Science.gov

Sample records for ip beam parameters

  1. Reconstruction of IP Beam Parameters at the ILC From Beamstrahlung

    SciTech Connect

    White, G.; /SLAC /Queen Mary, U. of London

    2005-07-11

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  2. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    SciTech Connect

    Bolzon, Benoit; Jeremie, Andrea; Bai, Sha; Bambade, Philip; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  3. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  4. Fatigue failure parameters of IPS-Empress porcelain.

    PubMed

    Myers, M L; Ergle, J W; Fairhurst, C W; Ringle, R D

    1994-01-01

    The purpose of this study was to determine the stress corrosion fatigue characteristics of a heat-pressed ceramic material, IPS-Empress. Disks (1 mm thick, 12 mm in diameter) were prepared, polished, and subjected to dynamic loading at multiple constant stressing rates. Fatigue tests were conducted in a circulating bath using a biaxial flexure test. The inert strength of the samples was determined in oil. The mean fracture strength for the inert tests was 135.7 MPa. Linear regression analysis of log fracture strengths vs log time to failure was performed to obtain fatigue parameters. For IPS-Empress the n value was 31 (SE 3.5) and sigma f0 was 83.3 MPa (SE 1.3 MPa).

  5. NLC Luminosity as a Function of Beam Parameters

    SciTech Connect

    Nosochkov, Yuri

    2002-06-06

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  6. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks

    NASA Astrophysics Data System (ADS)

    Uwamahoro, J.; McKinnell, L. A.; Habarulema, J. B.

    2012-06-01

    Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME) and related interplanetary (IP) events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW), the CME speed (Vcme), and the comprehensive flare index (cfi), which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw) and the southward Z-component of the interplanetary magnetic field (IMF) or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN) model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties) observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set) covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ -100 nT). For moderate storms (-100 < Dst ≤ -50), the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.

  7. Combined Phase SpaceCharacterization at the PEP-II IP using Single-beam and Luminous-region Measurements

    SciTech Connect

    Bevan, A.; Kozanecki, W.; Viaud, B.; Cai, Y.; Fisher, A.; O'Grady, C.; Thompson, J.; Weaver, M.; /SLAC

    2006-06-23

    We present a novel method to characterize the e{sup {+-}} phase space at the IP of the SLAC B-factory, that combines single-beam measurements with a detailed mapping of luminous-region observables. Transverse spot sizes are determined in the two rings with synchrotron-light monitors and extrapolated to the IP using measured lattice functions. The specific luminosity, which is proportional to the inverse product of the overlap IP beam sizes, is continuously monitored using radiative/Bhabha events. The spatial variation of the luminosity and of the transverse-boost distribution of the colliding e{sup {+-}}, are measured using e{sup +}e{sup -} {yields} {mu}{sup +}{mu}{sup -} events reconstructed in the BABAR detector. The combination of these measurements provide constraints on the emittances, horizontal and vertical spot sizes, angular divergences and {beta} functions of both beams at the IP during physics data-taking. Preliminary results of this combined spot-size analysis are confronted with independent measurements of IP {beta}-functions and overlap IP beam sizes at low beam current.

  8. Ion beam parameters of a plasma accelerator

    SciTech Connect

    Nazarov, V.G.; Vinogradov, A.M.; Veselovzorov, A.N.; Efremov, V.K.

    1987-08-01

    The aim of this investigation was to determine the dependences of the current density, the energy, and the divergence of the ion beams of an UZDP-type source (a plasma accelerator with closed electron drift in the accelerator channel and an extended zone of ion acceleration) on the parameters which determine its performance, and to establish qualitative relationships between these values.

  9. Dynamic measurements of beam-pump parameters

    SciTech Connect

    Lea, J.F.; Bowen, J.F. )

    1992-02-01

    Measurements of nine electrical and mechanical parameters were made on conventional and special-geometry units during operation of beam-pump/sucker rod systems in oil and natural gas wells. All quantities were measured simultaneously and computer-recorded for a variety of pumping conditions. In this paper, using this data, the authors compared measured dynamic gearbox torques with calculated values, illustrating how calculation techniques model dynamically measured data. Calculated efficiencies indicating losses through the units from polished rod to the gearbox are shown to be necessary for adjusting gearbox torque calculations to measured values. Also, torque/speed curves are shown at the motor sheave. These data are corrected for inertial effects and plotted vs. motor manufacturers' published curves. Possibilities for future work incorporating these measurement techniques while the unit is in operation were discussed. In general, the data show how dynamically measured beam-pump data compare with conventional calculation techniques.

  10. Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size

    SciTech Connect

    White, Glen; Seryi, Andrei; Woodley, Mark; Bai, Sha; Bambade, Philip; Renier, Yves; Bolzon, Benoit; Kamiya, Yoshio; Komamiya, Sachio; Oroku, Masahiro; Yamaguchi, Yohei; Yamanaka, Takashi; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Marin, Eduardo; /CERN

    2012-07-06

    The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (< 12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere. The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the tuning procedures and describe operational experiences and performances.

  11. Free Electron Lasers with Slowly Varying Beam and Undulator Parameters

    SciTech Connect

    Huang, Z; Stupakov, G.; /SLAC

    2005-05-25

    The performance of a free electron lasers (FEL) is affected when the electron beam energy varies alone the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime until FEL saturation. In this paper, we present a self-consistent theory of FELs with slowly-varying beam and undulator parameters. A general method is developed to apply the WKB approximation to the beam-radiation system by employing the adjoint eigenvector that is orthogonal to the eigenfunctions of the coupled Maxwell-Vlasov equations. This method may be useful for other slowly varying processes in beam dynamics.

  12. Faraday cup characterization of electron beam welding parameters

    SciTech Connect

    Burgardt, P.; Knaus, S.E.; Kautz, D.D.

    1987-10-12

    The use of the electron beam welding process to produce precision welds on many materials has been well documented in the literature. Some joint configurations may need more parameter control than is typically afforded by the standard electron beam welding machine. The repeatability and transferability of the electron beam welding parameters must also be regarded during weld development on many designs. Types of instrumentation which enhance the parameter control should be developed to higher levels. This instrumentation is important to the accurate transfer of technology between welding machines and production cycles. 7 refs., 6 figs., 1 tab.

  13. Measurement of diagnostic neutral beam parameters on J-TEXT

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Cheng, Z. F.; Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  14. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful. PMID:24289448

  15. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  16. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  17. Note: Characteristic beam parameter for the line electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  18. Measurement and simulation of the TRR BNCT beam parameters

    NASA Astrophysics Data System (ADS)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  19. Parameter estimation for the Euler-Bernoulli-beam

    NASA Technical Reports Server (NTRS)

    Graif, E.; Kunisch, K.

    1984-01-01

    An approximation involving cubic spline functions for parameter estimation problems in the Euler-Bernoulli-beam equation (phrased as an optimization problem with respect to the parameters) is described and convergence is proved. The resulting algorithm was implemented and several of the test examples are documented. It is observed that the use of penalty terms in the cost functional can improve the rate of convergence.

  20. Optimal vibration control of curved beams using distributed parameter models

    NASA Astrophysics Data System (ADS)

    Liu, Fushou; Jin, Dongping; Wen, Hao

    2016-12-01

    The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.

  1. Research on method for laser beam shape parameters detection

    NASA Astrophysics Data System (ADS)

    Su, Jun-hong; Bai, Zhao-feng

    2014-09-01

    The laser beam quality measurement has become a hot topic in the field of laser engineering nowadays. Based on the method of Hartmann-Shack, the four-wave lateral shearing interferometer is presented in this paper to achieve the laser beam shape parameters. The principle of shearing technology is described in detail. Parameters of semiconductor laser at 532nm and ZYGO interferometer laser are tested based on the method of four-wave lateral shearing interference and their test results are compared with the nominal parameters. As the results, the test results are basically consistent with the nominal value, which fully shows the feasibility of the four-wave lateral shearing interference method.

  2. Beam Diagnostics Based on AC Modulation of System Parameters

    SciTech Connect

    Michael Tiefenback

    2004-11-10

    To improve the performance of operating accelerators, quantities such as lattice functions, beam transfer functions, betatron frequencies, etc, can be measured turn by turn with beam position monitors or from difference measurements using step changes in system parameters. Spectral measurements in closed orbit machines provide accurate values for some properties. But for open-ended systems and some measurements in closed-orbit machines, periodic modulation can be very useful for obtaining information about the beam line. Using examples from existing machines, we compare and contrast beam based modulation techniques and step function or passive measurements. For example, large amplitude dipole modulation in rings can be used in dedicated exploration of nonlinear optical properties without beam degradation, even allowing for tune spread effects. Low-level modulation can provide real-time system monitoring with no adverse effect on beam users. Examples considered include fully resonant dipole modulation in storage rings such as RHIC (hadrons) and PEP-II (electrons), and the continuous low-level modulation used in the CEBAF recirculating electron linac for real-time feedback to improve availability.

  3. An investigation of beam parameters for Co-60 tomotherapy

    SciTech Connect

    Cadman, Pat

    2007-10-15

    The effect of various physical beam parameters for Co-60 tomotherapy is examined, including: Cylindrical source size, source-to-collimator distance (SCD) and collimator leaf width. In general, beam profile effects are seen with larger Co-60 sources that are not seen with conventional linacs and multileaf collimators that are used for IMRT, including a broadening of the profile width as the source width increases. A treatment planning study was conducted to evaluate the effect of various beam parameter combinations with planning regions of interest typical of a simultaneous boost head and neck treatment. Combinations of SCD and source FWHM that produce an 80%-20% profile distance less than approximately 0.85 cm at 0.5 cm depth produced a Co-60 tomotherapy plan with better DVH results than a conventional 7-field linac plan for a 1 cm leaf width. Further improvement may be achieved by reducing the leaf width. In general it may be concluded that commercially available cylindrical Co-60 sources of 1.5-2.0 cm diameter may be appropriate for tomotherapy if the proper combination of beam parameters is chosen.

  4. Multiple beam interference model for measuring parameters of a capillary.

    PubMed

    Xu, Qiwei; Tian, Wenjing; You, Zhihong; Xiao, Jinghua

    2015-08-01

    A multiple beam interference model based on the ray tracing method and interference theory is built to analyze the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii of the capillary, the refractive indices of the liquid, and the wall material. PMID:26368114

  5. Multiple beam interference model for measuring parameters of a capillary.

    PubMed

    Xu, Qiwei; Tian, Wenjing; You, Zhihong; Xiao, Jinghua

    2015-08-01

    A multiple beam interference model based on the ray tracing method and interference theory is built to analyze the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii of the capillary, the refractive indices of the liquid, and the wall material.

  6. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    SciTech Connect

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-07-15

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 {+-} 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  7. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  8. Impact of cutout off axis on electron beam dosimetric parameters.

    PubMed

    Arunkumar, T; Supe, S S; Ravikumar, M; Sathiyan, S; Ganesh, K M

    2012-04-01

    Dosimetric changes caused by the positional uncertainty of centering a small electron cutout to the machine central axis (CAX) of the linear accelerator (linac) were investigated. Six circular cutouts with 4 cm diameter were made with their centres shifted off by 0, 2, 4, 6, 8 and 10 mm from the machine CAX. The 6 x 6 cm(2) electron applicator was used for the measurement. The percentage depth doses (PDDs) were measured at the Machine CAX and also with respect to cutout centre for 6, 9, 12, 16 and 20 MeV electron beams. The in-line and cross-line profiles were measured at the depth of maximum dose (R100). The relative output factor (ROF) was measured at the reference depth. All the measurements were made at nominal source to surface distance (100 cm SSD) as well as at extended SSDs (100, 102, 106 and 110 cm). When the cutout centre was shifted away from the machine CAX for low energy beams the depth of 100% dose (R(100)), the depth of 90% dose (R(90)) and the depth of 80% dose (R(80)) had no significant change. For higher energies (>9 MeV) there was a reduction in these dosimetric parameters. The isodose coverage of the in-line and cross-line profile was reduced when the cutout centre was shifted away from the machine CAX. At extended SSDs the dosimetric changes are only because of geometric divergence of the beam and not by the positional uncertainty of the cutout. It is important for the radiation oncologist, dosimetrist, therapist and physicist to note such dosimetric changes while using the electron beam to the patients. PMID:22335408

  9. Effects of e-beam parameters on coherent electron cooling

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.; Wang, G.

    2011-03-28

    Coherent Electron Cooling (CeC) requires detailed control of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. Coherent Electron Cooling (CeC) [1] is a new concept in intense, high energy hadron beamcooling, in which the Debye screened charge perturbation calculated in [2] is used to seed a high-gain free electron laser (FEL). Using delays to give the perturbing hadron an energy-dependent longitudinal displacement relative to its frequencymodulated charge perturbation, the hadron receives an energy-dependent kick which reduces its energy variation from the design energy. The equations of motion in [1] assume that the electron bunch is the same physical size as the hadron bunch, and has a homogeneous charge density across the entire bunch. In practice, the electron bunches will be much shorter than the hadron bunch, and this local spacial inhomogeneity in the charge distribution will alter the gain length of the FEL, resulting in both a change in the amplification of the initial signal and a phase shift. In this paper we consider these inhomogeneity effects, determining cooling equations for bunched beam CeC consistent with these effects and determining thresholds for the cooling parameters.

  10. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    NASA Astrophysics Data System (ADS)

    Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torromé, R. G.; Wolski, A.

    2014-05-01

    In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  11. A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam

    NASA Astrophysics Data System (ADS)

    F, Khannous; A, A. A. Ebrahim; A, Belafhal

    2016-04-01

    Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre–Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.

  12. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.

    2014-08-15

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  13. Effects of injection beam parameters and foil scattering for CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  14. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams

    NASA Astrophysics Data System (ADS)

    Simpson, Emma; Gajewski, Romuald; Flower, Emily; Stensmyr, Rachel

    2015-07-01

    Removal of the flattening filter alters the energy spectrum of the photon beam such that current beam quality specifiers may not correctly account for this change when predicting the Spencer-Attix restricted water-to-air mass collision stopping-power ratio, ~≤ft({\\bar{\\text L}}/ρ \\right)\\text{air}\\text{water} . Johnsson et al (2000 Phys. Med. Biol. 45 2733-45) proposed a beam quality specifier, known as the dual parameter beam quality specifier, which was calculated via Monte Carlo (MC) simulations using transmission data of primary kerma through two differing thicknesses of water material. Ceberg et al (2010 Med. Phys. 37 1164-8) extended this MC study to include relevant flattening filter free (FFF) beam data. Experimental investigations of this dual parameter beam quality specifier have not previously been published, therefore the purpose of this work was to validate that the dual parameter beam quality specifier could be measured experimentally for clinical beams (both with a flattening filter (WFF) and without (FFF)). Transmission measurements of primary kerma were performed by employing the setup outlined in Johnsson et al (1999 Phys. Med. Biol. 44 2445-50). Varying absorber thicknesses, in 5 cm increments from 5 to 40 cm, were placed at isocentre with the chamber positioned at an extended source to chamber distance of 300 cm. Experimental setup for TPR20,10 and %dd(10)x followed the methodology outlined in IAEA TRS398 (2004) and TG-51 (1999) with AAPM Addendum to TG-51 (2014) respectively. The maximum difference of ~≤ft({\\bar{\\text L}}/ρ \\right)\\text{air}\\text{water} determined using the different beam quality specifiers was found to be 0.35%. Analysis of the absorber thickness combination found that small thicknesses (<10 cm) for the first absorber and absorbers similar in thickness (<10 cm) should be avoided. Stopping-power ratios of the beams investigated were determined using three different beam quality specifiers. The results

  15. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams.

    PubMed

    Simpson, Emma; Gajewski, Romuald; Flower, Emily; Stensmyr, Rachel

    2015-07-21

    Removal of the flattening filter alters the energy spectrum of the photon beam such that current beam quality specifiers may not correctly account for this change when predicting the Spencer-Attix restricted water-to-air mass collision stopping-power ratio, (L/ρ)(water)(air). Johnsson et al (2000 Phys. Med. Biol. 45 2733-45) proposed a beam quality specifier, known as the dual parameter beam quality specifier, which was calculated via Monte Carlo (MC) simulations using transmission data of primary kerma through two differing thicknesses of water material. Ceberg et al (2010 Med. Phys. 37 1164-8) extended this MC study to include relevant flattening filter free (FFF) beam data. Experimental investigations of this dual parameter beam quality specifier have not previously been published, therefore the purpose of this work was to validate that the dual parameter beam quality specifier could be measured experimentally for clinical beams (both with a flattening filter (WFF) and without (FFF)). Transmission measurements of primary kerma were performed by employing the setup outlined in Johnsson et al (1999 Phys. Med. Biol. 44 2445-50). Varying absorber thicknesses, in 5 cm increments from 5 to 40 cm, were placed at isocentre with the chamber positioned at an extended source to chamber distance of 300 cm. Experimental setup for TPR20,10 and %dd(10)x followed the methodology outlined in IAEA TRS398 (2004) and TG-51 (1999) with AAPM Addendum to TG-51 (2014) respectively. The maximum difference of (L/ρ)(water)(air) determined using the different beam quality specifiers was found to be 0.35%. Analysis of the absorber thickness combination found that small thicknesses (<10 cm) for the first absorber and absorbers similar in thickness (<10 cm) should be avoided. Stopping-power ratios of the beams investigated were determined using three different beam quality specifiers. The results demonstrated successful experimental determination of the dual parameter beam quality

  16. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  17. Specialty flat-top beam delivery fibers with controlled beam parameter product

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  18. Parameters estimation of sandwich beam model with rigid polyurethane foam core

    NASA Astrophysics Data System (ADS)

    Barbieri, Nilson; Barbieri, Renato; Winikes, Luiz Carlos

    2010-02-01

    In this work, the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained using the finite element method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm (GA). The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters estimated are Young's modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene.

  19. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect

    Abernathy, Douglas L; Niedziela, Jennifer L; Stone, Matthew B

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  20. On the focused beam parameters of an electron gun with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  1. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGESBeta

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  2. Simulation Studies of Temperature Anisotropy Instability in Intense Charged Particle Beams for IBX Parameters

    NASA Astrophysics Data System (ADS)

    Startsev, E. A.; Davidson, R. C.; Qin, H.

    2003-10-01

    The Integrated Beam Experiment (IBX) is a proof-of-principal experiment for heavy ion fusion designed to test source-to-target beam physics using a single beam of K^+ ions of duration 0.2 - 1.5 μ s, accelerated to energies 5-10 MeV, and driver-scale normalized perviance in the range 10-5 -10-3. An important physics issue to be addressed by IBX is the effect of longitudinal-transverse coupling on the beam transport and focusibility of the driver. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, Phys. Plasmas 9, 3138, 2002] demonstrated that a fast, electrostatic, Harris-like instability may develop. This paper reports the results of recent simulations of the temperature anisotropy instability using the Beam Equilibrium Stability Transport (BEST) code for IBX parameters.

  3. Electron beam treatment parameters for control of stored product insects

    NASA Astrophysics Data System (ADS)

    Cleghorn, D. A.; Nablo, S. V.; Ferro, D. N.; Hagstrum, D. W.

    2002-03-01

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil ( S. oryzae), the lesser grain borer ( R. dominica) and the red flour beetle ( T. castaneum). The major challenge to this process lies in those "protected" life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kV×200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated.

  4. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  5. Key clinical beam parameters for nanoparticle-mediated radiation dose amplification

    PubMed Central

    Detappe, Alexandre; Kunjachan, Sijumon; Drané, Pascal; Kotb, Shady; Myronakis, Marios; Biancur, Douglas E.; Ireland, Thomas; Wagar, Matthew; Lux, Francois; Tillement, Olivier; Berbeco, Ross

    2016-01-01

    As nanoparticle solutions move towards human clinical trials in radiation therapy, the influence of key clinical beam parameters on therapeutic efficacy must be considered. In this study, we have investigated the clinical radiation therapy delivery variables that may significantly affect nanoparticle-mediated radiation dose amplification. We found a benefit for situations which increased the proportion of low energy photons in the incident beam. Most notably, “unflattened” photon beams from a clinical linear accelerator results in improved outcomes relative to conventional “flat” beams. This is measured by significant DNA damage, tumor growth suppression, and overall improvement in survival in a pancreatic tumor model. These results, obtained in a clinical setting, clearly demonstrate the influence and importance of radiation therapy parameters that will impact clinical radiation dose amplification with nanoparticles. PMID:27658637

  6. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  7. LVR-15 reactor epithermal neutron beam parameters--results of measurements.

