inclining an articular surface on the quantitative ultrasound parameters. Visually intact (n = 8) and mechanically degraded (n = 6) osteochondral bovine patella samples and spontaneously fibrillated (n = 1) and spontaneously proteoglycan depleted (n = 1) osteochondral human tibial samples were imaged using a 50-MHz scanning acoustic system. The surface of each sample was adjusted to predetermined inclination angles (0, 2, 5 and 7 degrees ) and five ultrasound scan lines along the direction of the inclination were analyzed. For each scan line, reflection coefficient (R), integrated reflection coefficient (IRC) and ultrasound roughness index (URI) were calculated. Nonperpendicularity of the cartilage surface was found to affect R, IRC and URI significantly (p < 0.05). Importantly, all ultrasound parameters were able to distinguish (p < 0.05) the mechanically degraded samples from the intact ones even though the angle of incidence of the ultrasound beam varied between 0 and 5 degrees among the samples. Diagnostically, the present findings are important because the natural curvature of the articular surface varies, and a perfect perpendicularity between the ultrasound beam and the surface of the cartilage may be challenging to achieve in a clinical measurement.

  20. Simulation of mechanisms modeled by geometrically-exact beams using Rodrigues rotation parameters

    NASA Astrophysics Data System (ADS)

    Gay Neto, Alfredo

    2017-03-01

    We present mathematical models for joints, springs, dashpots and follower loads, to be used together with geometrically-exact beam finite elements to simulate mechanisms. The rotations are described using Rodrigues parameters. An updated-Lagrangian approach is employed, leading to the possibility of finite rotations involving many turns, overcoming possible singularities in the rotation tensor. We present formulations for spherical, hinge and universal (Cardan) joints, which are enforced by Lagrange multipliers. For the hinge joint, a torsional spring with a nonlinear damper model is presented. A geometric-nonlinear translational spring/dashpot model is proposed, such as follower loads. All formulations are presented detailing their contribution to the model weak form and tangent operator. These are employed together with implicit time-integration schemes. Numerical examples are performed, showing that the proposed formulations are able to model complex spatial mechanisms. Usage of the models together with contact interaction between beams is explored by a cam/follower mechanism example.

  1. Multi-objective parameter identification of Euler-Bernoulli beams under axial load

    NASA Astrophysics Data System (ADS)

    Talic, Emir; Schirrer, Alexander; Kozek, Martin; Jakubek, Stefan

    2015-04-01

    Identification of physical parameters of the partial differential equation describing transverse vibrations of an axially loaded Euler-Bernoulli beam (EBB) is proposed via a multi-objective optimization formulation and solved by a genetic algorithm. Conflicting objectives such as performance and stability are specifically formulated and optimized simultaneously. Stability is quantified in terms of the solution's time growth factor. Physical parameter sets in the resulting Pareto front approximation represent best trade-offs with respect to the multiple objectives. To compute output error performance objectives, the EBB equation is discretized via finite differences in space and time and reformulated to a state space system. Identifiability is verified by checking regularity of the so-called Fisher information matrix. The identification methodology is capable of determining material parameters, including damping, as well as the axial load from few, spatially concentrated measurements. Its features are demonstrated and successfully validated on specific simulation data and measurement data obtained from a laboratory testbed.

  2. Monopulse joint parameter estimation of multiple unresolved targets within the radar beam

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Wang, Chunyang; An, Lei; Li, Xin

    2017-06-01

    Aiming at the problem of the parameter estimation of multiple unresolved targets within the radar beam, using the joint bin processing model, a method of jointly estimating the number and the position of the targets is proposed based on reversible jump Markov Chain Monte Carlo (RJ-MCMC). Reasonable assumptions of the prior distributions and Bayesian theory are adopted to obtain the posterior probability density function of the estimated parameters from the conditional likelihood function of the observation, and then the acceptance ratios of the birth, death and update moves are given. During the update move, a hybrid Metropolis-Hastings (MH) sampling algorithm is used to make a better exploration of the parameter space. The simulation results show that this new method outperforms the method of ML-MLD [11] proposed by X.Zhang for similar estimation accuracy is achieved while fewer sub-pulses are needed.

  3. Real time M2 and beam parameter product measurement using GigE CMOS sensors

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2016-03-01

    The ISO 11146-1 standard for measurement of a laser's M-square requires the minimum measurement of five (5) spatial profiles within the first Rayleigh range and an addition five (5) outside the second Rayleigh range. The first five spatial profiles within the first Rayleigh range establish the beam waist and its location; the second five beyond the second Rayleigh range establish the divergence or convergence from the focusing lens for the M-square computation. The majority of methods used to date are all time averaged and as such are incapable of a real time M-square measurement. We present an ISO 11146-1 compliant method for measuring single shot M-square or beam parameter product values or the measurement of continuous wave sources at rates greater than five frames per second utilizing a pair of GigE based CMOS sensors. One GigE CMOS sensor is setup to measure the minimum of five spots within the first Rayleigh range for the establishment of the beam waist and its location. A second GigE CMOS sensor is setup to measure the five spatial profiles beyond the second Rayleigh range for the determination of the beam divergence from the focusing lens. Both GigE cameras utilize optics that passively create multiple spatial time slices of the beam and superimpose these time slices on the CMOS sensor in real time resulting in the ability to make single pulse measurements or continuous wave measurements at speeds of greater than five frames per second with full ISO 11146-1 compliance.

  4. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  5. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  6. FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS

    PubMed Central

    Bessonova, O.V.; Khokhlova, V.A.; Bailey, M.R.; Canney, M.S.; Crum, L.A.

    2009-01-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions. PMID:20161349

  7. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented.

  8. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    NASA Astrophysics Data System (ADS)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  9. Multisource modeling of flattening filter free (FFF) beam and the optimization of model parameters

    PubMed Central

    Cho, Woong; Kielar, Kayla N.; Mok, Ed; Xing, Lei; Park, Jeong-Hoon; Jung, Won-Gyun; Suh, Tae-Suk

    2011-01-01

    Purpose: With the introduction of flattening filter free (FFF) linear accelerators to radiation oncology, new analytical source models for a FFF beam applicable to current treatment planning systems is needed. In this work, a multisource model for the FFF beam and the optimization of involved model parameters were designed. Methods: The model is based on a previous three source model proposed by Yang [“A three-source model for the calculation of head scatter factors,” Med. Phys. 29, 2024–2033 (2002)]. An off axis ratio (OAR) of photon fluence was introduced to the primary source term to generate cone shaped profiles. The parameters of the source model were determined from measured head scatter factors using a line search optimization technique. The OAR of the photon fluence was determined from a measured dose profile of a 40×40 cm2 field size with the same optimization technique, but a new method to acquire gradient terms for OARs was developed to enhance the speed of the optimization process. The improved model was validated with measured dose profiles from 3×3 to 40×40 cm2 field sizes at 6 and 10 MV from a TrueBeam™ STx linear accelerator. Furthermore, planar dose distributions for clinically used radiation fields were also calculated and compared to measurements using a 2D array detector using the gamma index method. Results: All dose values for the calculated profiles agreed with the measured dose profiles within 0.5% at 6 and 10 MV beams, except for some low dose regions for larger field sizes. A slight overestimation was seen in the lower penumbra region near the field edge for the large field sizes by 1%–4%. The planar dose calculations showed comparable passing rates (>98%) when the criterion of the gamma index method was selected to be 3%∕3 mm. Conclusions: The developed source model showed good agreements between measured and calculated dose distributions. The model is easily applicable to any other linear accelerator using FFF beams as the

  10. Proximal point methods for the inverse problem of identifying parameters in beam models

    NASA Astrophysics Data System (ADS)

    Jadamba, B.; Khan, A. A.; Paulhamus, M.; Sama, M.

    2012-07-01

    This paper studies the nonlinear inverse problem of identifying certain material parameters in the fourth-order boundary value problem representing the beam model. The inverse problem is solved by posing a convex optimization problem whose solution is an approximation of the sought parameters. The optimization problem is solved by the gradient based approaches, and in this setting, the most challenging aspect is the computation of the gradient of the objective functional. We present a detailed treatment of the adjoint stiffness matrix based approach for the gradient computation. We employ recently proposed self-adaptive inexact proximal point methods by Hager and Zhang [6] to solve the inverse problem. It is known that the regularization features of the proximal point methods are quite different from that of the Tikhonov regularization. We present a comparative analysis of the numerical efficiency of the used proximal point methods without using the Tikhonov regularization.

  11. Method for determining the position, angle and other injection parameters of a short pulsed beam in the Brookhaven AGS

    SciTech Connect

    Gardner, C.; Ahrens, L.

    1985-01-01

    As part of the effort to improve the monitoring of the injection process at the Brookhaven Alternating Gradient Synchrotron (AGS), we have developed a beam diagnostics package which processes the signals from the plates of a pick-up electrode (PUE) located near the injection region of the AGS and provides measurements of the position and angle (with respect to the equilibrium orbit) of the injected beam at the stripping foil where the incident H/sup -/ beam is converted into protons. In addition the package provides measurements of the tune and chromaticity of the AGS at injection, and a measurement of the momentum spread of the injected beam. Since these parameters are obtained for a short-pulsed beam at injection we shall refer to the diagnostics package as PIP which stands for Pulsed Injection Parameters.

  12. Ion beams extraction and measurements of plasma parameters on a multi-frequencies microwaves large bore ECRIS with permanent magnets

    SciTech Connect

    Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams by launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.

  13. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  14. Optimizing the modified microdosimetric kinetic model input parameters for proton and 4He ion beam therapy application

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Tessonnier, T.; Böhlen, T. T.; Molinelli, S.; Ferrari, A.; Parodi, K.; Debus, J.; Haberer, T.

    2017-06-01

    Models able to predict relative biological effectiveness (RBE) values are necessary for an accurate determination of the biological effect with proton and 4He ion beams. This is particularly important when including RBE calculations in treatment planning studies comparing biologically optimized proton and 4He ion beam plans. In this work, we have tailored the predictions of the modified microdosimetric kinetic model (MKM), which is clinically applied for carbon ion beam therapy in Japan, to reproduce RBE with proton and 4He ion beams. We have tuned the input parameters of the MKM, i.e. the domain and nucleus radii, reproducing an experimental database of initial RBE data for proton and He ion beams. The modified MKM, with the best fit parameters obtained, has been used to reproduce in vitro cell survival data in clinically-relevant scenarios. A satisfactory agreement has been found for the studied cell lines, A549 and RENCA, with the mean absolute survival variation between the data and predictions within 2% and 5% for proton and 4He ion beams, respectively. Moreover, a sensitivity study has been performed varying the domain and nucleus radii and the quadratic parameter of the photon response curve. The promising agreement found in this work for the studied clinical-like scenarios supports the usage of the modified MKM for treatment planning studies in proton and 4He ion beam therapy.

  15. SU-E-T-249: Determining the Sensitivity of Beam Profile Parameters for Detecting Energy Changes in Flattening Filter-Free Beams

    SciTech Connect

    Mooney, K; Yaddanapudi, S; Mutic, S; Goddu, S

    2015-06-15

    Purpose: To identify the beam profile parameters that can be used to detect energy changes in a flattening filter-free photon beams. Methods: Flattening filter-free beam profiles (inline, crossline, and diagonals) were measured for multiple field sizes (25×25cm and 10×10cm) at 6MV on a clinical system (Truebeam, Varian Medical Systems Palo Alto CA). Profiles were acquired for baseline energy and detuned beams by changing the bending magnet current (BMC), above and below baseline. The following profile parameters were measured: flatness (off-axis ratio at 80% of field size), symmetry, uniformity, slope, and the off-axis ratio (OAR) at several off-axis distances. Tolerance values were determined from repeated measurements. Each parameter was evaluated for sensitivity to the induced beam changes, and the minimum detectable BMC change was calculated for each parameter by calculating the change in BMC that would Result in a change in the parameter above the measurement tolerance. Results: Tolerance values for the parameters were-Flatness≤0.1%; Symmetry≤0.4%; Uniformity≤0.01%; Slope≤ 0.001%/mm. The measurements made with a field size of 25cm and a depth of d=1.5cm showed the greatest sensitivity to bending magnet current variations. Uniformity had the highest sensitivity, able to detect a change in BMC of BMC=0.02A. The OARs and slope were sensitive to the magnitude and direction of BMC change. The sensitivity in the flatness parameter was BMC=0.04A; slope was sensitive to BMC=0.05A. The sensitivity decreased for OARs measured closer to central axis-BMC(8cm)=0.23A; BMC(5cm)=0.47A; BMC(2cm)=1.35A. Symmetry was not sensitive to changes in BMC. Conclusion: These tests allow for better QA of FFF beams by setting tolerance levels to beam parameter baseline values which reflect variations in machine calibration. Uniformity is most sensitive to BMC changes, while OARs provide information about magnitude and direction of miscalibration. Research funding provided by

  16. Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha

    2016-12-01

    Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.

  17. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source

    PubMed Central

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  18. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.

    PubMed

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-03-30

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed.

  19. Stimulated emission from a relativistic electron beam in a variable-parameter longitudinal magnetic wiggler

    NASA Astrophysics Data System (ADS)

    McMullin, W. A.; Davidson, R. C.; Johnston, G. L.

    1983-08-01

    The single-particle equations of motion are used to study the stimulated emission from a tenuous relativistic electron beam propagating in the combined solenoidal and variable-parameter longitudinal wiggler magnetic fields produced near the axis of a multiple-mirror (undulator) field configuration. The specific case of constant field amplitude and variable wiggler periodicity is studied. It is found that the efficiency of radiation generation can be increased by orders of magnitude relative to the case where the wiggler periodicity is constant. This is due to the fact that the phase velocity of the ponderomotive potential in which the electrons are trapped is decreasing, allowing the electrons to exchange energy with the radiation field.

  20. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Lei; Fan, Juanjuan; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%. supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093, 61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China

  1. Effects of initial electron beam parameters of a linear accelerator on the properties of bremsstrahlung radiation in a radiotherapy setting

    NASA Astrophysics Data System (ADS)

    Gorlachev, G. E.; Polozov, S. M.; Dalechina, A. V.; Ksenofontov, A. I.; Kistenev, A. V.

    2016-12-01

    The dependence of the initial electron-beam parameters on absorbed dose distributions have been investigated using a CyberKnife radiotherapy accelerator (Accuray, United States). To describe the initial electron-beam characteristics, simulations of the linear electron accelerator are performed and the electron distributions in the beam of a linac output are analyzed. The radial distributions of electrons are assumed exponential, whereas the energy electron distributions are approximated by monoenergetic and rectangular spectra. There is no significant dependence of depth-dose curves in a phantom on the shape of the electron beam. Importantly, a clear dependence of the radiation field profile on the size of the electron beam is observed not just in the penumbra region, but also in the open part.

  2. Distributed parameter estimation for NASA Mini-Mast truss using Timoshenko beam model

    NASA Technical Reports Server (NTRS)

    Shen, Ji-Yao; Huang, Jen-Kuang; Taylor, Lawrence W., Jr.

    1991-01-01

    A more accurate Timoshenko beam model is used to characterize the bending behavior of the truss. A maximum likelihood estimator for the Timoshenko beam model has been formulated. A closed-form solution of the Timoshenko beam equation, for a uniform cantilevered beam with two concentrated masses, is derived so that the procedure for the estimation of modal characteristics is much improved. The updated model to the NASA Mini-Mast test data is demonstrated.

  3. Cumulative beam breakup in linear accelerators with time-dependent parameters

    SciTech Connect

    Jean Delayen

    2004-10-01

    A formalism presented in a previous paper for the analysis of cumulative beam breakup (BBU) with arbitrary time dependence of the beam current and with misalignment of the cavities and focusing elements [J. R. Delayen, Phys. Rev. ST Accel. Beams 6, 084402 (2003)] is extended to include time dependence of the focusing and coupling between the beam and the dipole modes. Such time dependence, which could result from an energy chirp imposed on the beam or from rf focusing, is known to be effective in reducing BBU-induced instabilities and emittance growth. The analytical results are presented and applied to practical accelerator configurations and compared to numerical simulations.

  4. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

  5. A novel method to survey parameters of an ion beam and its interaction with a target

    NASA Astrophysics Data System (ADS)

    Long, J. D.; Yang, Z.; Li, J.; Wang, X. H.; Wang, T.; Lan, C. H.; Dong, P.; Li, X.; He, J. L.; Zheng, L.; Liu, P.

    2017-09-01

    Beam profile and composition of the pulsed ion beam from a vacuum arc source are valuable information for designing a high-intensity deuterium-tritium neutron generator. Traditional methods are notoriously difficult to obtain the information at the same time. A novel off-line diagnostic method is presented, which can obtain the transverse beam profile with high resolution as well as species of the ions in the beam. The method is using a silicon target with high purity to interact with the ion beam, and then use secondary ion mass spectrometry (SIMS) to analyze the interaction zone of the target to get the beam information. More information on beam-target interaction could get simultaneously. Proof-of-principle simulation and experimental works have demonstrated this method is practical.

  6. On the reconstruction of parameters of quasi-Gaussian pump beams during transient SBS

    SciTech Connect

    Dementjev, Aleksandr S; Kosenko, E K; Murauskas, E; Girdauskas, V

    2006-08-31

    The radii and radii of curvature of Stokes stimulated Brillouin scattering (SBS) beams are measured by the method of moments for smooth nearly Gaussian focused pump beams with the propagation ratio M{sup 2}{sub {sigma}p{<=}}1.2. It is shown that in the case of sufficiently deeply focused pump radiation, the propagation ratio M{sup 2}{sub {sigma}S} of Stokes beams near the threshold of the transient SBS is smaller than M{sup 2}{sub {sigma}p} and approaches it with increasing the pump pulse energy. It is also found that the radii of Stokes beams at the output from a nonlinear medium are smaller than the radii of pump beams, while the radii of wave-front curvature are close (in modulus) to the radii of wave-front curvature for pump beams. (laser beams)

  7. Influence of the injected beam parameters on the capture efficiency of an electron cyclotron resonance based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Mascali, D.; Torrisi, G.; Neri, L.; Celona, L.; Angot, J.

    2017-06-01

    Electron cyclotron resonance ion sources based charge breeders (ECR-CB) are fundamental devices for Isotope Separation On Line (ISOL) facilities aiming at postaccelerating radioactive ion beams (RIBs). Presently, low intensity RIBs do not allow a conventional tuning of the ECR-CB: as a consequence, it has to be set with a stable 1+ pilot beam first, switching then to the radioactive one without changing any parameter; this procedure is usually called "blind tuning." Besides having different masses, pilot and radioactive beams can also differ in terms of the rms transverse emittance ɛrms and/or longitudinal energy spread Δ E , so the choice of a given pilot beam can determine the overall performances of the final breeding stage. This paper shows a numerical study of how the capture efficiency of the PHOENIX charge breeder is affected by the aforementioned beam paramaters: the analysis reveals the two-step nature of the process, highlighting the role of the injection optics and the plasma capture capability in the overall performances of this device. The simulations predict highest efficiency for ɛrms<5 π mm mrad and Δ E <5 eV in a optimum energy range between 2 and 6 eV, thus giving important information on the possibility of blindly tuning an ECR-CB. No isotopical effects were observed, while it clearly came out the necessity to improve the 1 + beam characteristics with a rf beam cooler prior to the injection into an ECR-CB.

  8. Analysis of physical parameters and determination of inflection point for Flattening Filter Free beams in medical linear accelerator.

    PubMed

    Pichandi, A; Ganesh, Kadirampatti Mani; Jerin, Amalraj; Balaji, Karunakaran; Kilara, Gurunath

    2014-09-01

    Medical Linear accelerators manufactured without flattening filters are increasing popular in recent days. The removal of flattening filter results in increased dose rate, reduced mean energy, reduction in head leakage and lateral scattering, which have shown advantageous when used for special treatment procedures. This study aims to analyze physical parameters of FFF beams and to determine the inflection point for standardizing the beam flatness and penumbra. The beam profiles and depth dose patterns were measured using Radiation Field Analyzer (RFA) with 0.13 cc cylindrical ion chamber. The beam energy characteristics, head scatter factor (Sc) were obtained for 6FFF and 10FFF beams and compared with 6 MV and 10 MV photons, respectively. The symmetry and stability of unflattened regions were also analyzed. In addition, the study proposes a simple physical concept for obtaining inflection point for FFF beams and results were compared using the Akima spline interpolation method. The inflection point was used to determine the field size and penumbra of FFF beams. The Sc varied from 0.922 to 1.044 for 6FFF and from 0.913 to 1.044 for 10FFF with field sizes from 3 cm × 3 cm to 40 cm × 40 cm which is much less than FF beams. The obtained value of field size and penumbra for both simple physical concept and Akima spline interpolation methods is within the ±1.0 mm for the field size and ±2 mm penumbra. The results indicate that FFF beams reduce Sc compared with FF beams due to the absence of a flattening filter. The proposed simple method to find field size and penumbra using inflection point can be accepted as it is closely approximated to mathematical results. Stability of these parameters was ascertained by repeated measurements and the study indicates good stability for FFF beam similar to that of FF beams.

  9. Focused ultrasonic beam behavior at a stress-free boundary and applicability for measuring nonlinear parameter in a reflection mode

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing

    2017-02-01

    In this work, we employ a focused beam theory to modify the phase reversal at the stress-free boundary, and consequently enhance the second harmonic generation during its back-propagation toward the initial source position. We first confirmed this concept through experiment by using a spherically focused beam at the water-air interface, and measuring the reflected second harmonic and comparing with a planar wave reflected from the same stress-free or a rigid boundary. In order to test the feasibility of this idea for measuring the nonlinearity parameter of solids in a reflection mode, a focused nonlinear ultrasonic beam is modeled for focusing at and reflection from a stress-free boundary. A nonlinearity parameter expression is then defined together with diffraction and attenuation corrections.

  10. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    SciTech Connect

    Lunev, A. G. Nadezhkin, M. V.; Konovalov, S. V.; Teresov, A. D.

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  11. High speed e-beam writing for large area photonic nanostructures — a choice of parameters

    NASA Astrophysics Data System (ADS)

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S.; Wang, Yue; Triggs, Graham J.; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R.; Krauss, Thomas F.

    2016-09-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.

  12. High speed e-beam writing for large area photonic nanostructures — a choice of parameters

    PubMed Central

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S.; Wang, Yue; Triggs, Graham J.; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R.; Krauss, Thomas F.

    2016-01-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications. PMID:27633902

  13. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  14. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin⁡2(θ23)=0.514±0.082 and mass splitting |Δm322|=2.44-0.15+0.17×10-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  15. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study

    PubMed Central

    Namour, A.; Geerts, S.; Zeinoun, T.; De Moor, R.; Nammour, S.

    2016-01-01

    Objective. Nd:YAP laser has several potentialities of clinical applications in endodontics. The aim of our study is to determine the safety range of irradiation parameters during endodontic application of Nd:YAP laser that can be used without damaging and overheating the periodontal tissue. Material and Methods. Twenty-seven caries-free single-rooted extracted human teeth were used. Crowns were sectioned to obtain 11 mm root canal length. Temperature increases at root surfaces were measured by a thermocouple during Nd:YAP laser irradiation of root canals at different energy densities. Canal irradiation was accomplished with a circular and retrograde movement from the apex until the cervical part of the canal during 10 seconds with an axial speed of 1 mm/s. Each irradiation was done in a canal irrigated continuously with 2.25% NaOCl solution. Results. Periodontal temperature increase depends on the value of energy density. Means and standard deviations of temperature increases at root surfaces were below 10°C (safe threshold level) when the average energy densities delivered per second were equal to or below 4981 J/cm2 and 9554 J/cm2, respectively, for irradiations using a fiber diameter of 320 μm and 200 μm. Conclusions. Within the limitations of this study and under specific irradiation conditions, Nd:YAP laser beam may be considered harmless for periodontal tissues during endodontic applications. PMID:27376084

  16. Monte Carlo uncertainty assessment of ultrasonic beam parameters from immersion transducers used to non-destructive testing.

    PubMed

    Alvarenga, A V; Silva, C E R; Costa-Félix, R P B

    2016-07-01

    The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparative calibration of IP scanning equipment

    NASA Astrophysics Data System (ADS)

    Ingenito, F.; Andreoli, P.; Batani, D.; Boutoux, G.; Cipriani, M.; Consoli, F.; Cristofari, G.; Curcio, A.; De Angelis, R.; Di Giorgio, G.; Ducret, J.; Forestier-Colleoni, P.; Hulin, S.; Jakubowska, K.; Rabhi, N.

    2016-05-01

    Imaging Plates (IP) are diagnostic devices which contain a photostimulable phosphor layer that stores the incident radiation dose as a latent image. The image is read with a scanner which stimulates the decay of electrons, previously excited by the incident radiation, by exposition to a laser beam. This results in emitted light, which is detected by photomultiplier tubes; so the latent image is reconstructed. IPs have the interesting feature that can be reused many times, after erasing stored information. Algorithms to convert signals stored in the detector to Photostimulated luminescence (PSL) counts depend on the scanner and are not available on every model. A comparative cross-calibration of the IP scanner Dürr CR35 BIO, used in ABC laboratory, was performed, using the Fujifilm FLA 7000 scanner as a reference, to find the equivalence between grey-scale values given by the Dürr scanner to PSL counts. Using an IP and a 55Fe β-source, we produced pairs of samples with the same exposition times, which were analysed by both scanners, placing particular attention to fading times of the image stored on IPs. Data analysis led us to the determine a conversion formula which can be used to compare data of experiments obtained in different laboratories and to use IP calibrations available, till now, only for Fujifilm scanners.

  18. Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Christopher A.; Papantonakis, Michael R.; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    Infrared active stand-off detection techniques often employ high power tunable quantum cascade lasers (QCLs) for target illumination. Due to the distances involved, any fluctuation of the laser beam direction and/or beam profile is amplified at the sample position. If not accounted for, this leads to diminished performance (both sensitivity and selectivity) of the detection technique as a direct result of uncertainties in laser irradiance at each imaged pixel of the sample. This is especially true for detection approaches which illuminate a relatively small footprint at the target since the laser beam profile spatial fluctuations are often comparable to the (focused) laser spot size. Also, there is often a necessary trade-off between high output QCL power and beam quality. Therefore, precise characterization of the laser beam profile and direction as a function of laser properties (tuning wavelength, current and operating mode: pulsed or CW) is imperative. We present detailed measurements of beam profiles, beam wander and power fluctuations and their reproducibility as function of laser wavelength and stand-off distance for a commercially available tunable quantum cascade laser. We present strategies for improving beam quality by compensating for fluctuations using a motorized mirror and a pair of motorized lenses. We also investigate QCL mode hops and how they affect laser beam properties at the sample. Detailed mode-hop stability maps were measured.

  19. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    SciTech Connect

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  20. Physical parameters of very small diameter 10 MV X-ray beams for linac-based stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Sham, Edwin

    Physical aspects of very small diameter X-ray beams used for a linac-based stereotactic radiosurgery are presented in this thesis. A 10 MV linac was used as the radiation source. Very small 10 MV photon fields with diameters of 1.5 mm, 3 mm, and 5 mm are produced by special collimators attached to the treatment head of the linac. The radiation beam data were measured with a small field diode detector as well as radiographic and radiochromic films. Measured beam parameters were compared with the same parameters calculated with Monte Carlo (MC) simulations. For very small photon fields with diameters on the order of the focal spot size, MC calculations show that both the percentage depth dose (PDD) distributions and dose profiles are sensitive to the focal spot size. A simple sliding slit technique was developed to measure the focal spot size and shape for accurate MC simulations of very small diameter beams. The measured focal spot of the 10 MV linac is elliptical in shape and fitted by a Gaussian distribution with full-widths-at-half-maximum (FWHMs) of 2.05 mm and 1.34 mm in the principal axes of the ellipse. A Gaussian circle equivalent in area to the experimentally determined focal spot ellipse was used in MC simulations. The resulting PDD and beam profile calculations are in good agreement with the measurements. Dynamic radiosurgery with very small diameter photon beams was carried out using the 10 MV linac. Radiosurgical isodose distributions were measured with radiographic films in a spherical head phantom and calculated with the MC technique. A good agreement between the measured and MC-calculated isodose distributions for very small diameter fields is achieved. The displacement of the center of the measured isodose distributions relative to the laser-defined isocenter was on the order of 0.7 mm. All these results show the potential of linac-based radiosurgery with very small diameter photon beams for clinical use.

  1. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  2. Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air.