    PubMed

    Burian, J; Klupak, V; Marek, M; Rejchrt, J; Viererbl, L; Gambarini, G; Bartesaghi, G

    2009-07-01

    The epithermal neutron beam of the LVR-15 reactor provides the appropriate conditions for varied BNCT activity. The principal parameters have been frequently determined. The following detectors have been used for the measurement: set of activation monitors of different nuclides irradiated in free beam and in the water phantom, Si semiconductor detector with (6)LiF converter, twin ionization chambers, thermoluminescence dosimeters, gel dosimeters used for imaging of separate part of dose, neutron spectrometer of Bonner type. Obtained results of measured parameters are presented in the paper.

  8. PVM and IP multicast

    SciTech Connect

    Dunigan, T.H.; Hall, K.A.

    1996-12-01

    This report describes a 1994 demonstration implementation of PVM that uses IP multicast. PVM`s one-to-many unicast implementation of its pvm{_}mcast() function is replaced with reliable IP multicast. Performance of PVM using IP multicast over local and wide-area networks is measured and compared with the original unicast implementation. Current limitations of IP multicast are noted.

  9. Characterization of plasma parameters, first beam results, and status of electron cyclotron resonance source

    SciTech Connect

    Jain, S. K.; Jain, Akhilesh; Hannurkar, P. R.; Kotaiah, S.

    2007-05-15

    Electron cyclotron resonance (ECR) plasma source at 50 keV, 30 mA proton current has been designed, fabricated, and assembled. Its plasma study has been done. Plasma chamber was excited with 350 W of microwave power at 2450 MHz, along with nitrogen and hydrogen gases. Microwave power was fed to the plasma chamber through waveguide. Plasma density and electron temperature were studied under various operating conditions, such as magnetic field, gas pressure, and transversal distance. Langmuir probe was used for plasma characterization using current-voltage variation. The nitrogen plasma density calculated was approximately 4.5x10{sup 11} cm{sup -3}, and electron temperatures of 3-10 eV (cold) and 45-85 eV (hot) were obtained. The total ion beam current of 2.5 mA was extracted, with two-electrode extraction geometry, at 15 keV beam energy. The optimization of the source is under progress to extract 30 mA proton beam current at 50 keV beam energy, using three-electrode extraction geometry. This source will be used as an injector to continuous wave radio frequency quadrupole, a part of 100 MeV proton linac. The required root-mean-square normalized beam emittance is less than 0.2{pi} mm mrad. This article presents the study of plasma parameters, first beam results, and status of ECR proton source.

  10. Characterization of plasma parameters, first beam results, and status of electron cyclotron resonance source.

    PubMed

    Jain, S K; Jain, Akhilesh; Hannurkar, P R; Kotaiah, S

    2007-05-01

    Electron cyclotron resonance (ECR) plasma source at 50 keV, 30 mA proton current has been designed, fabricated, and assembled. Its plasma study has been done. Plasma chamber was excited with 350 W of microwave power at 2450 MHz, along with nitrogen and hydrogen gases. Microwave power was fed to the plasma chamber through waveguide. Plasma density and electron temperature were studied under various operating conditions, such as magnetic field, gas pressure, and transversal distance. Langmuir probe was used for plasma characterization using current-voltage variation. The nitrogen plasma density calculated was approximately 4.5 x 10(11) cm(-3), and electron temperatures of 3-10 eV (cold) and 45-85 eV (hot) were obtained. The total ion beam current of 2.5 mA was extracted, with two-electrode extraction geometry, at 15 keV beam energy. The optimization of the source is under progress to extract 30 mA proton beam current at 50 keV beam energy, using three-electrode extraction geometry. This source will be used as an injector to continuous wave radio frequency quadrupole, a part of 100 MeV proton linac. The required root-mean-square normalized beam emittance is less than 0.2pi mm mrad. This article presents the study of plasma parameters, first beam results, and status of ECR proton source.

  11. Influence of the axicon characteristics and beam propagation parameter M{sup 2} on the formation of Bessel beams from semiconductor lasers

    SciTech Connect

    Sokolovskii, G S; Dyudelev, V V; Losev, S N; Butkus, M; Soboleva, K K; Sobolev, A I; Deryagin, A G; Kuchinskii, V I; Sibbet, V; Rafailov, E U

    2013-05-31

    We study the peculiarities of the formation of Bessel beams in semiconductor lasers with a high propagation parameter M{sup 2}. It is shown that the propagation distance of the Bessel beam is determined by the divergence of the quasi-Gaussian beam with high M{sup 2} rather than the geometric parameters of the optical scheme. It is demonstrated that technologically inevitable rounding of the axicon tip leads to a significant increase in the transverse dimension of the central part of the Bessel beam near the axicon. (semiconductor lasers. physics and technology)

  12. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  13. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence.

    PubMed

    Zhu, Kaicheng; Li, Shaoxin; Tang, Ying; Yu, Yan; Tang, Huiqin

    2012-03-01

    Based on the integral representation of Bessel function and the extended Huygens-Fresnel principle, an integral expression of the Wigner distribution function (WDF) for partially coherent Bessel-Gaussian beams (PBGBs) propagating through turbulent atmosphere has been obtained. Also, the analytical formulas of the M2-factor for PBGB propagation in such a medium have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The performed numerical results reveal that the M2-factor of a PBGB in turbulent atmosphere depends on the beam parameters of the initial input beam, the structure constants of the turbulent atmosphere, and the propagation distance. These results may be useful in long-distance optical communications in free space or in turbulent atmosphere.

  14. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  15. Measuring the optical parameters of thin films by p-polarized laser beams

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Liang, Peihui; Zhang, Weiqing; Tang, Yongxing

    1998-03-01

    The refractive index nf, extinction coefficient kf and thickness df of a dip coated film are measured by using p-polarized laser beams. A sample is oblique illuminated with a p-polarized laser beam, and then two reflected beams, from the front and back surfaces, are received with a detector. After measuring their intensity ratio versus the angle of incidence, it is convenient to obtain the parameters of the film by means of data fitting. The films of polymethyltriethoxy silane (PMTES), which were made on a BK-7 glass substrate by dip coating, were measured. The method is non-contact, non-destructive and has the advantages of simplicity of both equipment and understanding. It is also shown that the values measured by this method are coincident with those measured by ellipsometry.

  16. Effects of select parameters on electron beam welding of AL6061-T6 alloy

    NASA Astrophysics Data System (ADS)

    Yost, Thomas E.

    Electron beam welding was used for joining Al6061-T6, precision machined, cylindrical sections. The welded assembly exhibited a minimum amount of distortion, but a better understanding of the effects of several key welding parameters on the structural integrity of the weld was required. The contents of this document describe the relative importance and interaction between welding speed, volume of filler, and beam pattern on the microstructural and mechanical properties of the welded joint. Understanding of the relationship between welding parameters and weld properties was accomplished by macrophotography and microstructural examination, microhardness testing, energy dispersive spectroscopy (EDX), and mechanical tensile testing of weld coupons. The results of this study will help quantify the robustness of the EBW process for this common aerospace material and joint geometry and will help determine the impacts of process deviations on weld fidelity in the production environment.

  17. Investigation of collimating and focusing lenses' impact on laser diode stack beam parameter product.

    PubMed

    Yu, Hao; Liu, Yu; Braglia, Andrea; Rossi, Giammarco; Perrone, Guido

    2015-12-01

    The paper presents a new expression for determining the beam parameter product of a multi-emitter laser diode module made by stacking several single emitter chips. The proposed formula takes into account the effect of collimating and focusing lenses and has been validated experimentally, obtaining excellent agreement between theoretical expectations and measurements. A practical application to optimize the lenses' configuration for the design of a fiber-coupled multi-emitter module is also reported.

  18. Determination of the initial beam parameters in Monte Carlo linac simulation.

    PubMed

    Aljarrah, Khaled; Sharp, Greg C; Neicu, Toni; Jiang, Steve B

    2006-04-01

    For Monte Carlo linac simulations and patient dose calculations, it is important to accurately determine the phase space parameters of the initial electron beam incident on the target. These parameters, such as mean energy and radial intensity distribution, have traditionally been determined by matching the calculated dose distributions with the measured dose distributions through a trial and error process. This process is very time consuming and requires a lot of Monte Carlo simulation experience and computational resources. In this paper, we propose an easy, efficient, and accurate method for the determination of the initial beam parameters. We hypothesize that (1) for one type of linacs, the geometry and material of major components of the treatment head are the same; the only difference is the phase space parameters of the initial electron beam incident on the target, and (2) most linacs belong to a limited number of linac types. For each type of linacs, Monte Carlo treatment planning system (MC-TPS) vendors simulate the treatment head and calculate the three-dimensional (3D) dose distribution in water phantom for a grid of initial beam energies and radii. The simulation results (phase space files and dose distribution files) are then stored in a data library. When a MC-TPS user tries to model their linac which belongs to the same type, a standard set of measured dose data is submitted and compared with the calculated dose distributions to determine the optimal combination of initial beam energy and radius. We have applied this method to the 6 MV beam of a Varian 21EX linac. The linac was simulated using EGSNRC/BEAM code and the dose in water phantom was calculated using EGSNRC/DOSXYZ. We have also studied issues related to the proposed method. Several common cost functions were tested for comparing measured and calculated dose distributions, including chi2, mean absolute error, dose difference at the penumbra edge point, slope of the dose difference of the

  19. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method

    NASA Astrophysics Data System (ADS)

    Sedighi, Hamid M.; Shirazi, Kourosh H.

    2013-04-01

    This paper presents a new asymptotic procedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric field. The nonlinear equation of motion includes both even and odd nonlinearities. A powerful analytical method called Parameter Expansion Method (PEM) is employed to obtain the approximated solution and frequency-amplitude relationship. It is demonstrated that the first two terms in series expansions are sufficient to produce an acceptable solution of mentioned system. The obtained results from numerical methods verify the soundness of the analytical procedure. Finally, the influences of basic parameters on pull-in instability and natural frequency are investigated.

  20. SU-D-19A-04: Parameter Characterization of Electron Beam Monte Carlo Phase Space of TrueBeam Linacs

    SciTech Connect

    Rodrigues, A; Yin, F; Wu, Q; Sawkey, D

    2014-06-01

    Purpose: For TrueBeam Monte Carlo simulations, Varian does not distribute linac head geometry and material compositions, instead providing a phase space file (PSF) for the users. The PSF has a finite number of particle histories and can have very large file size, yet still contains inherent statistical noises. The purpose of this study is to characterize the electron beam PSF with parameters. Methods: The PSF is a snapshot of all particles' information at a given plane above jaws including type, energy, position, and directions. This study utilized a preliminary TrueBeam PSF, of which validation against measurement is presented in another study. To characterize the PSF, distributions of energy, position, and direction of all particles are analyzed as piece-wise parameterized functions of radius and polar angle. Subsequently, a pseudo PSF was generated based on this characterization. Validation was assessed by directly comparing the true and pseudo PSFs, and by using both PSFs in the down-stream MC simulations (BEAMnrc/DOSXYZnrc) and comparing dose distributions for 3 applicators at 15 MeV. Statistical uncertainty of 4% was limited by the number of histories in the original PSF. Percent depth dose (PDD) and orthogonal (PRF) profiles at various depths were evaluated. Results: Preliminary results showed that this PSF parameterization was accurate, with no visible differences between original and pseudo PSFs except at the edge (6 cm off axis), which did not impact dose distributions in phantom. PDD differences were within 1 mm for R{sub 7} {sub 0}, R{sub 5} {sub 0}, R{sub 3} {sub 0}, and R{sub 1} {sub 0}, and PRF field size and penumbras were within 2 mm. Conclusion: A PSF can be successfully characterized by distributions for energy, position, and direction as parameterized functions of radius and polar angles; this facilitates generating sufficient particles at any statistical precision. Analyses for all other electron energies are under way and results will be

  1. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-01

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  2. Effect of light source parameters on the polarization properties of the beam

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  3. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider

    SciTech Connect

    Alexahin, Y.; Ohmi, K.; /KEK, Tsukuba

    2012-05-01

    In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

  4. Real time M2 and beam parameter product measurement using GigE CMOS sensors

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2016-03-01

    The ISO 11146-1 standard for measurement of a laser's M-square requires the minimum measurement of five (5) spatial profiles within the first Rayleigh range and an addition five (5) outside the second Rayleigh range. The first five spatial profiles within the first Rayleigh range establish the beam waist and its location; the second five beyond the second Rayleigh range establish the divergence or convergence from the focusing lens for the M-square computation. The majority of methods used to date are all time averaged and as such are incapable of a real time M-square measurement. We present an ISO 11146-1 compliant method for measuring single shot M-square or beam parameter product values or the measurement of continuous wave sources at rates greater than five frames per second utilizing a pair of GigE based CMOS sensors. One GigE CMOS sensor is setup to measure the minimum of five spots within the first Rayleigh range for the establishment of the beam waist and its location. A second GigE CMOS sensor is setup to measure the five spatial profiles beyond the second Rayleigh range for the determination of the beam divergence from the focusing lens. Both GigE cameras utilize optics that passively create multiple spatial time slices of the beam and superimpose these time slices on the CMOS sensor in real time resulting in the ability to make single pulse measurements or continuous wave measurements at speeds of greater than five frames per second with full ISO 11146-1 compliance.

  5. Multisource modeling of flattening filter free (FFF) beam and the optimization of model parameters

    SciTech Connect

    Cho, Woong; Kielar, Kayla N.; Mok, Ed; Xing Lei; Park, Jeong-Hoon; Jung, Won-Gyun; Suh, Tae-Suk

    2011-04-15

    Purpose: With the introduction of flattening filter free (FFF) linear accelerators to radiation oncology, new analytical source models for a FFF beam applicable to current treatment planning systems is needed. In this work, a multisource model for the FFF beam and the optimization of involved model parameters were designed. Methods: The model is based on a previous three source model proposed by Yang et al. [''A three-source model for the calculation of head scatter factors,'' Med. Phys. 29, 2024-2033 (2002)]. An off axis ratio (OAR) of photon fluence was introduced to the primary source term to generate cone shaped profiles. The parameters of the source model were determined from measured head scatter factors using a line search optimization technique. The OAR of the photon fluence was determined from a measured dose profile of a 40x40 cm{sup 2} field size with the same optimization technique, but a new method to acquire gradient terms for OARs was developed to enhance the speed of the optimization process. The improved model was validated with measured dose profiles from 3x3 to 40x40 cm{sup 2} field sizes at 6 and 10 MV from a TrueBeam STx linear accelerator. Furthermore, planar dose distributions for clinically used radiation fields were also calculated and compared to measurements using a 2D array detector using the gamma index method. Results: All dose values for the calculated profiles agreed with the measured dose profiles within 0.5% at 6 and 10 MV beams, except for some low dose regions for larger field sizes. A slight overestimation was seen in the lower penumbra region near the field edge for the large field sizes by 1%-4%. The planar dose calculations showed comparable passing rates (>98%) when the criterion of the gamma index method was selected to be 3%/3 mm. Conclusions: The developed source model showed good agreements between measured and calculated dose distributions. The model is easily applicable to any other linear accelerator using FFF beams

  6. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  7. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented.

  8. First-order parameters for a general two-beam interferometer.

    PubMed

    Walmsley, I A; Malacara, D

    1995-07-01

    We formulate the first-order properties of a general two-beam interferometer. We show that it may be completely described by the light source position and the location, orientation, and size of the two images of this light source as seen from the observation plane, plus the image-plane position and the location, orientation, and size of the two images of this observation screen as seen from the light source position, plus the optical path difference between the two possible optical paths. The parameters are quite similar to those previously defined by Steel [W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, New York, 1983)].

  9. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    NASA Astrophysics Data System (ADS)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  10. Nonlinear FE simulations of structural behavior parameters of reinforced concrete beam with epoxy-bonded FRP

    NASA Astrophysics Data System (ADS)

    Sasmal, Saptarshi; Kalidoss, S.

    2015-05-01

    In the present study, investigations on fiber-reinforced plastic (FRP) plated-reinforced concrete (RC) beam are carried out. Numerical investigations are performed by using a nonlinear finite element analysis by incorporating cracking and crushing of concrete. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic load using the servo-hydraulic actuator in displacement control mode. Further, the validated numerical models are used to evaluate the influence of different parameters. It is found from the investigations that increase in the elastic modulus of adhesive layer and CFRP laminate increases the interfacial stresses whereas increase in laminate modulus decreases the displacement and reinforcement strain of the beam. It is also observed that increase in the adhesive layer can largely reduce the interfacial stresses, whereas increase in laminate thickness increases it. However, increase in laminate thickness decreases the displacement and reinforcement strain of the beam significantly. It is mention worthy that increase in laminate length reduces the interfacial stresses, whereas CFRP width change does not affect the interfacial stresses. The study will be useful for the design and practicing engineers for arriving at the FRP-based strengthening schemes for RC structures judiciously.

  11. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    PubMed Central

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  12. Direct determination of geometric alignment parameters for cone-beam scanners

    PubMed Central

    Mennessier, C; Clackdoyle, R; Noo, F

    2009-01-01

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049

  13. Optical wave beam propagation in two-lens scheme with arbitrary parameters

    NASA Astrophysics Data System (ADS)

    Kazakov, Vasily I.

    2016-04-01

    Two-lens optical scheme as a system of the optical information processing and transmission is considered. On the basis of applying radio-optics methods, the theory of linear systems and system approach a mathematical model describing the transformation of the optical wave beam in this system is proposed. Input-output ratio of the system in the form of a general spatial impulse response of all linear units included in the system is established. The problem of energy losses of the optical radiation in such a system is considered. As the input and output of system of the single-mode optical fiber is used. The equations defining the minimum possible level of energy losses caused by the diffraction of beam is obtained. The analysis showed that the losses depend explicitly on several parameters: the radiation wavelength, the distance between the end of fiber and the aperture, and the ratio of the diameter of fiber and lens aperture. With the help of computer simulation in Matlab system the losses depending on the parameters mentioned above is presented.

  14. Ion beams extraction and measurements of plasma parameters on a multi-frequencies microwaves large bore ECRIS with permanent magnets

    SciTech Connect

    Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams by launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.

  15. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  16. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    PubMed

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  17. Chemical freeze-out parameters in Beam Energy Scan Program of STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Das, Sabita

    2015-03-01

    The STAR experiment at RHIC has completed its first phase of the Beam Energy Scan (BES-I) program to understand the phase structure of the quantum chromodynamics (QCD). The bulk properties of the system formed in Au+Au collisions at different center of mass energy √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV have been studied from the data collected in the year 2010 and 2011. The centrality and energy dependence of mid-rapidity (|y| < 0.1) particle yields, and ratios are presented here. The chemical freeze-out parameters are extracted using measured particle ratios within the framework of a statistical model.

  18. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.

    PubMed

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  19. Stimulated emission from a relativistic electron beam in a variable-parameter longitudinal magnetic wiggler

    NASA Astrophysics Data System (ADS)

    McMullin, W. A.; Davidson, R. C.; Johnston, G. L.

    1983-08-01

    The single-particle equations of motion are used to study the stimulated emission from a tenuous relativistic electron beam propagating in the combined solenoidal and variable-parameter longitudinal wiggler magnetic fields produced near the axis of a multiple-mirror (undulator) field configuration. The specific case of constant field amplitude and variable wiggler periodicity is studied. It is found that the efficiency of radiation generation can be increased by orders of magnitude relative to the case where the wiggler periodicity is constant. This is due to the fact that the phase velocity of the ponderomotive potential in which the electrons are trapped is decreasing, allowing the electrons to exchange energy with the radiation field.

  20. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.

    PubMed

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-03-30

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed.

  1. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source

    PubMed Central

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  2. A comparison of neutron beams for BNCT based on in-phantom neutron field assessment parameters.