    PubMed

    Avramov-Zamurovic, S; Nelson, C; Guth, S; Korotkova, O

    2016-05-01

    Reduction in the scintillation index of multi-Gaussian Schell-model beams propagating in turbulent air is demonstrated as a function of two source parameters: the r.m.s. coherence width and the summation index. The beams were generated with the help of a nematic phase-only, reflective spatial light modulator at a cycling rate of 333 frames per second and recorded after propagating through a weakly turbulent air channel over a distance of 70 m. Experimental results are in good agreement with theory.

  3. A novel curve-fitting procedure for determining proximity effect parameters in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Hung; Ng, Hoi-Tou; Ng, Philip C. W.; Tsai, Kuen-Yu; Lin, Shy-Jay; Chen, Jeng-Homg

    2008-11-01

    Accelerating voltage as low as 5 kV for operation of the electron-beam micro-columns as well as solving the throughput problem is being considered for high-throughput direct-write lithography for the 22-nm half-pitch node and beyond. The development of efficient proximity effect correction (PEC) techniques at low-voltage is essential to the overall technology. For realization of this approach, a thorough understanding of electron scattering in solids, as well as precise data for fitting energy intensity distribution in the resist are needed. Although electron scattering has been intensively studied, we found that the conventional gradient based curve-fitting algorithms, merit functions, and performance index (PI) of the quality of the fit were not a well posed procedure from simulation results. Therefore, we proposed a new fitting procedure adopting a direct search fitting algorithm with a novel merit function. This procedure can effectively mitigate the difficulty of conventional gradient based curve-fitting algorithm. It is less sensitive to the choice of the trial parameters. It also avoids numerical problems and reduces fitting errors. We also proposed a new PI to better describe the quality of the fit than the conventional chi-square PI. An interesting result from applying the proposed procedure showed that the expression of absorbed electron energy density in 5keV cannot be well represented by conventional multi-Gaussian models. Preliminary simulation shows that a combination of a single Gaussian and double exponential functions can better represent low-voltage electron scattering.

  4. Statistics of beam-driven waves in plasmas with ambient fluctuations: Reduced-parameter approach

    SciTech Connect

    Tyshetskiy, Yu.; Cairns, I. H.; Robinson, P. A.

    2008-09-15

    A reduced-parameter (RP) model of quasilinear wave-plasma interactions is used to analyze statistical properties of beam-driven waves in plasmas with ambient density fluctuations. The probability distribution of wave energies in such a system is shown to have a relatively narrow peak just above the thermal wave level, and a power-law tail at high energies, the latter becoming progressively more evident for increasing characteristic amplitude of the ambient fluctuations. To better understand the physics behind these statistical features of the waves, a simplified model of stochastically driven thermal waves is developed on the basis of the RP model. An approximate analytic solution for stationary statistical distribution of wave energies W is constructed, showing a good agreement with that of the original RP model. The 'peak' and 'tail' features of the wave energy distribution are shown to be a result of contributions of two groups of wave clumps: those subject to either very slow or very fast random variations of total wave growth rate (due to fluctuations of ambient plasma density), respectively. In the case of significant ambient plasma fluctuations, the overall wave energy distribution is shown to have a clear power-law tail at high energies, P(W){proportional_to}W{sup -{alpha}}, with nontrivial exponent 1<{alpha}<2, while for weak fluctuations it is close to the lognormal distribution predicted by pure stochastic growth theory. The model's wave statistics resemble the statistics of plasma waves observed by the Ulysses spacecraft in some interplanetary type III burst sources. This resemblance is discussed qualitatively, and it is suggested that the stochastically driven thermal waves might be a candidate for explaining the power-law tails in the observed wave statistics without invoking mechanisms such as self-organized criticality or nonlinear wave collapse.

  5. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    PubMed

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  6. SU-E-T-778: Use of the 2D MatriXX Detector for Measuring Scanned Ion Beam Parameters

    SciTech Connect

    Anvar, M Varasteh; Monaco, V; Sacchi, R; Guarachi, L Fanola; Cirio, R; Giordanengo, S; Marchetto, F; Vignati, A; Donetti, M; Ciocca, M; Panizza, D

    2015-06-15

    Purpose: The quality assurance (QA) procedure has to check the most relevant beam parameters to ensure the delivery of the correct dose to patients. Film dosimetry, which is commonly used for scanned ion beam QA, does not provide immediate results. The purpose of this work is to answer whether, for scanned ion beam therapy, film dosimetry can be replaced with the 2D MatriXX detector as a real-time tool. Methods: MatriXX, equipped with 32×32 parallel plate ion-chambers, is a commercial device intended for pre-treatment verification of conventional radiation therapy.The MatriXX, placed at the isocenter, and GAFCHROMIC films, positioned on the MatriXX entrance, were exposed to 131.44 MeV proton and 221.45 MeV/u Carbon-ion beams.The OmniPro-I’mRT software, applied for the data taking of MatriXX, gives the possibility of acquiring consecutive snapshots. Using the NI LabVIEW, the data from snapshots were logged as text files for further analysis. Radiochromic films were scanned with EPSON scanner and analyzed using software programs developed in-house for comparative purposes. Results: The field dose uniformity, flatness, beam position and beam width were investigated. The field flatness for the region covering 6×6 cm{sup 2} square field was found to be better than 2%. The relative standard deviations, expected to be constant over 2×2, 4×4 and 6×6 pixels from MatriXX measurement gives a uniformity of 1.5% in good agreement with the film results.The beam center position is determined with a resolution better than 200 µm for Carbon and less than 100 µm for proton beam.The FWHM determination for a beam wider than 10 mm is satisfactory, whilst for smaller beams the determination is uncertain. Conclusion: Precise beam position and fast 2D dose distribution can be determined in real-time using MatriXX detector. The results show that MatriXX is quick and accurate enough to be used in charged-particle therapy QA.

  7. Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan

    2007-01-01

    The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.

  8. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Beam Parameters for End Diffraction of TE0 Mode of Planar Waveguide

    NASA Astrophysics Data System (ADS)

    Li, Lian-Huang; Guo, Fu-Yuan

    2010-01-01

    The relation between diffractive beam parameters and normalized frequency is analyzed that leads to two improved formulas for two kinds of mode-field half-widths and several formulas for divergence angle as well as beam propagation factor. The numerical calculation indicates that the maximal relative error is less than 0.5% within a reasonable parameter range.

  9. Simulation study of dynamic aperture with head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated 10{sup 6} turn dynamic apertures with the proposed head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are planning to introduce a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device to provide the electron beam is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we compare the calculated dynamic apertures without and with head-on beam-beam compensation. The effects of adjusted phase advances between IP8 and the center of e-lens and second order chromaticity correction are checked. In the end we will scan the proton and electron beam parameters with head-on beam-beam compensation.

  10. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect

    Montag, C.

    2011-03-28

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  11. One mirror beam steering: determination of steering mirror parameters from image pointing direction

    NASA Astrophysics Data System (ADS)

    Andersen, Torben B.; Granger, Zachary A.

    2016-09-01

    Mathematical models are used to establish the exact path of a beam reflected by a plane mirror in terms of the mirror geometry descriptors. In particular, the mirror geometry descriptors (tilt angles) are determined as functions of the beam path in image space. This is also useful for determining scan patterns when the mirror is used as a scanning device. These formulations are readily adaptable to commercially available ray tracing programs.

  12. Changes in statistics of the instantaneous Stokes parameters of a quasi-monochromatic electromagnetic beam on propagation

    NASA Astrophysics Data System (ADS)

    Korotkova, O.

    2006-05-01

    The changes in the probability density functions (PDFs) are discussed, of the instantaneous Stokes parameters of a quasi-monochromatic electromagnetic beam propagating in free space. Such changes may be caused by correlations between the components of the electric field at a pair of points in the source plane. When the fluctuations of the electric field are governed by Gaussian statistics the PDFs of the instantaneous Stokes parameters at any distance from the source are completely determined by the two-point correlation properties of the field in the source plane. These results can be used for synthesis of sources generating random beams with prescribed statistical properties. They also may find applications in remote sensing, tomography and communications with partially coherent and partially polarized light.

  13. An Influence of 7.5 T Superconducting Wiggler on Beam Parameters of Siberia-2 Storage Ring

    SciTech Connect

    Korchuganov, Vladimir; Valentinov, Alexander; Mezentsev, Nikolai

    2007-01-19

    At present the dedicated synchrotron radiation source Siberia-2 in Kurchatov Institute operates with electron energy 2.5 GeV and current up to 200 mA. In order to expand spectral range of SR and to increase brightness an installation of 7.5 T 19-pole superconducting wiggler is planned at the end of 2006. Now the wiggler is under fabrication in BINP, Novosibirsk. Such high level of a magnetic field in the wiggler will have a great influence on electron beam parameters of Siberia-2. Changes of these parameters (betatron tunes, horizontal emittance of the electron beam, momentum compaction, energy spread etc.) are discussed in the report. Different methods of compensation (global and local) of betatron functions distortion are presented. Much attention is paid to dynamic aperture calculations using analytical approximation of magnetic field behavior in transverse horizontal direction.

  14. Evaluation of various operational and dosimetric parameters of an industrial electron beam accelerator of 2 MeV energy

    NASA Astrophysics Data System (ADS)

    Benny, P. G.; Khader, S. A.; Sarma, K. S. S.

    2014-07-01

    An industrial type 2 MeV/20 kW ILU-6 electron beam accelerator is operational in India for development of applications and technology demonstration to the Indian Industry in the field of polymer modifications (cross-linking and degradation). In order to adjust the treatment conditions and to control the good operation of the accelerator, it is necessary to study dose response as a function of various operational parameters. An experimental procedure for calibrating Cellulose Triacetate (CTA) film strip dosimeters in electron beam using total absorption graphite calorimeters is discussed and compared it with the results obtained from gamma calibration. Dosimetry data for process application, where the irradiation target is plane polymer sheet, have been obtained under various operational parameters.

  15. A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.

  16. An Influence of 7.5 T Superconducting Wiggler on Beam Parameters of Siberia-2 Storage Ring

    NASA Astrophysics Data System (ADS)

    Korchuganov, Vladimir; Mezentsev, Nikolai; Valentinov, Alexander

    2007-01-01

    At present the dedicated synchrotron radiation source Siberia-2 in Kurchatov Institute operates with electron energy 2.5 GeV and current up to 200 mA. In order to expand spectral range of SR and to increase brightness an installation of 7.5 T 19-pole superconducting wiggler is planned at the end of 2006. Now the wiggler is under fabrication in BINP, Novosibirsk. Such high level of a magnetic field in the wiggler will have a great influence on electron beam parameters of Siberia-2. Changes of these parameters (betatron tunes, horizontal emittance of the electron beam, momentum compaction, energy spread etc.) are discussed in the report. Different methods of compensation (global and local) of betatron functions distortion are presented. Much attention is paid to dynamic aperture calculations using analytical approximation of magnetic field behavior in transverse horizontal direction.

  17. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.

    PubMed

    Wang, Pan; Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-09-22

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part's surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM.

  18. Optimal layout of piezo patches and control circuit parameters for vibration damping of a bounded beam using switching control

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Braghin, Francesco; Mazzocchi, Fabrizio

    2016-04-01

    Self-powered switching control has been proved to be very effective for vibration damping in case it is not possible to power up a fully active system and/or you have stringent requirements from an added weight point of view. However, the capability of harvesting the required energy for switching as well as the authority of the piezo actuator are greatly influenced by the actual position of the patches along the beam as well as by the circuit parameters. Indeed, varying them both control performance and energy requirement strongly change, making feasible or compromising the possibility to obtain a self-powered control system. Moreover, a difference of system or circuit parameters from ideality can affect the behavior of the damping layout. In this paper the influence of all these parameters on control behavior are deeply studied. Aim of the paper is to provide a handbook to the choice of circuit parameters depending on the control system requirements.

  19. A fully Galerkin method for the recovery of stiffness and damping parameters in Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.

    1991-01-01

    A fully Sinc-Galerkin method for recovering the spatially varying stiffness and damping parameters in Euler-Bernoulli beam models is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which converges exponentially and is valid on the infinite time interval. Hence the method avoids the time-stepping which is characteristic of many of the forward schemes which are used in parameter recovery algorithms. Tikhonov regularization is used to stabilize the resulting inverse problem, and the L-curve method for determining an appropriate value of the regularization parameter is briefly discussed. Numerical examples are given which demonstrate the applicability of the method for both individual and simultaneous recovery of the material parameters.

  20. Numerical investigation of beam halo from beam gas scattering in KEK-ATF

    NASA Astrophysics Data System (ADS)

    Yang, R.; Bambade, P.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.

    2017-07-01

    To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.

  1. CONTROL OF LASER RADIATION PARAMETERS: Compact prisms for polarisation splitting of fibre laser beams

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Yagodkin, D. I.

    2005-11-01

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO3, α-BaB2O4 (α-BBO), LiIO3, LiNbO3, YVO4, and TiO2 crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90°. Calcite prisms with the deviation angles for the extraordinary beam ~19° and 90° are tested experimentally.

  2. Beam-beam simulations for separated beams

    SciTech Connect

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  3. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    SciTech Connect

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  4. CXCL10/IP-10

    PubMed Central

    Gotsch, Francesca; Romero, Roberto; Friel, Lara; Kusanovic, Juan Pedro; Espinoza, Jimmy; Erez, Offer; Than, Nandor Gabor; Mittal, Pooja; Edwin, Samuel; Yoon, Bo Hyun; Kim, Chong Jai; Mazaki-Tovi, Shali; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.

    2008-01-01

    OBJECTIVE Interferon (IFN)-γ inducible protein, CXCL10/IP-10, is a member of the CXC chemokine family with pro-inflammatory and anti-angiogenic properties. This chemokine has been proposed to be a key link between inflammation and angiogenesis. The aim of this study was to determine whether preeclampsia and delivery of a small for gestational age (SGA) neonate are associated with changes in maternal serum concentration of CXCL10/IP-10. STUDY DESIGN This cross-sectional study included patients in the following groups: (1) non pregnant women (N=49); (2) women with normal pregnancies (N=89); (3) patients with preeclampsia (N=100); and (4) patients who delivered an SGA neonate (N=78). SGA was defined as birth weight below the 10th percentile. Maternal serum concentrations of CXCL10/IP-10 were measured by sensitive immunoassay. Non-parametric statistics were used for analysis. RESULTS (1) Patients with normal pregnancies had a significantly higher median serum concentration of CXCL10/IP-10 than non-pregnant women (median: 116.1 pg/mL, range: 40.7-1314.3 vs. median: 90.3 pg/mL, range: 49.2-214.7, respectively; p=0.002); (2) no significant correlation was found between maternal serum concentration of CXCL10/IP-10 and gestational age (between 19 and 38 weeks); (3) there were no differences in median serum CXCL10/IP-10 concentrations between patients who delivered an SGA neonate and those with normal pregnancies (median: 122.4 pg/mL, range: 37.3-693.5 vs. median: 116.1 pg/mL, range: 40.7-1314.3, respectively; p>0.05); (4) patients with preeclampsia had a higher median serum concentration of CXCL10/IP-10 than normal pregnant women (median: 156.4 pg/mL, range: 47.4-645.9 vs. median: 116.1 pg/mL, range: 40.7-1314.3, respectively; p<0.05); (5) patients with preeclampsia had a higher median concentration of CXCL10/IP-10 than those who delivered an SGA neonate (median: 156.4 pg/mL, range: 47.4-645.9 vs. median: 122.4 pg/mL, range: 37.3-693.5, respectively; p<0.05). CONCLUSIONS

  5. SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction

    SciTech Connect

    Lu, W; Yan, H; Gu, X; Jiang, S; Jia, X; Bai, T; Zhou, L

    2014-06-01

    Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Three different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)

  6. Simulation of Experimental Parameters of RC Beams by Employing the Polynomial Regression Method

    NASA Astrophysics Data System (ADS)

    Sayin, B.; Sevgen, S.; Samli, R.

    2016-07-01

    A numerical model based on the method polynomial regression is developed to simulate the mechanical behavior of reinforced concrete beams strengthened with a carbon-fiber-reinforced polymer and subjected to four-point bending. The results obtained are in good agreement with data of laboratory tests.

  7. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current.

    PubMed

    Yano, Keisuke; Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  8. Radiation parameters of 6 to 20 MeV scanning electron beams from the Saturne linear accelerator.

    PubMed

    Pfalzner, P M; Clarke, H C

    1982-01-01

    Depth doses of the scanning electron beams from the Saturne Therac-20 linear accelerator at nominal energies of 6,9,13,17, and 20 MeV were measured in polystyrene using a thin window parallel plate ionization chamber. Central axis depth dose curves are derived and are analyzed according to the method of Brahme and Svensson. For each of the five electron energies, values are obtained for the most probable energy at the absorber surface Ep,0, the practical range Rp, the 50% range R50, the therapeutic range R85, the electron dose gradients, total collision energy losses, and other radiation parameters, and these are compared to corresponding values for electron beams from a 22 MeV medical microtron and a 20 MeV betatron.

  9. On the parameters of runaway electron beams and on electrons with an "anomalous" energy at a subnanosecond breakdown of gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. K.; Beloplotov, D. V.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Sorokin, D. A.

    2015-09-01

    The generation of runaway electron beams in gases at atmospheric pressure has been studied with a real picosecond accuracy. Their main parameters have been determined. It has been found that three groups of electrons can be separated at a subnanosecond voltage pulse in a runaway electron beam generated in air at atmospheric pressure. It has been proven that the duration of a beam pulse in air at atmospheric pressure behind an anode foil is ~100 ps.

  10. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    PubMed

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10(-4). The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  11. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  12. CANOPEN Controller IP Core

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Montagna, Mario; Furano, Gianluca; Winton, Alistair

    2010-08-01

    This paper will describe the activities performed by Thales Alenia Space Italia supported by the European Space Agency in the definition of a CAN bus interface to be used on Exomars. The final goal of this activity is the development of an IP core, to be used in a slave node, able to manage both the CAN bus Data Link and Application Layer totally in hardware. The activity has been focused on the needs of the EXOMARS mission where devices with different computational performances are all managed by the onboard computer through the CAN bus.

  13. Total heart volume as a function of clinical and anthropometric parameters in a population of external beam radiation therapy patients

    NASA Astrophysics Data System (ADS)

    Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima

    2012-01-01

    The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.

  14. Novel Parameter Predicting Grade 2 Rectal Bleeding After Iodine-125 Prostate Brachytherapy Combined With External Beam Radiation Therapy

    SciTech Connect

    Shiraishi, Yutaka; Hanada, Takashi; Ohashi, Toshio; Yorozu, Atsunori; Toya, Kazuhito; Saito, Shiro; Shigematsu, Naoyuki

    2013-09-01

    Purpose: To propose a novel parameter predicting rectal bleeding on the basis of generalized equivalent uniform doses (gEUD) after {sup 125}I prostate brachytherapy combined with external beam radiation therapy and to assess the predictive value of this parameter. Methods and Materials: To account for differences among radiation treatment modalities and fractionation schedules, rectal dose–volume histograms (DVHs) of 369 patients with localized prostate cancer undergoing combined therapy retrieved from corresponding treatment planning systems were converted to equivalent dose-based DVHs. The gEUDs for the rectum were calculated from these converted DVHs. The total gEUD (gEUD{sub sum}) was determined by a summation of the brachytherapy and external-beam radiation therapy components. Results: Thirty-eight patients (10.3%) developed grade 2+ rectal bleeding. The grade 2+ rectal bleeding rate increased as the gEUD{sub sum} increased: 2.0% (2 of 102 patients) for <70 Gy, 10.3% (15 of 145 patients) for 70-80 Gy, 15.8% (12 of 76 patients) for 80-90 Gy, and 19.6% (9 of 46 patients) for >90 Gy (P=.002). Multivariate analysis identified age (P=.024) and gEUD{sub sum} (P=.000) as risk factors for grade 2+ rectal bleeding. Conclusions: Our results demonstrate gEUD to be a potential predictive factor for grade 2+ late rectal bleeding after combined therapy for prostate cancer.

  15. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  16. Analysis of precracking parameters and fracture toughness for ceramic single-edge-precracked-beam specimens

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Chulya, Abhisak; Salem, Jonathan A.

    1992-01-01

    The single-edge-precracked-beam (SEPB) method involves creation of a straight-through crack from an indentation crack. The straight-through crack is developed by applying a controlled bending load to a specimen via a precracking fixture. The fixture induces the following sequence: (1) stable growth of the indentation crack; (2) pop-in; and finally, (3) arrest-thereby forming a straight-through precrack. The effects of indentation load on precracking load as well as precrack size were studied for experimental variables such as specimen width, fixture span, and material. Finite element analysis was used to obtain the stress distribution and stress intensity factor, thus providing a quantitative prediction of the precracking load and precrack size for silicon nitride, alumina, silicon cabide, and two SiC whisker-reinforced silicon nitrides. Fracture toughness values obtained from the SEPB method were compared with those obtained from other methods.

  17. R&D ERL: Beam dynamics, parameters, and physics to be learned

    SciTech Connect

    Kayran, D.

    2010-02-01

    The R&D ERL facility at BNL aims to demonstrate CW operation of ERL with average beam current in the range of 0.1-1 ampere, combined with very high efficiency of energy recovery. The ERL is being installed in one of the spacious bays in Bldg. 912 of the RHIC/AGS complex (Fig. 1). The bay is equipped with an overhead crane. The facility has a control room, two service rooms and a shielded ERL cave. The control room is located outside of the bay in a separate building. The single story house is used for a high voltage power supply for 1 MW klystron. The two-story unit houses a laser room, the CW 1 MW klystron with its accessories, most of the power supplies and electronics. The ERL R&D program has been started by the Collider Accelerator Department (C-AD) at BNL as an important stepping-stone for 10-fold increase of the luminosity of the Relativistic Heavy Ion Collider (RHIC) using relativistic electron cooling of gold ion beams with energy of 100 GeV per nucleon. Furthermore, the ERL R&D program extends toward a possibility of using 10-20 GeV ERL for future electron-hadron/heavy ion collider, MeRHIC/eRHIC. These projects are the driving force behind the development of ampere-class ERL technology, which will find many applications including light sources and FELs. The intensive R&D program geared towards the construction of the prototype ERL is under way: from development of high efficiency photo-cathodes to the development of new merging system compatible with emittance compensation.

  18. Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO.

    PubMed

    Maskani, Reza; Tahmasebibirgani, Mohammad Javad; Hoseini-Ghahfarokhi, Mojtaba; Fatahiasl, Jafar

    2015-01-01

    The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.

  19. Effects of electron-beam radiation on nutritional parameters of Portuguese chestnuts (Castanea sativa Mill.).

    PubMed

    Carocho, Márcio; Barreira, João C M; Antonio, Amilcar L; Bento, Albino; Kaluska, Iwona; Ferreira, Isabel C F R

    2012-08-08

    Chestnuts are a widely consumed fruit around the world, with Portugal being the fourth biggest producer in Europe. Storage of these nuts is an important step during processing, and the most widely used fumigant was banned in the European Union under the Montreal Protocol because of its toxicity. Recently, radiation has been introduced as a cheap and clean conservation method. Previous studies of our research group proved that γ radiation had no negative effect on the nutritional value of chestnuts; in fact, storage time had a much bigger influence on the chestnut quality. In the present study, we report the effect of a less ionizing radiation, electron beam, with doses of 0, 0.5, 1, 3, and 6 kGy in the nutritional value of chestnuts (ash, energy, fatty acids, sugars, and tocopherols), previously stored at 4 °C for 0, 30, and 60 days. The storage time seemed to reduce fat and energetic values but reported a tendency for higher values of dry matter. With regard to fatty acids, there was a higher detected quantity of C20:2 in non-irradiated samples and four fatty acids were only detected in trace quantities (C6:0, C8:0, C10:0, and C12:0). γ-Tocopherol decreased during storage time but did not alter its quantity for all of the radiation doses (as like α-, β-, and δ-tocopherol); in fact, these compounds were present in higher concentrations in the irradiated samples. Sucrose and total sugars were lower in non-irradiated samples, and raffinose was only detected in irradiated samples. Electron-beam irradiation seems to be a suitable methodology, because the effects on chemical and nutritional composition are very low, while storage time seems to be quite important in chestnut deterioration.

  20. Optimization and Analysis of Laser Beam Machining Parameters for Al7075-TiB2 In-situ Composite

    NASA Astrophysics Data System (ADS)

    Manjoth, S.; Keshavamurthy, R.; Pradeep Kumar, G. S.

    2016-09-01

    The paper focuses on laser beam machining (LBM) of In-situ synthesized Al7075-TiB2 metal matrix composite. Optimization and influence of laser machining process parameters on surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy of composites were studied. Al7075-TiB2 metal matrix composite was synthesized by in-situ reaction technique using stir casting process. Taguchi's L9 orthogonal array was used to design experimental trials. Standoff distance (SOD) (0.3 - 0.5mm), Cutting Speed (1000 - 1200 m/hr) and Gas pressure (0.5 - 0.7 bar) were considered as variable input parameters at three different levels, while power and nozzle diameter were maintained constant with air as assisting gas. Optimized process parameters for surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy were calculated by generating the main effects plot for signal noise ratio (S/N ratio) for surface roughness, VMRR and dimensional error using Minitab software (version 16). The Significant of standoff distance (SOD), cutting speed and gas pressure on surface roughness, volumetric material removal rate (VMRR) and dimensional error were calculated using analysis of variance (ANOVA) method. Results indicate that, for surface roughness, cutting speed (56.38%) is most significant parameter followed by standoff distance (41.03%) and gas pressure (2.6%). For volumetric material removal (VMRR), gas pressure (42.32%) is most significant parameter followed by cutting speed (33.60%) and standoff distance (24.06%). For dimensional error, Standoff distance (53.34%) is most significant parameter followed by cutting speed (34.12%) and gas pressure (12.53%). Further, verification experiments were carried out to confirm performance of optimized process parameters.

  1. Numerical recovery of material parameters in Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Vogel, C. R.

    1991-01-01

    A fully Sinc-Galerkin method for recovering the spatially varying stiffness parameter in fourth-order time-dependence problems with fixed and cantilever boundary conditions is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains. This yields an approximation solution which converges exponentially and is valid on the infinite time interval. When the forward methods are applied to parameter recovery problems, the resulting inverse problems are ill-posed. Tikhonov regularization is applied and the resulting minimization problems are solved via a quasi-Newton/trust region algorithm. The L-curve method is used to determine an appropriate value of the regularization parameter. Numerical results which highlight the method are given for problems with both fixed and cantilever boundary conditions.

  2. Status of RHIC head-on beam-beam compensation project

    SciTech Connect

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  3. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  4. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    PubMed Central

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-01-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference. PMID:28774095

  5. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    PubMed

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  6. Exposure parameters in proton beam writing for KMPR and EPO Core negative tone photoresists

    NASA Astrophysics Data System (ADS)

    Ynsa, M. D.; Shao, P.; Kulkarni, S. R.; Liu, N. N.; van Kan, J. A.

    2011-10-01

    In spite of its recent establishment, proton beam writing (PBW) has already demonstrated to be a highly competitive lithographic technique. PBW is a fast direct-write technique capable of producing high-aspect-ratio micro- and nano-structures in resist material. Typical applications can be found in nanoimprinting, biomedical research, photonics, and optics, among other fields. The progress of PBW is linked to the successful introduction of new resist materials. In this paper, KMPR and EPO Core, negative tone photoresists are tested on their compatibility with PBW. KMPR resist has similar chemical and process properties compared to SU-8. Employing UV lithography on KMPR resist, details of 30 μm have been obtained in Ni, indicating a possible advantage compared to SU-8 for optical lithography [1]. In this study, the sensitivity to MeV proton exposure and sub-micron feature sizes are presented in KMPR. PBW has been also combined with Ni electroplating in order to determine the suitability of KMPR and EPO Core resist to fabricate 3D metallic moulds and stamps.

  7. Online measurement of LHC beam parameters with the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Strauss, E.

    2012-06-01

    We present an online measurement of the LHC beamspot parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise, up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beamspot values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual bunch crossings have allowed for studies of single-bunch distributions as well as the behavior of bunch trains. This talk will cover the constraints imposed by the online environment and describe how these measurements are accomplished with the given resources. The algorithm tasks must be completed within the time constraints of the Level 2 trigger, with limited CPU and bandwidth allocations. This places an emphasis on efficient algorithm design and the minimization of data requests.