    PubMed

    Woollard, J E; Albertson, B J; Reed, M K; Blue, T E; Capala, J; Gupta, N; Gahbauer, R A

    2001-02-01

    In this paper our in-phantom neutron field assessment parameters, T and DTumor, were used to evaluate several neutron sources for use in BNCT. Specifically, neutron fields from The Ohio State University (OSU) Accelerator-Based Neutron Source (ABNS) design, two alternative ABNS designs from the literature (the Al/AIF3-Al2O3 ABNS and the 7LiF-AI2O3 ABNS), a fission-convertor plate concept based on the 500-kW OSU Research Reactor (OSURR), and the Brookhaven Medical Research Reactor (BMRR) facility were evaluated. In order to facilitate a comparison of the various neutron fields, values of T and DTumor were calculated in a 14 cm x 14 cm x 14 cm lucite cube phantom located in the treatment port of each neutron source. All of the other relevant factors, such as phantom materials, kerma factors, and treatment parameters, were kept the same. The treatment times for the OSURR, the 7LiF-Al2O3 ABNS operating at a beam current of 10 mA, and the BMRR were calculated to be comparable and acceptable, with a treatment time per fraction of approximately 25 min for a four fraction treatment scheme. The treatment time per fraction for the OSU ABNS and the Al/AlF3-Al2O3 ABNS can be reduced to below 30 min per fraction for four fractions, if the proton beam current is made greater than approximately 20 mA. DTumor was calculated along the bean centerline for tumor depths in the phantom ranging from 0 to 14 cm. For tumor depths ranging from 0 to approximately 1.5 cm, the value of DTumor for the OSURR is largest, while for tumor depths ranging from 1.5 to approximately 14 cm, the value of DTumor for the OSU-ABNS is the largest. PMID:11243342

  3. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  4. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens–Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  5. Comparative calibration of IP scanning equipment

    NASA Astrophysics Data System (ADS)

    Ingenito, F.; Andreoli, P.; Batani, D.; Boutoux, G.; Cipriani, M.; Consoli, F.; Cristofari, G.; Curcio, A.; De Angelis, R.; Di Giorgio, G.; Ducret, J.; Forestier-Colleoni, P.; Hulin, S.; Jakubowska, K.; Rabhi, N.

    2016-05-01

    Imaging Plates (IP) are diagnostic devices which contain a photostimulable phosphor layer that stores the incident radiation dose as a latent image. The image is read with a scanner which stimulates the decay of electrons, previously excited by the incident radiation, by exposition to a laser beam. This results in emitted light, which is detected by photomultiplier tubes; so the latent image is reconstructed. IPs have the interesting feature that can be reused many times, after erasing stored information. Algorithms to convert signals stored in the detector to Photostimulated luminescence (PSL) counts depend on the scanner and are not available on every model. A comparative cross-calibration of the IP scanner Dürr CR35 BIO, used in ABC laboratory, was performed, using the Fujifilm FLA 7000 scanner as a reference, to find the equivalence between grey-scale values given by the Dürr scanner to PSL counts. Using an IP and a 55Fe β-source, we produced pairs of samples with the same exposition times, which were analysed by both scanners, placing particular attention to fading times of the image stored on IPs. Data analysis led us to the determine a conversion formula which can be used to compare data of experiments obtained in different laboratories and to use IP calibrations available, till now, only for Fujifilm scanners.

  6. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

  7. Beam-Beam Simulations for a Single Pass SuperB-Factory

    SciTech Connect

    Biagini, M.E.; Raimondi, P.; Seeman, J.; Schulte, D.; /CERN

    2007-05-18

    A study of beam-beam collisions for an asymmetric single pass SuperB-Factory is presented [1]. In this scheme an e{sup -} and an e{sup +} beam are first stored and damped in two Damping Rings (DR), then extracted, compressed and focused to the IP. After collision the two beams are re-injected in the DR to be damped and extracted for collision again. The explored beam parameters are similar to those used in the design of the International Linear Collider, except for the beam energies. Flat beams and round beams were compared in the simulations in order to optimize both luminosity performances and beam blowup after collision. With such approach a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} can be achieved.

  8. On the reconstruction of parameters of quasi-Gaussian pump beams during transient SBS

    SciTech Connect

    Dementjev, Aleksandr S; Kosenko, E K; Murauskas, E; Girdauskas, V

    2006-08-31

    The radii and radii of curvature of Stokes stimulated Brillouin scattering (SBS) beams are measured by the method of moments for smooth nearly Gaussian focused pump beams with the propagation ratio M{sup 2}{sub {sigma}p{<=}}1.2. It is shown that in the case of sufficiently deeply focused pump radiation, the propagation ratio M{sup 2}{sub {sigma}S} of Stokes beams near the threshold of the transient SBS is smaller than M{sup 2}{sub {sigma}p} and approaches it with increasing the pump pulse energy. It is also found that the radii of Stokes beams at the output from a nonlinear medium are smaller than the radii of pump beams, while the radii of wave-front curvature are close (in modulus) to the radii of wave-front curvature for pump beams. (laser beams)

  9. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    SciTech Connect

    Lunev, A. G. Nadezhkin, M. V.; Konovalov, S. V.; Teresov, A. D.

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  10. High speed e-beam writing for large area photonic nanostructures — a choice of parameters

    NASA Astrophysics Data System (ADS)

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S.; Wang, Yue; Triggs, Graham J.; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R.; Krauss, Thomas F.

    2016-09-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.

  11. High speed e-beam writing for large area photonic nanostructures — a choice of parameters

    PubMed Central

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S.; Wang, Yue; Triggs, Graham J.; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R.; Krauss, Thomas F.

    2016-01-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications. PMID:27633902

  12. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study.

    PubMed

    Namour, A; Geerts, S; Zeinoun, T; De Moor, R; Nammour, S

    2016-01-01

    Objective. Nd:YAP laser has several potentialities of clinical applications in endodontics. The aim of our study is to determine the safety range of irradiation parameters during endodontic application of Nd:YAP laser that can be used without damaging and overheating the periodontal tissue. Material and Methods. Twenty-seven caries-free single-rooted extracted human teeth were used. Crowns were sectioned to obtain 11 mm root canal length. Temperature increases at root surfaces were measured by a thermocouple during Nd:YAP laser irradiation of root canals at different energy densities. Canal irradiation was accomplished with a circular and retrograde movement from the apex until the cervical part of the canal during 10 seconds with an axial speed of 1 mm/s. Each irradiation was done in a canal irrigated continuously with 2.25% NaOCl solution. Results. Periodontal temperature increase depends on the value of energy density. Means and standard deviations of temperature increases at root surfaces were below 10°C (safe threshold level) when the average energy densities delivered per second were equal to or below 4981 J/cm(2) and 9554 J/cm(2), respectively, for irradiations using a fiber diameter of 320 μm and 200 μm. Conclusions. Within the limitations of this study and under specific irradiation conditions, Nd:YAP laser beam may be considered harmless for periodontal tissues during endodontic applications. PMID:27376084

  13. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study

    PubMed Central

    Namour, A.; Geerts, S.; Zeinoun, T.; De Moor, R.; Nammour, S.

    2016-01-01

    Objective. Nd:YAP laser has several potentialities of clinical applications in endodontics. The aim of our study is to determine the safety range of irradiation parameters during endodontic application of Nd:YAP laser that can be used without damaging and overheating the periodontal tissue. Material and Methods. Twenty-seven caries-free single-rooted extracted human teeth were used. Crowns were sectioned to obtain 11 mm root canal length. Temperature increases at root surfaces were measured by a thermocouple during Nd:YAP laser irradiation of root canals at different energy densities. Canal irradiation was accomplished with a circular and retrograde movement from the apex until the cervical part of the canal during 10 seconds with an axial speed of 1 mm/s. Each irradiation was done in a canal irrigated continuously with 2.25% NaOCl solution. Results. Periodontal temperature increase depends on the value of energy density. Means and standard deviations of temperature increases at root surfaces were below 10°C (safe threshold level) when the average energy densities delivered per second were equal to or below 4981 J/cm2 and 9554 J/cm2, respectively, for irradiations using a fiber diameter of 320 μm and 200 μm. Conclusions. Within the limitations of this study and under specific irradiation conditions, Nd:YAP laser beam may be considered harmless for periodontal tissues during endodontic applications. PMID:27376084

  14. High speed e-beam writing for large area photonic nanostructures - a choice of parameters.

    PubMed

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S; Wang, Yue; Triggs, Graham J; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R; Krauss, Thomas F

    2016-09-16

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm(2). Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.

  15. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  16. High speed e-beam writing for large area photonic nanostructures - a choice of parameters.

    PubMed

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S; Wang, Yue; Triggs, Graham J; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R; Krauss, Thomas F

    2016-01-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm(2). Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications. PMID:27633902

  17. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin⁡2(θ23)=0.514±0.082 and mass splitting |Δm322|=2.44-0.15+0.17×10-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  18. Monte Carlo uncertainty assessment of ultrasonic beam parameters from immersion transducers used to non-destructive testing.

    PubMed

    Alvarenga, A V; Silva, C E R; Costa-Félix, R P B

    2016-07-01

    The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods.

  19. Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Christopher A.; Papantonakis, Michael R.; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    Infrared active stand-off detection techniques often employ high power tunable quantum cascade lasers (QCLs) for target illumination. Due to the distances involved, any fluctuation of the laser beam direction and/or beam profile is amplified at the sample position. If not accounted for, this leads to diminished performance (both sensitivity and selectivity) of the detection technique as a direct result of uncertainties in laser irradiance at each imaged pixel of the sample. This is especially true for detection approaches which illuminate a relatively small footprint at the target since the laser beam profile spatial fluctuations are often comparable to the (focused) laser spot size. Also, there is often a necessary trade-off between high output QCL power and beam quality. Therefore, precise characterization of the laser beam profile and direction as a function of laser properties (tuning wavelength, current and operating mode: pulsed or CW) is imperative. We present detailed measurements of beam profiles, beam wander and power fluctuations and their reproducibility as function of laser wavelength and stand-off distance for a commercially available tunable quantum cascade laser. We present strategies for improving beam quality by compensating for fluctuations using a motorized mirror and a pair of motorized lenses. We also investigate QCL mode hops and how they affect laser beam properties at the sample. Detailed mode-hop stability maps were measured.

  20. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    SciTech Connect

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  1. The influence of exposure parameters on jawbone model accuracy using cone beam CT and multislice CT

    PubMed Central

    Vandenberghe, B; Luchsinger, S; Hostens, J; Dhoore, E; Jacobs, R

    2012-01-01

    Objective The main purpose of this study was to investigate the influence of exposure parameters on jawbone model accuracy when using cone beam CT (CBCT) and multislice CT (MSCT). Methods A lower and an upper edentulous human cadaver jaw were scanned using micro-CT (Skyscan 1173 high energy spiral scan micro-CT; Skyscan NV, Kontich, Belgium) at 35 μm to serve as true reference. The in vitro samples were exposed using six CBCT units and one MSCT system. CBCT exposure protocols were chosen according to clinically available settings. The variables were kilovoltage, milliamperage, voxel size and/or scan time. Image segmentation was based on local thresholds using profile lines. The resulting jawbone segmentations were registered with the reference and image processing was done to internally fill the segmentations. A point-based distance calculation was performed between the three-dimensional objects and reference scans and deviation percentages were calculated for 2 mm, 1 mm and 0.5 mm intervals. Results All points of the MSCT surface models lay within a 1 mm deviation range and 98.5% within 0.5 mm compared with micro-CT. For the different CBCT systems, accuracy came close to MSCT with mean percentages of 98.9% within 1 mm deviation and 92.8% within 0.5 mm. A difference of approximately 1% between lower and upper jaws could be perceived. For the specific CBCT exposure protocols, only scan time and voxel size revealed certain significant differences. Conclusion Jawbone model accuracy using CBCT was comparable with MSCT. The surface models of the upper jaws deviated slightly more than those for lower jaws. CBCT exposure settings had a limited influence on accuracy with scan time and voxel size as the main factors. PMID:22282512

  2. Statistics of beam-driven waves in plasmas with ambient fluctuations: Reduced-parameter approach

    SciTech Connect

    Tyshetskiy, Yu.; Cairns, I. H.; Robinson, P. A.

    2008-09-15

    A reduced-parameter (RP) model of quasilinear wave-plasma interactions is used to analyze statistical properties of beam-driven waves in plasmas with ambient density fluctuations. The probability distribution of wave energies in such a system is shown to have a relatively narrow peak just above the thermal wave level, and a power-law tail at high energies, the latter becoming progressively more evident for increasing characteristic amplitude of the ambient fluctuations. To better understand the physics behind these statistical features of the waves, a simplified model of stochastically driven thermal waves is developed on the basis of the RP model. An approximate analytic solution for stationary statistical distribution of wave energies W is constructed, showing a good agreement with that of the original RP model. The 'peak' and 'tail' features of the wave energy distribution are shown to be a result of contributions of two groups of wave clumps: those subject to either very slow or very fast random variations of total wave growth rate (due to fluctuations of ambient plasma density), respectively. In the case of significant ambient plasma fluctuations, the overall wave energy distribution is shown to have a clear power-law tail at high energies, P(W){proportional_to}W{sup -{alpha}}, with nontrivial exponent 1<{alpha}<2, while for weak fluctuations it is close to the lognormal distribution predicted by pure stochastic growth theory. The model's wave statistics resemble the statistics of plasma waves observed by the Ulysses spacecraft in some interplanetary type III burst sources. This resemblance is discussed qualitatively, and it is suggested that the stochastically driven thermal waves might be a candidate for explaining the power-law tails in the observed wave statistics without invoking mechanisms such as self-organized criticality or nonlinear wave collapse.

  3. Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan

    2007-01-01

    The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.

  4. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  5. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect

    Montag, C.

    2011-03-28

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  6. Correlation between properties of HfO2 films and preparing parameters by ion beam sputtering deposition.

    PubMed

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Leng, Jian; Sun, Peng; Zhuang, Kewen; Ji, Yiqin; Cheng, Xinbin; Jiao, Hongfei; Wang, Zhanshan; Wu, Bingjun

    2014-02-01

    Ion beam sputtering is one of the most important technologies for preparing hafnium dioxide thin films. In this paper, the correlation between properties of hafnium dioxide thin films and preparing parameters was systematically researched by using the orthogonal experiment design method. The properties of hafnium oxide films (refractive index, extinction coefficient, deposition rate, stress, and inhomogeneity of refractive index) were studied. The refractive index, extinction coefficient, physical thickness, and inhomogeneity of refractive index were obtained by the multiple wavelength curve-fitting method from the reflectance and transmittance of single layers. The stress of thin film was measured by elastic deformation of the thin film-substrate system. An orthogonal experimental strategy was designed using substrate temperature, ion beam voltage, ion beam current, and oxygen flow rate as the variables. The experimental results indicated that the temperature of the substrate is the key influencing parameter on the properties of hafnium oxide films, while other preparing parameters are also correlated with specific properties. The experimental results are significant for selecting proper parameters for preparing hafnium oxide films with different applications.

  7. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    NASA Astrophysics Data System (ADS)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  8. A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.

  9. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

    PubMed Central

    Ebrahimi Loushab, M.; Mowlavi, A.A.; Hadizadeh, M.H.; Izadi, R.; Jia, S.B.

    2015-01-01

    Background In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. Methods In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Results Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. Conclusion The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less. PMID:26688795

  10. Effect of electron beam parameters on simulated CBED patterns from edge-on grain boundaries.

    PubMed

    Bokel, R M; Tichelaar, F D; Schapink, F W

    2000-01-01

    Convergent beam electron diffraction (CBED) at vertical grain boundaries (parallel to the electron beam) can be applied to determine the symmetry of bicrystals. It can also be used to investigate the structure of the boundary region itself when subnanometre probe sizes are employed. In this paper it is shown that (sub)nanometre-probe CBED patterns are largely influenced by the electron-beam geometry. In particular, simulations of coherent CBED patterns based on the multislice algorithm show that the CBED pattern of an edge-on interface depends on the defocus distance between the probe position and the specimen midplane, the probe size and the beam-convergence angle. The pattern symmetry may be lower than the theoretically predicted symmetry in case of large spherical aberration. This effect increases with smaller accelerating voltages. An increase in the beam-convergence angle also increases the possibility of a non-optimum symmetry due to spherical aberration of a coherent probe. Thus, for the determination of an interface structure using subnanometre (coherent) probes, the imaging conditions play an important role. PMID:10620148

  11. A fully Galerkin method for the recovery of stiffness and damping parameters in Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.

    1991-01-01

    A fully Sinc-Galerkin method for recovering the spatially varying stiffness and damping parameters in Euler-Bernoulli beam models is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which converges exponentially and is valid on the infinite time interval. Hence the method avoids the time-stepping which is characteristic of many of the forward schemes which are used in parameter recovery algorithms. Tikhonov regularization is used to stabilize the resulting inverse problem, and the L-curve method for determining an appropriate value of the regularization parameter is briefly discussed. Numerical examples are given which demonstrate the applicability of the method for both individual and simultaneous recovery of the material parameters.

  12. Experiments in long-wavelength communication using modulated electron beam antennas: A parameter study

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.

    1985-08-01

    This preliminary study scopes the feasibility of producing electromagnetic signals from modulated beam antennas in the ionosphere and detecting those signals on the ground. Restricted to frequencies between tens of hertz and a megahertz, the report is essentially a handbook that gives predicted characteristics of the radiation produced by modulated electron beams employed in four different experiments. THe first is hypothetical and is optimized for the generation of detection of long-wavelength radiation. The other three are BERT-I, SEPAC, and VCAP.

  13. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    SciTech Connect

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  14. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current

    SciTech Connect

    Yano, Keisuke Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  15. Estimates of HE-LHC beam parameters at different injection energies

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2010-11-01

    A future upgrade to the LHC envisions increasing the top energy to 16.5 TeV and upgrading the injectors. There are two proposals to replace the SPS as the injector to the LHC. One calls for a superconducting ring in the SPS tunnel while the other calls for an injector (LER) in the LHC tunnel. In both scenarios, the injection energy to the LHC will increase. In this note we look at some of the consequences of increased injection energy to the beam dynamics in the LHC.

  16. The effect of IPMC parameters in electromechanical coefficient based on equivalent beam theory

    NASA Astrophysics Data System (ADS)

    Çilingir, Halime Didem; Menceloglu, Yusuf; Papila, Melih

    2008-03-01

    "Effective" electromechanical coupling coefficient for IPMC by equivalent bimorph beam model is studied. The collective effect of the membrane thickness and operating voltage is demonstrated by using a design of experiment of three and four levels of the two factors, respectively. Experiments and finite element analyses using MSC.NASTRAN are used to evaluate the tip displacement and the coupling coefficient for which approximations as function of the thickness and voltage are constructed. Initial curvature of the strips before electrical excitation is also shown to be a factor in "effective" coupling coefficient. A correction factor approach is proposed to include the effect of the preimposed curvature.

  17. Total heart volume as a function of clinical and anthropometric parameters in a population of external beam radiation therapy patients

    NASA Astrophysics Data System (ADS)

    Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima

    2012-01-01

    The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.

  18. A Shot Parameter Specification Subsystem for automated control of PBFA (Particle Beam Fusion Accelerator) II accelerator shots

    SciTech Connect

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes.

  19. Numerical recovery of material parameters in Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Vogel, C. R.

    1991-01-01

    A fully Sinc-Galerkin method for recovering the spatially varying stiffness parameter in fourth-order time-dependence problems with fixed and cantilever boundary conditions is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains. This yields an approximation solution which converges exponentially and is valid on the infinite time interval. When the forward methods are applied to parameter recovery problems, the resulting inverse problems are ill-posed. Tikhonov regularization is applied and the resulting minimization problems are solved via a quasi-Newton/trust region algorithm. The L-curve method is used to determine an appropriate value of the regularization parameter. Numerical results which highlight the method are given for problems with both fixed and cantilever boundary conditions.

  20. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom–atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  1. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  2. Novel Parameter Predicting Grade 2 Rectal Bleeding After Iodine-125 Prostate Brachytherapy Combined With External Beam Radiation Therapy

    SciTech Connect

    Shiraishi, Yutaka; Hanada, Takashi; Ohashi, Toshio; Yorozu, Atsunori; Toya, Kazuhito; Saito, Shiro; Shigematsu, Naoyuki

    2013-09-01

    Purpose: To propose a novel parameter predicting rectal bleeding on the basis of generalized equivalent uniform doses (gEUD) after {sup 125}I prostate brachytherapy combined with external beam radiation therapy and to assess the predictive value of this parameter. Methods and Materials: To account for differences among radiation treatment modalities and fractionation schedules, rectal dose–volume histograms (DVHs) of 369 patients with localized prostate cancer undergoing combined therapy retrieved from corresponding treatment planning systems were converted to equivalent dose-based DVHs. The gEUDs for the rectum were calculated from these converted DVHs. The total gEUD (gEUD{sub sum}) was determined by a summation of the brachytherapy and external-beam radiation therapy components. Results: Thirty-eight patients (10.3%) developed grade 2+ rectal bleeding. The grade 2+ rectal bleeding rate increased as the gEUD{sub sum} increased: 2.0% (2 of 102 patients) for <70 Gy, 10.3% (15 of 145 patients) for 70-80 Gy, 15.8% (12 of 76 patients) for 80-90 Gy, and 19.6% (9 of 46 patients) for >90 Gy (P=.002). Multivariate analysis identified age (P=.024) and gEUD{sub sum} (P=.000) as risk factors for grade 2+ rectal bleeding. Conclusions: Our results demonstrate gEUD to be a potential predictive factor for grade 2+ late rectal bleeding after combined therapy for prostate cancer.