  8. Influence of the process parameters on the growth of YSZ-layers prepared by Ion Beam Assisted Deposition (IBAD)

    NASA Astrophysics Data System (ADS)

    Knierim, A.; Auer, R.; Geerk, J.; Lierk, Fuli. Y.; Linker, G.; Meyer, O.; Schweiss, P.; Smithey, R.; Reiner, J.

    1997-05-01

    Cubic yttria stabilized zirconia (YSZ) thin films were grown on amorphous quartz, r-plane sapphire and stainless steel substrates by ion beam sputtering from a planar target under simultaneous ion bombardment (IBAD) during film growth and sputtering employing the inverted cylindrical magnetron (ICM) gun. The formation and modification of preferred orientations was studied by X-ray diffraction and TEM investigations as a function of different deposition parameters like substrate temperature, total pressure, deposition rate, ion beam energy and current. A preferred (100)-orientation could be achieved on untextured substrates by ICM-deposition at substrate temperatures above 800°C and by IBAD without external heating of the substrates. In-plane orientation of YSZ films on untextured substrates was only achieved with IBAD for an ion impact angle αs between 30° and 70°. For αs = 55° the best mosaic spread was observed. The observation of significantly smaller texture distribution widths for epitaxially post-deposited material than measured at the basic YSZ buffer layer was found to be due to a gradual improvement of YSZ growth under ion bombardment with increasing layer thickness.

  9. Discussion of parameters, lattices and beam stability for a 200-TeV low-field collider

    SciTech Connect

    Neuffer, D.

    1996-03-01

    Recently, it has been suggested that improved technology and reduced costs in remotely-drilled small-diameter tunnels, coupled with improvements in robotic technology, may make the original concept of the ``desertron`` more realistic and affordable. In this concept, a long, small-diameter tunnel is drilled (<{approximately}1m diameter ``sewer`` pipe) and filled with long, low-cost magnets, which are installed and serviced robotically. To obtain high-energy then requires low cost magnets, which are iron-dominated ``superferric`` magnets (B{approximately}2 T). A large circumference is then required ({approximately}1000 km for {approximately}100 TeV/beam). Table 1 shows parameters for a 200 TeV proton-proton collider, based on the premise of a large low-cost ring with super-ferric magnets. While outline designs for a low-cost {approximately}2T dipole have been initiated, an accelerator requires beam stability, which means quadrupole fields for focusing, as well as sextupoles for chromatic correction, and further design tolerances and correctors to obtain sufficiently linear fields. Previously we have developed initial lattices and dynamic motion discussions for the earlier 40 TeV incarnation of the superferric supercollider. In this note we apply those results to initiate discussions of the dynamic requirements of this 200 TeV collider.

  10. Vertical displacement of Ips Latidens and Ips Pini

    Treesearch

    Daniel R. Miller

    2000-01-01

    The effect of semiochemical interruptants was examined for Ips latidens (LeConte) and Ips pini (Say) using artificial trees (tall-traps) consisting of an array of seven Lindgren multiple-funnel traps suspended vertically on a rope ladder. S-(+)- Ipsdienol reduced the numbers of I. latidens captured in (±)-ipsenol...

  11. Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions.

    PubMed

    Yousefzadeh, Behrooz; Hodgson, Murray

    2012-09-01

    A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.

  12. Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-05-09

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(θ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3)  eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3)  eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  13. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  14. Optimum parameters of TLD100 powder used for radiotherapy beams calibration check

    SciTech Connect

    Arib, M. . E-mail: mehenna.arib@comena-dz.org; Yaich, A.; Messadi, A.; Dari, F.

    2006-10-01

    External audit of the absorbed dose determination from radiotherapy machines is performed using Lithium fluoride (LiF) TLD-100. Optimal parameters needed to obtain highly accurate dosage from LiF powder was investigated, including the setup of the Harshaw 4000 reader. A linear correspondence between the thermoluminescent signal and the mass of the powder was observed, demonstrating that the dose can be evaluated with small samples of powder. The reproducibility of the thermoluminescence dosimeter (TLD) readings obtained with up to 10 samples from 1 capsule containing 160 mg of powder was around 1.5% (1 standard deviation [SD]). The time required for the manual evaluation of TLDs can be improved by 3 readings without loss of accuracy. Better reproducibility is achieved if the capsules are evaluated 7 days after irradiation using a nitrogen flow of 300 cc/min.

  15. SU-E-J-271: A Feasibility Study to Utilize XR-QA2 Radiochromic Films as An Alternative Tool for Measuring Beam Parameters of Kilovoltage CBCT Systems

    SciTech Connect

    Morales-Paliza, M; Ding, G

    2014-06-01

    Purpose: The beam parameters of the x-ray beams used in image guidance are difficult to measure in water due to the low exposure. This study is to investigate if XR-QA2 radiochromic films can be used in obtaining beam parameters, such as beam profiles and outputs for kV-CBCT systems. Methods: The kV-CBCT beams were from a Varian OBI system. The films used were XR-QA2-GAFCHROMICTM films placed in the middle of two Plastic -Water slab phantoms at isocenter. The scanner used to analyze the films was an Epson Expression 1680 flat-bed scanner. Pre and 24 h-post-irradiated scans of films were obtained by using the reflective mode. The corresponding pixel-by-pixel dose in the films was obtained using a dose calibration equation as a function of net reflectance from the literature. Beam profiles of different scan protocols with and without bow-tie filters were measured. Monte Carlo simulations were used to compare the accuracy of the measured dose profiles. Results: The beam profiles measured from XR-QA2 films for different clinical default kV-CBCT scan protocols were benchmarked against Monte Carlo simulated profiles which have been validated by measurements performed in water phantom. We confirmed that a minimum post-irradiated time of 24 hours is necessary to pass to scan the films to account for light scatter stability. We found that the uncertainties of the results depend on the scan orientation of the film when analyzed in different directions. Conclusion: The XR-QA2 radiochromic films are sensitive to measure the x-ray beam profiles with irradiated dose ranging 1–5 cGy. The film measurements can be performed with an easy setup compared to ion chamber measurements in a water phantom. These films provide an alternative method to obtain the beam profiles for kV-CBCT beams.

  16. Beam-energy inequality in the beam-beam interaction

    SciTech Connect

    Krishnagopal, S.; Siemann, R. )

    1990-03-01

    Conditions for energy transparency,'' unequal-energy beams having the same beam-beam behavior, are derived for round beams from a Hamiltonian model of the beam-beam interaction. These conditions are equal fractional betatron tunes, equal synchrotron tunes, equal beam-beam strength parameters, equal nominal sizes, equal {beta}{sup *}'s and equal bunch lengths. With these conditions the only way to compensate for unequal energies is with the number of particles per bunch.

  17. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  18. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  19. Cartesian beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2007-12-01

    A new and very general beam solution of the paraxial wave equation in Cartesian coordinates is presented. We call such a field a Cartesian beam. The complex amplitude of the Cartesian beams is described by either the parabolic cylinder functions or the confluent hypergeometric functions, and the beams are characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integration are studied in detail. Applying the general expression of the Cartesian beams, we also derive two new and meaningful beam structures that, to our knowledge, have not yet been reported in the literature. Special cases of the Cartesian beams are the standard, elegant, and generalized Hermite-Gauss beams, the cosine-Gauss beams, the Lorentz beams, and the fractional order beams.

  20. Beam-beam experience in RHIC

    SciTech Connect

    Montag, C.; Heimerle, M.

    2010-07-29

    The Relativistic Heavy Ion Collider RHIC consists of two superconducting storage rings that intersect at six locations around the ring circumference. Two of these interaction regions are currently equipped with experiment detectors, namely STAR at the “6 o’clock” interaction point (IP), and PHENIX at “8 o’clock”. The two beams collide only at these two interaction regions, while they are vertically separated by typically 6-10mm at the other IPs. Together with the separator dipoles located at roughly 10m from the IP, and a distance between bunches of 30m, this avoids any parasitic beam-beam collisions. RHIC is capable of colliding any ion species at magnetic rigidities up to B × r = 830T × m , corresponding to 250 GeV for proton beams, or 100 GeV/n for fully stripped gold ions.

  1. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence

    PubMed Central

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C.; Djordjevic, Julianne T.

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence. PMID:27033523

  2. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence.

    PubMed

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C; Djordjevic, Julianne T

    2016-04-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence.

  3. Tissue maximum ratios (and other parameters) of small circular 4, 6, 10, 15 and 24 MV x-ray beams for radiosurgery.

    PubMed

    Serago, C F; Houdek, P V; Hartmann, G H; Saini, D S; Serago, M E; Kaydee, A

    1992-10-01

    Small, circular, x-ray beams are commonly used for radiosurgery applications. Dosimetric characteristics of 4, 6, 10, 15 and 24 MV circular x-ray beams ranging in size from 10 to 40 mm are reported. These characteristics include the measurement of TMR, beam profiles and relative output factors. Measurements of these parameters were performed in a solid water phantom using film, a small diode, small parallel-plate and cylindrical ionization chambers and TLD. Comparison of relative dose measurements of small, circular beams performed using these detectors showed that the small diode, film and TLD results consistently agreed for circular beams as small as 10 mm diameter. Beam profiles were measured using film dosimetry. Comparison of TMR values of a 10 mm diameter beam measured using film and a small parallel-plate ionization chamber showed no significant differences. Tertiary collimators designed with tapered, divergence-matching holes, and straight-drilled holes have been used for radiosurgery applications. Measurement of beam penumbra produced with either of these types of tertiary collimators showed minimal differences between them.

  4. Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Lautenschläger, T.; Thelander, E.; Spemann, D.

    2017-03-01

    Several sets of TiO2 films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  5. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    PubMed

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  6. On the speed and acceleration of electron beams triggering interplanetary type III radio bursts

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Kontar, E. P.; Soucek, J.; Santolik, O.; Maksimovic, M.; Kruparova, O.

    2015-08-01

    Aims: Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. Methods: We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. Results: We show these beams noticeably decelerate in the IP medium. Obtained speeds range from ~0.02c up to ~0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons (~0.1c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Derived properties of electron beams can be used as input parameters for computer simulations of interactions between the beam and the plasma in the IP medium. Appendix A is available in electronic form at http://www.aanda.org

  7. Exact Relativistic Kinetic Theory of an Electron-Beam-Plasma System: Hierarchy of the Competing Modes in the System-Parameter Space

    SciTech Connect

    Bret, A.; Gremillet, L.; Benisti, D.; Lefebvre, E.

    2008-05-23

    The stability analysis of an electron-beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation have not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed restricted to simplistic distribution functions and/or did not aim at a complete mapping of the beam-plasma parameter space. The present Letter comprehensively tackles this problem by implementing an exact linear model. Three kinds of modes compete in the linear phase, which can be classified according to the direction of their wave number with respect to the beam. We determine their respective domain of preponderance in a three-dimensional parameter space and support our results with multidimensional particle-in-cell simulations.

  8. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement.

    PubMed

    Zhang, Yunpeng; Li, En; Guo, Gaofeng; Xu, Jiadi; Wang, Chao

    2014-09-01

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in the focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%-5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.

  9. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement

    SciTech Connect

    Zhang, Yunpeng; Li, En Guo, Gaofeng; Xu, Jiadi; Wang, Chao

    2014-09-15

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in the focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%–5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.

  10. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect

    Prost, Lionel Robert

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ~0.2 μC/m) over long pulse durations (4 μs) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K+ ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (~80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  11. Measurement of kinetic parameters relevant to the operation of an electron-beam initiated atomic iodine laser

    SciTech Connect

    Ramirez, J.E.; Bera, R.K.; Hanrahan, R.J.

    1985-04-01

    Parameters relevant to the operation of an electron-beam initiated atomic iodine laser, which would lase on the transition 5 /sup 2/P/sub 1//sub ///sub 2/ (I*)..-->..5 /sup 2/P/sub 3//sub ///sub 2/ (I), have been measured by pulse radiolysis. Kinetic data for the parent compound quenching of I* were obtained by variation of the parent compound pressure at constant buffer gas pressure and observing I* decay rates versus time. Deactivation rates for perfluoroalkyl iodides were found to be much lower than for the corresponding alkyl iodides. Values obtained (in cm/sup 3/ molec/sup -1/ s/sup -1/) are as follows: CH/sub 3/I, (2.0 +- 0.1) x 10/sup -13/; C/sub 2/H/sub 5/I, (5.0 +- 0.3) x 10/sup -13/; CF/sub 3/I, (8.8 +- 0.3) x 10/sup -16/; C/sub 2/F/sub 5/I, (9.7 +- 1.0) x 10/sup -15/; n-C/sub 3/F/sub 7/I, (2.5 +- 0.2) x 10/sup -15/; i-C/sub 3/F/sub 7/I, (1.7 +- 0.1) x 10/sup -15/; n-C/sub 4/F/sub 9/I, (1.8 +- 0.1) x 10/sup -14/. The extent of population inversion was investigated by measuring initial excited state and ground state atomic iodine concentrations, which gives the branching ratio (I*)/(I). Values obtained are as follows: CH/sub 3/I, 2.7; CF/sub 3/I, 3.8; C/sub 2/F/sub 5/I, 2.7; i-C/sub 3/F/sub 7/I, 3.2; n-C/sub 4/F/sub 9/I, 1.8. Comparing both branching ratios and lifetimes, it is seen that CF/sub 3/I is the most promising candidate for an electron beam initiated atomic iodine laser.

  12. Semi-analytical approach for free vibration analysis of cracked beams resting on two-parameter elastic foundation with elastically restrained ends

    NASA Astrophysics Data System (ADS)

    Mirzabeigy, Alborz; Bakhtiari-Nejad, Firooz

    2014-06-01

    In present study, free vibration of cracked beams resting on two-parameter elastic foundation with elastically restrained ends is considered. Euler-Bernoulli beam hypothesis has been applied and translational and rotational elastic springs in each end considered as support. The crack is modeled as a mass-less rotational spring which divides beam into two segments. After governing the equations of motion, the differential transform method (DTM) has been served to determine dimensionless frequencies and normalized mode shapes. DTM is a semi-analytical approach based on Taylor expansion series that converts differential equations to recursive algebraic equations. The DTM results for the natural frequencies in special cases are in very good agreement with results reported by well-known references. Also, the DTM procedure yields rapid convergence beside high accuracy without any frequency missing. Comprehensive studies to analyze the effects of crack location, crack severity, parameters of elastic foundation and boundary conditions on dimensionless frequencies as well as effects of elastic boundary conditions on cracked beams mode shapes are carried out and some problems handled for first time in this paper. Since this paper deals with general problem, the derived formulation has capability for analyzing free vibration of cracked beam with every boundary condition.

  13. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy.

    PubMed

    Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I

    2016-04-01

    In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. The influence of build parameters on the microstructure during electron beam melting of Titanium6Aluminum4Vanadium

    NASA Astrophysics Data System (ADS)

    Puebla, Karina

    With the demand of devices to replace or improve areas, such as: electronic, biomedical and aerospace industries. Improvements in these areas of engineering have been in need due to the customer's needs for product properties requirements. The design of components must exhibit better material properties (mechanical or biocompatible) close to those of any given product. Rapid prototyping (RP) technologies that were originally designed to build prototypes may now be required to build functional end-use products. To carry out the transition, from RP to rapid manufacturing (RM), the available materials utilized in RP must provide the performance required for RM. The specific technology being used should be capable of producing reliable parts in regards to their mechanical properties. The research presented in this work investigated the effects of building parameters (build orientation and melt scan rate) on microstructure and the mechanical properties of test specimens fabricated via Electron Beam Melting (EBM) using Ti6Al4V. EBM, a rapid prototyping technology, has the potential to manufacture complex 3-dimensional end-use products layer-by-layer. In this work, a design of experiments approach was performed to determine the effects of build orientation and melt scan rate on both the microstructure and mechanical properties of test samples fabricated using EBM. Two randomized setups were designed to build two batches of 18 specimens. The experimental designs were carried out to determine the effect of different build parameters (build orientation and melt scan rate) in the mechanical properties of the fabricated specimens. The results demonstrated that EBM manufactured specimens built with different melt scan rates and build orientations have different microstructures and mechanical properties. Different melt scans produced variations in particle sintering resulting in dissimilar porosities and in mechanical properties (hardness and tensile testing). The mechanical

  15. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong

    2017-02-01

    The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam

  16. Association Between Tangential Beam Treatment Parameters and Cardiac Abnormalities After Definitive Radiation Treatment for Left-Sided Breast Cancer

    SciTech Connect

    Correa, Candace R.; Das, Indra J. Litt, Harold I.; Ferrari, Victor; Hwang, W.-T.; Solin, Lawrence J.; Harris, Eleanor E.

    2008-10-01

    Purpose: To examine the association between radiation treatment (RT) parameters, cardiac diagnostic test abnormalities, and clinical cardiovascular diagnoses among patients with left-sided breast cancer after breast conservation treatment with tangential beam RT. Methods and Materials: The medical records of 416 patients treated between 1977 and 1995 with RT for primary left-sided breast cancer were reviewed for myocardial perfusion imaging and echocardiograms. Sixty-two patients (62/416, 15%) underwent these cardiac diagnostic tests for cardiovascular symptoms and were selected for further study. Central lung distance and maximum heart width and length in the treatment field were determined for each patient. Medical records were reviewed for cardiovascular diagnoses and evaluation of cardiac risk factors. Results: At a median of 12 years post-RT the incidence of cardiac diagnostic test abnormalities among symptomatic left-sided irradiated women was significantly higher than the predicted incidence of cardiovascular disease in the patient population, 6/62 (9%) predicted vs. 24/62 (39%) observed, p 0.001. As compared with patients with normal tests, patients with cardiac diagnostic test abnormalities had a larger median central lung distance (2.6 cm vs. 2.2 cm, p = 0.01). Similarly, patients with vs. without congestive heart failure had a larger median central lung distance (2.8 cm vs. 2.3 cm, p = 0.008). Conclusions: Contemporary RT for early breast cancer may be associated with a small, but potentially avoidable, risk of cardiovascular morbidity that is associated with treatment technique.

  17. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  18. Mobility management in mobile IP

    NASA Astrophysics Data System (ADS)

    Medidi, Sirisha; Golshani, Forouzan

    2002-07-01

    There is an emerging interest in integrating mobile wireless communication with the Internet based on the Ipv6 technology. Many issues introduced by the mobility of users arise when such an integration is attempted. This paper addresses the problem of mobility management, i.e., that of tracking the current IP addresses of mobile terminals and sustaining active IP connections as mobiles move. The paper presents some architectural and mobility management options for integrating wireless access to the Internet. We then present performance results for Mobile IPv4, route optimization and Mobile IPv6.

  19. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We

  20. Determination of optimal number of beams in direct machine parameter optimization-based intensity modulated radiotherapy for head and neck cases.

    PubMed

    Ranganathan, Vaitheeswaran; Maria Das, K J

    2016-01-01

    This paper aims to introduce an algorithm called "sensitivity-based beam number selection (SBBNS)" for fully automated and case-specific determination of an optimal number of equispaced beams in intensity-modulated radiotherapy (IMRT). We tested the algorithm in five head and neck cases of varying complexity. We used direct machine parameter optimization method coupled with Auto Plan feature available in Pinnacle TPS (Version 9.10.0) for optimization. The Pearson correlation test shows a correlation of 0.88 between predicted and actual optimal number of beams, which indicates that SBBNS method is capable of predicting optimal number of beams for head and neck cases with reasonable accuracy. The major advantage of the algorithm is that it intrinsically takes into account various case- and machine-specific factors for the determination of optimal number. The study demonstrates that the algorithm can be effectively applied to IMRT scenarios to determine case specific and optimal number of beams for head and neck cases.

  1. Perspectives on beam-shaping optimization for thermal-noise reduction in advanced gravitational-wave interferometric detectors: Bounds, profiles, and critical parameters

    NASA Astrophysics Data System (ADS)

    Pierro, Vincenzo; Galdi, Vincenzo; Castaldi, Giuseppe; Pinto, Innocenzo M.; Agresti, Juri; Desalvo, Riccardo

    2007-12-01

    Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational-wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower bounds for the various thermal-noise constituents are obtained and compared with the current status (Gaussian beams) and trends (mesa beams), indicating fairly ample margins for further reduction. In this framework, the effective dimension of the related optimization problem, and its relationship to the critical design parameters are identified, physical-feasibility and model-consistency issues are considered, and possible additional requirements and/or prior information exploitable to drive the subsequent optimization process are highlighted.

  2. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  3. Encrypted IP video communication system

    NASA Astrophysics Data System (ADS)

    Bogdan, Apetrechioaie; Luminiţa, Mateescu

    2010-11-01

    Digital video transmission is a permanent subject of development, research and improvement. This field of research has an exponentially growing market in civil, surveillance, security and military aplications. A lot of solutions: FPGA, ASIC, DSP have been used for this purpose. The paper presents the implementation of an encrypted, IP based, video communication system having a competitive performance/cost ratio .

  4. Dynamic IP Reputation from DNS

    DTIC Science & Technology

    2016-06-21

    Dynamic IP Reputation from DNS Manos Antonakakis, Roberto Perdisci, and Wenke Lee Georgia Institute of Technology Report Documentation Page Form...Institute of Technology ,College of Computing,Atlanta,GA,30332 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

  5. Parameters of the output beam of a longitudinally diode-pumped YVO{sub 4}/Nd:YVO{sub 4}-laser

    SciTech Connect

    Ryabtsev, G I; Bogdanovich, M V; Yenzhyieuski, A I; Burov, L I; Ryabtsev, A G; Shchemelev, M A; Pozhidaev, A V; Matrosov, V N; Mashko, V V; Teplyashin, L L; Chumakou, A N

    2006-10-31

    The power and spatial characteristics of a longitudinally diode-pumped laser based on a composite YVO{sub 4}/Nd:YVO{sub 4} crystal are studied. It is shown that the use of a composite crystal allows one to increase the external slope quantum efficiency from 36% to 41% and decrease the quality factor M{sup 2} of the output beam from 2 to 1.5 compared to these parameters for a Nd:YVO{sub 4} crystal. (lasers)

  6. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  7. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    SciTech Connect

    Kurosu, K; Takashina, M; Koizumi, M; Das, I; Moskvin, V

    2014-06-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  8. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    SciTech Connect

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Havens, S.J.; Lopata, V.J.

    1997-01-16

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding.

  9. Solving the Neutrino Parameter Degeneracies by Measuring the T2K Off-axis Beam in Korea

    SciTech Connect

    Okamura, Naotoshi

    2005-12-02

    In this talk, we show the physics impacts of putting a 100kt-level Water Cerenkov detector in Korea during the T2K experimental period. The T2K experiment which will start in 2009 plans to use the high intensity conventional neutrino beam from J-PARC at Tokai village, Japan. The center of this beam will reach the sea level between Japan and Korea, and an off-axis beam at 0.5 deg. to 1.0 deg. can be observed in Korea. For a combination of the 3 deg. off-axis beam at SK with baseline length L = 295km and the 0.5 deg. off-axis beam in the east coast of Korea, near Gyeongju, at L = 1000km, we find that the neutrino mass hierarchy (the sign of the larger mass-squared difference) can be resolved and the CP phase of the MNS unitary matrix can be constrained uniquely at 3-{sigma} level when sin2 2{theta}rct > or approx. 0.06.

  10. FT-IR method to determine Dill's C parameter for DNQ/novolac resists with e-beam and i-line exposure

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Doran, Scott P.; Mack, Chris A.

    1999-06-01

    Typically, the Dill ABC parameters for optical resist are determined by coating a resist on a nonreflecting substrate and then measuring the change in the intensity of transmitted light at the wavelength of interest as a function of incident energy. Resists absorbance may not be selective in isolating and measuring only the photoactive species, and in some cases changes in absorbance can not be directly correlated to changes in the concentration of the photoactive species. FTIR spectroscopy can directly measure changes in the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species. FTIR, employed in reflectance mode, is not constrained to transparent substrates, but can instead be used with silicon wafers or chrome coated quartz plates. The ability to use these substrates, but can instead be used with silicon wafers or chrome coated quartz plates. The ability to use these substrates is important when determining Dill's C parameter under e-beam exposure where the degree of back-scattered electrons is dependent on the underlying substrate, and the use of quartz is prohibited due to charging considerations. Dill's C parameter is determined for a variety of commercial i-line resist under both e-beam and i-line exposure. The ProABC software, a lithography simulator that extracts ABC parameters through a best fit of model to data, is employed to extract Dill's C parameter. This software has been specially modified to allow FTIR absorbance input.

  11. Correlation of Neutral Beam Injection Parameters and Core B with Anomalous First-Wall Heating During QH-Mode

    SciTech Connect

    Lasnier, C; Burrell, K; deGrassie, J; Rhodes, T; VanZeeland, M; Watkins, J

    2006-05-15

    Anomalous first-wall heating has been observed far from the divertor strike point during QH-mode in DIII-D, with measured heat flux comparable to that at the outer strike point. The data are consistent with deuterium ions of approximately the pedestal energy carrying the anomalous heat flux. Although an instability has not been identified that is correlated with the anomalous heat flux, two classes of behavior have been observed: one in which the anomalous heat flux depends linearly on core {beta}, and another class with no {beta}-dependence. The anomalous heat flux depends strongly on the injected beam energy of the non-tangentially-injected neutral beams but not that of the tangential beams.

  12. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.

    SciTech Connect

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-05-16

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.

  13. Simple beam profile monitor

    SciTech Connect

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  14. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    SciTech Connect

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2014-06-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, Ray

  15. CONTROL OF LASER RADIATION PARAMETERS: Phase control of a focused laser beam: the comparison of the efficiency of methods

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir P.

    2005-02-01

    The adaptive phase correction of distortions of spatially limited laser beams and a plane wave transmitted through a turbulent atmosphere layer is considered. The requirements to the size of the mirror element and the bandwidth of the correction system are determined, which proved to be the same as in the case of weak intensity fluctuations.

  16. Standardization efforts in IP telephony

    NASA Astrophysics Data System (ADS)

    Sengodan, Senthil; Bansal, Raj

    1999-11-01

    The recent interest in IP telephony has led to a tremendous increase of standardization activities in the area. The three main standards bodies in the area of IP telephony are the International Telecommunication Union's (ITU-T) Study Group (SG) 16, the Internet Engineering Task Force (IETF) and the European Telecommunication Standards Institute's (ETSI) TIPHON project. In addition, forums such as the International Multimedia Teleconferencing Consortium (IMTC), the Intelligent Network Forum (INF), the International Softswitch Consortium (ISC), the Electronic Computer Telephony Forum (ECTF), and the MIT's Internet Telephony Consortium (ITC) are looking into various other aspects that aim at the growth of this industry. This paper describes the main tasks (completed and in progress) undertaken by these organizations. In describing such work, an overview of the underlying technology is also provided.

  17. Parameter optimization for Doppler laser cooling of a low-energy heavy ion beam at the storage ring S-LSR

    NASA Astrophysics Data System (ADS)

    Osaki, Kazuya; Okamoto, Hiromi

    2014-05-01

    S-LSR is a compact ion storage ring constructed at Kyoto University several years ago. The ring is equipped with a Doppler laser cooling system aimed at beam crystallization. Bearing in mind hardware limitations in S-LSR, we try to find an optimum set of primary experimental parameters for the production of an ultracold heavy ion beam. Systematic molecular dynamics simulations are carried out for this purpose. It is concluded that the detuning and spot size of the cooling laser should be chosen around -42 MHz and 1.5 mm, respectively, for the most efficient cooling of 40 keV ^{24}Mg^+ beams in S-LSR. Under the optimum conditions, the use of the resonant coupling method followed by radio-frequency field ramping enables us to reach an extremely low beam temperature on the order of 0.1 K in the transverse degrees of freedom. The longitudinal degree of freedom can be cooled to close to the Doppler limit; i.e., to the mK range. We also numerically demonstrate that it is possible to establish a stable, long one-dimensionally ordered state of ions.

  18. OSI and TCP/IP

    NASA Technical Reports Server (NTRS)

    Randolph, Lynwood P.

    1994-01-01

    The Open Systems Interconnection Transmission Control Protocol/Internet Protocol (OSI TCP/IP) and the Government Open Systems Interconnection Profile (GOSIP) are compared and described in terms of Federal internetworking. The organization and functions of the Federal Internetworking Requirements Panel (FIRP) are discussed and the panel's conclusions and recommendations with respect to the standards and implementation of the National Information Infrastructure (NII) are presented.

  19. The Spacelab IPS Star Simulator

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  20. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  1. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    SciTech Connect

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) and also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.

  2. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGES

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  3. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    SciTech Connect

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) and also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.