  3. Optimization and Analysis of Laser Beam Machining Parameters for Al7075-TiB2 In-situ Composite

    NASA Astrophysics Data System (ADS)

    Manjoth, S.; Keshavamurthy, R.; Pradeep Kumar, G. S.

    2016-09-01

    The paper focuses on laser beam machining (LBM) of In-situ synthesized Al7075-TiB2 metal matrix composite. Optimization and influence of laser machining process parameters on surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy of composites were studied. Al7075-TiB2 metal matrix composite was synthesized by in-situ reaction technique using stir casting process. Taguchi's L9 orthogonal array was used to design experimental trials. Standoff distance (SOD) (0.3 - 0.5mm), Cutting Speed (1000 - 1200 m/hr) and Gas pressure (0.5 - 0.7 bar) were considered as variable input parameters at three different levels, while power and nozzle diameter were maintained constant with air as assisting gas. Optimized process parameters for surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy were calculated by generating the main effects plot for signal noise ratio (S/N ratio) for surface roughness, VMRR and dimensional error using Minitab software (version 16). The Significant of standoff distance (SOD), cutting speed and gas pressure on surface roughness, volumetric material removal rate (VMRR) and dimensional error were calculated using analysis of variance (ANOVA) method. Results indicate that, for surface roughness, cutting speed (56.38%) is most significant parameter followed by standoff distance (41.03%) and gas pressure (2.6%). For volumetric material removal (VMRR), gas pressure (42.32%) is most significant parameter followed by cutting speed (33.60%) and standoff distance (24.06%). For dimensional error, Standoff distance (53.34%) is most significant parameter followed by cutting speed (34.12%) and gas pressure (12.53%). Further, verification experiments were carried out to confirm performance of optimized process parameters.

  4. Analysis of precracking parameters and fracture toughness for ceramic single-edge-precracked-beam specimens

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Chulya, Abhisak; Salem, Jonathan A.

    1992-01-01

    The single-edge-precracked-beam (SEPB) method involves creation of a straight-through crack from an indentation crack. The straight-through crack is developed by applying a controlled bending load to a specimen via a precracking fixture. The fixture induces the following sequence: (1) stable growth of the indentation crack; (2) pop-in; and finally, (3) arrest-thereby forming a straight-through precrack. The effects of indentation load on precracking load as well as precrack size were studied for experimental variables such as specimen width, fixture span, and material. Finite element analysis was used to obtain the stress distribution and stress intensity factor, thus providing a quantitative prediction of the precracking load and precrack size for silicon nitride, alumina, silicon cabide, and two SiC whisker-reinforced silicon nitrides. Fracture toughness values obtained from the SEPB method were compared with those obtained from other methods.

  5. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  6. Effects of electron-beam radiation on nutritional parameters of Portuguese chestnuts (Castanea sativa Mill.).

    PubMed

    Carocho, Márcio; Barreira, João C M; Antonio, Amilcar L; Bento, Albino; Kaluska, Iwona; Ferreira, Isabel C F R

    2012-08-01

    Chestnuts are a widely consumed fruit around the world, with Portugal being the fourth biggest producer in Europe. Storage of these nuts is an important step during processing, and the most widely used fumigant was banned in the European Union under the Montreal Protocol because of its toxicity. Recently, radiation has been introduced as a cheap and clean conservation method. Previous studies of our research group proved that γ radiation had no negative effect on the nutritional value of chestnuts; in fact, storage time had a much bigger influence on the chestnut quality. In the present study, we report the effect of a less ionizing radiation, electron beam, with doses of 0, 0.5, 1, 3, and 6 kGy in the nutritional value of chestnuts (ash, energy, fatty acids, sugars, and tocopherols), previously stored at 4 °C for 0, 30, and 60 days. The storage time seemed to reduce fat and energetic values but reported a tendency for higher values of dry matter. With regard to fatty acids, there was a higher detected quantity of C20:2 in non-irradiated samples and four fatty acids were only detected in trace quantities (C6:0, C8:0, C10:0, and C12:0). γ-Tocopherol decreased during storage time but did not alter its quantity for all of the radiation doses (as like α-, β-, and δ-tocopherol); in fact, these compounds were present in higher concentrations in the irradiated samples. Sucrose and total sugars were lower in non-irradiated samples, and raffinose was only detected in irradiated samples. Electron-beam irradiation seems to be a suitable methodology, because the effects on chemical and nutritional composition are very low, while storage time seems to be quite important in chestnut deterioration.

  7. Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO.

    PubMed

    Maskani, Reza; Tahmasebibirgani, Mohammad Javad; Hoseini-Ghahfarokhi, Mojtaba; Fatahiasl, Jafar

    2015-01-01

    The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.

  8. R&D ERL: Beam dynamics, parameters, and physics to be learned

    SciTech Connect

    Kayran, D.

    2010-02-01

    The R&D ERL facility at BNL aims to demonstrate CW operation of ERL with average beam current in the range of 0.1-1 ampere, combined with very high efficiency of energy recovery. The ERL is being installed in one of the spacious bays in Bldg. 912 of the RHIC/AGS complex (Fig. 1). The bay is equipped with an overhead crane. The facility has a control room, two service rooms and a shielded ERL cave. The control room is located outside of the bay in a separate building. The single story house is used for a high voltage power supply for 1 MW klystron. The two-story unit houses a laser room, the CW 1 MW klystron with its accessories, most of the power supplies and electronics. The ERL R&D program has been started by the Collider Accelerator Department (C-AD) at BNL as an important stepping-stone for 10-fold increase of the luminosity of the Relativistic Heavy Ion Collider (RHIC) using relativistic electron cooling of gold ion beams with energy of 100 GeV per nucleon. Furthermore, the ERL R&D program extends toward a possibility of using 10-20 GeV ERL for future electron-hadron/heavy ion collider, MeRHIC/eRHIC. These projects are the driving force behind the development of ampere-class ERL technology, which will find many applications including light sources and FELs. The intensive R&D program geared towards the construction of the prototype ERL is under way: from development of high efficiency photo-cathodes to the development of new merging system compatible with emittance compensation.

  9. Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO.

    PubMed

    Maskani, Reza; Tahmasebibirgani, Mohammad Javad; Hoseini-Ghahfarokhi, Mojtaba; Fatahiasl, Jafar

    2015-01-01

    The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately. PMID:26625800

  10. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence.

    PubMed

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C; Djordjevic, Julianne T

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence. PMID:27033523

  11. DAB2IP in cancer

    PubMed Central

    Hsieh, Jer-Tsong; Gong, Jianping; Xie, Daxing

    2016-01-01

    DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research. PMID:26658103

  12. Status of RHIC head-on beam-beam compensation project

    SciTech Connect

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  13. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  14. Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(θ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3)  eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3)  eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty. PMID:24856687

  15. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  16. Optimum parameters of TLD100 powder used for radiotherapy beams calibration check

    SciTech Connect

    Arib, M. . E-mail: mehenna.arib@comena-dz.org; Yaich, A.; Messadi, A.; Dari, F.

    2006-10-01

    External audit of the absorbed dose determination from radiotherapy machines is performed using Lithium fluoride (LiF) TLD-100. Optimal parameters needed to obtain highly accurate dosage from LiF powder was investigated, including the setup of the Harshaw 4000 reader. A linear correspondence between the thermoluminescent signal and the mass of the powder was observed, demonstrating that the dose can be evaluated with small samples of powder. The reproducibility of the thermoluminescence dosimeter (TLD) readings obtained with up to 10 samples from 1 capsule containing 160 mg of powder was around 1.5% (1 standard deviation [SD]). The time required for the manual evaluation of TLDs can be improved by 3 readings without loss of accuracy. Better reproducibility is achieved if the capsules are evaluated 7 days after irradiation using a nitrogen flow of 300 cc/min.

  17. Focussed ion beam serial sectioning and imaging of monolithic materials for 3D reconstruction and morphological parameter evaluation.

    PubMed

    Vázquez, Mercedes; Moore, David; He, Xiaoyun; Ben Azouz, Aymen; Nesterenko, Ekaterina; Nesterenko, Pavel; Paull, Brett; Brabazon, Dermot

    2014-01-01

    A new characterisation method, based on the utilisation of focussed ion beam-scanning electron microscopy (FIB-SEM), has been employed for the evaluation of morphological parameters in porous monolithic materials. Sample FIB serial sectioning, SEM imaging and image processing techniques were used to extract the pore boundaries and reconstruct the 3D porous structure of carbon and silica-based monoliths. Since silica is a non-conducting material, a commercial silica monolith modified with activated carbon was employed instead to minimise the charge build-up during FIB sectioning. This work therefore presents a novel methodology that can be successfully employed for 3D reconstruction of porous monolithic materials which are or can be made conductive through surface or bulk modification. Furthermore, the 3D reconstructions were used for calculation of the monolith macroporosity, which was in good agreement with the porosity values obtained by mercury intrusion porosimetry (MIP).

  18. Design and implementation of an integrated IP telephone gateway

    NASA Astrophysics Data System (ADS)

    Huang, Yongfeng; Feng, Dan; Zhang, Jiangling

    1999-08-01

    A new idea of design on an Integrated IP Telephone Gateway is stated in this paper. Some key techniques are analyzed and discussed in detail. A Centered Echo Chancellor based on TMS320C6201 DSP is implemented, and many optimization methods for voice compression code are concluded to enhance the performance of the gateway. Finally, the performance parameters of the Integrated IP Telephony Gateway are summarized in this paper.

  19. [MODIFICATION OF THE PROTON BEAM PHYSICAL PARAMETERS AND RADIOBIOLOGICAL CHARACTERISTICS BY ELEMENTS OF SPACECRAFT RADIATION PROTECTION].

    PubMed

    Ivanov, A A; Molokanov, A G; Shurshakov, V A; Bulynina, T M; Liakhova, K N; Severiukhin, Yu S; Abrosimova, A N; Ushakov, I B

    2015-01-01

    The experiment was performed with outbred ICR (CD-1). female mice (SPF). The animals were irradiated by 171 MeV protons at a dose of 20 cGy. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a "protective blind", and a glass plate imitating an ISS window. Physical obstacles on the path of 171 MeV protons increase their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, two types of obstacles together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. Rationalization of physical methods of spacecrew protection should be based as on knowledge in physical dosimetry (ionizing chambers, thermoluminescent, track detectors etc.), so the radiobiological criteria established in experiments with animals. PMID:26738306

  20. SU-E-J-271: A Feasibility Study to Utilize XR-QA2 Radiochromic Films as An Alternative Tool for Measuring Beam Parameters of Kilovoltage CBCT Systems

    SciTech Connect

    Morales-Paliza, M; Ding, G

    2014-06-01

    Purpose: The beam parameters of the x-ray beams used in image guidance are difficult to measure in water due to the low exposure. This study is to investigate if XR-QA2 radiochromic films can be used in obtaining beam parameters, such as beam profiles and outputs for kV-CBCT systems. Methods: The kV-CBCT beams were from a Varian OBI system. The films used were XR-QA2-GAFCHROMICTM films placed in the middle of two Plastic -Water slab phantoms at isocenter. The scanner used to analyze the films was an Epson Expression 1680 flat-bed scanner. Pre and 24 h-post-irradiated scans of films were obtained by using the reflective mode. The corresponding pixel-by-pixel dose in the films was obtained using a dose calibration equation as a function of net reflectance from the literature. Beam profiles of different scan protocols with and without bow-tie filters were measured. Monte Carlo simulations were used to compare the accuracy of the measured dose profiles. Results: The beam profiles measured from XR-QA2 films for different clinical default kV-CBCT scan protocols were benchmarked against Monte Carlo simulated profiles which have been validated by measurements performed in water phantom. We confirmed that a minimum post-irradiated time of 24 hours is necessary to pass to scan the films to account for light scatter stability. We found that the uncertainties of the results depend on the scan orientation of the film when analyzed in different directions. Conclusion: The XR-QA2 radiochromic films are sensitive to measure the x-ray beam profiles with irradiated dose ranging 1–5 cGy. The film measurements can be performed with an easy setup compared to ion chamber measurements in a water phantom. These films provide an alternative method to obtain the beam profiles for kV-CBCT beams.

  1. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  2. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  3. On the speed and acceleration of electron beams triggering interplanetary type III radio bursts

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Kontar, E. P.; Soucek, J.; Santolik, O.; Maksimovic, M.; Kruparova, O.

    2015-08-01

    Aims: Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. Methods: We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. Results: We show these beams noticeably decelerate in the IP medium. Obtained speeds range from ~0.02c up to ~0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons (~0.1c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Derived properties of electron beams can be used as input parameters for computer simulations of interactions between the beam and the plasma in the IP medium. Appendix A is available in electronic form at http://www.aanda.org

  4. Individual Beam Size And Length Measurements at the SLC Interaction Point Derived From the Beam Energy Loss During a Beam Beam Deflection Scan

    SciTech Connect

    Raimondi, P.; Field, R.Clive; Phinney, N.; Ross, M.C.; Slaton, T.; Traller, R.; /SLAC

    2011-08-26

    At the Interaction Point (IP) of the SLC Final Focus, beam-beam deflection scans routinely provide a measurement of the sum in quadrature of the electron and positron transverse beam sizes, but no information on the individual beam sizes. During the 1996 SLC run, an upgrade to the Final Focus beam position monitor system allowed a first measurement of the absolute beam energy loss of both beams on each step of the deflection scan. A fit to the energy loss distributions of the two beams provides a measurement not only of the individual transverse beam sizes at the IP but also of the individual bunch lengths.

  5. Maintaining high-quality IP audio services in lossy IP network environments

    NASA Astrophysics Data System (ADS)

    Barton, Robert J., III; Chodura, Hartmut

    2000-07-01

    In this paper we present our research activities in the area of digital audio processing and transmission. Today's available teleconference audio solutions are lacking in flexibility, robustness and fidelity. There was a need for enhancing the quality of audio for IP-based applications to guarantee optimal services under varying conditions. Multiple tests and user evaluations have shown that a reliable audio communication toolkit is essential for any teleconference application. This paper summarizes our research activities and gives an overview of developed applications. In a first step the parameters, which influence the audio quality, were evaluated. All of these parameters have to be optimized in order to result into the best achievable quality. Therefore it was necessary to enhance existing schemes or develop new methods. Applications were developed for Internet-Telephony, broadcast of live music and spatial audio for Virtual Reality environments. This paper describes these applications and issues of delivering high quality digital audio services over lossy IP networks.

  6. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  7. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect

    Prost, Lionel Robert

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ~0.2 μC/m) over long pulse durations (4 μs) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K+ ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (~80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  8. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  9. Association Between Tangential Beam Treatment Parameters and Cardiac Abnormalities After Definitive Radiation Treatment for Left-Sided Breast Cancer

    SciTech Connect

    Correa, Candace R.; Das, Indra J. Litt, Harold I.; Ferrari, Victor; Hwang, W.-T.; Solin, Lawrence J.; Harris, Eleanor E.

    2008-10-01

    Purpose: To examine the association between radiation treatment (RT) parameters, cardiac diagnostic test abnormalities, and clinical cardiovascular diagnoses among patients with left-sided breast cancer after breast conservation treatment with tangential beam RT. Methods and Materials: The medical records of 416 patients treated between 1977 and 1995 with RT for primary left-sided breast cancer were reviewed for myocardial perfusion imaging and echocardiograms. Sixty-two patients (62/416, 15%) underwent these cardiac diagnostic tests for cardiovascular symptoms and were selected for further study. Central lung distance and maximum heart width and length in the treatment field were determined for each patient. Medical records were reviewed for cardiovascular diagnoses and evaluation of cardiac risk factors. Results: At a median of 12 years post-RT the incidence of cardiac diagnostic test abnormalities among symptomatic left-sided irradiated women was significantly higher than the predicted incidence of cardiovascular disease in the patient population, 6/62 (9%) predicted vs. 24/62 (39%) observed, p 0.001. As compared with patients with normal tests, patients with cardiac diagnostic test abnormalities had a larger median central lung distance (2.6 cm vs. 2.2 cm, p = 0.01). Similarly, patients with vs. without congestive heart failure had a larger median central lung distance (2.8 cm vs. 2.3 cm, p = 0.008). Conclusions: Contemporary RT for early breast cancer may be associated with a small, but potentially avoidable, risk of cardiovascular morbidity that is associated with treatment technique.

  10. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We

  11. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  12. Evaluation of Round Beams for Tevatron

    NASA Astrophysics Data System (ADS)

    Shiltsev, V. D.; Danilov, V. V.

    1997-05-01

    The work is devoted to an evaluation of the "round beams" at the Tevatron collider. These beams essentially fulfil three requirements: equal horizontal and vertical emittances, equal beta-functions at interaction points(IPs), and equal betatron tunes. Simulations show that under these circumstances detrimental effects due to beam-beam interaction can be reduced, beam stability is enhanced, and larger tune shifts are possible. Three schemes of the "round beams" realization are considered which use no coupling, strong coupling in Mobius optics, and alternative coupling-decoupling. Effects of various machine errors (tune variations, crossing angle, disperison at IP, beams separation, etc.) are studied numerically.

  13. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  14. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems.

  15. Parameters of the output beam of a longitudinally diode-pumped YVO{sub 4}/Nd:YVO{sub 4}-laser

    SciTech Connect

    Ryabtsev, G I; Bogdanovich, M V; Yenzhyieuski, A I; Burov, L I; Ryabtsev, A G; Shchemelev, M A; Pozhidaev, A V; Matrosov, V N; Mashko, V V; Teplyashin, L L; Chumakou, A N

    2006-10-31

    The power and spatial characteristics of a longitudinally diode-pumped laser based on a composite YVO{sub 4}/Nd:YVO{sub 4} crystal are studied. It is shown that the use of a composite crystal allows one to increase the external slope quantum efficiency from 36% to 41% and decrease the quality factor M{sup 2} of the output beam from 2 to 1.5 compared to these parameters for a Nd:YVO{sub 4} crystal. (lasers)

  16. VoIP in a Campus Environment

    ERIC Educational Resources Information Center

    Young, Dan

    2005-01-01

    Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…

  17. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    SciTech Connect

    Kurosu, K; Takashina, M; Koizumi, M; Das, I; Moskvin, V

    2014-06-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  18. FT-IR method to determine Dill's C parameter for DNQ/novolac resists with e-beam and i-line exposure

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Doran, Scott P.; Mack, Chris A.

    1999-06-01

    Typically, the Dill ABC parameters for optical resist are determined by coating a resist on a nonreflecting substrate and then measuring the change in the intensity of transmitted light at the wavelength of interest as a function of incident energy. Resists absorbance may not be selective in isolating and measuring only the photoactive species, and in some cases changes in absorbance can not be directly correlated to changes in the concentration of the photoactive species. FTIR spectroscopy can directly measure changes in the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species. FTIR, employed in reflectance mode, is not constrained to transparent substrates, but can instead be used with silicon wafers or chrome coated quartz plates. The ability to use these substrates, but can instead be used with silicon wafers or chrome coated quartz plates. The ability to use these substrates is important when determining Dill's C parameter under e-beam exposure where the degree of back-scattered electrons is dependent on the underlying substrate, and the use of quartz is prohibited due to charging considerations. Dill's C parameter is determined for a variety of commercial i-line resist under both e-beam and i-line exposure. The ProABC software, a lithography simulator that extracts ABC parameters through a best fit of model to data, is employed to extract Dill's C parameter. This software has been specially modified to allow FTIR absorbance input.

  19. Solving the Neutrino Parameter Degeneracies by Measuring the T2K Off-axis Beam in Korea

    SciTech Connect

    Okamura, Naotoshi

    2005-12-02

    In this talk, we show the physics impacts of putting a 100kt-level Water Cerenkov detector in Korea during the T2K experimental period. The T2K experiment which will start in 2009 plans to use the high intensity conventional neutrino beam from J-PARC at Tokai village, Japan. The center of this beam will reach the sea level between Japan and Korea, and an off-axis beam at 0.5 deg. to 1.0 deg. can be observed in Korea. For a combination of the 3 deg. off-axis beam at SK with baseline length L = 295km and the 0.5 deg. off-axis beam in the east coast of Korea, near Gyeongju, at L = 1000km, we find that the neutrino mass hierarchy (the sign of the larger mass-squared difference) can be resolved and the CP phase of the MNS unitary matrix can be constrained uniquely at 3-{sigma} level when sin2 2{theta}rct > or approx. 0.06.

  20. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    SciTech Connect

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Havens, S.J.; Lopata, V.J.

    1997-01-16

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding.

  1. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

    NASA Astrophysics Data System (ADS)

    Cosar, M. B.; Ozhan, A. E. S.; Aydogdu, G. H.

    2015-05-01

    Ion beam sputtering is one of the widely used methods for manufacturing laser optical components due to its advantages such as uniformity, reproducibility, suitability for multilayer coatings and growth of dielectric materials with high packing densities. In this study, single Ta2O5 layers and Ta2O5/SiO2 heterostructures were deposited on optical quality glass substrates by dual ion beam sputtering. We focused on the effect of deposition conditions like substrate cleaning, assistance by 12 cm diameter ion beam source and oxygen partial pressure on the laser-induced damage threshold of Ta2O5 single layers. Afterwards, the obtained information is employed to a sample design and produces a Ta2O5/SiO2 multilayer structure demonstrating low laser-induced damage without a post treatment procedure.

  2. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  3. IP Profiling via Service Cluster Membership Vectors

    SciTech Connect

    Bartoletti, A

    2009-02-23

    This study investigates the feasibility of establishing and maintaining a system of compact IP behavioral profiles as a robust means of computer anomaly definition and detection. These profiles are based upon the degree to which a system's (IP's) network traffic is distributed among stable characteristic clusters derived of the aggregate session traffic generated by each of the major network services. In short, an IP's profile represents its degree of membership in these derived service clusters. The goal is to quantify and rank behaviors that are outside of the statistical norm for the services in question, or present significant deviation from profile for individual client IPs. Herein, we establish stable clusters for accessible features of common session traffic, migrate these clusters over time, define IP behavior profiles with respect to these clusters, migrate individual IP profiles over time, and demonstrate the detection of IP behavioral changes in terms of deviation from profile.

  4. Evaluation of material parameters using contra-directional single incident beam two-beam coupling in Fe:LiNbO3

    NASA Astrophysics Data System (ADS)

    Saleh, M. A.; Evans, D. R.; Allen, A. S.; Bunning, T. J.; Guha, S.

    2002-03-01

    By fitting the experimental results to a theoretical analysis of two-beam coupling including diffraction effects [1], the photorefractive gain as well the dark current irradiance has been evaluated. Crystals with a transparent conductive coating were used to reduce grating writing instabilities; instabilities as well as multiple reflection effects were also eliminated by AR (anti-reflection) coating the crystal surfaces [2]. [1] G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, and J. P. Duignan, Materials Research Society Symposium Proceedings 597 (2000) 263-274. [2] D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of Photorefractive Grating Writing Instabilities in Iron-doped Lithium Niobate," Submitted to IEEE J. Quantum Electronics. Dec. 2001.

  5. Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link

    NASA Technical Reports Server (NTRS)

    Nguyen, Sam P.; Pang, Jackson; Clare, Loren P.; Cheng, Michael K.

    2010-01-01

    independently as a simplex link. Without negotiation, the COTS routers are prevented from entering into the IP header compression mode, and no IP header compression would be performed. An algorithm is proposed to enable IP header compression in COTS routers on a simplex link with no negotiation or with a one-way messaging. In doing so, COTS routers can enter IP header compression mode without the need to handshake through a bidirectional link as required by FRF.20. This technique would spoof the routers locally and thereby allow the routers to enter into IP header compression mode without having the negotiations between routers actually occur. The spoofing function is conducted by a frame relay adapter (also COTS) with the capability to generate control messages according to the FRF.20 descriptions. Therefore, negotiation is actually performed between the FRF.20 adapter and the connecting COTS router locally and never occurs over the space link. Through understanding of the handshaking protocol described by FRF.20, the necessary FRF.20 negotiations messages can be generated to control the connecting router, not only to turn on IP header compression but also to adjust the compression parameters. The FRF.20 negotiation (or control) message is composed in the FRF.20 adapter by interpreting the incoming router request message. Many of the fields are simply transcribed from request to response while the control field indicating response and type are modified.

  6. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    SciTech Connect

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2014-06-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, Ray

  7. Simple Beam-Optic Simulations and Proposed Mechanical Mitigation for the Triplet Oscillation Problem

    SciTech Connect

    Thieberger,P.; Montag, C.; Snydstrup, L.; Trbojevic, D.; Tuozzolo, J.

    2008-05-01

    The purpose of these simulations is to gain a better understanding of the relative contributions to the beam perturbation from the main horizontal oscillation modes (yawing and rolling) of Q1, Q2, and Q3. For this purpose, a simple beam transport program was implemented with an EXCEL spreadsheet to calculate the horizontal beam envelop through the Q1, Q2, Q3 triplet up to the IP, with the possibility of specifying horizontal displacements of the singlets. For now, the weak focusing properties of D0 and DX have been ignored, but could easily be included in the future if necessary. In a first simulation, quadrupole strengths have been adopted that correspond to {beta}* = 2m at the IP. The parameters used listed in Table 1 were obtained from references [1] and [2].

  8. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGESBeta

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  9. Dosimetric parameters as predictive factors for biochemical control in patients with higher risk prostate cancer treated with Pd-103 and supplemental beam radiation

    SciTech Connect

    Orio, Peter; Wallner, Kent . E-mail: kent.Wallner@med.va.gov; Merrick, Gregory; Herstein, Andrew; Mitsuyama, Paul; Thornton, Ken; Butler, Wayne; Sutlief, Steven

    2007-02-01

    Purpose: To analyze the role of dosimetric quality parameters in maximizing cancer eradication in higher risk prostate cancer patients treated with palladium (Pd)-103 and supplemental beam radiation. Methods: One-hundred-seventy-nine patients treated with Pd-103 and supplemental beam radiation, with minimum 2 years follow-up prostate-specific antigen (PSA) values and posttreatment computed tomography scans were analyzed. Dosimetric parameters included the V100 (percent of the postimplant volume covered by the prescription dose), the D90 (the minimum dose that covered 90% of the post implant volume), and the treatment margins (the radial distance between the prostatic edge and the prescription isodose). Treatment margins (TMs) were calculated using premarket software. Results: Freedom from biochemical failure was 79% at 3 years, with 92 of the 179 patients (51%) followed beyond 3 years. In comparing patients who did or did not achieve biochemical control, the most striking differences were in biologic factors of pretreatment PSA and Gleason score. The V100, D90, and average TM all showed nonsignificant trends to higher values in patients with biochemical control. In multivariate analysis of each of the three dosimetric parameters against PSA and Gleason score, TM showed the strongest correlation with biochemical control (p = 0.19). Conclusions: For patients with intermediate and high-risk prostate cancer treated with Pd-103 brachytherapy and external beam radiation, biologic factors (PSA and Gleason score) were the most important determinants of cancer eradication. However, there is a trend to better outcomes among patients with higher quality implant parameters, suggesting that attention to implant quality will maximize the likelihood of cure.

  10. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  11. Vaccines and IP Rights: A Multifaceted Relationship.

    PubMed

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.

  12. Vaccines and IP Rights: A Multifaceted Relationship.

    PubMed

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution. PMID:27076338

  13. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  14. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  15. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    PubMed

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  16. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  17. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  18. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Grassberger, C.; Sharp, G. C.; Paganetti, H.

    2013-06-01

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ˜ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ˜ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively

  19. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

    PubMed

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-06-21

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The

  20. Analysis of Handoff Mechanisms in Mobile IP

    NASA Astrophysics Data System (ADS)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  1. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  2. Internet topology: connectivity of IP graphs

    NASA Astrophysics Data System (ADS)

    Broido, Andre; claffy, kc

    2001-07-01

    In this paper we introduce a framework for analyzing local properties of Internet connectivity. We compare BGP and probed topology data, finding that currently probed topology data yields much denser coverage of AS-level connectivity. We describe data acquisition and construction of several IP- level graphs derived from a collection of 220 M skitter traceroutes. We find that a graph consisting of IP nodes and links contains 90.5% of its 629 K nodes in the acyclic subgraph. In particular, 55% of the IP nodes are in trees. Full bidirectional connectivity is observed for a giant component containing 8.3% of IP nodes.

  3. Verification of the AWA Photoinjector Beam Parameters Required for a Transverse-to-Longitudinal Emittance Exchange Experiment

    SciTech Connect

    Rihaoui, M.M.; Piot, P.; Power, J.G.; Mihalcea, D.; Gai, W.; /Argonne

    2009-05-01

    A transverse-to-longitudinal emittance exchange experiment is in preparation at the Argonne Wakefield Accelerator (AWA). The experiment aims at exchanging a low ({var_epsilon}{sub z} < 5 {micro}m) longitudinal emittance with a large ({var_epsilon}{sub x} > 15 {micro}m) transverse horizontal emittance for a bunch charge of {approx}100 pC. Achieving such initial emittance partitioning, though demonstrated via numerical simulations, is a challenging task and needs to be experimentally verified. In this paper, we report preliminary emittance measurements of the beam in the transverse and longitudinal planes performed at {approx}12 MeV. The measurements are compared with numerical simulations.

  4. Simple beam profile monitor

    SciTech Connect

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  5. Evaluation of diffusion-recombination parameters in electrodeposited CuIn(S, Se) 2 solar cells by means of electron beam induced current experiments and modelling

    NASA Astrophysics Data System (ADS)

    Sieber, B.; Ruiz, C. M.; Bermudez, V.

    2009-04-01

    Thin-film solar cells with a Cu-based chalcopyrite absorber achieve high conversion efficiencies (up to 20%). Their technology being more cost effective than the crystalline silicon technologies, they are expected to replace Si-based solar cells. But a best cost-performance ratio requires first a knowledge of the parameters which ascertain the electrical quality of the solar cell. The first of them is the minority carrier diffusion length in the absorber and the second one is the collection efficiency of the p-n junction space charge region (SCR) located within the absorber. A low value of at least one of them drastically reduces the efficiency of the cell. In this paper we present an electron-beam-induced-current (EBIC) determination of these two parameters in CIS solar cells.

  6. Photometric studies of δ Scuti stars. I. IP Virginis

    USGS Publications Warehouse

    Joner, Michael D.; Hintz, Eric G.; Collier, Matthew W.

    1998-01-01

    We report 15 new times of maximum light for the δ Scuti star IP Virginis (formerly known as SA 106‐1024). An analysis of all times of maximum light indicates that IP Vir has been decreasing in period at a constant rate of − days day−1. Evidence is also presented that IP Vir is a double‐mode variable with a period ratio of . This period ratio predicts a [Fe/H] value of −0.3. From photometric (uvbyβ) observations, we find a foreground reddening of .008 mag and a metallicity of [Fe/H] = +0.05. It is shown that [Fe/H] = −0.3 is most likely the correct value. Intrinsic ‐ and c1‐values, plotted in a model atmosphere grid, indicate a mean effective temperature, K, and a mean surface gravity, . All of these physical parameters support Landolt's initial conclusion that IP Vir is an ordinary δ Sct star.

  7. Retrograde amnesia produced by electron beam exposure: casual parameters and duration of memory loss. Final report for November 84

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron-beam exposure was investigated. RA production was evaluated using a single-trial avoidance task for 10, 1, and 0.1 microsecond pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 1,000,000 rad/sec. By employing a 10 rad (1,000,000 rad/s) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory system activation which provided a novel stimulus that masked previous stimuli.

  8. Beams Arrangement in Non-Small Cell Lung Cancer (NSCLC) According to PTV and Dosimetric Parameters Predictive of Pneumonitis

    SciTech Connect

    Ramella, Sara; Trodella, Lucio; Mineo, Tommaso Claudio; Pompeo, Eugenio; Gambacorta, Maria A.; Cellini, Francesco; Ciresa, Marzia; Fiore, Michele; Greco, Carlo; Gaudino, Diego; Stimato, Gerardina; Piermattei, Angelo; Cesario, Alfredo; D'Angelillo, Rolando M.

    2010-10-01

    The aim of this study is to propose and validate an original new class of solutions for three-dimensional conformal radiation therapy (3DCRT) treatment planning for non-small cell lung cancer (NSCLC) according to the different patterns of disease presentation (on the basis of tumor location and volume) and to explore beams arrangement (planar or no-planar solutions) to respect dose constraints to the lung parenchyma. Benchmarks matched to validate the new approach are interuser reproducibility and saving on planning time. Tumor location was explored and specific categories created according to the tumor volume and location. Therefore, by applying planar and no-planar 3D plans, we searched for an optimization of the beams arrangement for each category. Dose-volume histograms (DVHs) were analyzed and a plan comparison performed. Results were then validated (class solution planning confirmation) by applying the same strategy to another group of patients. This has been realized at two dose levels (50.4 and 59.4 Gy). Fifty-nine patients were enrolled in this dosimetric study. In the first 27 patients ('exploratory sample') three main planning target volume location categories were identified according to the pattern of the disease presentation: (1) centrally located; (2) peripheral T and mediastinal N (P+N); and (3) superior sulcus. Original class solutions were proposed for each location category. On the next 32 patients ('validation sample'), the treatment planning started directly with the recommended approach. Mean V{sub 20Gy} value was 18.8% (SD {+-} 7.25); mean V{sub 30Gy}:12% (SD {+-} 4.05); and mean lung dose: 11.6Gy (SD {+-} 5.77). No differences between the two total dose level groups were observed. These results suggest a simple and reproducible tool for treatment planning in NSCLC, allowing interuser reproducibility and cutting down on planning time.

  9. VoIP to the Rescue

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    Voice over Internet Protocol (VoIP) is everywhere. The technology lets users make and receive phone calls over the Internet, transporting voice traffic alongside data traffic such as instant messages (IMs) and e-mail. While the number of consumer customers using VoIP increases every week, the technology is finding its way into K-12 education as…

  10. Refinement of the crystal structural parameters of the intermediate phase of h-BaTiO3 using convergent-beam electron diffraction.

    PubMed

    Ogata, Yoichiro; Tsuda, Kenji; Akishige, Yukikuni; Tanaka, Michiyoshi

    2004-11-01

    Crystal structural parameters (21 positional parameters and nine isotropic Debye-Waller factors) of the intermediate phase of hexagonal barium titanate (h-BaTiO3) have been refined by a structure analysis method using convergent-beam electron diffraction (CBED); this method was developed by Tsuda & Tanaka [Acta Cryst. (1999), A55, 939-954]. In order to perform the analysis, a parallel computation using a computer cluster composed of 16 connected Pentium 4 PCs was introduced. A function of parallel computation has been implemented in our analysis software, MBFIT, with the aid of the Message Passing Interface (MPI). Parallel computation enabled the present refinement to be conducted using a [001] CBED pattern and a [010] CBED pattern simultaneously. Reliable errors for the refined structural parameters have been obtained from the analyses of four independent experimental data sets instead of using the errors obtained by the error-propagation rule of least-squares fitting. The parameters obtained have been found to agree well with those determined by a neutron Rietveld analysis.

  11. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    SciTech Connect

    Frolov, S A; Trunov, V I; Pestryakov, Efim V; Leshchenko, V E

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)

  12. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  13. Advanced module for model parameter extraction using global optimization and sensitivity analysis for electron beam proximity effect correction

    NASA Astrophysics Data System (ADS)

    Figueiro, Thiago; Choi, Kang-Hoon; Gutsch, Manuela; Freitag, Martin; Hohle, Christoph; Tortai, Jean-Hervé; Saib, Mohamed; Schiavone, Patrick

    2012-11-01

    In electron proximity effect correction (PEC), the quality of a correction is highly dependent on the quality of the model. Therefore it is of primary importance to have a reliable methodology to extract the parameters and assess the quality of a model. Among others the model describes how the energy of the electrons spreads out in the target material (via the Point Spread Function, PSF) as well as the influence of the resist process. There are different models available in previous studies, as well as several different approaches to obtain the appropriate value for their parameters. However, those are restricted in terms of complexity, or require a prohibitive number of measurements, which is limited for a certain PSF model. In this work, we propose a straightforward approach to obtain the value of parameters of a PSF. The methodology is general enough to apply for more sophisticated models as well. It focused on improving the three steps of model calibration procedure: First, it is using a good set of calibration patterns. Secondly, it secures the optimization step and avoids falling into a local optimum. And finally the developed method provides an improved analysis of the calibration step, which allows quantifying the quality of the model as well as enabling a comparison of different models. The methodology described in the paper is implemented as specific module in a commercial tool.

  14. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  15. Effect of ion beam parameters on engineering of nanoscale voids and their stability under post-growth annealing

    NASA Astrophysics Data System (ADS)

    Hooda, Sonu; Khan, S. A.; Satpati, B.; Stange, D.; Buca, D.; Bala, M.; Pannu, C.; Kanjilal, D.; Kabiraj, Debdulal

    2016-03-01

    Swift heavy ion (SHI) irradiation of damaged germanium (d-Ge) layer results in porous structure with voids aligned along ion trajectory due to local melting and resolidification during high electronic energy deposition. The present study focuses on the irradiation temperature- and incident angle-dependent growth dynamics and shape evolution of these voids due to 100 MeV Ag ions irradiation. The d-Ge layers were prepared by multiple low-energy Ar ion implantations in single crystalline Ge with damage formation of ~7 displacements per atom. Further, these d-Ge layers were irradiated using 100 MeV Ag ions at two different temperatures (77 and 300 K) and three different angles (7°, 30° and 45°). After SHI irradiation, substantial volume expansion of d-Ge layer is detected which is due to formation of nanoscale voids. The volume expansion is observed to be more in the samples irradiated at 77 K as compared to 300 K at a given irradiation fluence. It is observed that the voids are of spherical shape at low ion irradiation fluence. The voids grow in size and change their shape from spherical to prolate spheroid with increasing ion fluence. The major axis of spheroid is observed to be aligned approximately along the ion beam direction which has been confirmed by irradiation at three different angles. The change in shape is a consequence of combination of compressive strain and plastic flow developed due to thermal spike generated along ion track. Post-SHI irradiation annealing shows increase in size of voids and reversal of shape from prolate spheroid towards spherical through strain relaxation. The stability of voids was studied with the effect of post-growth annealing.

  16. 77 FR 33227 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Sector Outreach and...--Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT). DHS...

  17. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich

    2012-02-01

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

  18. Evaluation for Basic Image Qualities Dependence on the Position in XYZ Directions and Acquisition Parameters of the Cone Beam CT for Angiography System with Flat Panel Detector.

    PubMed

    Tsuda, Norisato; Mitsui, Kota; Oda, Shinichiro

    2016-08-01

    The purpose of this study was to investigate the effect of the position in XYZ directions and acquisition parameters on the basic image qualities of for cone beam computed tomography (CBCT) in an angiography system with flat panel detector. The resolution property (modulation transfer function: MTF) and the noise property (Wiener spectrum: WS) of CBCT images in X-Y plane were measured with different acquisition parameters (scan matrix number and projection number) and the effect of the position in XYZ directions. The MTFs with 1024×1024 matrix were higher than those of 512×512 matrix and decreased in the peripheral areas due to the reduction of projection number. The highest and the lowest MTFs were measured at the X-ray tube side and on the detector side of the position in X-Y plane, respectively. The WS-doubled projection number showed about 50% lesser noise level. There were differences in the Wiener spectra (WS) at the position in XYZ directions. We conclude that the resolution and the noise property of CBCT image in X-Y plane showed dependences on the position in XYZ directions and acquisition parameters of the CBCT. PMID:27546079

  19. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  20. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G. )

    1989-10-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes the authors software and hardware support for TCP/IP on VAX/VMS, VME/rhoSOS, FASTBUS/rhoSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software.

  1. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G.