  4. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  5. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  6. Role of Ipsdienol, Ipsenol, and cis-Verbenol in chemical ecology of Ips avulsus, Ips calligraphus, and Ips grandicollis (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    Jeremy D. Allison; Jessica I. McKenney; Daniel R. Miller; Matthew L. Gimmel

    2012-01-01

    ABSTRACT Stressed or damaged pine (Pinus sp.) trees in the southeastern United States are often colonized simultaneously by three southern Ips species (Coleoptera: Curculionidae: Scolytinae): small southern pine engraver, Ips avulsus (Eichhoff); sixspined ips, Ips calligraphus (Germar); and...

  7. Dosimetric parameters as predictive factors for biochemical control in patients with higher risk prostate cancer treated with Pd-103 and supplemental beam radiation

    SciTech Connect

    Orio, Peter; Wallner, Kent . E-mail: kent.Wallner@med.va.gov; Merrick, Gregory; Herstein, Andrew; Mitsuyama, Paul; Thornton, Ken; Butler, Wayne; Sutlief, Steven

    2007-02-01

    Purpose: To analyze the role of dosimetric quality parameters in maximizing cancer eradication in higher risk prostate cancer patients treated with palladium (Pd)-103 and supplemental beam radiation. Methods: One-hundred-seventy-nine patients treated with Pd-103 and supplemental beam radiation, with minimum 2 years follow-up prostate-specific antigen (PSA) values and posttreatment computed tomography scans were analyzed. Dosimetric parameters included the V100 (percent of the postimplant volume covered by the prescription dose), the D90 (the minimum dose that covered 90% of the post implant volume), and the treatment margins (the radial distance between the prostatic edge and the prescription isodose). Treatment margins (TMs) were calculated using premarket software. Results: Freedom from biochemical failure was 79% at 3 years, with 92 of the 179 patients (51%) followed beyond 3 years. In comparing patients who did or did not achieve biochemical control, the most striking differences were in biologic factors of pretreatment PSA and Gleason score. The V100, D90, and average TM all showed nonsignificant trends to higher values in patients with biochemical control. In multivariate analysis of each of the three dosimetric parameters against PSA and Gleason score, TM showed the strongest correlation with biochemical control (p = 0.19). Conclusions: For patients with intermediate and high-risk prostate cancer treated with Pd-103 brachytherapy and external beam radiation, biologic factors (PSA and Gleason score) were the most important determinants of cancer eradication. However, there is a trend to better outcomes among patients with higher quality implant parameters, suggesting that attention to implant quality will maximize the likelihood of cure.

  8. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems.

  9. Coherent beam-beam effects, theory & observations

    SciTech Connect

    Yuri I Alexahin

    2003-07-16

    Current theoretical understanding of the coherent beam-beam effect as well as its experimental observations are discussed: conditions under which the coherent beambeam modes may appear, possibility of their resonant interaction (coherent resonances), stability of beam-beam oscillations in the presence of external impedances. A special attention is given to the coherent beam-beam modes of finite length bunches: the synchro-betatron coupling is shown to provide reduction in the coherent tuneshift and--at the synchrotron tune values smaller than the beam-beam parameter--Landau damping by overlapping synchrotron satellites.

  10. Closed Orbit Distortion and the Beam-Beam Interaction

    SciTech Connect

    Furman, M.; Chin, Y.; Eden, J.; Kozanecki, W.; Tennyson, J.L.; Ziemann, V.; /SLAC

    2007-02-23

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  11. Closed orbit distortion and the beam-beam interaction

    SciTech Connect

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W. |; Tennyson, J.; Ziemann, V.

    1992-06-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  12. Simple Beam-Optic Simulations and Proposed Mechanical Mitigation for the Triplet Oscillation Problem

    SciTech Connect

    Thieberger,P.; Montag, C.; Snydstrup, L.; Trbojevic, D.; Tuozzolo, J.

    2008-05-01

    The purpose of these simulations is to gain a better understanding of the relative contributions to the beam perturbation from the main horizontal oscillation modes (yawing and rolling) of Q1, Q2, and Q3. For this purpose, a simple beam transport program was implemented with an EXCEL spreadsheet to calculate the horizontal beam envelop through the Q1, Q2, Q3 triplet up to the IP, with the possibility of specifying horizontal displacements of the singlets. For now, the weak focusing properties of D0 and DX have been ignored, but could easily be included in the future if necessary. In a first simulation, quadrupole strengths have been adopted that correspond to {beta}* = 2m at the IP. The parameters used listed in Table 1 were obtained from references [1] and [2].

  13. VoIP in a Campus Environment

    ERIC Educational Resources Information Center

    Young, Dan

    2005-01-01

    Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…

  14. Ips Bark Beetles in the South

    Treesearch

    Michael D. Conner; Robert C. Wilkinson

    1983-01-01

    Ips beetles usually attack weakened, dying, or recently felled trees and fresh logging debris. Large numbers Ips may build up when natural events such as lightning storms, ice storms, tornadoes, wildfires, and droughts create large amounts of pine suitable for the breeding of these beetles. Ips populations may also build up following forestry activities, such as...

  15. VoIP in a Campus Environment

    ERIC Educational Resources Information Center

    Young, Dan

    2005-01-01

    Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…

  16. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  17. Orthogonality of final waist corrections at the IP of the SLC

    SciTech Connect

    Bambade, P.

    1988-10-27

    Because the SLC final IP spot is produced by an aberration-dominated optical system, all components and couplings between dimensions of transverse phase-space must be controlled in the experimental tuning algorithm. For equal emittances epsilon/sub x/ = epsilon/sub y/, this amounts to ten linear optics adjustments. These adjustments are coupled and depend non-linearly on phase-space parameters. A ten-dimensional non-linear fitting program is therefore used to match the lattice in the Final Focus to the input beam. Local orthogonal ''knobs'' are also defined for fine-tweaking around the initial solution, although this is not always practical because of steering from the lenses. The three final waist corrections are however fully orthogonal to the other seven optical adjustments. This means that they do not cause any of the other seven optical distortions. We refer to this as external orthogonality. They can also be made internally orthogonal. This means that each one of the three orthogonalized controls can be applied independently of the two others. It also allows one to simultaneously correct and determine the phase-space at the IP.

  18. CONTROL OF LASER RADIATION PARAMETER: Phase and amplitude — phase control of a laser beam propagating in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir P.; Kanev, Fedor Yu; Sennikov, Viktor A.; Makenova, Nailya A.; Tartakovskii, Valerii A.; Konyaev, Petr A.

    2004-09-01

    Phase and amplitude — phase corrections of laser beam distortions during their propagation in a turbulent atmosphere under conditions of strong intensity fluctuations are compared. The effect of wavefront dislocations and the possibility of controlling the amplitude and phase of an optical wave are studied. Two approaches are analysed: phase correction using amplitude control and two-mirror phase correction. The efficiency of both methods is demonstrated.

  19. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  20. Optimization of laser parameters to obtain high-energy, high-quality electron beams through laser-plasma acceleration

    SciTech Connect

    Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Upadhyay, Ajay K.; Jha, Pallavi

    2010-10-15

    The propagation of an intense (a{sub 0}=3), short-pulse (L{approx}{lambda}{sub p}) laser through a homogeneous plasma has been investigated. Using two-dimensional simulations for a{sub 0}=3, the pulse-length and spot-size at three different plasma densities were optimized in order to get a better quality beam in laser wakefield accelerator. The study reveals that with increasing pulse-length the acceleration increases, but after a certain pulse-length (L>0.23{lambda}{sub p}) the emittance blows-up unacceptably. For spot-sizes less than that given by k{sub p0}r{sub s}=2{radical}(a{sub 0}), trapping is poor or nonexistent, and the optimal spot-size is larger. The deviation of the optimal spot-size from this formula increases as the density decreases. The efficacy of these two-dimensional simulations has been validated by running three-dimensional simulations at the highest density. It has been shown that good quality GeV-class beams can be obtained at plasma densities of {approx}10{sup 18} cm{sup -3}. The quality of the beam can be substantially improved by selecting only the high-energy peak; in this fashion an energy-spread of better than 1% and a current in tens of kA can be achieved, which are important for applications such as free-electron lasers.

  1. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    PubMed

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  2. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  3. Challenges Regarding IP Core Functional Reliability

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.

    2017-01-01

    For many years, intellectual property (IP) cores have been incorporated into field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design flows. However, the usage of large complex IP cores were limited within products that required a high level of reliability. This is no longer the case. IP core insertion has become mainstream including their use in highly reliable products. Due to limited visibility and control, challenges exist when using IP cores and subsequently compromise product reliability. We discuss challenges and suggest potential solutions to critical application IP insertion.

  4. IP Profiling via Service Cluster Membership Vectors

    SciTech Connect

    Bartoletti, A

    2009-02-23

    This study investigates the feasibility of establishing and maintaining a system of compact IP behavioral profiles as a robust means of computer anomaly definition and detection. These profiles are based upon the degree to which a system's (IP's) network traffic is distributed among stable characteristic clusters derived of the aggregate session traffic generated by each of the major network services. In short, an IP's profile represents its degree of membership in these derived service clusters. The goal is to quantify and rank behaviors that are outside of the statistical norm for the services in question, or present significant deviation from profile for individual client IPs. Herein, we establish stable clusters for accessible features of common session traffic, migrate these clusters over time, define IP behavior profiles with respect to these clusters, migrate individual IP profiles over time, and demonstrate the detection of IP behavioral changes in terms of deviation from profile.

  5. Partially coherent nonparaxial beams.

    PubMed

    Duan, Kailiang; Lü, Baida

    2004-04-15

    The concept of a partially coherent nonparaxial beam is proposed. A closed-form expression for the propagation of nonparaxial Gaussian Schell model (GSM) beams in free space is derived and applied to study the propagation properties of nonparaxial GSM beams. It is shown that for partially coherent nonparaxial beams a new parameter f(sigma) has to be introduced, which together with the parameter f, determines the beam nonparaxiality.

  6. The Spacelab IPS Star Simulator

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  7. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  8. Vaccines and IP Rights: A Multifaceted Relationship.

    PubMed

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.

  9. Applying a gaming approach to IP strategy.

    PubMed

    Gasnier, Arnaud; Vandamme, Luc

    2010-02-01

    Adopting an appropriate IP strategy is an important but complex area, particularly in the pharmaceutical and biotechnology sectors, in which aspects such as regulatory submissions, high competitive activity, and public health and safety information requirements limit the amount of information that can be protected effectively through secrecy. As a result, and considering the existing time limits for patent protection, decisions on how to approach IP in these sectors must be made with knowledge of the options and consequences of IP positioning. Because of the specialized nature of IP, it is necessary to impart knowledge regarding the options and impact of IP to decision-makers, whether at the level of inventors, marketers or strategic business managers. This feature review provides some insight on IP strategy, with a focus on the use of a new 'gaming' approach for transferring the skills and understanding needed to make informed IP-related decisions; the game Patentopolis is discussed as an example of such an approach. Patentopolis involves interactive activities with IP-related business decisions, including the exploitation and enforcement of IP rights, and can be used to gain knowledge on the impact of adopting different IP strategies.

  10. LER Lattice with IP B b*x/b*y = 100/1.5 cm and 25/1.5 cm

    SciTech Connect

    Nosochkov, Yuri

    1999-02-26

    In this note we briefly describe two versions of the LER lattice with IP beta functions of beta*x/beta*y = 100/1.5 cm and 25/1.5 cm, based on the current commissioning lattice (rev. 1.55). These lattices can be used to analyze beam-beam collisions as a function of beam size ratio at IP during the PEP-II commissioning.

  11. Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link

    NASA Technical Reports Server (NTRS)

    Nguyen, Sam P.; Pang, Jackson; Clare, Loren P.; Cheng, Michael K.

    2010-01-01

    independently as a simplex link. Without negotiation, the COTS routers are prevented from entering into the IP header compression mode, and no IP header compression would be performed. An algorithm is proposed to enable IP header compression in COTS routers on a simplex link with no negotiation or with a one-way messaging. In doing so, COTS routers can enter IP header compression mode without the need to handshake through a bidirectional link as required by FRF.20. This technique would spoof the routers locally and thereby allow the routers to enter into IP header compression mode without having the negotiations between routers actually occur. The spoofing function is conducted by a frame relay adapter (also COTS) with the capability to generate control messages according to the FRF.20 descriptions. Therefore, negotiation is actually performed between the FRF.20 adapter and the connecting COTS router locally and never occurs over the space link. Through understanding of the handshaking protocol described by FRF.20, the necessary FRF.20 negotiations messages can be generated to control the connecting router, not only to turn on IP header compression but also to adjust the compression parameters. The FRF.20 negotiation (or control) message is composed in the FRF.20 adapter by interpreting the incoming router request message. Many of the fields are simply transcribed from request to response while the control field indicating response and type are modified.

  12. Modeling Hypertrophic IP3 Transients in the Cardiac Myocyte

    PubMed Central

    Cooling, Michael; Hunter, Peter; Crampin, Edmund J.

    2007-01-01

    Cardiac hypertrophy is a known risk factor for heart disease, and at the cellular level is caused by a complex interaction of signal transduction pathways. The IP3-calcineurin pathway plays an important role in stimulating the transcription factor NFAT which binds to DNA cooperatively with other hypertrophic transcription factors. Using available kinetic data, we construct a mathematical model of the IP3 signal production system after stimulation by a hypertrophic α-adrenergic agonist (endothelin-1) in the mouse atrial cardiac myocyte. We use a global sensitivity analysis to identify key controlling parameters with respect to the resultant IP3 transient, including the phosphorylation of cell-membrane receptors, the ligand strength and binding kinetics to precoupled (with GαGDP) receptor, and the kinetics associated with precoupling the receptors. We show that the kinetics associated with the receptor system contribute to the behavior of the system to a great extent, with precoupled receptors driving the response to extracellular ligand. Finally, by reparameterizing for a second hypertrophic α-adrenergic agonist, angiotensin-II, we show that differences in key receptor kinetic and membrane density parameters are sufficient to explain different observed IP3 transients in essentially the same pathway. PMID:17693463

  13. Retrograde amnesia produced by electron beam exposure: casual parameters and duration of memory loss. Final report for November 84

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron-beam exposure was investigated. RA production was evaluated using a single-trial avoidance task for 10, 1, and 0.1 microsecond pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 1,000,000 rad/sec. By employing a 10 rad (1,000,000 rad/s) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory system activation which provided a novel stimulus that masked previous stimuli.

  14. Beams Arrangement in Non-Small Cell Lung Cancer (NSCLC) According to PTV and Dosimetric Parameters Predictive of Pneumonitis

    SciTech Connect

    Ramella, Sara; Trodella, Lucio; Mineo, Tommaso Claudio; Pompeo, Eugenio; Gambacorta, Maria A.; Cellini, Francesco; Ciresa, Marzia; Fiore, Michele; Greco, Carlo; Gaudino, Diego; Stimato, Gerardina; Piermattei, Angelo; Cesario, Alfredo; D'Angelillo, Rolando M.

    2010-10-01

    The aim of this study is to propose and validate an original new class of solutions for three-dimensional conformal radiation therapy (3DCRT) treatment planning for non-small cell lung cancer (NSCLC) according to the different patterns of disease presentation (on the basis of tumor location and volume) and to explore beams arrangement (planar or no-planar solutions) to respect dose constraints to the lung parenchyma. Benchmarks matched to validate the new approach are interuser reproducibility and saving on planning time. Tumor location was explored and specific categories created according to the tumor volume and location. Therefore, by applying planar and no-planar 3D plans, we searched for an optimization of the beams arrangement for each category. Dose-volume histograms (DVHs) were analyzed and a plan comparison performed. Results were then validated (class solution planning confirmation) by applying the same strategy to another group of patients. This has been realized at two dose levels (50.4 and 59.4 Gy). Fifty-nine patients were enrolled in this dosimetric study. In the first 27 patients ('exploratory sample') three main planning target volume location categories were identified according to the pattern of the disease presentation: (1) centrally located; (2) peripheral T and mediastinal N (P+N); and (3) superior sulcus. Original class solutions were proposed for each location category. On the next 32 patients ('validation sample'), the treatment planning started directly with the recommended approach. Mean V{sub 20Gy} value was 18.8% (SD {+-} 7.25); mean V{sub 30Gy}:12% (SD {+-} 4.05); and mean lung dose: 11.6Gy (SD {+-} 5.77). No differences between the two total dose level groups were observed. These results suggest a simple and reproducible tool for treatment planning in NSCLC, allowing interuser reproducibility and cutting down on planning time.

  15. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Luo, Y.; Heimerle, M.; Fischer, W.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, W.

    2010-08-03

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP6 and IP8. Each electron lens has several sub-systems, including electron gun, electron collector, superconducting main solenoid (SM), diagnostics system and power supply system. In addition to these systems, beam transport system which can transport electron beam from electron gun side to collector side is also needed.

  16. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams.

    PubMed

    Patel, Darshana; Bronk, Lawrence; Guan, Fada; Peeler, Christopher R; Brons, Stephan; Dokic, Ivana; Abdollahi, Amir; Rittmüller, Claudia; Jäkel, Oliver; Grosshans, David; Mohan, Radhe; Titt, Uwe

    2017-09-07

    Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation. Experiments were performed at the Heidelberg Ion Therapy Center (HIT) with support from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg, Germany using a mono-energetic horizontal proton beam. A custom-made variable range selector was designed for the horizontal beam line using the Geant4 MC toolkit. This unique setup enabled a high-throughput clonogenic assay investigation of multiple, well defined dose and linear energy transfer (LETs) per irradiation for human lung cancer cells (H460) cultured in a 96-well plate. Sensitivity studies based on application of different physics lists in conjunction with different electromagnetic constructors and production threshold values to the MC simulations were undertaken for accurate assessment of the calculated dose and the dose-averaged LET (LETd ). These studies were extended to helium and carbon ion beams. Sensitivity analysis of the MC parameterization revealed substantial dependence of the dose and LETd values on both the choice of physics list and the production threshold values. While the dose and LETd calculations using FTFP_BERT_LIV, FTFP_BERT_EMZ, FTFP_BERT_PEN and QGSP_BIC_EMY physics lists agree well with each other for all three ions, they show large differences when compared to the FTFP_BERT physics list with the default electromagnetic constructor. For carbon ions, the dose corresponding to the largest LETd

  17. [iPS cells in dentistry].

    PubMed

    Egusa, Hiroshi

    2012-01-01

    The discovery of the induced pluripotent stem (iPS) cell technology, which enables us to produce pluripotent stem cells by introducing a few genetic factors, commands considerable attention in the field of dentistry. These iPS cells may be of particular importance for developing innovative technologies to regenerate missing jaw bones and lost teeth, and there are expectations that several types of tissue stem cells and mucosal cells in the oral area can be used as an ideal iPS cell source. We previously reported that the gingiva, which is often resected during general dental treatments and treated as biomedical waste, is a promising source of iPS cells. In this review, the current trends in iPS cell research in dentistry are outlined, and future aspects of potential applications of the iPS cell technologies to dental treatments will be discussed.

  18. Analysis of Handoff Mechanisms in Mobile IP

    NASA Astrophysics Data System (ADS)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  19. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  20. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  1. Internet topology: connectivity of IP graphs

    NASA Astrophysics Data System (ADS)

    Broido, Andre; claffy, kc

    2001-07-01

    In this paper we introduce a framework for analyzing local properties of Internet connectivity. We compare BGP and probed topology data, finding that currently probed topology data yields much denser coverage of AS-level connectivity. We describe data acquisition and construction of several IP- level graphs derived from a collection of 220 M skitter traceroutes. We find that a graph consisting of IP nodes and links contains 90.5% of its 629 K nodes in the acyclic subgraph. In particular, 55% of the IP nodes are in trees. Full bidirectional connectivity is observed for a giant component containing 8.3% of IP nodes.

  2. Effects of Electron Beam Irradiation on Zearalenone and Ochratoxin A in Naturally Contaminated Corn and Corn Quality Parameters

    PubMed Central

    Luo, Xiaohu; Qi, Lijun; Liu, Yuntao; Wang, Ren; Yang, Dan; Li, Ke; Wang, Li; Li, Yanan; Zhang, Yuwei; Chen, Zhengxing

    2017-01-01

    Zearalenone (ZEN) and ochratoxin A (OTA) are secondary toxic metabolites widely present in grains and grain products. In this study, the effects of electron beam irradiation (EBI) on ZEN and OTA in corn and the quality of irradiated corn were investigated. Results indicated that EBI significantly affected ZEN and OTA. The degradation rates of ZEN and OTA at 10 kGy in solution were 65.6% and 75.2%, respectively. The initial amounts significantly affected the degradation rate. ZEN and OTA in corn were decreased by the irradiation dose, and their degradation rates at 50 kGy were 71.1% and 67.9%, respectively. ZEN and OTA were more easily degraded in corn kernel than in corn flour. Moisture content (MC) played a vital role in ZEN and OTA degradation. High MC was attributed to high ZEN and OTA degradation. The quality of irradiated corn was evaluated on the basis of irradiation dose. L* value changed, but this change was not significant (p > 0.05). By contrast, a* and b* decreased significantly (p < 0.05) with irradiation dose. The fatty acid value increased significantly. The pasting properties, including peak, trough, breakdown, and final and setback viscosities, were also reduced significantly (p < 0.05) by irradiation. Our study verified that EBI could effectively degrade ZEN and OTA in corn. Irradiation could also affect corn quality. PMID:28264463

  3. Evaluation of the efficacy of a metal artifact reduction algorithm in different cone beam computed tomography scanning parameters.

    PubMed

    Queiroz, Polyane Mazucatto; Groppo, Francisco Carlos; Oliveira, Matheus Lima; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-06-01

    The aim of this study was to evaluate the efficacy of a metal artifact reduction (MAR) algorithm in cone beam computed tomography (CBCT) images of dental materials obtained with different field-of-view (FOV) and voxel sizes. Two imaging phantoms were custom-made of acrylic resin. Each phantom had 3 cylinders made of the same dental material: dental amalgam or copper-aluminum alloy. CBCT scans were obtained separately for each of the imaging phantoms using the Picasso-Trio CBCT (Vatech, Hwaseong, Republic of Korea) unit at 4 FOV sizes and 2 voxel sizes. Each imaging phantom was scanned with and without MAR. All images were evaluated in the OnDemand3D software (Cybermed, Seoul, Republic of Korea) and image noise (gray value variability) was calculated as the standard deviation (SD) of the gray values of regions of interest around the dental material cylinders. Data were compared by the Friedman test and Dunn test (α = 0.05). Intraclass correlation coefficient (ICC) was calculated to assess intraobserver reliability. MAR significantly reduced (P < .05) image noise around the dental materials, irrespective of FOV and voxel sizes, with an ICC of 0.997. The efficacy of MAR was similar for the different FOV and voxel sizes studied. Hence, imaging protocols and the use of MAR algorithm should be based on the selection criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Beam-Beam Diagnostics from Closed-Orbit Distortion

    SciTech Connect

    Furman, M.; Chin, Y.-H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-07-01

    The authors study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, they calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed. Because of their two-ring structure, asymmetric B factories are likely to require more diagnostics and feedback mechanisms than single-ring colliders in order to guarantee head-on collisions. In addition to the traditional techniques, however, the independence of the two beams allows one to envisage other kinds of beam diagnostics. In this article they investigate one such possibility, by looking at the closed orbit distortion produced by the beam-beam interaction when the beams do not collide exactly head-on. They base this investigation on an analytic model and strong-strong multiparticle simulations. Although the discussion uses the PEP-II design as an example, the conclusion is that this technique is quite a promising diagnostics tool for asymmetric colliders in general.

  5. A Solution for Irregular IP Multicast Packet Flooding — For Heavy Traffic IP Multicast Communication

    NASA Astrophysics Data System (ADS)

    Misumi, Makoto; Nakagawa, Shin-Ichi; Chinen, Ken-Ichi; Shinoda, Yoichi; Yamaoka, Katsunori

    When an IP Multicast network is constructed on a switch-based network, many IP Multicast packet broadcasts are generated, and these broadcasts cause trouble for all of the other kinds of communication. To solve this problem, implementing IGMP Snooping on various switches has been proposed. However, some switches have insufficient IP Multicast packet-handling capability. This problem is also mentioned in RFC4541. In this paper, we propose the IGMP Snooping Activator (ISA) mechanism as a way to solve the IP Multicast packet-handling problem. The ISA transmits dummy IGMP Queries to maintain the IP Multicast network, and it joins the flooding IP Multicast group to activate IGMP Snooping in switches that are unable to handle IP Multicast packets. The experimental evaluation shows the effectiveness of our proposed method: the network load decreases because of the method's effective restraint of IP Multicast packet flooding.

  6. A graphical approach to optimizing variable-kernel smoothing parameters for improved deformable registration of CT and cone beam CT images

    NASA Astrophysics Data System (ADS)

    Hart, Vern; Burrow, Damon; Li, X. Allen

    2017-08-01

    A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases  >0.6% from the regression line.

  7. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy.

    PubMed

    Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich

    2012-02-08

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

  8. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

    PubMed Central

    2012-01-01

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain. PMID:22315928

  9. Influence of Yb:YAG Laser Beam Parameters on Haynes 188 Weld Fusion Zone Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Graneix, Jérémie; Beguin, Jean-Denis; Alexis, Joël; Masri, Talal

    2017-08-01

    The weldability of 1.2 mm thick Haynes 188 alloy sheets by a disk Yb:YAG laser welding was examined. Butt joints were made, and the influence of parameters such as power, size, and shape of the spot, welding speed, and gas flow has been investigated. Based on an iconographic correlation approach, optimum process parameters were determined. Depending on the distribution of the power density (circular or annular), acceptable welds were obtained. Powers greater than 1700 W, welding speeds higher than 3.8 m mm-1, and spot sizes between 160 and 320 μm were needed in the circular (small fiber) configuration. By comparison, the annular (large fiber) configuration required a power as high as 2500 W, and a welding speed less than 3.8 m min-1. The mechanical properties of the welds depended on their shape and microstructure, which in turn depended on the welding conditions. The content of carbides, the proportion of areas consisting of cellular and dendritic substructures, and the size of these substructures were used to explain the welded joint mechanical properties.

  10. Photometric studies of δ Scuti stars. I. IP Virginis

    USGS Publications Warehouse

    Joner, Michael D.; Hintz, Eric G.; Collier, Matthew W.

    1998-01-01

    We report 15 new times of maximum light for the δ Scuti star IP Virginis (formerly known as SA 106‐1024). An analysis of all times of maximum light indicates that IP Vir has been decreasing in period at a constant rate of − days day−1. Evidence is also presented that IP Vir is a double‐mode variable with a period ratio of . This period ratio predicts a [Fe/H] value of −0.3. From photometric (uvbyβ) observations, we find a foreground reddening of .008 mag and a metallicity of [Fe/H] = +0.05. It is shown that [Fe/H] = −0.3 is most likely the correct value. Intrinsic ‐ and c1‐values, plotted in a model atmosphere grid, indicate a mean effective temperature, K, and a mean surface gravity, . All of these physical parameters support Landolt's initial conclusion that IP Vir is an ordinary δ Sct star.

  11. An analytical study of the vibration of beams fitted with neutralizers. Part 1: Assessment of the effects of neutralizer design parameters

    NASA Astrophysics Data System (ADS)

    Clark, P.; White, R. G.

    1993-01-01

    When attempting to control the vibration transmitted from machinery installations, perhaps with a view to reducing the unwanted radiation of noise at a point remote from the source, it is essential that all possible transmission paths are considered. With the majority of industrial machinery installations it is one-dimensional or beam-like structures - for example, pipework and other mechanical linkages - which form one of the main vibration paths which bypass isolator systems. It is of interest to consider the effects that the addition of certain discontinuities to this type of structure would have on the overall vibration transmission properties of the complete system. The discontinuity considered in detail in this report is the vibration neutralizer. By utilizing the concept of vibrational power transmission, the effects of varying design parameters on the performance of a neutralizer as a vibration attenuator are considered.

  12. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Bobrov, A. I.; Daniltsev, V. M.; Novikov, A. V.; Pavlov, D. A.; Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A.

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  13. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  14. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  15. VoIP to the Rescue

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    Voice over Internet Protocol (VoIP) is everywhere. The technology lets users make and receive phone calls over the Internet, transporting voice traffic alongside data traffic such as instant messages (IMs) and e-mail. While the number of consumer customers using VoIP increases every week, the technology is finding its way into K-12 education as…

  16. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final rule... interconnected Voice over Internet Protocol (VoIP) service the discontinuance obligations that apply to domestic...