    1989-05-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes our software and hardware support for TCP/IP on VAX/VMS, VME/pSOS, FASTBUS/pSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software. 8 refs., 3 figs.

  2. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Bobrov, A. I.; Daniltsev, V. M.; Novikov, A. V.; Pavlov, D. A.; Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A.

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  3. IP-1 Certification of Cargo Containers

    SciTech Connect

    Hagler, Lisle

    2010-10-05

    The purpose and scope of this engineering note is to demonstrate that the structural design of the cargo container complies with the IP-1 container requirements of 49 CFR 173.410 as required by CFR 173.411.

  4. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  5. Effect of laser beam parameters on melt mobilization and LIBS analysis of a special aluminum alloy containing zeolite

    NASA Astrophysics Data System (ADS)

    Khalil, Osama M.; Nakimana, Agnes

    2016-07-01

    Aluminum alloy containing zeolite was analyzed by using nanosecond and femtosecond laser-induced breakdown spectroscopy (ns and fs-LIBS). The results reveal that Laser parameters, target physical properties, and ambient conditions affect the laser ablation process. The aluminum silicate minerals present in the alloy under investigation enable material volume expansion under compression. In laser interaction with this alloy, it has been observed that the crater depth decreases with the increase of the surface hardness. In ns -LIBS, it is noted that the ablation speed decreases with time and suddenly decreases with less sharp slope and after that the ablation speed increases slightly. In additional the results show the vanishing and reform of the crater rim with the increase of ablation time. Furthermore, a comparison between ns and fs-LIBS analysis has been done. Ns-LIBS analysis reveals that both spectra intensity and lines detection are significantly influenced by the ambient conditions. However in fs-LIBS, the ambient conditions affect the presented lines amplitude and width with the same effect on all lines.

  6. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  7. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    PubMed

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  8. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    PubMed

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components. PMID:22412321

  9. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis

    PubMed Central

    Ravanfar, Seyed Alireza; Abdul Razak, Hashim; Ismail, Zubaidah; Monajemi, Hooman

    2015-01-01

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage. PMID:26371005

  10. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis.

    PubMed

    Ravanfar, Seyed Alireza; Razak, Hashim Abdul; Ismail, Zubaidah; Monajemi, Hooman

    2015-01-01

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage. PMID:26371005

  11. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis.

    PubMed

    Ravanfar, Seyed Alireza; Razak, Hashim Abdul; Ismail, Zubaidah; Monajemi, Hooman

    2015-09-09

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.

  12. Absolute beam energy measurements in e+e- storage rings

    NASA Astrophysics Data System (ADS)

    Placidi, M.

    1997-01-01

    The CERN Large Electron Positron collider (LEP) was dedicated to the measurement of the mass Mz and the width Γz of the Z0 resonance during the LEP1 phase which terminated in September 1995. The Storage Ring operated in Energy Scan mode during the 1993 and 1995 physics runs by choosing the beam energy Ebeam to correspond to a center-of-mass (CM) energy at the interaction points (IPs) ECMpeak±1762 MeV. After a short review of the techniques usually adopted to set and control the beam energy, this paper describes in more detail two methods adopted at LEP for precise beam energy determination that are essential to reduce the contribution to the systematic error on Mz and Γz. The positron beam momentum was initially determined at the 20-GeV injection energy by measuring the speed of a less relativistic proton beam circulating on the same orbit, taking advantage of the unique opportunity to inject two beams into the LEP at short time intervals. The positron energy at the Z0 peak was in this case derived by extrapolation. Once transverse polarization became reproducible, the Resonant Depolarization (RD) technique was implemented at the Z0 operating energies, providing a ⩽2×10-5 instantaneous accuracy. RD Beam Energy Calibration has been adopted during the LEP Energy Scan campaigns as well as in Accelerator Physics runs for accurate measurement of machine parameters.

  13. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    SciTech Connect

    Wielen, Gerard J. van der Hoogeman, Mischa S.; Dohle, Gert R.; Putten, Wim L.J. van; Incrocci, Luca

    2008-07-01

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and the penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.

  14. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  15. IP effects on electromagnetic data of deep-sea hydrothermal deposits in time domain

    NASA Astrophysics Data System (ADS)

    KIM, H. J.; Jang, H.; Ha, W.

    2015-12-01

    A transient electromagnetic (TEM) system using a small loop source is advantageous to the development of compact, autonomous instruments which are well suited to submersible-based surveys. Since electrical conductivity of subseafloor materials can be frequency dependent, these induced polarization (IP) effects may affect the reliability of TEM data interpretation. In this study, we investigate IP effects on TEM responses of deep-sea hydrothermal mineral deposits with a thin sediment cover. Time-domain target signals are larger and appear earlier in horizontal magnetic fields than in vertical ones. IP effects cause transient magnetic fields to enhance initially, to decay rapidly and then to reverse the polarity. The DC conductivity and IP chargeability in Cole-Cole parameters influence the time of sign reversal and the enhancement of the target response, simultaneously. The reversal time is almost invariant with the time constant while the target signal is almost invariant with the frequency exponent.

  16. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    SciTech Connect

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  17. Regulation of IP 3 Receptors by IP 3 and Ca 2+

    NASA Astrophysics Data System (ADS)

    Taylor, Colin W.; Swatton, Jane E.

    Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.

  18. A survey of IP over ATM architectures

    SciTech Connect

    Chen, H.; Tsang, R.; Brandt, J.; Hutchins, J.

    1997-07-01

    Over the past decade, the Internet has burgeoned into a worldwide information highway consisting of approximately 5 million hosts on over 45,000 interconnected networks. This unprecedented growth, together with the introduction of multimedia workstations, has spurred the development of innovative applications that require high speed, low latency, and real-time transport. Today`s Internet can neither scale in its bandwidth nor guarantee the Quality of Services (QoS) necessary to meet these performance requirements. Many network researchers propose to use the Asynchronous Transfer Mode (ATM) technology as the underlying infrastructure for the next generation of workgroup, campus, and enterprise IP networks. Since ATM is significantly different from today`s legacy network technologies, efficient implementation of IP over ATM is especially challenging. This tutorial paper covers several existing proposals that integrate IP over ATM.

  19. 76 FR 81955 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Sector Specific Agency.../IP/SSA EMO, 245 Murray Lane SW., Mail Stop 0640, Arlington, VA 20598-0630. Emailed requests should...

  20. Influence of the glide path on various parameters of root canal prepared with WaveOne reciprocating file using cone beam computed tomography

    PubMed Central

    Dhingra, Anil; Nagar, Nidhi; Sapra, Vipul

    2015-01-01

    Background: Nickel–titanium (NiTi) rotary instrumentation carries a risk of fracture, mainly as a result of flexural (fatigue fracture) and torsional (shear failure) stresses. This risk might be reduced by creating a glide path before NiTi rotary instrumentation. The aim of this study was to compare various root canal parameters with the new WaveOne single-file reciprocating system in mesial canals of mandibular molars with and without glide path using cone beam computed tomography (CBCT). Materials and Methods: One hundred mandibular molar teeth with canal curvature between 20° and 30° were divided into two groups of 50 teeth each. In Group 1, no glide path was created, whereas in Group 2, a glide path was created with PathFiles at working length (WL). In both groups, canals were shaped with WaveOne primary reciprocating files to the WL. Canals were scanned in a CBCT unit before and after instrumentation. Postinstrumentation changes in canal curvature, cross-sectional area, centric ability, residual dentin thickness, and the extent of canal transportation were calculated using image analysis software and subjected to statistical analysis. Data were analyzed using Student's t-test and Mann–Whitney U-test (P < 0.05). Results: The mean difference of root canal curvature, cross-sectional area, centric ability, and residual dentin thickness increased, whereas it reduced significantly for canal transportation in Group 2. Conclusion: WaveOne NiTi files appeared to maintain the original canal anatomy and the presence of a glide path further improves their performance and was found to be beneficial for all the parameters tested in this study. PMID:26759589

  1. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Ozturk, Tugce; Beuth, Jack; Rollett, A. D.

    2016-03-01

    Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a "near-net-shape" process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes' method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

  2. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  3. IP validation in remote microelectronics testing

    NASA Astrophysics Data System (ADS)

    Osseiran, Adam; Eshraghian, Kamran; Lachowicz, Stefan; Zhao, Xiaoli; Jeffery, Roger; Robins, Michael

    2004-03-01

    This paper presents the test and validation of FPGA based IP using the concept of remote testing. It demonstrates how a virtual tester environment based on a powerful, networked Integrated Circuit testing facility, aimed to complement the emerging Australian microelectronics based research and development, can be employed to perform the tasks beyond the standard IC test. IC testing in production consists in verifying the tested products and eliminating defective parts. Defects could have a number of different causes, including process defects, process migration and IP design and implementation errors. One of the challenges in semiconductor testing is that while current fault models are used to represent likely faults (stuck-at, delay, etc.) in a global context, they do not account for all possible defects. Research in this field keeps growing but the high cost of ATE is preventing a large community from accessing test and verification equipment to validate innovative IP designs. For these reasons a world class networked IC teletest facility has been established in Australia under the support of the Commonwealth government. The facility is based on a state-of-the-art semiconductor tester operating as a virtual centre spanning Australia and accessible internationally. Through a novel approach the teletest network provides virtual access to the tester on which the DUT has previously been placed. The tester software is then accessible as if the designer is sitting next to the tester. This paper presents the approach used to test and validate FPGA based IPs using this remote test approach.

  4. Operational Space Weather Products at IPS

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  5. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... 47 CFR 63.60(a) and (f), published on August 7, 2009 (74 FR 39551), were approved by the Office of... published a document in the Federal Register, 74 FR 39551, August 7, 2009, that sets forth an effective date... COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final...

  6. EQuIP-ped for Success

    ERIC Educational Resources Information Center

    Ewing, Molly

    2015-01-01

    The Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science is a new tool for science educators that provides criteria by which to examine the alignment and overall quality of lessons and units with respect to the "Next Generation Science Standards" ("NGSS"). The rubric criteria are divided into…

  7. How To: Be VoIP-Savvy

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…

  8. Call progress time measurement in IP telephony

    NASA Astrophysics Data System (ADS)

    Khasnabish, Bhumip

    1999-11-01

    Usually a voice call is established through multiple stages in IP telephony. In the first stage, a phone number is dialed to reach a near-end or call-originating IP-telephony gateway. The next stages involve user identification through delivering an m-digit user-id to the authentication and/or billing server, and then user authentication by using an n- digit PIN. After that, the caller is allowed (last stage dial tone is provided) to dial a destination phone number provided that authentication is successful. In this paper, we present a very flexible method for measuring call progress time in IP telephony. The proposed technique can be used to measure the system response time at every stage. It is flexible, so that it can be easily modified to include new `tone' or a set of tones, or `voice begin' can be used in every stage to detect the system's response. The proposed method has been implemented using scripts written in Hammer visual basic language for testing with a few commercially available IP telephony gateways.

  9. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme.

  10. Using VoIP to compete.

    PubMed

    Werbach, Kevin

    2005-09-01

    Internet telephony, or VoIP, is rapidly replacing the conventional kind. This year, for the first time, U.S. companies bought more new Internet-phone connections than standard lines. The major driver behind this change is cost. But VoIP isn't just a new technology for making old-fashioned calls cheaper, says consultant Kevin Werbach. It is fundamentally changing how companies use voice communications. What makes VoIP so powerful is that it turns voice into digital data packets that can be stored, copied, combined with other data, and distributed to virtually any device that connects to the Internet. And it makes it simple to provide all the functionality of a corporate phone-call features, directories, security-to anyone anywhere there's broadband access. That fosters new kinds of businesses such as virtual call centers, where widely dispersed agents work at all hours from their homes. The most successful early adopters, says Werbach, will focus more on achieving business objectives than on saving money. They will also consider how to push VoIP capabilities out to the extended organization, making use of everyone as a resource. Deployment may be incremental, but companies should be thinking about where VoIP could take them. Executives should ask what they could do if, on demand, they could bring all their employees, customers, suppliers, and partners together in a virtual room, with shared access to every modern communications and computing channel. They should take a fresh look at their business processes to find points at which richer and more customizable communications could eliminate bottlenecks and enhance quality. The important dividing line won't be between those who deploy Vol P and those who don't, or even between early adopters and laggards. It will be between those who see Vol P as just a new way to do the same old things and those who use itto rethink their entire businesses.

  11. Development of New IP Cores for Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Isomaki, Marko; Ekergarn, Jonas; Hjorth, Magnus; Wessman, Nils-Johan; Habinc, Sandi

    2010-08-01

    The GRLIB IP library is an integrated set of reusable IP cores, designed for system-on-chip (SOC) development. The IP cores are centered around a common on-chip bus, and use a coherent method for simulation and synthesis. The library is vendor independent, with support for different CAD tools and target technologies. The success of any IP core library is highly dependent on the constantly increasing number of IP cores and the improvement of existing IP cores. This paper will cover both these aspects, presenting some new developments as well as some improvements of existing items.

  12. Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Dünnbier, Mario; Hübner, Simon; Reuter, Stephan; Benedikt, Jan

    2014-12-01

    Absolute atomic nitrogen densities (N) in the effluent of a micro-scale atmospheric pressure plasma jet (µ-APPJ) operated in He with small admixtures of molecular nitrogen (N2) are measured by means of molecular beam mass spectrometry. Focusing on changes of the external plasma parameters, the dependency of the atomic nitrogen density on the admixture of molecular nitrogen to the plasma, the variation of applied electrode voltage and the variation of distance between the jet nozzle and the sampling orifice of the mass spectrometer are analysed. When varying the N2 admixture, a maximum density of atomic nitrogen of approximately 1.5  ×  1014 cm-3 (~6 ppm) is reached at about 0.25% N2 admixture. Moreover, the N density increases approximately linearly with the applied voltage. Both results are comparable to atomic oxygen (O) behaviour of the µ-APPJ operated at equal plasma conditions except for admixing molecular O2 instead of nitrogen (Ellerweg et al 2010 New J. Phys. 12 013021). The N density decreases continuously with increasing distance, but the decrease is slower than in the case of O atoms in He/O2 plasma. N atoms with a density of 2.0  ×  1013 cm-3 (~0.8 ppm) are still detected at 40 mm distance from the jet nozzle in controlled He/N2 atmosphere. The simple fluid simulation of N diffusion does not reproduce the measured densities of N. Nevertheless, a simulation taking into account atomic nitrogen reactions with gas impurities are able to reproduce the measured data, indicating that these reactions are an important loss mechanism of N atoms. The presented results are relevant for the future investigation of interactions of reactive nitrogen species with biological substrates.

  13. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    NASA Astrophysics Data System (ADS)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  14. Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Analogues of IP3

    PubMed Central

    Saleem, Huma; Tovey, Stephen C.; Rahman, Taufiq; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    Most animal cells express mixtures of the three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) encoded by vertebrate genomes. Activation of each subtype by different agonists has not hitherto been examined in cells expressing defined homogenous populations of IP3R. Here we measure Ca2+ release evoked by synthetic analogues of IP3 using a Ca2+ indicator within the lumen of the endoplasmic reticulum of permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R. Phosphorylation of (1,4,5)IP3 to (1,3,4,5)IP4 reduced potency by ∼100-fold. Relative to (1,4,5)IP3, the potencies of IP3 analogues modified at the 1-position (malachite green (1,4,5)IP3), 2-position (2-deoxy(1,4,5)IP3) or 3-position (3-deoxy(1,4,5)IP3, (1,3,4,5)IP4) were similar for each IP3R subtype. The potency of an analogue, (1,4,6)IP3, in which the orientations of the 2- and 3-hydroxyl groups were inverted, was also reduced similarly for all three IP3R subtypes. Most analogues of IP3 interact similarly with the three IP3R subtypes, but the decrease in potency accompanying removal of the 1-phosphate from (1,4,5)IP3 was least for IP3R3. Addition of a large chromophore (malachite green) to the 1-phosphate of (1,4,5)IP3 only modestly reduced potency suggesting that similar analogues could be used to measure (1,4,5)IP3 binding optically. These data provide the first structure-activity analyses of key IP3 analogues using homogenous populations of each mammalian IP3R subtype. They demonstrate broadly similar structure-activity relationships for all mammalian IP3R subtypes and establish the potential utility of (1,4,5)IP3 analogues with chromophores attached to the 1-position. PMID:23372785

  15. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    SciTech Connect

    Mishra, Kavita K.; Daftari, Inder K.; Weinberg, Vivian; Cole, Tia; Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L.; Char, Devron H.

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height

  16. Customer choice test is running well for IP

    SciTech Connect

    1996-06-01

    As of May 4, eight of the 21 eligible Illinois Power Company (IP) electricity customers had chosen to buy some of their power from an entity other than IP. They are free to do this because IP is conducting an experiment in customer choice, the first of its kind in the country, according to the utility. Although it is still very early, the experiment seems to be working well. {open_quotes}Our experience so far has been very good,{close_quotes} said John Dewey, a spokesman for IP. {open_quotes}Some of our customers say they expect to see substantial savings.{close_quotes} IP expects to gain knowledge of what it takes to retain customers and, when the entire industry becomes competitive, to gain new customers. IP`s own marketing affiliate, Illinova Power Marketing, based in Salt Lake City, Utah, is participating: It arranged for 4 MWe of power from another supplier to be shipped across IP`s transmission system to one of IP`s customers. IP`s tariff for such use of its transmission lines, as approved by the Federal Energy Regulatory Commission, is between 0.3 and 0.5 cents/kWh.

  17. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing

  18. IPS - Instrument pointing system for Spacelab payloads

    NASA Astrophysics Data System (ADS)

    Hammesfahr, A.

    An instrument pointing system (IPS) will be flown for the first time with Spacelab 2 in Oct. 1984. The IPS is a three-axis gimbal system with payload clamp units for mounting on the Spacelab pallets. Power to drive the units comes from an integrated electronic power and digital control system and Spacelab subsystems. Control originates in either Spacelab, the Shuttle, or from the ground. An intermediate gimbal system is provided with explosive bolts in order to jettison the payload in critical situations. The system covers a conical field-of-view of 120 deg aperture with 180 deg possible in both directions of the roll axis. A block diagram is furnished for the electrical circuitry. Loads are interchangeable so long as they interface with clamps which hold the package to the Orbiter. A maximum weight of up to three tons is allowable.

  19. China IP expanding with self-sufficiency.

    PubMed

    2000-07-01

    This article reports the proceedings of the two National Workshops on the Integrated Project (IP), held in two cities in China. These workshops were organized by the National Steering Committee (NSC) of the Integrated Family Planning Project in China. About 70 representatives, project personnel from the first to the fourth cycle project areas, attended the Taicang workshop, while about 60 representatives from the fifth and sixth cycle project areas attended the Pingyao workshop. Workshop agendas included reports from the NSC, lectures by experts on new developments of reproductive health, summary report of the evaluation for the fifth cycle project, and presentation and discussion on selected project areas. The participants from each workshop took part in field trips to Taicang and Pingyao followed by discussions summarizing the trips. Overall, it is noted that pilot IP projects must not be conducted only within the pilot county, but also outside, as a model projects with appropriate directions and strategies.

  20. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  1. IP- -: A Reduced Internet Protocol for Optical Packet Networking

    NASA Astrophysics Data System (ADS)

    Ohta, Masataka; Fujikawa, Kenji

    IP- - is proposed as an Internet Protocol suitable for optical packet networking. As optical routers require much faster control than electric ones and lack of optical buffers other than those by fiber delay lines requires fixed time control, Internet Protocols must be at least as simple as IPv4 and much simpler than IPv6. IP- - also addresses issues of IP address space exhaustion and IP routing table explosion.

  2. Generation of iPS Cells from Granulosa Cells.

    PubMed

    Mao, Jian; Liu, Lin

    2016-01-01

    Various types of somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells. Somatic stem cells may generate iPS cells more efficiently than do differentiated cells. We show that granulosa cells exhibit characteristic of somatic stem cells and can be reprogrammed to iPS cells more efficiently or with few factors. Here, we describe generation of mouse and pig iPS cells from granulosa cells with high efficiency.

  3. Confinement of bunched beams

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Chen, Chiping

    2001-05-01

    The non-relativistic motion is analyzed for a highly bunched beam propagating through a perfectly conducting cylindrical pipe confined radially by a constant magnetic field parallel to the conductor axis, using a Green's function technique and Hamiltonian dynamics analysis. It is shown that for the confinement of beams with the same charge per unit length, the maximum value of the effective self-field parameter for a highly bunched beam is significantly lower than the Brillouin density limit for an unbunched beam.