  17. VoIP to the Rescue

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    Voice over Internet Protocol (VoIP) is everywhere. The technology lets users make and receive phone calls over the Internet, transporting voice traffic alongside data traffic such as instant messages (IMs) and e-mail. While the number of consumer customers using VoIP increases every week, the technology is finding its way into K-12 education as…

  18. Analysis of all-optical IP routers

    NASA Astrophysics Data System (ADS)

    Tamil, Lakshman S.; Masetti, Francesco B.; McDermott, Thomas C.; Castanon, Gerardo; Ge, Andrew; Tancevski, Ljubisa

    1998-10-01

    The increased data traffic experienced today and the projected increase in the data traffic in the future demand exploration of novel approaches to IP transport such as transport of IP traffic over optics. The bimodal nature of the IP traffic short packets which are typical of transactional-style flows and large packets or bursts which are encountered in the transport of large data blocks requires, design of routers that are capable of routing packets with variable lengths efficiently. In this paper, we discuss the design aspects of such all-optical IP-switches. The broadcast and select architecture is a prime candidate for implementing optical IP routers. Construction of optical routers with buffering, wavelength conversion and multipath routing are considered. The merits and demerits of all these cases and the effect of buffer size, wavelength conversion and multiple-path routing on the blocking probability and probability of packet loss are discussed.

  19. SN2009ip at Very Late Times

    NASA Astrophysics Data System (ADS)

    Bigley, Andrew Christopher; Graham, Melissa Lynn

    2016-01-01

    The 2012 eruption of SN 2009ip resembled a Type IIn supernovae, dominated by emission from interaction of the ejecta with circumstellar material, but the question remains: was the 2012 outburst of SN 2009ip truly the terminal explosion of a massive star? We present time series photometric and spectroscopic data for the transient SN2009ip from 260 to 1026 days after the peak of its 2012 outburst. These data were collected at the Las Cumbres Observatory Global Telescope Network and Keck Observatory. We will show that SN 2009ip continues to decline linearly in brightness at very late epochs, analyze the evolution in flux and asymmetry of the Balmer emission lines, and investigate the geometry of the circumstellar material from the progenitor star system and the true nature of SN 2009ip.

  20. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  1. Ab-initio primitive cell parameters from single convergent-beam electron diffraction patterns: a converse route to the identification of microcrystals with electrons.

    PubMed

    Le Page, Y

    1992-04-01

    A new method for the ab initio derivation of Buerger-reduced primitive cell parameters from coordinate measurements of spots on single convergent-beam electron diffraction (CBED) patterns is described, which does not involve trial-and-error. The pattern can be taken along any zone axis, and misorientations of the crystallite by as much as a few degrees are taken into account without loss of accuracy. This derivation of cell parameters by least-squares analysis of the measurements has been automated in a program called NRCBED. Present accuracy is about 1% on lengths and 2 degrees on angles, but could be significantly improved by modelling projector lens aberrations, or by using a microscope without a projector lens. With present technology, it is possible to obtain a CBED pattern and a semi-quantitative energy-dispersive X-ray (EDX) analysis simultaneously from a single microcrystal a few hundred Angströms across. It becomes therefore possible to identify the material of the crystal on a single CBED pattern: a cell parameter database for known compounds is searched with the primitive cell parameters obtained in the above way, and with a mask describing the EDX results qualitatively. Feasibility is demonstrated on a crystallite of CeO2 500 Angströms across. With this new approach, trial-and-error should disappear from the solution of other long-standing problems: interpretation of X-ray powder patterns for new compounds in the presence of impurity lines, or in the case of multiple phases should become straight-forward.

  2. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  3. Effect of laser beam parameters on melt mobilization and LIBS analysis of a special aluminum alloy containing zeolite

    NASA Astrophysics Data System (ADS)

    Khalil, Osama M.; Nakimana, Agnes

    2016-07-01

    Aluminum alloy containing zeolite was analyzed by using nanosecond and femtosecond laser-induced breakdown spectroscopy (ns and fs-LIBS). The results reveal that Laser parameters, target physical properties, and ambient conditions affect the laser ablation process. The aluminum silicate minerals present in the alloy under investigation enable material volume expansion under compression. In laser interaction with this alloy, it has been observed that the crater depth decreases with the increase of the surface hardness. In ns -LIBS, it is noted that the ablation speed decreases with time and suddenly decreases with less sharp slope and after that the ablation speed increases slightly. In additional the results show the vanishing and reform of the crater rim with the increase of ablation time. Furthermore, a comparison between ns and fs-LIBS analysis has been done. Ns-LIBS analysis reveals that both spectra intensity and lines detection are significantly influenced by the ambient conditions. However in fs-LIBS, the ambient conditions affect the presented lines amplitude and width with the same effect on all lines.

  4. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  5. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis

    PubMed Central

    Ravanfar, Seyed Alireza; Abdul Razak, Hashim; Ismail, Zubaidah; Monajemi, Hooman

    2015-01-01

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage. PMID:26371005

  6. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  7. Scalable IP switching based on optical interconnect

    NASA Astrophysics Data System (ADS)

    Luo, Zhixiang; Cao, Mingcui; Liu, Erwu

    2000-10-01

    IP traffic on the Internet and enterprise networks has been growing exponentially in the last several years, and much attention is being focused on the use of IP multicast for real-time multimedia applications. The current soft and general-purpose CPU-based routers face great stress since they have great latency and low forwarding speeds. Based on the ASICs, layer 2 switching provides high-speed packet forwarding. Integrating high-speed of Layer 2 switching with the flexibility of Layer 3 routing, Layer 3 switching (IP switching) has been put forward in order to avoid the performance bottleneck associated with Layer 3 forwarding. In this paper, we present a prototype system of a scalable IP switching based on scalable ATM switching fabric and optical interconnect. The IP switching system mainly consists of the input/output interface unit, scalable ATM switching fabric and IP control component. Optical interconnects between the input fan-out stage and the interconnect stage, also the interconnect stage and the output concentration stage provide high-speed data paths. And the interconnect stage is composed of 16 X 16 CMOS-SEED ATM switching modules. With 64 ports of OC-12 interface, the maximum throughput of the prototype system is about 20 million packets per second (MPPS) for 256 bytes average packet length, and the packet loss ratio is less than 10e-9. Benefiting from the scalable architecture and the optical interconnect, this IP switching system can easily scale to very large network size.

  8. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  9. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G.

    1989-05-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes our software and hardware support for TCP/IP on VAX/VMS, VME/pSOS, FASTBUS/pSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software. 8 refs., 3 figs.

  10. Scalable architecture for VoIP privacy

    NASA Astrophysics Data System (ADS)

    Medvinsky, Alexander

    2001-07-01

    An access network for Voice over IP (VoIP) clients (e.g. DOCSIS-based HFC network) often provides a privacy service. However, such a privacy service is limited only to that access network. When VoIP packets are carried over an open IP network or over a network with some connections to the Internet, it is desirable to provide an end-to-end privacy service where each VoIP packet is encrypted at the source and decrypted at the terminating endpoint. Clearly, public key encryption cannot be applied to each voice packet; the performance would be unacceptable regardless of the choice of a public key algorithm. The only alternative is for the two VoIP endpoints to negotiate a shared symmetric key. Since VoIP connections are established only for duration of a phone call, the end-to-end key negotiation needs to occur during each call setup. And it should not noticeably delay the call setup phase. In order to provide end-to-end privacy, it is not sufficient to encrypt all messages between the two endpoints. It is important that the two endpoints authenticate each other - validate each other's identity. Without authentication an adversary might trick two VoIP clients to negotiate keys with her and then sit in the middle of their conversation and record each VoIP packet, before forwarding it to the intended destination. However, direct authentication of the two VoIP endpoints is not always possible in telephony networks - in particular when caller ID blocking services are enabled. To support such anonymity services, it may be sufficient to authenticate not the identity of the caller but the fact that it is a valid subscriber and that all subsequent signaling and voice traffic will be coming from the same source. The PacketCable specifications provide an example of a VoIP architecture with end-to-end privacy that meets the above stated criteria. This paper describes the PacketCable end-to-end privacy approach and suggests additional mechanisms that may be used to further

  11. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness.

    PubMed

    Cometto, A; Russo, G; Bourhaleb, F; Milian, F M; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A

    2014-12-07

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions.Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion.Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data.

  12. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    SciTech Connect

    Wielen, Gerard J. van der Hoogeman, Mischa S.; Dohle, Gert R.; Putten, Wim L.J. van; Incrocci, Luca

    2008-07-01

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and the penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.

  13. Chaos Based Secure IP Communications over Satellite DVB

    NASA Astrophysics Data System (ADS)

    Caragata, Daniel; El Assad, Safwan; Tutanescu, Ion; Sofron, Emil

    2010-06-01

    The Digital Video Broadcasting—Satellite (DVB-S) standard was originally conceived for TV and radio broadcasting. Later, it became possible to send IP packets using encapsulation methods such as Multi Protocol Encapsulation, MPE, or Unidirectional Lightweight Encapsulation, ULE. This paper proposes a chaos based security system for IP communications over DVB-S with ULE encapsulation. The proposed security system satisfies all the security requirements while respecting the characteristics of satellite links, such as the importance of efficient bandwidth utilization and high latency time. It uses chaotic functions to generate the keys and to encrypt the data. The key management is realized using a multi-layer architecture. A theoretical analysis of the system and a simulation of FTP and HTTP traffic are presented and discussed to show the cost of the security enhancement and to provide the necessary tools for security parameters setup.

  14. Intellectual Property and Strategic Agreements (IP/SA) | FNLCR

    Cancer.gov

    What does IP/SA handle? IP/SA handles all invention issues including patents and copyrights. All employee inventionreports are filed through the IP/SA office for all activities under the OTS contract.Additionally,&nbs

  15. MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data

    PubMed Central

    2011-01-01

    The ChIP-chip and ChIP-seq techniques enable genome-wide mapping of in vivo protein-DNA interactions and chromatin states. The cross-platform and between-laboratory variation poses a challenge to the comparison and integration of results from different ChIP experiments. We describe a novel method, MM-ChIP, which integrates information from cross-platform and between-laboratory ChIP-chip or ChIP-seq datasets. It improves both the sensitivity and the specificity of detecting ChIP-enriched regions, and is a useful meta-analysis tool for driving discoveries from multiple data sources. PMID:21284836

  16. IP-1 Certification of Cargo Containers

    SciTech Connect

    Hagler, Lisle

    2010-10-05

    The purpose and scope of this engineering note is to demonstrate that the structural design of the cargo container complies with the IP-1 container requirements of 49 CFR 173.410 as required by CFR 173.411.

  17. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    SciTech Connect

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  18. Beam-based optical tuning of the final focus test beam

    SciTech Connect

    Tenenbaum, P.; Burke, D.; Hartman, S.; Helm, R.; Irwin, J.; Iverson, R.; Raimondi, P.; Spence, W.; Bharadwaj, V.; Halling, M.

    1995-05-01

    In order to reduce the SLAC 46.6 GeV beam to submicron sizes, the Final Focus Test Beam (FFTB) must meet tight tolerances on many aberrations. These aberrations include: mismatch and coupling of the incoming beam; dispersion; chromaticity; lattice errors in the chromatic correction sections; lattice coupling; and residual sextupole content in the quadrupoles. In order to address these aberrations, the authors have developed a procedure which combines trajectory analysis, use of intermediate wire scanners, and a pair of novel beam size monitors at the IP. This procedure allows the FFTB IP spot to be reduced to sizes under 100 nanometers.

  19. Electromagnetic nonuniformly correlated beams.

    PubMed

    Tong, Zhisong; Korotkova, Olga

    2012-10-01

    A class of electromagnetic sources with nonuniformly distributed field correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. It is shown that the new sources are capable of producing beams with polarization properties that evolve on propagation in a manner much more complex compared to the well-known electromagnetic Gaussian Schell-model beams.

  20. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Ozturk, Tugce; Beuth, Jack; Rollett, A. D.

    2016-03-01

    Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a "near-net-shape" process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes' method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

  1. Analytical estimation of ATF beam halo distribution

    NASA Astrophysics Data System (ADS)

    Wang, Dou; Philip, Bambade; Kaoru, Yokoya; Gao, Jie

    2014-12-01

    In order to study the backgrounds in the ATF2 beam line and the interaction point (IP), this paper has developed an analytical method to give an estimation of the ATF beam halo distribution based on K. Hirata and K. Yokoya's theory. The equilibrium particle distribution of the beam tail in the ATF damping ring is presented, with each electron affected by several stochastic processes such as beam-gas scattering, beam-gas bremsstrahlung and intra-beam scattering, in addition to the synchrotron radiation damping effects. This is a general method which can also be applied to other electron rings.

  2. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    PubMed

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  3. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    PubMed Central

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components. PMID:22412321

  4. IPS in Europe: the EQOLISE trial.

    PubMed

    Burns, Tom; Catty, Jocelyn

    2008-01-01

    IPS has been demonstrated to increase return to open employment significantly in individuals with mental health problems in the US. Previous experience (e.g. with ACT) has demonstrated the sensitivity of complex community mental health interventions to local social and healthcare cultures. Europe has conditions of generally greater employment security than the US and varying (generally higher) unemployment rates and welfare benefits. Evidence of the effectiveness of IPS in these conditions, and its potential variation across them, would guide local policy and provide possible insights into its mechanism. We conducted an RCT of IPS versus high-quality train-and-place vocational rehabilitation in six European centers with very different labor market and health and social care conditions. A sample of 312 individuals with psychotic illness was randomly allocated (50 per site). Inclusion criteria were a minimum of two years' illness duration, with at least one year of continuous unemployment and six months contact with their current mental health services. Follow-up was 18 months. The primary outcome was any open employment, and secondary outcomes included time to employment, duration of employment and hospital admission. IPS was more effective than the Vocational Services for all vocational outcomes. 85 IPS patients (54.5%) worked for at least one day compared to 43 Vocational Service patients (27.6). They were significantly less likely to be rehospitalized. Local unemployment rates explained a significant amount of the variation in IPS effectiveness and both national economic growth and welfare systems influenced overall employment rates in both services. IPS doubles the access to work of people with psychotic illnesses, without any evidence of increased relapse. Its effectiveness is not independent of external circumstances, particularly local unemployment rates.

  5. Lifetime and Tail Simulations for Beam-Beam Effects in PEP-II B Factory

    SciTech Connect

    Shatilov, D.N.; Zholents, A.A.

    1994-12-01

    A fast tracking technique for doing beam tail simulations has been applied to a study of beam-beam effects in the SLAC/LBL/LLNL PEP-II B Factory. In particular, the dependence of beam lifetime and particle density distribution due to vacuum pressure, damping times, machine nonlinearity and parasitic crossings has been analyzed. Effects of accidental orbit separation and dispersion function at the interaction point (IP) have also been considered.

  6. ChIPS - Chandra's Interactive, Publication-Ready Plotting Tool

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Burke, D.; Evans, I.; Evans, J.; Fruscione, A.; Germain, G.; McDowell, J.; McLaughlin, W.; Milaszewski, R.

    2009-09-01

    The Chandra Interactive Plotting System, ChIPS, is a powerful component of the CIAO data analysis system that enables users to visualize their data and construct high-quality, publication-ready plots interactively. The user can control almost every aspect of the plot layout and the properties of individual plot components such as tick positions or symbol styles. ChIPS offers a rich interactive environment to help users design and fine tune their plots. Key features of ChIPS include the ability to explore alternative presentations of their data by interactively adjusting plot parameters or plot component properties, or correct mistakes via the included undo/redo functionality, without having to redo the visualizations from the beginning. Through a Python or S-Lang interface, ChIPS provides a set of high-level user routines which hides the details of the underlying environment from the new user. At the same time, the scripting environment affords experienced users the ability to manipulate data or extend existing functionality. New to CIAO 4.2, all users will benefit from being able to interactively develop plots and then save the steps to create the final product as a script. This can then be used to recreate the visualization with additional data sets. Also new in CIAO 4.2 is the ability to integrate plot data with basic imaging. Users can combine their images (in world coordinates) with plot elements such as overlay contours, grids, or annotations to produce high-quality publication-ready output in the formats expected by the major journals.

  7. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  8. IP effects on electromagnetic data of deep-sea hydrothermal deposits in time domain

    NASA Astrophysics Data System (ADS)

    KIM, H. J.; Jang, H.; Ha, W.

    2015-12-01

    A transient electromagnetic (TEM) system using a small loop source is advantageous to the development of compact, autonomous instruments which are well suited to submersible-based surveys. Since electrical conductivity of subseafloor materials can be frequency dependent, these induced polarization (IP) effects may affect the reliability of TEM data interpretation. In this study, we investigate IP effects on TEM responses of deep-sea hydrothermal mineral deposits with a thin sediment cover. Time-domain target signals are larger and appear earlier in horizontal magnetic fields than in vertical ones. IP effects cause transient magnetic fields to enhance initially, to decay rapidly and then to reverse the polarity. The DC conductivity and IP chargeability in Cole-Cole parameters influence the time of sign reversal and the enhancement of the target response, simultaneously. The reversal time is almost invariant with the time constant while the target signal is almost invariant with the frequency exponent.

  9. Investigation of the Geoeffectiveness of CMEs Associated with IP Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Vasanth, V.; Chen, Y.; Kong, X. L.; Wang, B.

    2015-06-01

    We perform a statistical analysis of the geoeffectiveness of coronal mass ejections (CMEs) that are associated with interplanetary (IP) type II bursts in Solar Cycle 23 during the period 1997 - 2008. About 47 % (109 out of 232) of IP type II bursts are found to be associated with geomagnetic storms. Of these 47 %, 27 % are associated with moderate, 14 % with intense, and 6 % with severe geomagnetic storms. We find that the IP type II bursts and their corresponding end frequencies can be used as indicators of CME geoeffectiveness: the lower the type II burst end frequency, the higher the possibility of having a stronger storm. In addition, we show that various combinations of CME remote-sensing and IP type II parameters can be used to improve geomagnetic storm forecasting.

  10. Regulation of IP 3 Receptors by IP 3 and Ca 2+

    NASA Astrophysics Data System (ADS)

    Taylor, Colin W.; Swatton, Jane E.

    Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.

  11. A survey of IP over ATM architectures

    SciTech Connect

    Chen, H.; Tsang, R.; Brandt, J.; Hutchins, J.

    1997-07-01

    Over the past decade, the Internet has burgeoned into a worldwide information highway consisting of approximately 5 million hosts on over 45,000 interconnected networks. This unprecedented growth, together with the introduction of multimedia workstations, has spurred the development of innovative applications that require high speed, low latency, and real-time transport. Today`s Internet can neither scale in its bandwidth nor guarantee the Quality of Services (QoS) necessary to meet these performance requirements. Many network researchers propose to use the Asynchronous Transfer Mode (ATM) technology as the underlying infrastructure for the next generation of workgroup, campus, and enterprise IP networks. Since ATM is significantly different from today`s legacy network technologies, efficient implementation of IP over ATM is especially challenging. This tutorial paper covers several existing proposals that integrate IP over ATM.

  12. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    NASA Astrophysics Data System (ADS)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  13. Space-Based Voice over IP Networks

    NASA Technical Reports Server (NTRS)

    Nguyen, Sam P.; Okino, Clayton; Walsh, William; Clare, Loren

    2007-01-01

    In human space exploration missions (e.g. a return to the Moon and for future missions to Mars), there will be a need to provide voice communications services. In this work we focus on the performance of Voice over IP (VoIP) techniques applied to space networks, where long range latencies, simplex links, and significant bit error rates occur. Link layer and network layer overhead issues are examined. Finally, we provide some discussion on issues related to voice conferencing in the space network environment.

  14. Heterogeneous IP Ecosystem enabling Reuse (HIER)

    DTIC Science & Technology

    2017-03-22

    the CHIPS concept are the metrics of system design /implementation time and Figure 2: Potential Impact of IP Reuse on USC Processor cost, as...chiplet IP must be accompanied by datasheet documenta- tion and simulation models for easy integration into system designs . Constraints on physical imple...support for 3DIC and 2.5D interposer‐based  systems   – https://www.cadence.com/content/cadence‐ www/global/en_US/home/solutions/3dic‐ design ‐solutions.html

  15. IP-RFID Based Container Monitoring System

    NASA Astrophysics Data System (ADS)

    Choi, Hyung-Rim; Park, Byung-Kwon; Park, Yong-Sung; Lee, Chang-Sup; Park, Chang-Hyun

    RFID technology in container management field is considered for increasing productivity and efficiency in logistics industry. But there are a lot of problems caused by inappropriate application of RFID technology in shipping logistics. Therefore, technology development based on IP is needed for accepting diverse technology applied before and offering better service to develop container management technology involved with RFID. In this study, realtime container monitoring system using IP-RFID is designed and implemented for supplementing weakness of information gathering using existing RFID and transferring data in real time to user.

  16. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    SciTech Connect

    Mishra, Kavita K.; Daftari, Inder K.; Weinberg, Vivian; Cole, Tia; Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L.; Char, Devron H.

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height

  17. KChIP2 Attenuates Cardiac Hypertrophy Through Regulation of Ito and Intracellular Calcium Signaling

    PubMed Central

    Jin, Hongwei; Hadri, Lahouaria; Palomeque, Julieta; Morel, Charlotte; Karakikes, Ioannis; Kaprielian, Roger; Hajjar, Roger; Lebeche, Djamel

    2010-01-01

    Recent evidence shows that the auxiliary subunit KChIP2, which assembles with pore-forming Kv4-subunits, represents a new potential regulator of the cardiac calcium-independent transient outward potassium current (Ito) density. In hypertrophy and heart failure, KChIP2 expression has been found to be significantly decreased. Our aim was to examine the role of KChIP2 in cardiac hypertrophy and the effect of restoring its expression on electrical remodeling and cardiac mechanical function using a combination of molecular, biochemical and gene targeting approaches. KChIP2 overexpression through gene transfer of Ad.KChIP2 in neonatal cardiomyocytes resulted in a significant increase in Ito-channel forming Kv4.2 and Kv4.3 protein levels. In vivo gene transfer of KChIP2 in aortic banded adult rats showed that, compared to sham-operated or Ad.β-gal-transduced hearts, KChIP2 significantly attenuated the developed left ventricular hypertrophy, robustly increased Ito densities, shortened action potential duration, and significantly altered myocyte mechanics by shortening contraction amplitudes and maximal rates of contraction and relaxation velocities and decreasing Ca2+ transients. Interestingly, blocking Ito with 4-aminopyridine in KChIP2-overexpressing adult cardiomyocytes significantly increased the Ca2+ transients to control levels. One-day old rat pups intracardially transduced with KChIP2 for two months then subjected to aortic banding for 6–8 weeks (to induce hypertrophy) showed similar echocardiographic, electrical and mechanical remodeling parameters. In addition, in cultured adult cardiomyocytes, KChIP2 overexpression increased the expression of Ca2+-ATPase (SERCA2a) and sodium calcium exchanger but had no effect on ryanodine receptor 2 or phospholamban expression. In neonatal myocytes, KChIP2 notably reversed Ang II-induced hypertrophic changes in protein synthesis and MAP-kinase activation. It also significantly decreased calcineurin expression, NFATc1

  18. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  19. ChIP-Enrich: gene set enrichment testing for ChIP-seq data

    PubMed Central

    Welch, Ryan P.; Lee, Chee; Imbriano, Paul M.; Patil, Snehal; Weymouth, Terry E.; Smith, R. Alex; Scott, Laura J.; Sartor, Maureen A.

    2014-01-01

    Gene set enrichment testing can enhance the biological interpretation of ChIP-seq data. Here, we develop a method, ChIP-Enrich, for this analysis which empirically adjusts for gene locus length (the length of the gene body and its surrounding non-coding sequence). Adjustment for gene locus length is necessary because it is often positively associated with the presence of one or more peaks and because many biologically defined gene sets have an excess of genes with longer or shorter gene locus lengths. Unlike alternative methods, ChIP-Enrich can account for the wide range of gene locus length-to-peak presence relationships (observed in ENCODE ChIP-seq data sets). We show that ChIP-Enrich has a well-calibrated type I error rate using permuted ENCODE ChIP-seq data sets; in contrast, two commonly used gene set enrichment methods, Fisher's exact test and the binomial test implemented in Genomic Regions Enrichment of Annotations Tool (GREAT), can have highly inflated type I error rates and biases in ranking. We identify DNA-binding proteins, including CTCF, JunD and glucocorticoid receptor α (GRα), that show different enrichment patterns for peaks closer to versus further from transcription start sites. We also identify known and potential new biological functions of GRα. ChIP-Enrich is available as a web interface (http://chip-enrich.med.umich.edu) and Bioconductor package. PMID:24878920

  20. Beam Stop for Electron Accelerator Beam Characterisation

    NASA Astrophysics Data System (ADS)

    Roach, Greg; Sharp, Vic; Tickner, James; Uher, Josef

    2009-08-01

    Electron linear accelerator applications involving the generation of hard X-rays frequently require accurate knowledge of the electron beam parameters. We developed a beam stop device which houses a tungsten Bremsstrahlung target and enables the electron beam current, energy and position to be monitored. The beam stop consisted of four plates. The first was a removable aluminium (Al) transmission plate. Then followed the tungsten target. Behind the target there were four Al quadrant plates for beam position measurement. The last plate was a thick Al back-stop block. Currents from the four quadrants and the back-stop were measured and the beam lateral position, energy and current were calculated. The beam stop device was optimised using Monte-Carlo simulation, manufactured (including custom-made electronics and software) in our laboratory and tested at the ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) linear accelerator in Melbourne. The electron beam energy was determined with a precision of 60 keV at beam energies between 11 and 21 MeV and the lateral beam position was controlled with a precision of 200 mum. The relative changes of the beam current were monitored as well.

  1. The UCSD Time-dependent Tomography and IPS use for Exploring Space Weather Events

    NASA Astrophysics Data System (ADS)

    Yu, H. S.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Tokumaru, M.; Odstrcil, D.; Kim, J.; Yun, J.

    2016-12-01

    The University of California, San Diego (UCSD) time-dependent, iterative, kinematic reconstruction technique has been used and expanded upon for over two decades. It provides some of the most-accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and three-component magnetic fields. Precise time-dependent results are now obtained at any solar distance in the inner heliosphere using ISEE (formerly STELab), Japan, IPS data sets, and can be used to drive 3D-MHD models including ENLIL. Using IPS data, these reconstructions provide a real-time prediction of the global solar wind parameters across the whole heliosphere with a time cadence of about one day (see http://ips.ucsd.edu). Here we compare the results (such as density, velocity, and magnetic fields) from the IPS tomography with different in-situ measurements and discuss several specific space weather events that demonstrate the issues resulting from these analyses.

  2. How To: Be VoIP-Savvy

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…

  3. Is VoIP Worth It?

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2008-01-01

    School districts have by and large had great results implementing VoIP, which has become the conduit for delivering expanded functionality, achieving greater internal control, and gaining freedom from onerous monthly phone bills. But demonstrating a financial return on what is a substantial investment can be an elusive effort. The goal of…

  4. Teaching Network Security with IP Darkspace Data

    ERIC Educational Resources Information Center

    Zseby, Tanja; Iglesias Vázquez, Félix; King, Alistair; Claffy, K. C.

    2016-01-01

    This paper presents a network security laboratory project for teaching network traffic anomaly detection methods to electrical engineering students. The project design follows a research-oriented teaching principle, enabling students to make their own discoveries in real network traffic, using data captured from a large IP darkspace monitor…

  5. How To: Be VoIP-Savvy

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…

  6. Call progress time measurement in IP telephony

    NASA Astrophysics Data System (ADS)

    Khasnabish, Bhumip

    1999-11-01

    Usually a voice call is established through multiple stages in IP telephony. In the first stage, a phone number is dialed to reach a near-end or call-originating IP-telephony gateway. The next stages involve user identification through delivering an m-digit user-id to the authentication and/or billing server, and then user authentication by using an n- digit PIN. After that, the caller is allowed (last stage dial tone is provided) to dial a destination phone number provided that authentication is successful. In this paper, we present a very flexible method for measuring call progress time in IP telephony. The proposed technique can be used to measure the system response time at every stage. It is flexible, so that it can be easily modified to include new `tone' or a set of tones, or `voice begin' can be used in every stage to detect the system's response. The proposed method has been implemented using scripts written in Hammer visual basic language for testing with a few commercially available IP telephony gateways.