  4. IP-based storage of image information

    NASA Astrophysics Data System (ADS)

    Fu, Xianglin; Xie, Changsheng; Liu, Zhaobin

    2001-09-01

    With the fast growth of data in multispectral image processing, the traditional storage architecture was challenged. It is currently being replaced by Storage Area Networks (SAN), which makes storage devices externalized from servers. A SAN is a separate network for storage, isolated from the messaging network and optimized for the movement of data between servers and storage devices. Nowadays, most of current SAN use Fibre Channel to move data between servers and storage devices (FC-SAN), but because of the drawbacks of the FC-SAN: for interoperability, lack of skilled professional and management tools, high implementation cost and so on, the development and application of FC-SAN was obstructed. In this paper, we introduce an IP-based Storage Area Networks architecture, which has the good qualities of FC- SAN but overcomes the shortcoming of it. The principle is: use IP technology to move data between servers and storage devices, build a SAN with the IP-based network devices (not the FC-based network device), and through the switch, SAN is attached to the LAN(Local Area Network) through multiple access. Especially, these storage devices are acted as commercial NAS devices and PC.

  5. A Survey of Voice over IP Security Research

    NASA Astrophysics Data System (ADS)

    Keromytis, Angelos D.

    We present a survey of Voice over IP security research. Our goal is to provide a roadmap for researchers seeking to understand existing capabilities and, and to identify gaps in addressing the numerous threats and vulnerabilities present in VoIP systems. We also briefly discuss the implications of our findings with respect to actual vulnerabilities reported in a variety VoIP products.

  6. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  7. Covert Channels in SIP for VoIP Signalling

    NASA Astrophysics Data System (ADS)

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    In this paper, we evaluate available steganographic techniques for SIP (Session Initiation Protocol) that can be used for creating covert channels during signaling phase of VoIP (Voice over IP) call. Apart from characterizing existing steganographic methods we provide new insights by introducing new techniques. We also estimate amount of data that can be transferred in signalling messages for typical IP telephony call.

  8. Simulation study of beam-beam effects in ion beams with large space charge tuneshift

    SciTech Connect

    Montag C.

    2012-05-20

    During low-energy operations with gold-gold collisions at 3.85 GeV beam energy, significant beam lifetime reductions have been observed due to the beam-beam interaction in the presence of large space charge tuneshifts. These beam-beam tuneshift parameters were about an order of magnitude smaller than during regular high energy operations. To get a better understanding of this effect, simulations have been performed. Recent results are presented.

  9. IPS observations at 140 MHz to study solar wind speeds and density fluctuations by MEXART

    NASA Astrophysics Data System (ADS)

    Chang, Oyuki; Gonzalez-Esparza, J. A.; Mejia-Ambriz, J.

    2016-03-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring the inner heliosphere. These observations supply information on solar wind conditions covering heliocentric ranges that no other technique can provide. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We present solar-wind parameters (scintillation indices and solar-wind speeds), using the initial measurements from this array of four IPS sources (3C273, 3C283, 3C286, 3C298) detected during October-December 2014. We report the transit of an IPS radio source (3C298), observed at 140 MHz, from weak- to strong-scattering regions at around 0.36 AU, and sky projection maps of solar wind conditions associated presumably with the passing of one or more Coronal Mass Ejections (CMEs). These results show the progress to operate the full array in the near future. The MEXART observations will complement the solar wind IPS studies using other frequencies, and the tracking of solar wind disturbances by other stations located at different longitudes. These solar wind measurements, provided in real time, can have space-weather forecasting applications.

  10. Research and Simulation on Application of the Mobile IP Network

    NASA Astrophysics Data System (ADS)

    Yibing, Deng; Wei, Hu; Minghui, Li; Feng, Gao; Junyi, Shen

    The paper analysed the mobile node, home agent, and foreign agent of mobile IP network firstly, some key technique, such as mobile IP network basical principle, protocol work principle, agent discovery, registration, and IP packet transmission, were discussed. Then a network simulation model was designed, validating the characteristic of mobile IP network, and some advantages, which were brought by mobile network, were testified. Finally, the conclusion is gained: mobile IP network could realize the expectation of consumer that they can communicate with others anywhere.

  11. Protecting LHC components against radiation resulting from an unsynchronized beam abort

    SciTech Connect

    Nikolai V. Mokhov et al.

    2001-06-26

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septumMSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage.

  12. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    PubMed

    Carroll, Thomas S; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  13. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data

    PubMed Central

    Carroll, Thomas S.; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency. PMID:24782889

  14. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  15. Source identification of the Arctic sea ice proxy IP25.

    PubMed

    Brown, T A; Belt, S T; Tatarek, A; Mundy, C J

    2014-06-18

    Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction.

  16. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    PubMed Central

    Ibarretxe, Gaskon; Alvarez, Antonia; Cañavate, Maria-Luz; Hilario, Enrique; Aurrekoetxea, Maitane; Unda, Fernando

    2012-01-01

    The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration. PMID:22690226

  17. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  18. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  19. The effect of beam and plasma parameters on the four modes of plasma-loaded traveling-wave tube with tape helix

    NASA Astrophysics Data System (ADS)

    Saviz, S.

    2014-07-01

    Field theory is applied to analyze the behavior of the electromagnetic wave in the presence of a solid electron beam and magnetized plasma-loaded tape helix traveling-wave tube. The obtained dispersion relation implicitly includes azimuthal variations and all spatial harmonics of the tape helix. Results indicate that the frequency and the phase velocity of ( X bp - X p ) and ( O bp - X p ) modes increase with cyclotron frequency and for ( O bp - O p ) and ( X bp - O p ) modes decrease. In the strong magnetic field limit, the maximum growth rate and frequency of all modes are constant at different values of cyclotron frequency and beam energy. If the plasma density increases, the frequency and phase velocity of four modes will increase. The maximum growth rates of the four modes in the lower plasma density are equal and for higher values of plasma density the ( O bp - X p ) mode has greatest value. The phase velocity and the frequency of ( X bp - X p ) with ( X bp - O p ) modes and ( O bp - O p ) with ( O bp - X p ) modes are coinciding with each other and for first case increase with beam density, but for latter decrease. The maximum growth rate of ( O bp - O p ) mode and the maximum frequency of ( X bp - X p ) mode have highest values as a function of the electron beam density.

  20. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    SciTech Connect

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  1. Blood or Urine IP-10 Cannot Discriminate between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children

    PubMed Central

    Petrone, Linda; Cannas, Angela; Aloi, Francesco; Nsubuga, Martin; Sserumkuma, Joseph; Nazziwa, Ritah Angella; Jugheli, Levan; Lukindo, Tedson; Girardi, Enrico; Reither, Klaus; Goletti, Delia

    2015-01-01

    Objectives. Interferon-γ inducible protein 10 (IP-10), either in blood or in urine, has been proposed as a tuberculosis (TB) biomarker for adults. This study aims to evaluate the potential of IP-10 diagnostics in children from Uganda, a high TB-endemic country. Methods. IP-10 was measured in the blood and urine concomitantly taken from children who were prospectively enrolled with suspected active TB, with or without HIV infection. Clinical/microbiological parameters and commercially available TB-immune assays (tuberculin skin test (TST) and QuantiFERON TB-Gold In-Tube (QFT-IT)) were concomitantly evaluated. Results. One hundred twenty-eight children were prospectively enrolled. The analysis was performed on 111 children: 80 (72%) of them were HIV-uninfected and 31 (27.9%) were HIV-infected. Thirty-three healthy adult donors (HAD) were included as controls. The data showed that IP-10 is detectable in the urine and blood of children with active TB, independent of HIV status and age. However, although IP-10 levels were higher in active TB children compared to HAD, the accuracy of identifying “active TB” was low and similar to the TST and QFT-IT. Conclusion. IP-10 levels are higher in children with respiratory illness compared to controls, independent of “TB status” suggesting that the evaluation of this parameter can be used as an inflammatory marker more than a TB test. PMID:26346028

  2. Thick, segmented CdWO{sub 4}-photodiode detector for cone beam megavoltage CT: A Monte Carlo study of system design parameters

    SciTech Connect

    Monajemi, T. T.; Fallone, B. G.; Rathee, S.

    2006-12-15

    Megavoltage (MV) imaging detectors have been the focus of research by many groups in recent years. We have been working with segmented CdWO{sub 4} crystals in contact with photodiodes in our lab. The present study uses both x-ray and optical photon transport Monte Carlo simulations to analyze the effects of scintillation crystal height, septa material, beam divergence, and beam spectrum on the modulation transfer function, MTF(f) and zero frequency detective quantum efficiency, DQE(0), of a theoretical area detector. The theoretical detector is comprised of tall, segmented CdWO{sub 4} crystals and two dimensional photodiode arrays with a pitch of 1 mm and a fill factor of 72%. Increasing the crystal height above 10 mm does not result in an improvement in the DQE(0) if the reflection coefficient of the septa is less than 0.8. For a reflection coefficient of 0.975 for the septa, there is a continual gain in the DQE(0) up to 30 mm tall crystals. Similar calculations show that employing a 3.5 MV beam without a flattening filter increases the DQE(0) for 20 mm tall crystals by 9% compared to a typical 6 MV beam with a flattening filter. The severe degradations due to beam divergence on MTF(f) are quantified and suggest the use of focused detectors in MV imaging. It is found that when the effect of optical photons is considered, the presence of divergence can appear as a shift in the location of the input signal as well as loss of spatial resolution.

  3. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    SciTech Connect

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  4. Using IPS Magnetic Modeling to Determine Bz

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Mejia-Ambriz, J. C.; Bisi, M. M.; Tokumaru, M.

    2014-12-01

    Interplanetary scintillation (IPS) observations enable remote determinations of velocity and density in the inner heliosphere while also providing forecasts of these quantities. Using the global velocities inferred from IPS, and through convection upward of magnetic fields perpendicular to a source surface produced by the Current-Sheet Source Surface (CSSS) modified potential model (Zhao and Hoeksema, J. Geophys. Res., 100, 19, 1995), global long-duration radial and tangential heliospheric field components can also be determined. In order to better include short-term transient effects and derive a value for the field normal to these components (Bn) during periods where CMEs, are present, we have tested an extension to our current 3D vector-field analysis. This extension adds closed fields from below the source surface to the CSSS model values, and when traced outward from the sub-Earth point, three magnetic field components are present. These are compared to in-situ magnetic fields measured near Earth for several periods throughout the current solar cycle from the minimum between Solar Cycle 23 and 24 up until the present. We find a significant positive correlation when using this extension to current analyses including that of the Bn field for the test cases analyzed thus far.

  5. IP-Based Video Modem Extender Requirements

    SciTech Connect

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOE Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.

  6. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting

    SciTech Connect

    Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.; Dehoff, Ryan R.; Sames, William; Erdman, III, Donald L.; Eklund, Anders; Howard, Ron

    2015-04-01

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powder bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.

  7. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-09-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I-V characteristics. The theoretically predicted short-circuit current density (Jsc), and open-circuit voltage (Voc) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of Jsc and Voc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  8. SPIDER beam dump as diagnostic of the particle beam

    NASA Astrophysics Data System (ADS)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  9. Telemetry and Communication IP Video Player

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2011-01-01

    Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.

  10. Security Research on VoIP with Watermarking

    NASA Astrophysics Data System (ADS)

    Hu, Dong; Lee, Ping

    2008-11-01

    With the wide application of VoIP, many problems have occurred. One of the problems is security. The problems with securing VoIP systems, insufficient standardization and lack of security mechanisms emerged the need for new approaches and solutions. In this paper, we propose a new security architecture for VoIP which is based on digital watermarking which is a new, flexible and powerful technology that is increasingly gaining more and more attentions. Besides known applications e.g. to solve copyright protection problems, we propose to use digital watermarking to secure not only transmitted audio but also signaling protocol that VoIP is based on.

  11. A Scalable and Practical Authentication Protocol in Mobile IP

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Lee, Goo-Yeon; Kim, Hwa-Long

    Due to the proliferation of mobile devices connected to the Internet, implementing a secure and practical Mobile IP has become an important goal. A mobile IP can not work properly without authentication between the mobile node (MN), the home agent (HA) and the foreign agent (FA). In this paper, we propose a practical Mobile IP authentication protocol that uses public key cryptography only during the initial authentication. The proposed scheme is compatible with the conventional Mobile IP protocol and provides scalability against the number of MN's. We also show that the proposed protocol offers secure operation.

  12. Mig and IP-10: CXC chemokines that target lymphocytes.

    PubMed

    Farber, J M

    1997-03-01

    Mig and IP-10 are related members of the CXC subfamily of the chemokine family of cytokines. The murine Mig (MuMig), human IP-10, and the mouse homologue of IP-10, Crg-2, were all identified due to the dramatic inductions of their genes in monocytic cells treated with interferon-gamma (IFN-gamma). Studies using recombinant (r) human proteins show that, unlike most other CXC chemokines, rHuMig and rIP-10 have no activity on neutrophils but appear to target lymphocytes specifically. rHuMig and rIP-10 are active as chemotactic factors for stimulated, but not for resting, T cells. Studies done in vitro and in vivo have shown that rHuMig and rIP-10 share additional activities, including inhibition of neovascularization, inhibition of hematopoietic progenitor cells, and anti-tumor effects. rHuMig and rIP-10 show reciprocal desensitization on activated T cells and have been demonstrated to share a receptor, CXCR3. The genes for both MuMig and Crg-2 are highly expressed in multiple tissues during experimental viral and protozoan infections in mice, but their patterns of expression differ. This suggests that the Migs and IP-10/Crg-2 may play roles in host defense and that, despite their similar activities assayed in vitro, Mig and IP-10/Crg-2 may serve non-redundant functions in vivo.

  13. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    SciTech Connect

    Sanchez, Mike; Reeves, Wendall; Smart, Bill

    2013-07-01

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be

  14. IPS analysis on relationship among velocity, density and temperature of the solar wind

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.

    2015-12-01

    The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.

  15. In silico pooling of ChIP-seq control experiments.

    PubMed

    Sun, Guannan; Srinivasan, Rajini; Lopez-Anido, Camila; Hung, Holly A; Svaren, John; Keleş, Sündüz

    2014-01-01

    As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples.

  16. Results of IPS Observations in the Period Near Solar Activity Minimum

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Shishov, V. I.; Tyul'bashev, S. A.; Subaev, I. A.; Oreshko, V. V.

    2013-07-01

    IPS observations with the Big Scanning Array of Lebedev Physical Institute (BSA LPI) radio telescope at the frequency 111 MHz have been monitored since 2006. All the sources, about several hundred daily, with a scintillating flux greater than 0.2 Jy are recorded for 24 hours in the 16 beams of the radio telescope covering a sky strip of 8∘ declination width. We present some results of IPS observations for the recent period of low solar activity considering a statistical ensemble of scintillating radio sources. The dependences of the averaged over ensemble scintillation index on heliocentric distance are considerably weaker than the dependence expected for a spherically symmetric geometry. The difference is especially pronounced in the year 2008 during the very deep solar activity minimum period. These features are explained by the influence of the heliospheric current sheet that is seen as a strong concentration of turbulent solar wind plasma aligned with the solar equatorial plane. A local maximum of the scintillation index is found in the anti-solar direction. Future prospects of IPS observations using BSA LPI are briefly discussed.

  17. A technique for measuring the sea water optical parameters with a dedicated laser beam and a multi-PMT optical module

    SciTech Connect

    Papaikonomou, A. Leisos, A. Tsirigotis, A.; Tzamarias, S.; Manthos, I.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe a technique for the evaluation of the parameters describing the scattering characteristics of the sea water using one multi-PMT optical module that detects scattered optical photons which are emitted from a laser. Our results show that we are able to determine these parameters with satisfying precision and are able to resolve the scattering length values with less than half a meter accuracy.

  18. Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction--the rhombohedral phase of LaCrO3.

    PubMed

    Tsuda, Kenji; Ogata, Yoichiro; Takagi, Kazunari; Hashimoto, Takuya; Tanaka, Michiyoshi

    2002-11-01

    Atom positions and anisotropic Debye-Waller factors of the rhombohedral phase of LaCrO(3) have been refined simultaneously with the low-order structure factors, using a structure-analysis method of convergent-beam electron diffraction (CBED) proposed by Tsuda & Tanaka [Acta Cryst. (1999), A55, 939-954]. The method is based on the least-squares fitting between full dynamical calculations and energy-filtered intensities of two-dimensional higher-order Laue-zone (HOLZ) and zeroth-order Laue-zone (ZOLZ) CBED patterns. The positions of the oxygen atoms have been determined with a high precision. Clear anisotropy of the thermal vibrations of the oxygen atoms has been successfully determined by the CBED method for the first time. The charge transfer from the La and Cr atoms to the O atoms has been found from the deformation charge-density map.

  19. Research on implementation of proxy Arp in IP DSLAM

    NASA Astrophysics Data System (ADS)

    Cheng, Chuanqing; Wang, Li; Huang, Qiugen

    2005-02-01

    While the ethernet is applied more and more in public network environment and xdsl service become the most common access mode ,IP kenel DSLAM undertakes some functions such as service distribution and convergence ,security management and customer management.Facing the contradiction of the need of port isolation and the shortage of ip address,VLAN aggregation technology is applied in DSLAM.How to implement the communicatio between the two vlan but share the same ip subnet,proxy arp does this. This paper introduces how to implement proxy arp in the DSLAM. TCP/IP communication detail procedure betweent two host ,the relation of VLAN and network segment are discussed. The proxy arp model and its implementation in IP DSLAM is also expatiated in this paper and a conformance tesing is given.

  20. Computational methodology for ChIP-seq analysis

    PubMed Central

    Shin, Hyunjin; Liu, Tao; Duan, Xikun; Zhang, Yong; Liu, X. Shirley

    2015-01-01

    Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modified histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workflows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profiling and genome-wide association studies, to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes. PMID:25741452

  1. Audio CAPTCHA for SIP-Based VoIP

    NASA Astrophysics Data System (ADS)

    Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris

    Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.

  2. Refinement of the crystal structural parameters of La[2/3]Ca[1/3]MnO[3] using quantitative convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Feng, F.; Zhu, J.; Zhang, A.

    2005-07-01

    The structural parameters of La[0.67]Ca[0.33]MnO[3] were refined using one-dimensional HOLZ intensities by the QCBED method. It is feasible to obtain reliable structure information by this method and the global optimization algorithm.

  3. I.P. Pavlov as a youth.

    PubMed

    Windholz, G

    1991-01-01

    Ivan P. Pavlov's youthful relations with parents and siblings, formal education, and social activities in Riazan' are described. The Pavlovs, a highly achievement-oriented family descending from a lowly serf, improved their social status by serving the Russian Orthodox Church. Pavlov, the son of a priest, studied in the 1860s at the Riazan' Ecclesiastic Seminary for priesthood. The turbulent 1860s' decade was a period of social and political reforms. Western ideas and science were introduced to Russia. The ambitious and idealistic I.P. Pavlov was influenced by popular essays written by the journalist D.I. Pisarev, the works of the German physiologist J. Moleschott, the English writer G.H. Lewes, the German zoologist C. Vogt and the physiologist M.I. Sechenov. Losing his religious faith, Pavlov abandoned the traditional goal of becoming a priest, and, convinced that science was a road to truth and progress, left Riazan' to study natural science at the University of St. Petersburg.

  4. I.P. Pavlov as a youth.

    PubMed

    Windholz, G

    1991-01-01

    Ivan P. Pavlov's youthful relations with parents and siblings, formal education, and social activities in Riazan' are described. The Pavlovs, a highly achievement-oriented family descending from a lowly serf, improved their social status by serving the Russian Orthodox Church. Pavlov, the son of a priest, studied in the 1860s at the Riazan' Ecclesiastic Seminary for priesthood. The turbulent 1860s' decade was a period of social and political reforms. Western ideas and science were introduced to Russia. The ambitious and idealistic I.P. Pavlov was influenced by popular essays written by the journalist D.I. Pisarev, the works of the German physiologist J. Moleschott, the English writer G.H. Lewes, the German zoologist C. Vogt and the physiologist M.I. Sechenov. Losing his religious faith, Pavlov abandoned the traditional goal of becoming a priest, and, convinced that science was a road to truth and progress, left Riazan' to study natural science at the University of St. Petersburg. PMID:2054299

  5. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function.