  7. EQuIP-ped for Success

    ERIC Educational Resources Information Center

    Ewing, Molly

    2015-01-01

    The Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science is a new tool for science educators that provides criteria by which to examine the alignment and overall quality of lessons and units with respect to the "Next Generation Science Standards" ("NGSS"). The rubric criteria are divided into…

  8. Is VoIP Worth It?

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2008-01-01

    School districts have by and large had great results implementing VoIP, which has become the conduit for delivering expanded functionality, achieving greater internal control, and gaining freedom from onerous monthly phone bills. But demonstrating a financial return on what is a substantial investment can be an elusive effort. The goal of…

  9. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  10. CONTROL OF LASER RADIATION PARAMETERS: Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams

    NASA Astrophysics Data System (ADS)

    Il'ina, I. V.; Cherezova, T. Yu; Kudryashov, A. V.

    2009-06-01

    An original method is proposed to calculate the formation of specified far-field intensity distributions by a bimorph mirror in the case of initial transverse-multimode beams. The method is based on the Gerchberg—Saxton algorithm with replacement of the phase function in the plane of the control element by a function that takes into account both the intensity and phase distributions of each mode. The numerical results on the formation of a beam with the third-order super-Gaussian intensity distribution from beams composed of two or four lowest transverse modes are discussed. The experimental results on using the conventional Gerchberg—Saxton algorithm to form a desired intensity distribution from single-mode laser beams using a liquid-crystal modulator are presented.

  11. Alternative Main Linac BNS Configuration for Reduced IP Energy Spread (LCC-0139)

    SciTech Connect

    Tenenbaum, P

    2004-05-24

    We present a series of alternate BNS phase configurations for the 500 GeV CM NLC main linac in which the energy spread at the end of the linac is reduced from its nominal 0.25% value. The energy spectrum, achievable IP beam energy, energy bias, and linac stability are evaluated for the alternate cases. We conclude that the RMS energy spread and energy bias in the NLC can easily be reduced but that modest reductions in CM energy are required.

  12. Using VoIP to compete.

    PubMed

    Werbach, Kevin

    2005-09-01

    Internet telephony, or VoIP, is rapidly replacing the conventional kind. This year, for the first time, U.S. companies bought more new Internet-phone connections than standard lines. The major driver behind this change is cost. But VoIP isn't just a new technology for making old-fashioned calls cheaper, says consultant Kevin Werbach. It is fundamentally changing how companies use voice communications. What makes VoIP so powerful is that it turns voice into digital data packets that can be stored, copied, combined with other data, and distributed to virtually any device that connects to the Internet. And it makes it simple to provide all the functionality of a corporate phone-call features, directories, security-to anyone anywhere there's broadband access. That fosters new kinds of businesses such as virtual call centers, where widely dispersed agents work at all hours from their homes. The most successful early adopters, says Werbach, will focus more on achieving business objectives than on saving money. They will also consider how to push VoIP capabilities out to the extended organization, making use of everyone as a resource. Deployment may be incremental, but companies should be thinking about where VoIP could take them. Executives should ask what they could do if, on demand, they could bring all their employees, customers, suppliers, and partners together in a virtual room, with shared access to every modern communications and computing channel. They should take a fresh look at their business processes to find points at which richer and more customizable communications could eliminate bottlenecks and enhance quality. The important dividing line won't be between those who deploy Vol P and those who don't, or even between early adopters and laggards. It will be between those who see Vol P as just a new way to do the same old things and those who use itto rethink their entire businesses.

  13. Synthesis of Current-Voltage Characteristics of 670 GHz Gyrotron Magnetron Injection Gun and Calculation of the Helical Electron Beam Parameters at the Leading Edge of a High-Voltage Pulse

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu.

    2013-02-01

    A method of synthesis of current-voltage characteristics (CVC) and calculation of the parameters of a helical electron beam (HEB) at the leading edge of the accelerating voltage pulse for gyrotron electron guns is proposed. These data can be used for a study of the gyrotron startup scenario with the mode competition taken into account. As an example, the results of calculations for a pulsed gyrotron with a frequency of 670 GHz are presented.

  14. Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data

    PubMed Central

    2013-01-01

    Background ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data: a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies can be explicitly accounted for in the joint statistical modelling of ChIP-seq data. Results We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of binding sites across experiments can also be included in the model for a more robust detection of differentially bound regions among two different proteins. Conclusions We propose a statistical model for the detection of enriched and differentially bound regions from multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more robust biological conclusions. PMID:23721376

  15. Coimmunoprecipitation (co-IP) of Nuclear Proteins and Chromatin Immunoprecipitation (ChIP) from Arabidopsis.

    PubMed

    Fiil, Berthe Katrine; Qiu, Jin-Long; Petersen, Klaus; Petersen, Morten; Mundy, John

    2008-09-01

    INTRODUCTIONTranscriptional reprogramming occurs during development and in response to diverse stimuli and stresses. The isolation and characterization of nuclear proteins, particularly those binding to DNA and chromatin, are therefore important to understanding these processes. Two specific approaches to understanding the function of nuclear proteins involve the characterization of their protein-protein interactions, and of the transcriptional targets of specific transcription factors. Coimmunoprecipitation (co-IP) is a straightforward technique to study in vivo protein-protein interactions, and can identify interacting proteins or protein complexes present in cell extracts. Chromatin immunoprecipitation (ChIP) permits the identification of protein-DNA interactions in pull-down assays using specific antibodies against DNA-binding proteins, such as transcription factors or histone/chromatin-binding proteins. Here, we present detailed protocols for extraction of Arabidopsis seedlings, co-IP of nuclear proteins, and ChIP.

  16. C2/IPS Integration with Base Logistics Support Systems C2/IPS Increment 3 Road Map

    DTIC Science & Technology

    1994-04-10

    technical report has been reviewed and is approved for publication. RODNEYTYLN SBIR Program Manager FOR THE COMMANDER PETER HUGH2 Acting Chief C31 Technology...II. Key Findings I III. Proposed Approach and "Road Map" 2 IV. DIGMAS Technical Overview 4 V. Benefits 8 Appendix A - Final Presentation and...IPS, and review of current plans and long term technical architecture Bremer staff determined that: "* C2/IPS long term goal is to provide a seamless

  17. Modelling ChIP-seq Data Using HMMs.

    PubMed

    Vinciotti, Veronica

    2017-01-01

    Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein binding sites. In this chapter, we show how hidden Markov models can be used for the analysis of data generated by ChIP-seq experiments. We show how a hidden Markov model can naturally account for spatial dependencies in the ChIP-seq data, how it can be used in the presence of data from multiple ChIP-seq experiments under the same biological condition, and how it naturally accounts for the different IP efficiencies of individual ChIP-seq experiments.

  18. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    SciTech Connect

    Chin, Yong Ho

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ``parasitic crossings (PC).`` The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8{sigma}{sub Ox}{sup sptm} where {sigma}{sub Ox}{sup sptm} is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on.

  19. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    SciTech Connect

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8{sigma}{sub Ox}{sup sptm} where {sigma}{sub Ox}{sup sptm} is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on.

  20. Mycobacterium tuberculosis increases IP-10 and MIG protein despite inhibition of IP-10 and MIG transcription.

    PubMed

    Bai, Xiyuan; Chmura, Kathryn; Ovrutsky, Alida R; Bowler, Russell P; Scheinman, Robert I; Oberley-Deegan, Rebecca E; Liu, Haiying; Shang, Shaobin; Ordway, Diane; Chan, Edward D

    2011-01-01

    Mycobacterium tuberculosis (MTB) has evolved methods to evade interferon-gamma (IFNγ) mediated protection. We sought to determine the effect of MTB infection on expression of IFNγ-inducible Protein 10 (IP-10) and Monokine Induced by IFNγ (MIG), two chemokines involved in host defense. MTB infection of THP-1 cells inhibited the transcription of IP-10 and MIG. A key mechanism for the inhibition is the disruption of binding of Signal Transduction and Activation of Transcription 1-alpha (STAT1α) to its cis-regulatory element, present in the 5'-flanking region of both IP-10 and MIG promoters. Use of inhibitors specific to the nuclear factor-kappa B (NFκB) and p38 mitogen-activated protein kinase (p38(mapk)) implicate these two signaling pathways in mediating the effect of MTB on the inhibition of IFNγ-induced IP-10 and MIG mRNA expression. Interestingly, despite transcriptional inhibition, there was an unexpected increase in IP-10 and MIG protein production after combined IFNγ and MTB stimulation. MTB also inhibited IFNγ induction of MIG mRNA but augmented MIG protein in primary human monocyte-derived macrophages. The synergy between MTB and IFNγ in the induction of IP-10 and MIG protein appears to involve novel post-transcriptional events that incorporates non-canonical functions of NFκB and p38(mapk). Published by Elsevier Ltd.

  1. PICS: probabilistic inference for ChIP-seq.

    PubMed

    Zhang, Xuekui; Robertson, Gordon; Krzywinski, Martin; Ning, Kaida; Droit, Arnaud; Jones, Steven; Gottardo, Raphael

    2011-03-01

    ChIP-seq combines chromatin immunoprecipitation with massively parallel short-read sequencing. While it can profile genome-wide in vivo transcription factor-DNA association with higher sensitivity, specificity, and spatial resolution than ChIP-chip, it poses new challenges for statistical analysis that derive from the complexity of the biological systems characterized and from variability and biases in its sequence data. We propose a method called PICS (Probabilistic Inference for ChIP-seq) for identifying regions bound by transcription factors from aligned reads. PICS identifies binding event locations by modeling local concentrations of directional reads, and uses DNA fragment length prior information to discriminate closely adjacent binding events via a Bayesian hierarchical t-mixture model. It uses precalculated, whole-genome read mappability profiles and a truncated t-distribution to adjust binding event models for reads that are missing due to local genome repetitiveness. It estimates uncertainties in model parameters that can be used to define confidence regions on binding event locations and to filter estimates. Finally, PICS calculates a per-event enrichment score relative to a control sample, and can use a control sample to estimate a false discovery rate. Using published GABP and FOXA1 data from human cell lines, we show that PICS' predicted binding sites were more consistent with computationally predicted binding motifs than the alternative methods MACS, QuEST, CisGenome, and USeq. We then use a simulation study to confirm that PICS compares favorably to these methods and is robust to model misspecification.

  2. SPIDER beam dump as diagnostic of the particle beam

    NASA Astrophysics Data System (ADS)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  3. SPIDER beam dump as diagnostic of the particle beam

    SciTech Connect

    Zaupa, M. Sartori, E.; Dalla Palma, M.; Brombin, M.; Pasqualotto, R.

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  4. Prospects and challenges of photonic IP networks

    NASA Astrophysics Data System (ADS)

    Sato, Ken-Ichi

    2005-02-01

    In designing future networks and systems, we must consider the current paradigm changes; IP convergence and the divergence of architectures and technologies. To start with, I will discuss broadband access technologies being deployed in different countries. Harnessing the full power of light will spur the creation of new broadband and ubiquitous services networks. The key requirements of enhancing the performance and reducing the cost of future IP-based multimedia communication networks can be effectively achieved by exploiting wavelength routing. This requires, however, not only the optimization of photonic technologies but also coordination with complementary electrical technologies. MPLS will play the key role, and its status and the present perception of its inefficiency are discussed. The evolution of GMPLS and the way to be taken for further development are depicted. Finally, I discuss some of the cutting-edge photonic transport technologies that will enable us to achieve another advance in network performance in the future.

  5. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    SciTech Connect

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  6. TCP/IP Implementations and Vendors Guide,

    DTIC Science & Technology

    1986-02-01

    IMAGEN and others. The applications are integrated inwo the generic device, pathname...8217 . + ’. ’, " . . " .’ .- . - .- - - -- .. .- . . . . ’ - . . + ’ - .’ . . . , . ..++ - . -. ". , .-’ . , , - - . . . -+ ’- - - - , , - - , . . .. ... , - . % F 2.8. Imagen 2.8.1. Imprint-10 PRODUCT NAME: IMPRINT-10 TCP/IP Ethernet Printer DESCRIPTION: 4. The IMPRINT-10 is an...hardware O/S: Proprietary, not user-programmable IMPLEMENTATION-LANGUAGE: C DISTRIBUTOR: Imagen Corporation 2660 Marine

  7. Hiding Data in VoIP

    DTIC Science & Technology

    2008-12-01

    is the LACK (Lost Audio Packets Steganography ) method, which is described in the third section of this paper. Fig. 4 Steganophony...although it is an application layer steganography technique, is less complex to implement than most audio steganography algorithms. The achieved...LACK, HICCUPS and SIP-based VoIP protocols’ steganography – are briefly described. 1. INTRODUCTION The main aim of network steganography is

  8. Enhancing the Classification Accuracy of IP Geolocation

    DTIC Science & Technology

    2013-10-01

    in cloud infrastructure services. For example, a Dropbox user may require their data to be hosted on servers in San Francisco, but the data’s true...location may actually be in Tennessee (see Fig. 1). Users of cloud computing deploy Virtual Machines (VM) on a cloud providers infrastructure without...datacenters, as specified by a Service Level Agreement (SLA). Cloud users can use IP geolocation to independently verify data confidentiality by

  9. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  10. Intellectual Property and Strategic Agreements (IP/SA) | FNLCR Staging

    Cancer.gov

    IP/SA handles all invention issues including patents and copyrights. All employee inventionreports are filed through the IP/SA office for all activities under the OTS contract.Additionally,request for assignment ofcopyri

  11. A model to determine the initial phase space of a clinical electron beam from measured beam data

    NASA Astrophysics Data System (ADS)

    Janssen, J. J.; Korevaar, E. W.; van Battum, L. J.; Storchi, P. R. M.; Huizenga, H.

    2001-02-01

    Advanced electron beam dose calculation models for radiation oncology require as input an initial phase space (IPS) that describes a clinical electron beam. The IPS is a distribution in position, energy and direction of electrons and photons in a plane in front of the patient. A method is presented to derive the IPS of a clinical electron beam from a limited set of measured beam data. The electron beam is modelled by a sum of four beam components: a main diverging beam, applicator edge scatter, applicator transmission and a second diverging beam. The two diverging beam components are described by weighted sums of monoenergetic diverging electron and photon beams. The weight factors of these monoenergetic beams are determined by the method of simulated annealing such that a best fit is obtained with depth-dose curves measured for several field sizes at two source-surface distances. The resulting IPSs are applied by the phase-space evolution electron beam dose calculation model to calculate absolute 3D dose distributions. The accuracy of the calculated results is in general within 1.5% or 1.5 mm worst cases show differences of up to 3% or 3 mm. The method presented here to describe clinical electron beams yields accurate results, requires only a limited set of measurements and might be considered as an alternative to the use of Monte Carlo methods to generate full initial phase spaces.

  12. ChIP-Enrich: gene set enrichment testing for ChIP-seq data.

    PubMed

    Welch, Ryan P; Lee, Chee; Imbriano, Paul M; Patil, Snehal; Weymouth, Terry E; Smith, R Alex; Scott, Laura J; Sartor, Maureen A

    2014-07-01

    Gene set enrichment testing can enhance the biological interpretation of ChIP-seq data. Here, we develop a method, ChIP-Enrich, for this analysis which empirically adjusts for gene locus length (the length of the gene body and its surrounding non-coding sequence). Adjustment for gene locus length is necessary because it is often positively associated with the presence of one or more peaks and because many biologically defined gene sets have an excess of genes with longer or shorter gene locus lengths. Unlike alternative methods, ChIP-Enrich can account for the wide range of gene locus length-to-peak presence relationships (observed in ENCODE ChIP-seq data sets). We show that ChIP-Enrich has a well-calibrated type I error rate using permuted ENCODE ChIP-seq data sets; in contrast, two commonly used gene set enrichment methods, Fisher's exact test and the binomial test implemented in Genomic Regions Enrichment of Annotations Tool (GREAT), can have highly inflated type I error rates and biases in ranking. We identify DNA-binding proteins, including CTCF, JunD and glucocorticoid receptor α (GRα), that show different enrichment patterns for peaks closer to versus further from transcription start sites. We also identify known and potential new biological functions of GRα. ChIP-Enrich is available as a web interface (http://chip-enrich.med.umich.edu) and Bioconductor package. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Protecting LHC components against radiation resulting from an unsynchronized beam abort

    SciTech Connect

    Nikolai V. Mokhov et al.

    2001-06-26

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septumMSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage.

  14. IP- -: A Reduced Internet Protocol for Optical Packet Networking

    NASA Astrophysics Data System (ADS)

    Ohta, Masataka; Fujikawa, Kenji

    IP- - is proposed as an Internet Protocol suitable for optical packet networking. As optical routers require much faster control than electric ones and lack of optical buffers other than those by fiber delay lines requires fixed time control, Internet Protocols must be at least as simple as IPv4 and much simpler than IPv6. IP- - also addresses issues of IP address space exhaustion and IP routing table explosion.

  15. Flat beam spot sizes measurement in the SLC-final focus

    SciTech Connect

    Raimondi, P.; Decker, F.J.

    1995-06-01

    With the switch to flat beam operation in the SLC during the 1993 run, it has become necessary to develop an algorithm that is capable of measuring the beam spot sizes at the Final Focus Interaction Point (IP). This algorithm uses the correct beam-beam deflection formula for the more general flat-beam case, since the round beam approximation is no longer valid. The application of this formula to the IP spot size measurements in the SLC Final Focus is the subject of this paper.

  16. Covert Channels in SIP for VoIP Signalling

    NASA Astrophysics Data System (ADS)

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    In this paper, we evaluate available steganographic techniques for SIP (Session Initiation Protocol) that can be used for creating covert channels during signaling phase of VoIP (Voice over IP) call. Apart from characterizing existing steganographic methods we provide new insights by introducing new techniques. We also estimate amount of data that can be transferred in signalling messages for typical IP telephony call.

  17. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  18. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  19. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting

    SciTech Connect

    Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.; Dehoff, Ryan R.; Sames, William; Erdman, III, Donald L.; Eklund, Anders; Howard, Ron

    2015-04-01

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powder bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.

  20. Airborne IP: examples from the Mount Milligan deposit, Canada, and the Amakinskaya kimberlite pipe, Russia

    NASA Astrophysics Data System (ADS)

    Viezzoli, Andrea; Kaminski, Vlad

    2016-07-01

    There have been multiple occurrences in the literature in the past several years of what has been referred to as the induced polarisation (IP) effect in airborne time domain electromagnetic (TDEM) data. This phenomenon is known to be responsible for incorrect inversion modelling of electrical resistivity, lower interpreted depth of investigation (DOI) and lost information about chargeability of the subsurface and other valuable parameters. Historically, there have been many suggestions to account for the IP effect using the Cole-Cole model. It has been previously demonstrated that the Cole-Cole model can be effective in modelling synthetic TDEM transients. In the current paper we show the possibility of extracting IP information from airborne TDEM data using this same concept, including inverse modelling of chargeability from TDEM data collected by VTEM, with field examples from Canada (Mt Milligan deposit) and Russia (Amakinskaya kimberlite pipe).

  1. The Strong RF Focusing: a Possible Approach to Get Short Bunches at the IP

    SciTech Connect

    Gallo, A.

    2004-04-12

    Short colliding bunches are required in the next generation particle factories to increase the luminosity by reducing the transverse beta functions at the interaction point (IP). The strong RF focusing consists in obtaining short bunches by substantially increasing the lattice momentum compaction and the RF gradient. In this regime the bunch length is modulated along the ring and could be minimized at the IP. If the principal impedance generating elements of the ring are located where the bunch is long (in the region near the RF cavities) it is possible to avoid microwave instability and excessive bunch lengthening due to the potential well distortion. By properly choosing the machine design parameters, 2 mm rms bunch length at the IP seems to be a realistic goal at the energy of the {Phi} resonance (1 GeV in the center of mass).

  2. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data

    PubMed Central

    Carroll, Thomas S.; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency. PMID:24782889

  3. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    PubMed

    Carroll, Thomas S; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  4. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-09-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I-V characteristics. The theoretically predicted short-circuit current density (Jsc), and open-circuit voltage (Voc) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of Jsc and Voc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  5. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  6. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  7. Source identification of the Arctic sea ice proxy IP25

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Belt, S. T.; Tatarek, A.; Mundy, C. J.

    2014-06-01

    Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction.

  8. A reusable temperature-based infrared system image correction IP core

    NASA Astrophysics Data System (ADS)

    Yang, Chengzhang; Gao, Jin; Li, Chaowei; Sui, Xiubao; Gu, Guohua

    2016-10-01

    Compared with the visible light imaging system, the infrared imaging system is more uncertain and unstable. Visible system is stable and mature, and the image quality less affected by ambient light, temperature, and other factors. The infrared detectors have a more complex process, there are many non-uniformity problems. The image quality has great influence from the environment, and the effect of temperature on the image is most serious. Especially with a closed infrared system, deterioration of image is very obvious with the temperature. The infrared detectors are vastly different, not only do the various manufacturers have different detector performance, but also detectors from the same batch by the same manufacturer; the image changes with the ambient temperature are not the same. In this case, calibration and debug of the image system is very difficult. Even when you get a better result in one system, it's difficult to apply to another system. This paper presents a real-time temperature-based correction algorithm for infrared image, and encapsulate it to configurable parameters, reusable IP core, which is based on Altera's Qsys platform, and use the Avalon-MM and Avalon-ST bus. The image data stream via the IP core by Avalon-ST bus, and the image correction parameters configured by controller through Avalon-MM bus. The IP core read from temperature chip to get ambient temperature, and correct image according to the parameters. The IP core has such a high degree of reusability and portability because compatibility for Qsys platform and using Avalon interface. And people can see the system output results in real time through the adjustable parameters. So this IP core can accelerate the development of product.

  9. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  10. Electron lenses for head-on beam-beam compensation in RHIC

    NASA Astrophysics Data System (ADS)

    Gu, X.; Fischer, W.; Altinbas, Z.; Anerella, M.; Bajon, E.; Bannon, M.; Bruno, D.; Costanzo, M.; Drees, A.; Gassner, D. M.; Gupta, R. C.; Hock, J.; Harvey, M.; Jain, A. K.; Jamilkowski, J. P.; Kankiya, P.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mi, C.; Michnoff, R.; Miller, T. A.; Minty, M.; Nemesure, S.; Ng, W.; Phillips, D.; Pikin, A. I.; Rosas, P. J.; Robert-Demolaize, G.; Samms, T.; Sandberg, J.; Schoefer, V.; Shrey, T. C.; Tan, Y.; Than, R.; Theisen, C.; Thieberger, P.; Tuozzolo, J.; Wanderer, P.; Zhang, W.; White, S. M.

    2017-02-01

    Two electron lenses (e -lenses) have been in operation during the 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam-induced resonance-driving terms, the electron lenses reduced the beam-beam-induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detail the design considerations and verification of the electron beam parameters of the RHIC e -lenses. Longitudinal and transverse alignments with ion beams and the transverse beam transfer function measurement with head-on electron-proton beam are presented.

  11. IP-Based Video Modem Extender Requirements

    SciTech Connect

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOE Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.

  12. Using IPS Magnetic Modeling to Determine Bz

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Mejia-Ambriz, J. C.; Bisi, M. M.; Tokumaru, M.

    2014-12-01

    Interplanetary scintillation (IPS) observations enable remote determinations of velocity and density in the inner heliosphere while also providing forecasts of these quantities. Using the global velocities inferred from IPS, and through convection upward of magnetic fields perpendicular to a source surface produced by the Current-Sheet Source Surface (CSSS) modified potential model (Zhao and Hoeksema, J. Geophys. Res., 100, 19, 1995), global long-duration radial and tangential heliospheric field components can also be determined. In order to better include short-term transient effects and derive a value for the field normal to these components (Bn) during periods where CMEs, are present, we have tested an extension to our current 3D vector-field analysis. This extension adds closed fields from below the source surface to the CSSS model values, and when traced outward from the sub-Earth point, three magnetic field components are present. These are compared to in-situ magnetic fields measured near Earth for several periods throughout the current solar cycle from the minimum between Solar Cycle 23 and 24 up until the present. We find a significant positive correlation when using this extension to current analyses including that of the Bn field for the test cases analyzed thus far.

  13. Live Video and IP-TV

    NASA Astrophysics Data System (ADS)

    Merani, Maria Luisa; Saladino, Daniela

    This Chapter aims at providing a comprehensive insight into the most recent advances in the field of P2P architectures for video broadcasting, focusing on live video streaming P2P live video streaming . After introducing a classification of P2P video solutions, the first part of the Chapter provides an overview of the most interesting P2P IP-TV P2P IP-TV systems currently available over the Internet. It also concentrates on the process of data diffusion within the P2P overlay and complements this view with some measurements that highlight the most salient features of P2P architectures. The second part of the Chapter completes the view, bringing up the modeling efforts to capture the main characteristics and limits of P2P streaming systems, both analytically and numerically. The Chapter is closed by a pristine look at some challenging, open questions, with a specific emphasis on the adoption of network coding in P2P streaming solutions.

  14. IPS - a vision aided navigation system

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey

    2017-04-01

    Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.

  15. CONTROL OF LASER RADIATION PARAMETERS: Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power

    NASA Astrophysics Data System (ADS)

    Bogatov, A. P.; Gushchik, T. I.; Drakin, A. E.; Nekrasov, A. P.; Popovichev, V. V.

    2008-10-01

    The waveguide design of a laser heterostructure is optimised to expand the laser beam in the vertical direction at the output mirror of a laser diode (up to 1.5 μm at the half intensity for the zero mode). Experimental samples of such diodes operated in the cw transverse single-mode lasing regime up to the output power of 0.5 W. The radiation divergence was 11°—12° and 4°—7° in the vertical and horizontal directions, respectively.

  16. 181Ta(n ,γ ) cross section and average resonance parameter measurements in the unresolved resonance region from 24 to 1180 keV using a filtered-beam technique

    NASA Astrophysics Data System (ADS)

    McDermott, B. J.; Blain, E.; Daskalakis, A.; Thompson, N.; Youmans, A.; Choun, H. J.; Steinberger, W.; Danon, Y.; Barry, D. P.; Block, R. C.; Epping, B. E.; Leinweber, G.; Rapp, M. R.

    2017-07-01

    A new array of four Deuterated Benzene (C6D6 ) detectors has been installed at the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute for the purpose of measuring neutron capture cross sections in the keV region. Measurements were performed on samples of 181Ta in the unresolved resonance region (URR) using a filtered-beam technique, by which a 30 cm iron filter was placed in a white-spectrum neutron beam to remove all time-dependent γ -ray background and all neutrons except those transmitted through resonance-potential interference "windows" in the iron. The resulting filtered beam was effectively a quasimonoenergetic neutron source, which was used for performing measurements on isotopes with narrow level spacings in the URR. The capture cross-section results obtained for two thicknesses of tantalum are in agreement with those documented in the JEFF-3.2 library, as are the average resonance parameters obtained via a fit to the data using the sammy-fitacs code.

  17. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    SciTech Connect

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  18. Bolt beam propagation analysis

    NASA Astrophysics Data System (ADS)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  19. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  20. LHC beam-beam compensation studies at RHIC

    SciTech Connect

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  1. Studies on Beam Formation in an Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Nass, A.; Stancari, M.; Steffens, E.

    2009-08-01

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  2. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions

    PubMed Central

    Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.

    2015-01-01

    ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134

  3. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions.

    PubMed

    Meena, Abha; Tovey, Stephen C; Taylor, Colin W

    2015-01-15

    Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca(2+) signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca(2+) release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R-adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca(2+) signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. © 2015. Published by The Company of Biologists Ltd.

  4. Damping modeling in Timoshenko beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, Y.

    1992-01-01

    Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.

  5. Blood or Urine IP-10 Cannot Discriminate between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children

    PubMed Central

    Cannas, Angela; Aloi, Francesco; Nsubuga, Martin; Sserumkuma, Joseph; Nazziwa, Ritah Angella; Jugheli, Levan; Lukindo, Tedson; Reither, Klaus

    2015-01-01

    Objectives. Interferon-γ inducible protein 10 (IP-10), either in blood or in urine, has been proposed as a tuberculosis (TB) biomarker for adults. This study aims to evaluate the potential of IP-10 diagnostics in children from Uganda, a high TB-endemic country. Methods. IP-10 was measured in the blood and urine concomitantly taken from children who were prospectively enrolled with suspected active TB, with or without HIV infection. Clinical/microbiological parameters and commercially available TB-immune assays (tuberculin skin test (TST) and QuantiFERON TB-Gold In-Tube (QFT-IT)) were concomitantly evaluated. Results. One hundred twenty-eight children were prospectively enrolled. The analysis was performed on 111 children: 80 (72%) of them were HIV-uninfected and 31 (27.9%) were HIV-infected. Thirty-three healthy adult donors (HAD) were included as controls. The data showed that IP-10 is detectable in the urine and blood of children with active TB, independent of HIV status and age. However, although IP-10 levels were higher in active TB children compared to HAD, the accuracy of identifying “active TB” was low and similar to the TST and QFT-IT. Conclusion. IP-10 levels are higher in children with respiratory illness compared to controls, independent of “TB status” suggesting that the evaluation of this parameter can be used as an inflammatory marker more than a TB test. PMID:26346028

  6. Telemetry and Communication IP Video Player

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2011-01-01

    Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.

  7. Accuracy and precision of thickness determination from position-averaged convergent beam electron diffraction patterns using a single-parameter metric.

    PubMed

    Pollock, J A; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2017-10-01

    Position-averaged convergent beam electron diffraction patterns are formed by averaging the transmission diffraction pattern while scanning an atomically-fine electron probe across a sample. Visual comparison between experimental and simulated patterns is increasingly being used for sample thickness determination. We explore automating the comparison via a simple sum square difference metric. The thickness determination is shown to be accurate (i.e. the best-guess deduced thickness generally concurs with the true thickness), though factors such as noise, mistilt and inelastic scattering reduce the precision (i.e. increase the uncertainty range). Notably, the precision tends to be higher for smaller probe-forming aperture angles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  9. Beam Diagnostics for FACET

    SciTech Connect

    Li, S.Z.; Hogan, M.J.; /SLAC

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.

  10. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    SciTech Connect

    Sanchez, Mike; Reeves, Wendall; Smart, Bill

    2013-07-01

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be

  11. A technique for measuring the sea water optical parameters with a dedicated laser beam and a multi-PMT optical module

    SciTech Connect

    Papaikonomou, A. Leisos, A. Tsirigotis, A.; Tzamarias, S.; Manthos, I.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe a technique for the evaluation of the parameters describing the scattering characteristics of the sea water using one multi-PMT optical module that detects scattered optical photons which are emitted from a laser. Our results show that we are able to determine these parameters with satisfying precision and are able to resolve the scattering length values with less than half a meter accuracy.

  12. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  13. Design and performance evaluation of direct routing mobile IP

    NASA Astrophysics Data System (ADS)

    Jang, Jongwook; Jang, SeongHo; Kim, Kilyeun; Lee, Jung-Tae

    2001-07-01

    Mobility support on the network layer is of special importance, as the network layer holds together the huge Internet with common protocol IP. Although based on possibility different wireless or wired technologies, all nodes of the network should be able to communicate. Therefore, mobile IP (an extension of the classical IP) has been designed which enables mobility in the Internet without changing existing wired systems. However, mobile IP leaves some points unsolved. Especially, if it comes to security, efficient of the packet flow that is called triangular routing. Especially triangular routing can cause unnecessary overhead for the network. Furthermore latency can increase dramatically. This is particularly unfortunate if two communicating hosts are separated by transatlantic links. In order to this problem, many methods like IPv6 and ROMIP are proposed. But these methods have limitation. In other words, they have not compatibility because of needing modification or original IP scheme. Especially ROMIP is very complex and the overhead of control message and processing are serious. The problem of inconsistency of Binding caches may occur tool. We therefore propose and analyze the DRMIP (Direct Routing Mobile IP) which do not modify IP source needed in the sender, is compatible with IP and Mobile IP.

  14. Implementation of direct routing mobile IP for solving triangular routing

    NASA Astrophysics Data System (ADS)

    Jang, Jongwook; Jang, SeongHo; Park, Miri; Lee, Dae-bong

    2001-10-01

    Mobility support on the network layer is of special importance, as the network layer holds together the huge Internet with common protocol IP. Although based on possibility different wireless or wired technologies, all nodes of the network should be able to communicate. Therefore, mobile IP(an extension of the classical IP) has been designed which enablemobility in the Internet without changing existing wired systems. However, mobile IP leaves some points unsolved. Especially, if it comes to security, efficiency of the packet flow that is called triangular routing. Especially triangular routing can cause unnecessary overhead for the network. Furthermore latency can increase dramatically. This is particularly unfortunate if two communicating hosts are separated by transatlantic links. In order to this problem, many methods like IPv6 and ROMIP are proposed. But these methods have limitation. In other words, they have not compatibility because of needing modification of original IP scheme. Especially ROMIP is very complex and the overhead of control message and processing are serious. The problem of inconsistency of Binding caches may occur too. We therefore propose and analyze the performance of the DRMIP (Direct Routing Mobile IP) which do not modify IP source needed in the sender, is compatible with IP and Mobile IP.

  15. Inositol hexaphosphate (IP6): a novel treatment for pancreatic cancer.

    PubMed

    Somasundar, Ponnandai; Riggs, Dale R; Jackson, Barbara J; Cunningham, Cynthia; Vona-Davis, Linda; McFadden, David W

    2005-06-15

    Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate found in food sources high in fiber content. IP6 has been reported to have significant inhibitory effects against a variety of primary tumors including breast and colon. The effects of IP6 have not been evaluated in pancreatic cancer. We hypothesized that IP6 would significantly inhibit cell growth and increase the apoptotic rate of pancreatic cancer in vitro. Two pancreatic cancer cell lines (MIAPACA and PANC1) were cultured using standard techniques and treated with IP6 at doses of 0.5, 1.0, and 5.0 mm. Cell viability was measured by MTT at 24 and 72 h. Apoptosis was evaluated by Annexin V-FITC and results calculated using FACS analysis. Statistical analysis was performed by ANOVA. Significant reductions (P < 0.01) in cellular proliferation were observed with all IP6 concentrations tested in both cell lines and at both time points. Reductions in cell proliferation ranged from 37.1 to 91.5%. IP6 increased early and late apoptotic activity (P < 0.01). Treatment of pancreatic cancer with the common dietary polyphosphorylated carbohydrate IP6 significantly decreased cellular growth and increased apoptosis. Our findings suggest that IP6 has the potential to become an effective adjunct for pancreatic cancer treatment. Further in vivo and human studies are needed to evaluate safety and clinical utility of this agent in patients with pancreatic cancer.

  16. Mapping protein-DNA interactions using ChIP-sequencing.

    PubMed

    Massie, Charles E; Mills, Ian G

    2012-01-01

    Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we

  17. Refinement of the crystal structural parameters of La[2/3]Ca[1/3]MnO[3] using quantitative convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Feng, F.; Zhu, J.; Zhang, A.

    2005-07-01

    The structural parameters of La[0.67]Ca[0.33]MnO[3] were refined using one-dimensional HOLZ intensities by the QCBED method. It is feasible to obtain reliable structure information by this method and the global optimization algorithm.

  18. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  19. Impact of the beam pipe design on the operation parameters of the superconducting magnets for the SIS 100 synchrotron of the FAIR project

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Schnizer, P.; Heil, C.; Mierau, A.; Schnizer, B.; Shim, S.

    2010-06-01

    The SIS 100 accelerator of the Facility for Antiprotons and Ion Research (FAIR) at GSI Darmstadt will be the world's second fast ramped synchrotron utilising superconducting magnets in heavy ion research facilities. The request for high current Uranium beams requires vacuum of extremely high quality that can be achieved in long term operation only by cold vacuum chambers acting as a cryogenic pump. Its mechanical stable design options are strongly limited by AC loss generation and field distortion problems. Previous R&D indicated that cooling tubes, keeping the vacuum chamber below 15 K, create large additional eddy currents and thus deteriorate the field with a sextupole. This effect is most dominant at the start of the ramp. The ramp rate of the correctors is limited by the maximum available voltage and as by the heat created on the ramp up and the cooling efficiency of the Nuclotron-type cable. Thus we investigate different means to simplify the vacuum chamber design keeping its temperature below 15 K in the area where the highest suction pumping is required with alternative cooling methods as well as on the compensation margin the sextupole correctors can provide. This work was partly supported by the BMBF.

  20. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography

    PubMed Central

    Couto Souza, Paulo; Jacobs, Reinhilde; de Azambuja Berti, Soraya; van der Stelt, Paul

    2009-01-01

    The study aim is to investigate the influence of scan field, mouth opening, voxel size, and segmentation threshold selections on the quality of the three-dimensional (3D) surface models of the dental arches from cone beam computed tomography (CBCT). 3D models of 25 patients scanned with one image intensifier CBCT system (NewTom 3G, QR SLR, Verona, Italy) using three field sizes in open- and closed-mouth positions were created at different voxel size resolutions. Two observers assessed the quality of the models independently on a five-point scale using specified criteria. The results indicate that large-field selection reduced the visibility of the teeth and the interproximal space. Also, large voxel size reduced the visibility of the occlusal surfaces and bone in the anterior region in both maxilla and mandible. Segmentation threshold was more variable in the maxilla than in the mandible. Closed-mouth scan complicated separating the jaws and reduced teeth surfaces visibility. The preliminary results from this image-intensifier system indicate that the use of medium or small scan fields in an open-mouth position with a small voxel is recommended to optimize quality of the 3D surface model reconstructions of the dental arches from CBCT. More research is needed to validate the results with other flat-panel detector-based CBCT systems. PMID:19506922

  1. Telomere Reprogramming and Maintenance in Porcine iPS Cells

    PubMed Central

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells. PMID:24098638

  2. Protection against cancer by dietary IP6 and inositol.

    PubMed

    Vucenik, Ivana; Shamsuddin, AbulKalam M

    2006-01-01

    Inositol hexaphosphate (IP(6)) is a naturally occurring polyphosphorylated carbohydrate, abundantly present in many plant sources and in certain high-fiber diets, such as cereals and legumes. In addition to being found in plants, IP(6) is contained in almost all mammalian cells, although in much smaller amounts, where it is important in regulating vital cellular functions such as signal transduction, cell proliferation, and differentiation. For a long time IP(6) has been recognized as a natural antioxidant. Recently IP(6) has received much attention for its role in cancer prevention and control of experimental tumor growth, progression, and metastasis. In addition, IP(6) possesses other significant benefits for human health, such as the ability to enhance immune system, prevent pathological calcification and kidney stone formation, lower elevated serum cholesterol, and reduce pathological platelet activity. In this review we show the efficacy and discuss some of the molecular mechanisms that govern the action of this dietary agent. Exogenously administered IP(6) is rapidly taken up into cells and dephosphorylated to lower inositol phosphates, which further affect signal transduction pathways resulting in cell cycle arrest. A striking anticancer action of IP(6) was demonstrated in different experimental models. In addition to reducing cell proliferation, IP(6) also induces differentiation of malignant cells. Enhanced immunity and antioxidant properties also contribute to tumor cell destruction. Preliminary studies in humans show that IP(6) and inositol, the precursor molecule of IP(6), appear to enhance the anticancer effect of conventional chemotherapy, control cancer metastases, and improve quality of life. Because it is abundantly present in regular diet, efficiently absorbed from the gastrointestinal tract, and safe, IP(6) + inositol holds great promise in our strategies for cancer prevention and therapy. There is clearly enough evidence to justify the

  3. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.

    1995-05-05

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in {ital z} or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F.-J.

    1995-05-01

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree'' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  5. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F. J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a 'Christmas tree' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  6. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  7. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor

    PubMed Central

    Saleem, Huma; Tovey, Stephen C; Molinski, Tedeusz F; Taylor, Colin W

    2014-01-01

    BACKGROUND AND PURPOSE Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood. EXPERIMENTAL APPROACH IP3-evoked Ca2+ release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca2+ indicator. The effects of commonly used antagonists on IP3-evoked Ca2+ release and 3H-IP3 binding were characterized. KEY RESULTS Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca2+ release via any IP3R subtype. CONCLUSIONS AND IMPLICATIONS Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs. PMID:24628114

  8. Identification of transcription factor binding sites from ChIP-seq data at high resolution

    PubMed Central

    Knoblich, Juergen A.; Zeitlinger, Julia; Stark, Alexander

    2013-01-01

    Motivation: Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-seq) is widely used to study the in vivo binding sites of transcription factors (TFs) and their regulatory targets. Recent improvements to ChIP-seq, such as increased resolution, promise deeper insights into transcriptional regulation, yet require novel computational tools to fully leverage their advantages. Results: To this aim, we have developed peakzilla, which can identify closely spaced TF binding sites at high resolution (i.e. resolves individual binding sites even if spaced closely), as we demonstrate using semisynthetic datasets, performing ChIP-seq for the TF Twist in Drosophila embryos with different experimental fragment sizes, and analyzing ChIP-exo datasets. We show that the increased resolution reached by peakzilla is highly relevant, as closely spaced Twist binding sites are strongly enriched in transcriptional enhancers, suggesting a signature to discriminate functional from abundant non-functional or neutral TF binding. Peakzilla is easy to use, as it estimates all the necessary parameters from the data and is freely available. Availability and implementation: The peakzilla program is available from https://github.com/steinmann/peakzilla or http://www.starklab.org/data/peakzilla/. Contact: stark@starklab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23980024

  9. IPS analysis on relationship among velocity, density and temperature of the solar wind

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.

    2015-12-01

    The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.

  10. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    PubMed

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online.

  11. The MEXART ips observations in route to the next solar maximum

    NASA Astrophysics Data System (ADS)

    Carrillo-Vargas, Armando; Gonzalez-Esparza, Americo; Andrade, Ernesto; Perez-Enriquez, Roman; Aguilar-Rodriguez, Ernesto; Casillas-Perez, Gilberto; Jeyakumar, Solai; Kurtz, Stanley; Sierra, Pablo; Vazquez, Samuel

    We report the status of the Mexican Array Radio Telescope (MEXART) in preparation for the next solar maximum. During this epoch, the MEXART will be one of the four dedicated radio telescopes (with the ORT in India; STEL in Japan; and MWA in Australia) to track large-scale structures in the solar wind using the interplanetary scintillation (IPS) technique. This network of IPS observatories would produce, for the first time four g maps of the sky showing the size and shape of disturbances between the Sun and the Earth. We describe the operation and current observations of the first IPS radio sources at 140 MHz detected by the MEXART. These observations use a plane dipole array of 1024 elements (16 lines with 64 dipoles each one), feeding a Butler matrix of 16x16 ports. This system generates a 16 lobes at fixed declinations covering 120 degrees (from 40 degrees South to 80 degrees North). The beam fan uses the Earth's rotation to cover the whole sky. The observations that will be made with the network of observatories of interplanetary flashing will complement the observations of other observatories, instruments in situ, space probes, satellite, among others.

  12. Luminosity dilution due to random offset beam-beam interaction

    SciTech Connect

    Stupakov, G.

    1991-11-01

    We consider beam-beam interaction in a collider in the case when the beams randomly displace around the equilibrium orbit at the interaction point. Due to the random part of the interaction, particles diffuse over the betatron amplitude causing an emittance growth of the beam. A Fokker-Planck equation is derived in which a diffusion coefficient is related with the spectral density of the noise. Estimations for the Superconducting Super Collider parameters give a tolerable level of the high-frequency beam offset at the interaction point. 2 refs.

  13. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  14. Characterization of the Li beam probe with a beam profile monitor on JET

    SciTech Connect

    Nedzelskiy, I. S.; Collaboration: JET EFDA Contributors

    2010-10-15

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45 deg. segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  15. KChIP1: a potential modulator to GABAergic system.

    PubMed

    Xiong, Hui; Xia, Kun; Li, Benshang; Zhao, Guoping; Zhang, Zhuohua

    2009-04-01

    Compelling evidences from transgenic mice, immunoprecipitation data, gene expression analysis, and functional heterologous expression studies supported the role of Kv channel interacting proteins (KChIPs) as modulators of Kv4 (Shal) channels underlying the cardiac transient outward current and neuronal A-type current. Till now, there are four members (KChIP1-4) identified in this family. KChIP1 is expressed predominantly in brain, with relative abundance in Purkinje cells of cerebellum, the reticular thalamic nuclei, the medial habenular nuclei, the hippocampus, and striatum. Our results from in situ hybridization and immunostaining assay revealed that KChIP1 was expressed in a subpopulation of parvalbumin-positive neurons suggesting its functional relationship with the GABAergic inhibitory neurons. Moreover, results obtained from KChIP1-deficient mice showed that KChIP1 mutation did not impair survival or alter the overall brain architecture, arguing against its essential function in brain development. However, the mice bearing KChIP1 deletion showed increased susceptibility to anti-GABAergic convulsive drug pentylenetetrazole-induced seizure, indicating that KChIP1 might play pivotal roles in the GABAergic inhibitory system.

  16. In silico pooling of ChIP-seq control experiments.

    PubMed

    Sun, Guannan; Srinivasan, Rajini; Lopez-Anido, Camila; Hung, Holly A; Svaren, John; Keleş, Sündüz

    2014-01-01

    As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples.

  17. Design methods of multilayer survivability in IP over WDM networks

    NASA Astrophysics Data System (ADS)

    Arakawa, Shin'ichi; Murata, Masayuki; Miyahara, Hideo

    2000-09-01

    IP (Internet Protocol) over WDM networks where IP packets are directly carried on the WDM network is expected to offer an infrastructure for the next generation Internet. For IP over WDM networks, a WDM protection mechanism is expected to provide a highly reliable network (i.e., robustness against the link/node failures). However, conventional IP also provides a reliability mechanism by its routing function. We thus need to treat functional partitioning or functional integration for IP over WDM networks with high reliability. In this paper, we first formulate an optimization problem for designing IP over WDM networks with protection functionalities of WDM networks, by which we can obtain IP over WDM networks with high reliability. Our formulation results in a mixed integer linear problem (MILP). However, it is known that MILP can be solved only for a small number of variables, in our case, nodes and/or wavelengths. We therefore propose two heuristic algorithms, min-hop-first and largest-traffic-first approaches in order to assign the wavelength for backup lightpath. Our results show that the min- hop-first approach takes fewer wavelengths to construct the reliable network, that is, all of lightpaths can be protected using the WDM protection mechanism. However, our largest-traffic- first approach is also a good choice in the sense that the approach can be saved the traffic volume increased at the IP router by the link failure.

  18. Fair Scheduling for Delay-Sensitive VoIP Traffic

    NASA Astrophysics Data System (ADS)

    Ahmed, Shawish; Jiang, Xiaohong; Horiguchi, Susumu

    With the wide expansion of voice services over the IP networks (VoIP), the volume of this delay sensitive traffic is steadily growing. The current packet schedulers for IP networks meet the delay constraint of VoIP traffic by simply assigning its packets the highest priority. This technique is acceptable as long as the amount of VoIP traffic is relatively very small compared to other non-voice traffic. With the notable expansion of VoIP applications, however, the current packet schedulers will significantly sacrifice the fairness deserved by the non-voice traffic. In this paper, we extend the conventional Deficit Round-Robin (DRR) scheduler by including a packet classifier, a Token Bucket and a resource reservation scheme and propose an integrated packet scheduler architecture for the growing VoIP traffic. We demonstrate through both theoretical analysis and extensive simulation that the new architecture makes it possible for us to significantly improve the fairness to non-voice traffic while still meeting the tight delay requirement of VoIP applications.

  19. Probabilistic Route Selection Algorithm for IP Traceback

    NASA Astrophysics Data System (ADS)

    Yim, Hong-Bin; Jung, Jae-Il

    DoS(Denial of Service) or DDoS(Distributed DoS) attack is a major threaten and the most difficult problem to solve among many attacks. Moreover, it is very difficult to find a real origin of attackers because DoS/DDoS attacker uses spoofed IP addresses. To solve this problem, we propose a probabilistic route selection traceback algorithm, namely PRST, to trace the attacker's real origin. This algorithm uses two types of packets such as an agent packet and a reply agent packet. The agent packet is in use to find the attacker's real origin and the reply agent packet is in use to notify to a victim that the agent packet is reached the edge router of the attacker. After attacks occur, the victim generates the agent packet and sends it to a victim's edge router. The attacker's edge router received the agent packet generates the reply agent packet and send it to the victim. The agent packet and the reply agent packet is forwarded refer to probabilistic packet forwarding table (PPFT) by routers. The PRST algorithm runs on the distributed routers and PPFT is stored and managed by routers. We validate PRST algorithm by using mathematical approach based on Poisson distribution.

  20. Optimization of acquisition parameters and accuracy of target motion trajectory for four-dimensional cone-beam computed tomography with a dynamic thorax phantom.

    PubMed

    Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Nakato, Kengo; Nagasue, Nozomu; Kai, Yudai

    2015-01-01

    Our purpose in this study was to evaluate the performance of four-dimensional computed tomography (4D-CBCT) and to optimize the acquisition parameters. We evaluated the relationship between the acquisition parameters of 4D-CBCT and the accuracy of the target motion trajectory using a dynamic thorax phantom. The target motion was created three dimensionally using target sizes of 2 and 3 cm, respiratory cycles of 4 and 8 s, and amplitudes of 1 and 2 cm. The 4D-CBCT data were acquired under two detector configurations: "small mode" and "medium mode". The projection data acquired with scan times ranging from 1 to 4 min were sorted into 2, 5, 10, and 15 phase bins. The accuracy of the measured target motion trajectories was evaluated by means of the root mean square error (RMSE) from the setup values. For the respiratory cycle of 4 s, the measured trajectories were within 2 mm of the setup values for all acquisition times and target sizes. Similarly, the errors for the respiratory cycle of 8 s were <4 mm. When we used 10 or more phase bins, the measured trajectory errors were within 2 mm of the setup values. The trajectory errors for the two detector configurations showed similar trends. The acquisition times for achieving an RMSE of 1 mm for target sizes of 2 and 3 cm were 2 and 1 min, respectively, for respiratory cycles of 4 s. The results obtained in this study enable optimization of the acquisition parameters for target size, respiratory cycle, and desired measurement accuracy.

  1. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  2. COPAR: A ChIP-Seq Optimal Peak Analyzer.

    PubMed

    Tang, Binhua; Wang, Xihan; Jin, Victor X

    2017-01-01

    Sequencing data quality and peak alignment efficiency of ChIP-sequencing profiles are directly related to the reliability and reproducibility of NGS experiments. Till now, there is no tool specifically designed for optimal peak alignment estimation and quality-related genomic feature extraction for ChIP-sequencing profiles. We developed open-sourced COPAR, a user-friendly package, to statistically investigate, quantify, and visualize the optimal peak alignment and inherent genomic features using ChIP-seq data from NGS experiments. It provides a versatile perspective for biologists to perform quality-check for high-throughput experiments and optimize their experiment design. The package COPAR can process mapped ChIP-seq read file in BED format and output statistically sound results for multiple high-throughput experiments. Together with three public ChIP-seq data sets verified with the developed package, we have deposited COPAR on GitHub under a GNU GPL license.

  3. Defining Bacterial Regulons Using ChIP-seq Methods

    PubMed Central

    Myers, Kevin S.; Park, Dan M.; Beauchene, Nicole A.; Kiley, Patricia J.

    2015-01-01

    Chromatin immunoprecitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. PMID:26032817

  4. COPAR: A ChIP-Seq Optimal Peak Analyzer

    PubMed Central

    Wang, Xihan; Jin, Victor X.

    2017-01-01

    Sequencing data quality and peak alignment efficiency of ChIP-sequencing profiles are directly related to the reliability and reproducibility of NGS experiments. Till now, there is no tool specifically designed for optimal peak alignment estimation and quality-related genomic feature extraction for ChIP-sequencing profiles. We developed open-sourced COPAR, a user-friendly package, to statistically investigate, quantify, and visualize the optimal peak alignment and inherent genomic features using ChIP-seq data from NGS experiments. It provides a versatile perspective for biologists to perform quality-check for high-throughput experiments and optimize their experiment design. The package COPAR can process mapped ChIP-seq read file in BED format and output statistically sound results for multiple high-throughput experiments. Together with three public ChIP-seq data sets verified with the developed package, we have deposited COPAR on GitHub under a GNU GPL license. PMID:28357402

  5. Evaluation of an Individual Placement and Support model (IPS) program.

    PubMed

    Lucca, Anna M; Henry, Alexis D; Banks, Steven; Simon, Lorna; Page, Stephanie

    2004-01-01

    While randomized clinical trials (RCTs) have helped to establish Individual Placement and Support (IPS) programs as an evidence-based practice, it is important to evaluate whether "real world" IPS programs can be implemented with fidelity and achieve outcomes comparable to programs evaluated in RCTs. The current evaluation examined retrospectively employment outcomes for go participants from an IPS-model Services for Employment and Education (SEE) program in Massachusetts over a 4.5-year period. Evaluators accessed demographic, functioning, and employment data from three sources--SEE program records/database, clinical records, and the Massachusetts Department of Mental Health Client Tracking system. Results indicate that the SEE program maintained high IPS fidelity and achieved employment outcomes comparable or superior to other SE and IPS model programs described in the literature.

  6. Audio CAPTCHA for SIP-Based VoIP

    NASA Astrophysics Data System (ADS)

    Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris

    Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.

  7. Beam characteristics of energy-matched flattening filter free beams.

    PubMed

    Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I

    2014-05-01

    Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed

  8. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Evans, J. A.; Thwaites, D. I.

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  9. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  10. Anti-angiogenic activity of inositol hexaphosphate (IP6).

    PubMed

    Vucenik, Ivana; Passaniti, Antonino; Vitolo, Michele I; Tantivejkul, Kwanchanit; Eggleton, Paul; Shamsuddin, Abulkalam M

    2004-11-01

    A significant anticancer activity of the naturally occurring carbohydrate inositol hexaphosphate (IP(6)) has been reported against numerous cancer models. Since tumors require angiogenesis for growth and metastasis, we hypothesize that IP(6) reduces tumor growth by inhibiting angiogenesis. Because angiogenesis depends on the interaction between endothelial and tumor cells, we investigated the effect of IP(6) on both. IP(6) inhibited the proliferation and induced the differentiation of endothelial cells in vitro; the growth of bovine aortic endothelial cells (BAECs) evaluated by MTT proliferation assay was inhibited in a dose-dependent manner (IC(50) = 0.74 mM). The combination of IP(6) and vasostatin, a calreticulin fragment with anti-angiogenic activity, was synergistically superior in growth inhibition than either compound. IP(6) inhibited human umbilical vein endothelial cell (HUVEC) tube formation (in vitro capillary differentiation) on a reconstituted extracellular matrix, Matrigel, and disrupted pre-formed tubes. IP(6) significantly reduced basic fibroblast growth factor (bFGF)-induced vessel formation (P < 0.01) in vivo in Matrigel plug assay. Exposure of HepG2, a human hepatoma cell line, to IP(6) for 8 h, resulted in a dose-dependent decrease in the mRNA levels of vascular endothelial growth factor (VEGF), as assessed by RT-PCR. IP(6) treatment of HepG2 cells for 24 h also significantly reduced the VEGF protein levels in conditioned medium, in a concentration-dependent manner (P = 0.012). Thus, IP(6) has an inhibitory effect on induced angiogenesis.

  11. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function

    PubMed Central

    Scherer, Paul C.; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C.; Wei, Ning; Zheng, Ning; Snyder, Solomon H.; Rao, Feng

    2016-01-01

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL–CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular “glue,” increasing cullin–CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL–CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL–CSN system and are potential targets for cancer therapy in conjunction with MLN4924. PMID:26976604

  12. Attributes associated with probability of infestation by the pinon Ips, Ips confusus, (Coleoptera: Scolytidae) in pinon pine, Pinus edulis

    Treesearch

    Jose F. Negron; Jill L. Wilson

    2008-01-01

    (Please note, this is an abstract only) We examined attributes associated with the probability of infestation by pinon ips (Ips confusus), in pinon pine (Pinus edulis), in an outbreak in the Coconino National Forest, Arizona. We used data collected from 87 plots, 59 infested and 28 uninfested, and a logistic regression approach to estimate the probability of...

  13. Attributes associated with probability of infestation by the pinon ips, Ips confusus, (Coleoptera: Scolytidae) in pinon pine, Pinus edulis

    Treesearch

    Jose E. Negron; Jill L. Wilson

    2003-01-01

    We examined attributes of pinon pine (Pinus edulis) associated with the probability of infestation by pinon ips (Ips confusus) in an outbreak in the Coconino National Forest, Arizona. We used data collected from 87 plots, 59 infested and 28 uninfested, and a logistic regression approach to estimate the probability ofinfestation based on plotand tree-level attributes....

  14. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function.

    PubMed

    Scherer, Paul C; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C; Wei, Ning; Zheng, Ning; Snyder, Solomon H; Rao, Feng

    2016-03-29

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924.

  15. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.

    PubMed

    Ma, Xiaotu; Kulkarni, Ashwinikumar; Zhang, Zhihua; Xuan, Zhenyu; Serfling, Robert; Zhang, Michael Q

    2012-04-01

    Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments.

  16. 76 FR 81955 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Information Collection Request: 1670-NEW. SUMMARY: The Department of Homeland Security (DHS), National... received must include the words ``Department of Homeland Security'' and the docket ] number for this...

  17. 77 FR 33227 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Information Collection Request, 1670-NEW. SUMMARY: The Department of Homeland Security (DHS), National... words ``Department of Homeland Security'' and the docket number for this action. Comments received...

  18. The effect of phase advance errors between interaction points on beam halos

    SciTech Connect

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-06-01

    Phase advance errors between interaction points (IP) break the symmetry of multi-IP colliders. This symmetry breaking introduces new, lower order resonances which may chance the halo from the beam-beam interaction dramatically. In this paper, the mechanism of introducing new resonances is discussed. Simulation results showing the changes due to phase advance errors are presented. Simulation results are compared with experimental measurements at VEPP-2M.

  19. [IPS an ethical paradigm for biomedical research].

    PubMed

    Gámez Escalona, José Antonio

    2013-01-01

    One of the greatest advances in molecular and cell biology was the discovery of the Induced Pluripotent Stem cells (iPS) in mice, by Shinya Yamanka and his team in 2006. The possibility that these cells can be generated also in humans opens up unexpected ways of development for biomedicine. Its main contribution is the creation of a strong protocol that takes into account three major advances in biology such as; nuclear transfer techniques, the discovery of transcription factors associated with pluripotency and the isolation of mouse embryonic stem cells. A protocol that can be easily replicated in other laboratories to have the oportunity to design tests that allow modeling of many incurable diseases, drug testing for human cells or explore the possibilities of autologous transplants of tissues or organs. Yamanaka ethical motivation to find an alternative to embryonic stem cells (ES) and prevent the destruction of embryos produced by In Vitro Fertilization techniques (IVF), has proved to be a research model, in which the intuition of the ethical principles and its application in advanced biotechnology projects, has meant the opening of a whole new way of understanding the biology of embryonic development. It is clear that development, biologically understood (puede ser también ″treated″; tratado), is not a one-way street. The possibilities to deepen into the foundations of molecular biology and genetics, along with the expectations of its clinical applications have earned Yamanka the Nobel Prize in Medicine 2012, along with another great scholar Sir John Gurdon, discoverer of nuclear transfer techniques.

  20. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parmeters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  1. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  2. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-10-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps

  3. Survey of beam instrumentation used in SLC

    SciTech Connect

    Ecklund, S.D.

    1991-03-01

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  4. Flat beams in the SLC

    SciTech Connect

    Adolphsen, C.; Barklow, T.; Burke, D.

    1993-05-01

    The Stanford Linear collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that ``flat`` beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow these beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to ``flat`` beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following we present an overview of the problems encountered and their solutions for different parts of the SLC.

  5. The SSC beam scraper system

    SciTech Connect

    Maslov, M.A.; Mokhov, N.V.; Yazynin Institut Fiziki Vysokikh Ehnergij, Protvino )

    1991-06-01

    In this paper we present the results of a full-scale study of a beam scraping system that is designed to guarantee reliable operation of the SSC throughout the whole cycle and for minimum background for experiments at the interaction regions. The machine aperture limits and beam loss formation are analyzed. Simulation programs and a calculational model are described. The physics of beam scraping is explored, and measures to increase significantly the system efficiency are determined. A tolerable scraping rate, taking into account scraper material integrity, quench limits in downstream superconducting magnets, radiation shielding requirements, and minimal beam halo levels at the IPs are also determined. Finally, a complete multi-component scraper system in the SSC East Cluster is proposed. Throughout the paper we define a scraper as a primary absorber consisting of precise movable jaws that have a flat inner edge along the circulation beam and which may be forced to touch the beam halo in horizontal or vertical planes. Secondary absorbers -- collimators -- are destined to intercept outscattered protons and other particles produced in scraper material. All these are surrounded with a radiation shielding. 15 refs., 50 figs., 13 tabs.

  6. Effect of the electron lenses on the RHIC proton beam closed orbit

    SciTech Connect

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  7. SIP-CCME cooperation in multimedia VoIP network

    NASA Astrophysics Data System (ADS)

    Grądkowska, Magdalena; Popiel, Piotr; Sobańska, Katarzyna

    2006-10-01

    VoIP is a fast-developing technology which allows making telephone calls using a data network like the Internet. VoIP converts the voice signal from the telephone into a digital signal that travels over the Internet and then converts it back at the other end so that speaking to anyone with a regular phone number is possible. VoIP may also enable the direct calls from a computer with the use of a conventional telephone or a microphone. Some services using VoIP may only allow you to call other people using the same VoIP service, but others may allow you to call anyone who has a telephone number. First condition is a broadband Internet connection for VoIP technology to work. There are two major advantages of VOIP: lower cost and increased functionality. In the paper the integration of two networks, one with a CCME based installation and the other with a full Asterisk/SIP voicemail deployment is presented. The goal was to allow dialing between VoIP's telephony from different networks and evaluate a quality of connection with the use of certain codecs.

  8. A decentralized software bus based on IP multicas ting

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd

    1995-01-01

    We describe decentralized reconfigurable implementation of a conference management system based on the low-level Internet Protocol (IP) multicasting protocol. IP multicasting allows low-cost, world-wide, two-way transmission of data between large numbers of conferencing participants through the Multicasting Backbone (MBone). Each conference is structured as a software bus -- a messaging system that provides a run-time interconnection model that acts as a separate agent (i.e., the bus) for routing, queuing, and delivering messages between distributed programs. Unlike the client-server interconnection model, the software bus model provides a level of indirection that enhances the flexibility and reconfigurability of a distributed system. Current software bus implementations like POLYLITH, however, rely on a centralized bus process and point-to-point protocols (i.e., TCP/IP) to route, queue, and deliver messages. We implement a software bus called the MULTIBUS that relies on a separate process only for routing and uses a reliable IP multicasting protocol for delivery of messages. The use of multicasting means that interconnections are independent of IP machine addresses. This approach allows reconfiguration of bus participants during system execution without notifying other participants of new IP addresses. The use of IP multicasting also permits an economy of scale in the number of participants. We describe the MULITIBUS protocol elements and show how our implementation performs better than centralized bus implementations.

  9. Reviewing ChIPS, The Chandra Imaging and Plotting System

    NASA Astrophysics Data System (ADS)

    Miller, J.; Burke, D. J.; Evans, I. N.; Evans, J. D.; McLaughlin, W.

    2015-09-01

    The Chandra Imaging and Plotting System (ChIPS) is a 2D plotting system designed to allow users to easily create, manipulate, and produce publication quality visualizations. ChIPS has a simple but very powerful interactive interface that allows users to dynamically modify the contents and layout of their plots quickly and efficiently, with the results of any changes being immediately visible. ChIPS allows users to construct their plots fully interactively, and then save the final plot commands as a Python script. This bypasses the need to iteratively edit and rerun the script when developing the plot. Features such as undo and redo commands allow users to easily step backwards and forwards through previous commands, while the ability so save ChIPS sessions in a platform-independent state file allows the session to be restored at any time, even on another machine. Because ChIPS offers a Python interface, users can analyze their data using the broad array of modules offered in Python, and visualize the information in ChIPS at the same time. In this paper we explore the design decisions behind the development of ChIPS and some of the lessons learned along the way.

  10. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  11. Higher order annular Gaussian laser beam propagation in free space

    NASA Astrophysics Data System (ADS)

    Eyyuboglu, Halil T.; Yenice, Yusuf E.; Baykal, Yahya K.

    2006-03-01

    Propagation of higher order annular Gaussian (HOAG) laser beams in free space is examined. HOAG beams are defined as the difference of two Hermite-Gaussian (HG) beams; thus, they can be produced by subtracting a smaller beam from a larger beam, that are cocentered and both possess HG mode field distributions. Such beams can be considered as a generalization of the well-known annular Gaussian beams. We formulate the source and receiver plane characteristics and kurtosis parameter of HOAG beams propagating in free space and evaluate them numerically. In comparison to HG beams, HOAG beams have a broader beam size with outer lobes of kidney shape. The amount of received power within the same receiver aperture size, that is, power in bucket, is generally lower for higher order beams. The convergence of the kurtosis parameter to an asymptotic value for higher order beams takes much longer propagation distances compared to zero-order beams.

  12. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The digital IPS with wire cable and flex pivot nonlinearity is simulated on the digital computer to determine the effects of varying the sampling period T on the system stability, and to determine a range of optimal values of the parameters of the digital controller. The listing of the computer program is shown as well as the Dahl model for the flex pivot nonlinearity. For the wire cable nonlinearity, two ranges of values were used and the nominal values of the digital controller parameters are included.

  13. Beam break-up in the two beam accelerator

    SciTech Connect

    Whittum, D.H.; Travish, G.A.; Sessler, A.M.; Craig, G.D.; DeFord, J.F.

    1989-03-01

    We have studied numerically beam break-up (BBU) in the drive beam of a Two-Beam Accelerator (TBA), using transverse wakes calculated numerically using the AMOS Code. We examine only cumulative BBU due to the wake of the linear induction accelerator cavities. We do not consider regenerative BBU due to the relativistic klystron (RK) cavities. We find growth lengths of order /approximately/100 m for typical parameters. 14 refs., 2 figs., 1 tab.

  14. MACE: model based analysis of ChIP-exo

    PubMed Central

    Wang, Liguo; Chen, Junsheng; Wang, Chen; Uusküla-Reimand, Liis; Chen, Kaifu; Medina-Rivera, Alejandra; Young, Edwin J.; Zimmermann, Michael T.; Yan, Huihuang; Sun, Zhifu; Zhang, Yuji; Wu, Stephen T.; Huang, Haojie; Wilson, Michael D.; Kocher, Jean-Pierre A.; Li, Wei

    2014-01-01

    Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using λ exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors. PMID:25249628

  15. MEME-ChIP: motif analysis of large DNA datasets.

    PubMed

    Machanick, Philip; Bailey, Timothy L

    2011-06-15

    Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. The MEME-ChIP web service is designed to analyze ChIP-seq 'peak regions'--short genomic regions surrounding declared ChIP-seq 'peaks'. Given a set of genomic regions, it performs (i) ab initio motif discovery, (ii) motif enrichment analysis, (iii) motif visualization, (iv) binding affinity analysis and (v) motif identification. It runs two complementary motif discovery algorithms on the input data--MEME and DREME--and uses the motifs they discover in subsequent visualization, binding affinity and identification steps. MEME-ChIP also performs motif enrichment analysis using the AME algorithm, which can detect very low levels of enrichment of binding sites for TFs with known DNA-binding motifs. Importantly, unlike with the MEME web service, there is no restriction on the size or number of uploaded sequences, allowing very large ChIP-seq datasets to be analyzed. The analyses performed by MEME-ChIP provide the user with a varied view of the binding and regulatory activity of the ChIP-ed TF, as well as the possible involvement of other DNA-binding TFs. MEME-ChIP is available as part of the MEME Suite at http://meme.nbcr.net.

  16. MEME-ChIP: motif analysis of large DNA datasets

    PubMed Central

    Machanick, Philip; Bailey, Timothy L.

    2011-01-01

    Motivation: Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. Results: The MEME-ChIP web service is designed to analyze ChIP-seq ‘peak regions’—short genomic regions surrounding declared ChIP-seq ‘peaks’. Given a set of genomic regions, it performs (i) ab initio motif discovery, (ii) motif enrichment analysis, (iii) motif visualization, (iv) binding affinity analysis and (v) motif identification. It runs two complementary motif discovery algorithms on the input data—MEME and DREME—and uses the motifs they discover in subsequent visualization, binding affinity and identification steps. MEME-ChIP also performs motif enrichment analysis using the AME algorithm, which can detect very low levels of enrichment of binding sites for TFs with known DNA-binding motifs. Importantly, unlike with the MEME web service, there is no restriction on the size or number of uploaded sequences, allowing very large ChIP-seq datasets to be analyzed. The analyses performed by MEME-ChIP provide the user with a varied view of the binding and regulatory activity of the ChIP-ed TF, as well as the possible involvement of other DNA-binding TFs. Availability: MEME-ChIP is available as part of the MEME Suite at http://meme.nbcr.net. Contact: t.bailey@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21486936

  17. Inositol hexaphosphate (IP6) inhibits cellular proliferation in melanoma.

    PubMed

    Rizvi, Irfan; Riggs, Dale R; Jackson, Barbara J; Ng, Alex; Cunningham, Cynthia; McFadden, David W

    2006-06-01

    Inositol Hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate found in food sources high in fiber content. We have previously reported IP6 to have significant inhibitory effects against pancreatic cancer in vitro. We hypothesized that the IP6 would significantly inhibit cell growth of cutaneous melanoma in vitro. The melanoma line HTB68 was cultured using standard techniques and treated with IP6 at doses ranging from 0.2 to 1.0 mM/well. Cell viability was measured by MTT at 72 h. VEGF production was measured in the cell supernatants by ELISA. Apoptosis was evaluated by Annexin V-FITC and results calculated using FACS analysis. Statistical analysis was performed by ANOVA. Significant reductions (P < 0.001) in cellular proliferation were observed with IP6. Overall, IP6 exhibited a mean inhibition of cell growth of 52.1 +/- 11.5% (range, 1.6-83.0%) at 72 h of incubation. VEGF production was significantly reduced (P < 0.001) by the addition of IP6 (7.5 pg/ml) compared to control (40.9 pg/ml). IP6 significantly increased (P = 0.029) late apoptosis from 5.3 to 7.0% gated events. No changes in necrosis or early apoptosis were observed. Adjuvant treatment of melanoma continues to challenge clinicians and patients. Our findings that IP6 significantly decreased cellular growth, VEGF production and increased late apoptosis in melanoma suggest its potential therapeutic value. Further in vivo studies are planned to evaluate safety and clinical utility of this agent.

  18. MACE: model based analysis of ChIP-exo.

    PubMed

    Wang, Liguo; Chen, Junsheng; Wang, Chen; Uusküla-Reimand, Liis; Chen, Kaifu; Medina-Rivera, Alejandra; Young, Edwin J; Zimmermann, Michael T; Yan, Huihuang; Sun, Zhifu; Zhang, Yuji; Wu, Stephen T; Huang, Haojie; Wilson, Michael D; Kocher, Jean-Pierre A; Li, Wei

    2014-11-10

    Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using λ exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Siblings with optic neuropathy and RTN4IP1 mutation.

    PubMed

    Okamoto, Nobuhiko; Miya, Fuyuki; Hatsukawa, Yoshikazu; Suzuki, Yasuhiro; Kawato, Kazumi; Yamamoto, Yuto; Tsunoda, Tatsuhiko; Kato, Mitsuhiro; Saitoh, Shinji; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro

    2017-10-01

    Inherited optic neuropathies (IONs) are neurodegenerative disorders affecting the optic nerve and the nervous system. Dominant and recessive IONs are known. Many of the dominant IONs are caused by mutations of OPA1. Autosomal-recessive IONs are rare. OPA10 is an autosomal-recessive ION due to mutations in RTN4IP1. Patients with RTN4IP1 mutations show extraocular manifestations. We report brothers with optic neuropathy who had novel mutations in the RTN4IP1 gene. This is the first report of Japanese patients with OPA10. They showed extraocular manifestations resembling mitochondrial encephalopathy.

  20. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  1. Handbook for Using IP Protocols for Space Missions

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Criscuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will provide a summary of a handbook developed at GSFC last year that contains concepts and guidelines for using Internet protocols for space missions. It will include topics on: Lessons learned from current Space IP mission. General architectural issues related to use of IP in space. Operational scenarios for common space data transfer applications. Security issues. A general review of protocols applicable for use with IP in space. The presentation will also pose questions on what sort of information would be useful in future versions of the document.

  2. Architecture of fast IP forwarding engine in gigabit ethernet system

    NASA Astrophysics Data System (ADS)

    Do, Han C.; Lee, Hyeong H.; Cha, Kyoon Hyun

    1999-11-01

    In recent years, Internet traffic has been increased rapidly as a result of the Internet which accommodates multimedia traffic such as IP telephony and video conference. Gigabit routing technology is one possible approach to handle such internet traffic. This paper presents an efficient IP forwarding architecture adequate for Gigabit Ethernet switching system. The presented IP forwarding architecture is based upon distributed and pipelined process, which can effectively facilitate searching, editing, traffic classification, forwarding, and traffic management in parallel. Additionally, it can also process packets at full wire-speed in the ASIC level.

  3. Analysis and Modeling of Practical Experiment on IP Traffic Control

    NASA Astrophysics Data System (ADS)

    Suzuki, Tadamichi; Ito, Jungo; Nakano, Kazushi; Miki, Tetsuya

    In this paper, we focus on a practical experiment concerning IP traffic engineering over Multi-Protocol Label Switching (MPLS), especially which features feedback control capabilities. We present control-theoretic analysis of the experimental results based on acquired knowledge of actual network behavior. Because stable automated control capabilities are key issues in IP traffic engineering, we model an IP traffic control system based on the resulting analysis. In addition, comparison between simulated network behavior and actual one shows this model to have a high degree of stability, with a high potential for application to real networks.

  4. Genomic location analysis by ChIP-Seq

    PubMed Central

    Barski, Artem; Zhao, Keji

    2013-01-01

    The interaction of a multitude of transcription factors and other chromatin proteins with the genome can influence gene expression and subsequently cell differentiation and function. Thus systematic identification of binding targets of transcription factors is key to unraveling gene regulation networks. The recent development of ChIP-Seq has revolutionized mapping of DNA-protein interactions. Now protein binding can be mapped in a truly genome-wide manner with extremely high resolution. This review discusses ChIP-Seq technology, its possible pitfalls, data analysis and several early applications of the ChIP-Seq technology. PMID:19173299

  5. Handbook for Using IP Protocols for Space Missions

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Criscuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will provide a summary of a handbook developed at GSFC last year that contains concepts and guidelines for using Internet protocols for space missions. It will include topics on: Lessons learned from current Space IP mission. General architectural issues related to use of IP in space. Operational scenarios for common space data transfer applications. Security issues. A general review of protocols applicable for use with IP in space. The presentation will also pose questions on what sort of information would be useful in future versions of the document.

  6. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  7. Approaches in highly parameterized inversion - GENIE, a general model-independent TCP/IP run manager

    USGS Publications Warehouse

    Muffels, Christopher T.; Schreuder, Willem A.; Doherty, John E.; Karanovic, Marinko; Tonkin, Matthew J.; Hunt, Randall J.; Welter, David E.

    2012-01-01

    GENIE is a model-independent suite of programs that can be used to generally distribute, manage, and execute multiple model runs via the TCP/IP infrastructure. The suite consists of a file distribution interface, a run manage, a run executer, and a routine that can be compiled as part of a program and used to exchange model runs with the run manager. Because communication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST parameter estimation program. This report describes (1) the problem addressed; (2) the approach used by GENIE to queue, distribute, and retrieve model runs; and (3) user instructions, classes, and functions developed. It also includes (4) an example to illustrate the linking of GENIE with Parallel PEST using the interface routine.

  8. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J.

    2006-10-15

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  9. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  10. An integrated system CisGenome for analyzing ChIP-chip and ChIP-seq data

    PubMed Central

    Ji, Hongkai; Jiang, Hui; Ma, Wenxiu; Johnson, David S.; Myers, Richard M.; Wong, Wing H.

    2008-01-01

    CisGenome is a software system for analyzing genome-wide chromatin immunoprecipitation (ChIP) data. It is designed to meet all basic needs of ChIP data analyses, including visualization, data normalization, peak detection, false discovery rate (FDR) computation, gene-peak association, and sequence and motif analysis. In addition to implementing previously published ChIP-chip analysis methods, the software contains new statistical methods designed specifically for ChIP-seq data. CisGenome has a modular design so that it supports interactive analyses through a graphic user interface as well as customized batch-mode computation for advanced data mining. A built-in browser allows visualization of array images, signals, gene structure, conservation, and DNA sequence and motif information. We illustrate the use of these tools by a comparative analysis of ChIP-chip and ChIP-seq data for the transcription factor NRSF/REST, a study of ChIP-seq analysis without negative control sample, and an analysis of a novel motif in Nanog- and Sox2-binding regions. PMID:18978777

  11. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  12. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  13. The E-lens test bench for RHIC beam-beam compensation

    SciTech Connect

    Gu X.; Altinbas, F.Z.; Aronson, J.; Beebe, E. et al

    2012-05-20

    To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.

  14. Induced polarization (IP) imaging for the improved characterization of clay-rich landslides

    NASA Astrophysics Data System (ADS)

    Gallistl, Jakob; Flores-Orozco, Adrián; Ottowitz, David; Gautier, Stéphanie; Malet, Jean-Philippe

    2017-04-01

    Landslides pose a significant socio-economical natural hazard, in particular those developed in clay-rich environments due to their suddenness, volumes and propagations. Typically induced by meteorological phenomena (i.e. strong precipitations) the understanding of water circulation in clayey landslides is critical for an adequate hydromechanical modeling and the development of accurate early warning systems. In recent years, electrical resistivity tomography (ERT) has been widely applied to characterize the structure of landslides and monitoring of hydrogeological changes, aiming at an improved understanding of the water flow patterns. However, clay-rich sediments limit the applicability of ERT due the low contrast in the electrical signatures of clay minerals and saturated soil. Taking into account the strong induced polarization (IP) response in the presence of clay minerals, we propose the application of the IP imaging method to improve the delineation of structures and heterogeneities controlling water flow circulation in clayey landslides. To better evaluate the IP method at different geological conditions, here we discuss IP imaging results for data collected at two different landslides located in France (La Valette in the South East Alps, and Lodève located in the southern border of the Massif Central Massif) as well as two sites in Austria. These sites were selected due to the extensive non-geophysical information available and the ERT monitoring data measured over several years. IP measurements have been collected in both time- and frequency-domain to further assess the advantages of the different techniques in particular towards the quantification of hydrogeological parameters, such as dominating grain size and hydraulic conductivity. Imaging results demonstrate an improved lithological characterization, permitting the delineation of the sliding plane as well as a better discrimination of clay lenses with enhanced resolution. Nevertheless the clay

  15. OccuPeak: ChIP-Seq Peak Calling Based on Internal Background Modelling

    PubMed Central

    van den Boogaard, Malou; Christoffels, Vincent M.; Barnett, Phil; Ruijter, Jan M.

    2014-01-01

    ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background reads to account for local sequencing and GC bias. However, the GC-content of reads in Input-seq datasets deviates significantly from that in ChIP-seq datasets. Moreover, we observed that a commonly used peak calling program performed equally well when the use of a simulated uniform background set was compared to an Input-seq dataset. This contradicts the assumption that input control datasets are necessary to fatefully reflect the background read distribution. Because the GC-content of the abundant single reads in ChIP-seq datasets is similar to those of randomly sampled regions we designed a peak-calling algorithm with a background model based on overlapping single reads. The application, OccuPeak, uses the abundant low frequency tags present in each ChIP-seq dataset to model the background, thereby avoiding the need for additional datasets. Analysis of the performance of OccuPeak showed robust model parameters. Its measure of peak significance, the excess ratio, is only dependent on the tag density of a peak and the global noise levels. Compared to the commonly used peak-calling applications MACS and CisGenome, OccuPeak had the highest sensitivity in an enhancer identification benchmark test, and performed similar in an overlap tests of transcription factor occupation with DNase I hypersensitive sites and H3K27ac sites. Moreover, peaks called by OccuPeak were significantly enriched with cardiac disease-associated SNPs. OccuPeak runs as a standalone application and does not require extensive tweaking of parameters, making its use straightforward and user friendly. Availability: http://occupeak.hfrc.nl PMID:24936875

  16. A fast Gaussian beam tracing method for reflection and refraction of general vectorial astigmatic Gaussian beams from general curved surfaces

    NASA Astrophysics Data System (ADS)

    Rohani, A.; Shishegar, A. A.; Safavi-Naeini, S.

    2004-03-01

    A fast Gaussian beam tracing method for general vectorial astigmatic Gaussian beams based on phase matching has been formulated. Given the parameters of a vectorial Gaussian beam in its principal coordinate system the parameters of the reflected and refracted beams from a general curved surface (with general constitutive parameters) are found. The reflection and transmission of such beams from and through passive photonic structures such as lenses, mirrors and prisms can then be found by considering multiple reflections and transmissions.

  17. ChIP-on-chip analysis of DNA topoisomerases.

    PubMed

    Bermejo, Rodrigo; Katou, Yuki-Mori; Shirahige, Katsuhiko; Foiani, Marco

    2009-01-01

    Here we describe an adapted ChIP-on-chip protocol for the analysis of DNA topoisomerase chromosomal binding in Saccharomyces cerevisiae cells. The ChIP-on-chip technique is based on the immunoprecipitation of crosslinked chromatin (ChIP, chromatin immunoprecipitation), followed by DNA amplification and hybridization to high-density oligonucleotide arrays (Chip). Comparison of the signal intensities of immunoprecipitated and control fractions provides a measurement of the protein-DNA association along entire genomes. ChIP-on-chip analysis of DNA topoisomerase binding to chromosomal DNA opens a window to the understanding of the in vivo contribution of these enzymes to the different DNA transactions taking place concomitantly within the context of the highly organized eukaryotic genome. Chromosomal binding profiles obtained from synchronized cells allow scoring the temporal and spatial restriction of these enzymes at different cell cycle stages. By using this approach, novel aspects of DNA topoisomerase function in chromosome metabolism might be unmasked.

  18. Effect of intrapartum oropharyngeal (IP-OP) suction on meconium aspiration syndrome (MAS) in developing country: A RCT.

    PubMed

    Nangia, Sushma; Pal, Mansi M; Saili, Arvind; Gupta, Usha

    2015-12-01

    Evidence about IP-OP suction and selective tracheal intubation in meconium stained neonates is from developed countries. Little information is available about their role in developing countries with high incidence of meconium staining and MAS. This randomized trial was planned to evaluate the effectiveness of IP-OP suction in meconium stained term neonates on prevention of MAS and reduction of its severity. Out of 540 meconium stained full term, cephalic presentation, singleton neonates without major congenital malformations born from June'08 to January'09, 31 were excluded and 509 randomized. In the intervention group IP-OP suction was done at the time of delivery of head using a 10 Fr suction catheter with a negative pressure of 100 mmHg. No IP-OP suction was performed in control group. All neonates with MSAF were assessed as vigorous or non-vigorous after birth and provided care as per NRP guidelines 2005. Two hundred and fifty three neonates were randomized to IP-OP suction and 256 to no IP-OP suction. Eighty-two neonates (16%) developed MAS, the primary outcome parameter, with 40 infants in the intervention group (15.8%) and 42 (16.4%) in the non-intervention group (RR 0.86, 95% CI 0.60-1.54). Incidence of severe MAS was comparable (3.55% vs. 2.34%) (P value=0.40). Other variables like requirement of oxygen >48 h (9.8% vs. 10.5%) and mortality (2.7% vs. 1.7%) were also comparable. IP-OP suctioning did not reduce the incidence or severity of MAS even in a setting of high incidence of MAS in a developing country. The mortality in two groups was comparable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Understanding Laser Beam Quality Beyond M2

    NASA Astrophysics Data System (ADS)

    Soskind, Y. G.; Soskind, M. G.

    2016-09-01

    The laser beam M2 quality parameter is based on the second moments' theory, as defined by ISO standards, and provides a common approach for defining the propagation characteristics of laser beams as a whole. At the same time, the M2 parameter fails to quantitatively distinguish the quality of laser beams with different spatial characteristics. For example, several laser beams with very different spatial profiles may have the same M2 value. To overcome this ambiguity, a different beam quality criterion is introduced, allowing for a quantitative definition of both the structured laser beam shape and its propagation characteristics. This criterion, called the encircled power M2 (EPM2), bridges the gap between the M2 quality parameter and the structured laser beam shape. Based on several examples we demonstrate the utility of EPM2 as applied to characterization of several structured laser beam types.

  20. IPS Space Weather Research: Korea-Japan-UCSD

    DTIC Science & Technology

    2015-04-27

    measure the selected radio sources around the sky at 327 MHz which is same frequency for use in Japan during last 30 years to derive solar wind velocities...Environment Laboratory (STELab), Japan . The new KSWC system is dedicated to IPS observation and observed data can be used for UCSD model input in...version of the UCSD 3-D IPS model at KSWC for space weather forecasting purpose based on the observed data primarily from Japan and Korea