    PubMed

    Scherer, Paul C; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C; Wei, Ning; Zheng, Ning; Snyder, Solomon H; Rao, Feng

    2016-03-29

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924. PMID:26976604

  6. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information

    PubMed Central

    Ma, Xiaotu; Kulkarni, Ashwinikumar; Zhang, Zhihua; Xuan, Zhenyu; Serfling, Robert; Zhang, Michael Q.

    2012-01-01

    Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments. PMID:22228832

  7. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully performed under a range of experimental conditions during Quarter Six of the contract. The initial E-beam particle precharging experiments completed this term were designed to extend the efficiency of particle charging and collection using a fine, monodisperse aerosol at relatively large loadings in the FSU Electron Beam Precipitator wind tunnel. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high dust concentration. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will normally be held constant while the precharging parameters are varied to produce an optimum particle charge. The electron beam precharging investigation performed during the period covered by Quarter Six used virtually the same experimental apparatus and procedures as in previous contract work, and these are described for review in this report. This investigation was part of an experimental effort which ran nearly continuously for nine months, encompassing work on the electrostatic collecting section, electron beam precharger, and particle charge-to-radius measuring apparatus. A summary of the work on dc electron beam precipitation is presented here.

  8. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-10-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps

  9. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-07-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: 1) Obtain a 3D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. 2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. 3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (a) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (b

  10. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The digital IPS with wire cable and flex pivot nonlinearity is simulated on the digital computer to determine the effects of varying the sampling period T on the system stability, and to determine a range of optimal values of the parameters of the digital controller. The listing of the computer program is shown as well as the Dahl model for the flex pivot nonlinearity. For the wire cable nonlinearity, two ranges of values were used and the nominal values of the digital controller parameters are included.

  11. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  12. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  13. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  14. Reviewing ChIPS, The Chandra Imaging and Plotting System

    NASA Astrophysics Data System (ADS)

    Miller, J.; Burke, D. J.; Evans, I. N.; Evans, J. D.; McLaughlin, W.

    2015-09-01

    The Chandra Imaging and Plotting System (ChIPS) is a 2D plotting system designed to allow users to easily create, manipulate, and produce publication quality visualizations. ChIPS has a simple but very powerful interactive interface that allows users to dynamically modify the contents and layout of their plots quickly and efficiently, with the results of any changes being immediately visible. ChIPS allows users to construct their plots fully interactively, and then save the final plot commands as a Python script. This bypasses the need to iteratively edit and rerun the script when developing the plot. Features such as undo and redo commands allow users to easily step backwards and forwards through previous commands, while the ability so save ChIPS sessions in a platform-independent state file allows the session to be restored at any time, even on another machine. Because ChIPS offers a Python interface, users can analyze their data using the broad array of modules offered in Python, and visualize the information in ChIPS at the same time. In this paper we explore the design decisions behind the development of ChIPS and some of the lessons learned along the way.

  15. A decentralized software bus based on IP multicas ting

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd

    1995-01-01

    We describe decentralized reconfigurable implementation of a conference management system based on the low-level Internet Protocol (IP) multicasting protocol. IP multicasting allows low-cost, world-wide, two-way transmission of data between large numbers of conferencing participants through the Multicasting Backbone (MBone). Each conference is structured as a software bus -- a messaging system that provides a run-time interconnection model that acts as a separate agent (i.e., the bus) for routing, queuing, and delivering messages between distributed programs. Unlike the client-server interconnection model, the software bus model provides a level of indirection that enhances the flexibility and reconfigurability of a distributed system. Current software bus implementations like POLYLITH, however, rely on a centralized bus process and point-to-point protocols (i.e., TCP/IP) to route, queue, and deliver messages. We implement a software bus called the MULTIBUS that relies on a separate process only for routing and uses a reliable IP multicasting protocol for delivery of messages. The use of multicasting means that interconnections are independent of IP machine addresses. This approach allows reconfiguration of bus participants during system execution without notifying other participants of new IP addresses. The use of IP multicasting also permits an economy of scale in the number of participants. We describe the MULITIBUS protocol elements and show how our implementation performs better than centralized bus implementations.

  16. MACE: model based analysis of ChIP-exo.

    PubMed

    Wang, Liguo; Chen, Junsheng; Wang, Chen; Uusküla-Reimand, Liis; Chen, Kaifu; Medina-Rivera, Alejandra; Young, Edwin J; Zimmermann, Michael T; Yan, Huihuang; Sun, Zhifu; Zhang, Yuji; Wu, Stephen T; Huang, Haojie; Wilson, Michael D; Kocher, Jean-Pierre A; Li, Wei

    2014-11-10

    Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using λ exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors.

  17. Approaches in highly parameterized inversion - GENIE, a general model-independent TCP/IP run manager

    USGS Publications Warehouse

    Muffels, Christopher T.; Schreuder, Willem A.; Doherty, John E.; Karanovic, Marinko; Tonkin, Matthew J.; Hunt, Randall J.; Welter, David E.

    2012-01-01

    GENIE is a model-independent suite of programs that can be used to generally distribute, manage, and execute multiple model runs via the TCP/IP infrastructure. The suite consists of a file distribution interface, a run manage, a run executer, and a routine that can be compiled as part of a program and used to exchange model runs with the run manager. Because communication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST parameter estimation program. This report describes (1) the problem addressed; (2) the approach used by GENIE to queue, distribute, and retrieve model runs; and (3) user instructions, classes, and functions developed. It also includes (4) an example to illustrate the linking of GENIE with Parallel PEST using the interface routine.

  18. Studies on Beam Formation in an Atomic Beam Source

    SciTech Connect

    Nass, A.; Steffens, E.; Stancari, M.

    2009-08-04

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC)[2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  19. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  20. Actuator development for the Instrument Pointing System (IPS)

    NASA Technical Reports Server (NTRS)

    Suttner, K.

    1984-01-01

    The mechanisms of the instrument pointing system (IPS) are described. Particular emphasis is placed on the actuators which are necessary for operating the IPS. The actuators are described as follows: (1) two linear actuators that clamp the gimbals down during ascent and descent; (2) two linear actuators that attach the payload to the IPS during the mission, and release it into the payload clamps; (3) one rotational actuator that opens and closes the payload clamps; and (4) three identical drive units that represent the three orthogonal gimbal axes and are the prime movers for pointing. Design features, manufacturing problems, test performance, and results are presented.

  1. Heliospheric Tomography from IPS Data at 140 MHz

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, J. C.; Jackson, B. V.; Gonzalez-Esparza, A.; Buffington, A.

    2014-12-01

    Interplanetary scintillation (IPS) from radio telescopes provides data to study density and velocity evolution of the solar wind and heliospheric disturbances. A tomography program developed at the University of California, San Diego, makes 3D reconstructions and forecasts of the inner heliosphere dynamics from IPS results. For the first time we incorporate 140 MHz IPS results from the MEXican Array Radio Telescope (MEXART) into the tomography program. We show that MEXART data complement observations from other radio-systems located at different longitudes, thus providing more complete heliospheric coverage.

  2. IP Response of Bacterially - Induced Sulfide Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Williams, K. H.; Slater, L. D.; Hubbard, S. S.

    2004-05-01

    Effective bioremediation strategies require an understanding of the coupled biogeochemical processes that are associated with them. Initial steps have been made to investigate the potential of high resolution geophysical methods for monitoring such processes in a non-invasive manner. Although geophysical methods cannot detect these processes directly, they may be able to detect changes in chemical and physical parameters associated with them. We performed lab-scale experiments using multiple and identical flow-through measurement columns to investigate the effect of biologically induced sulfide precipitation (Zn and Fe) on electrical, seismic, and radar responses. In this presentation, we focus on the analysis of low-frequency electrical responses to the biostimulation experiments. One of the columns was used for monitoring fluid chemistry and microbiology, and two of the other columns (a biotic and an abiotic column) were used to acquire complex conductivity measurements between 0.1 and 1000 Hz. Seven non polarizing Ag-AgCl electrodes, located along the length of the column, were used to measure IP changes; these ports were positioned at the same location as the fluid sampling ports located on the biogeochemical measurement column. Samples from the influent and effluent were collected in all columns. Each column was filled with quartzite sand (20 30 mesh), and the experiments were performed in an anaerobic chamber. Bacteria were injected and fluid enriched in lactate and sulphate, iron and zinc introduced. The biostimulation resulted in Fe and Zn sulfide precipitation, which formed as a precipitation front. The precipitation front initiated at the location of the bacterial injection (in the middle of the columns), and gradually migrated toward the location of nutrient injection (at the base of the column). Measurements from different electrode pairs, located along the length of the column, were used to assess the electrical response of the migrating precipitation

  3. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  4. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  5. Beam Diagnostics for FACET

    SciTech Connect

    Li, S.Z.; Hogan, M.J.; /SLAC

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.

  6. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  7. IPS Classic. Science, art and nature: a case report.

    PubMed

    Culp, L; Roach, R R

    1995-01-01

    The ceramo-metal restoration still forms the backbone of modern restorative dentistry, despite many new systems. This article discusses a unique ceramo-metal system, its advantages, and clinical and technical applications; teamwork between the dentist and the technician is emphasized. IPS Classic (Ivoclar Williams) is a ceramic system with several exclusive features. It encompasses Color Visions, a computer-generated shade system, and the IPS Impulse modifier system allows the ceramist unlimited creativity in color development.

  8. A simulation of the IPS variations from a magnetohydrodynamical simulation

    NASA Technical Reports Server (NTRS)

    Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.

    1987-01-01

    Calculations of the variations of interplanetary scintillation (IPS) from a disturbance simulated by a 3-D magnetohydrodynamical (MHD) model of the solar wind are presented. The simulated maps are compared with observations and it is found that the MHD model reproduces the qualitative features of observed disturbances. The disturbance produced by the MHD simulation is found to correspond in strength with the weakest disturbance which can be reliably detected by existing single station IPS observations.

  9. Reprogramming therapeutics: iPS cell prospects for neurodegenerative disease.

    PubMed

    Abeliovich, Asa; Doege, Claudia A

    2009-02-12

    The recent description of somatic cell reprogramming to an embryonic stem (ES) cell-like phenotype, termed induced pluripotent stem (iPS) cell technology, presents an exciting potential venue toward cell-based therapeutics and disease models for neurodegenerative disorders. Two recent studies (Dimos et al. and Ebert et al.) describe the initial characterization of neurodegenerative disease patient-derived iPS cell cultures as proof of concept for the utility of this technology.

  10. [Application for Lifestyle disease by iPS cells technologies].

    PubMed

    Takashima, Yasuhiro

    2016-03-01

    Currently it is less advanced to understand the pathology of lifestyle disease by using iPS cells because there is partly less direct connection between life style disease and iPS cells. So much more scientists focus on regenerative medicine such as beta cells therapy using iPS cells technologies. It will be indeed a powerful tool to generate beta cells from iPS cells as even in type2 diabetes patients, hyposecretion of insulin from beta cells in pancreas is one of causes. Another reason is complexity of the pathology of life style disease. There are a lot of reasons to cause lifestyle disease. Lifestyle diseases include cancer, chronic liver disease, Type 2 diabetes, heart disease, metabolic syndrome, chronic renal failure, stroke, and obesity. Since obesity is one of major causes of lifestyle diseases, we want to focus on adipogenesis from iPS cells in this review. We analysed and established the differentiation protocol into adipocytes from mouse ES cells and human iPS cells. The other point in this review is the starting pluripotent cells for differentiation. Quality of pluripotent stem cells are one of most critical factors to succeed in getting well-differentiated cells. Recently, we have developed new naive human pluripotent stem cells (PSC),"Reset cells". Naive PSC have more similar to human epibast cells than conventional human PSC. They will be more ideal cells for differentiation because of their hypomethylated status and earlier stage of development. PMID:26923982

  11. [Application for Lifestyle disease by iPS cells technologies].

    PubMed

    Takashima, Yasuhiro

    2016-03-01

    Currently it is less advanced to understand the pathology of lifestyle disease by using iPS cells because there is partly less direct connection between life style disease and iPS cells. So much more scientists focus on regenerative medicine such as beta cells therapy using iPS cells technologies. It will be indeed a powerful tool to generate beta cells from iPS cells as even in type2 diabetes patients, hyposecretion of insulin from beta cells in pancreas is one of causes. Another reason is complexity of the pathology of life style disease. There are a lot of reasons to cause lifestyle disease. Lifestyle diseases include cancer, chronic liver disease, Type 2 diabetes, heart disease, metabolic syndrome, chronic renal failure, stroke, and obesity. Since obesity is one of major causes of lifestyle diseases, we want to focus on adipogenesis from iPS cells in this review. We analysed and established the differentiation protocol into adipocytes from mouse ES cells and human iPS cells. The other point in this review is the starting pluripotent cells for differentiation. Quality of pluripotent stem cells are one of most critical factors to succeed in getting well-differentiated cells. Recently, we have developed new naive human pluripotent stem cells (PSC),"Reset cells". Naive PSC have more similar to human epibast cells than conventional human PSC. They will be more ideal cells for differentiation because of their hypomethylated status and earlier stage of development.

  12. General Properties of Monochromatic Optical Beams

    NASA Astrophysics Data System (ADS)

    Kozin, G. I.

    Using the idea of the angular spectral plane-wave expansion all the basic parameters of monochromatic optical beams in general were obtained, previously known by the Gaussian beams. The concept of a large-scale beam angle is introduced. In addition to the geometric phase shift, the interference nature of phase shift in beams was identified.

  13. Implementation of NAT for VoIP based on H.323 protocol

    NASA Astrophysics Data System (ADS)

    Huang, Yong-feng; Xu, Shi-ming; Li, Xing

    2004-04-01

    In this paper, firstly, we introduce the protocol of VoIP, and analyze the process of a call establishment based on H.323, including RAS, H.225, and H.245 phases. Then, we focus on implementing ALG, which allow an application on a host in one address realm to connect to its counterpart running on a host in different realm transparently. An ALG may interact with NAT to set up state, use NAT state information, modify application specific payload and perform whatever else necessary to get the application running across disparate address realm. In addition, this section presents many important data structures and algorithms, for example, the algorithm to check for match of remote IP address and port, the algorithm for classifier to look at both outbound as well as an inbound packets, and etc. Finally, the paper describes and analyzes the results of experiments, and we obtain some significant parameters, namely, call setup latency and packet forwarding latency. The experiments and applications demonstrate it feasible for ALG to realize NAT for VoIP.

  14. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  15. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.

    1995-05-05

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in {ital z} or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  17. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  18. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  19. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  20. Characterization of the Li beam probe with a beam profile monitor on JET

    SciTech Connect

    Nedzelskiy, I. S.; Collaboration: JET EFDA Contributors

    2010-10-15

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45 deg. segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  1. Using Interplanetary Scintillation (IPS) For Space-Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Jackson, B. V.; Fallows, R. A.; Tokumaru, M.; Jensen, E. A.; Lee, J.; Harrison, R.; Hapgood, M. A.; Wu, C.; Davies, J.

    2013-12-01

    There have been several recent space-weather events where few or no signatures of an impending Earth-affecting large-scale heliospheric structure have been detected until the structure has impacted the Earth's space environment or is at least in close proximity. In addition, some of these (for example, the late-May/early-June 2013 geomagnetic storm) have been relatively-small coronal mass ejection (CME) ';like' structures complicated by stream-interaction and/or co-rotating features. Significant progress has been made over the last few years on the implementation of, and science resulting from, interplanetary scintillation (IPS) radio remote-sensing observations of the inner heliosphere. These observations of IPS have been undertaken using the European Incoherent SCATter (EISCAT) radar and the LOw Frequency ARray (LOFAR) radio-telescope systems, as well as with the Solar-Terrestrial Environment Laboratory (STEL/STELab) IPS arrays and the new IPS system at the Korean Space Weather Center (KSWC). LOFAR is a low-frequency pathfinder for the Square Kilometre Array (SKA), which is expected to be the World's largest ever radio-telescope system. Here, we will primarily use the University of California, San Diego (UCSD) three-dimensional (3-D) tomography by incorporating STELab IPS data along with, where data are available, the use of additional targeted individual observations of IPS from other systems as well as 3-D MHD simulations. The overall aim is to try to ascertain how well current IPS methods can be used for space-weather forecasting (and aftcasting), particularly for events seemingly missed by other extant forecasting methods.

  2. The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3-D MHD prediction model

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Odstrcil, D.; Yu, H.-S.; Hick, P. P.; Buffington, A.; Mejia-Ambriz, J. C.; Kim, J.; Hong, S.; Kim, Y.; Han, J.; Tokumaru, M.

    2015-02-01

    The University of California, San Diego interplanetary scintillation (IPS) time-dependent kinematic 3-D reconstruction technique has been used and expanded upon for over a decade to provide predictions of heliospheric solar wind parameters. These parameters include global reconstructions of velocity, density, and (through potential field modeling and extrapolation upward from the solar surface) radial and tangential interplanetary magnetic fields. Time-dependent results can be extracted at any solar distance within the reconstructed volume and are now being exploited as inner boundary values to drive the ENLIL 3-D MHD model in near real time. The advantage of this coupled system is that it uses the more complete physics of 3-D MHD modeling to provide an automatic prediction of coronal mass ejections and solar wind stream structures several days prior to their arrival at Earth without employing coronagraph observations. Here we explore, with several examples, the current differences between the IPS real-time kinematic analyses and those from the ENLIL 3-D MHD modeling using IPS-derived real-time boundaries. Future possibilities for this system include incorporating many different worldwide IPS stations as input to the remote sensing analysis using ENLIL as a kernel in the iterative 3-D reconstructions.

  3. Monitoring of Interaction-Point Parameters Using the 3-Dimensional Luminosity Distribution Measured at PEP-II

    SciTech Connect

    Viaud, B.F.; Kozanecki, W.; O'Grady, C.; Thompson, J.; Weaver, M.; /SLAC

    2006-07-28

    The 3-D luminosity distribution at the IP of the SLAC B-Factory is monitored using e{sup +}e{sup -} {yields} e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} events reconstructed online in the BABAR detector. The transverse centroid and spatial orientation of the luminosity ellipsoid reliably monitor IP orbit drifts. The longitudinal centroid is sensitive to small variations in the average relative RF phase of the beams and provides a detailed measurement of the phase transient along the bunch train. The longitudinal luminosity distribution depends on the e{sup +,-} overlap bunch length and the vertical IP {beta}-functions. Relative variations in horizontal luminous size are detectable at the micron level. In addition to continuous on-line monitoring of all the parameters above, we performed detailed studies of their variation along the bunch train to investigate a temporary luminosity degradation. We also compare {beta}*{sub y} measurements, collected over a year of high-luminosity operation, with HER and LER lattice functions measured by resonant transverse excitation. Our bunch-length measurements are consistent with those obtained by other methods and provide direct evidence for bunch-length modulation.

  4. The E-lens test bench for RHIC beam-beam compensation

    SciTech Connect

    Gu X.; Altinbas, F.Z.; Aronson, J.; Beebe, E. et al

    2012-05-20

    To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.

  5. The SSC beam scraper system

    SciTech Connect

    Maslov, M.A.; Mokhov, N.V.; Yazynin Institut Fiziki Vysokikh Ehnergij, Protvino )

    1991-06-01

    In this paper we present the results of a full-scale study of a beam scraping system that is designed to guarantee reliable operation of the SSC throughout the whole cycle and for minimum background for experiments at the interaction regions. The machine aperture limits and beam loss formation are analyzed. Simulation programs and a calculational model are described. The physics of beam scraping is explored, and measures to increase significantly the system efficiency are determined. A tolerable scraping rate, taking into account scraper material integrity, quench limits in downstream superconducting magnets, radiation shielding requirements, and minimal beam halo levels at the IPs are also determined. Finally, a complete multi-component scraper system in the SSC East Cluster is proposed. Throughout the paper we define a scraper as a primary absorber consisting of precise movable jaws that have a flat inner edge along the circulation beam and which may be forced to touch the beam halo in horizontal or vertical planes. Secondary absorbers -- collimators -- are destined to intercept outscattered protons and other particles produced in scraper material. All these are surrounded with a radiation shielding. 15 refs., 50 figs., 13 tabs.

  6. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Evans, J. A.; Thwaites, D. I.

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  7. An ethernet/IP security review with intrusion detection applications

    SciTech Connect

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IP networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)

  8. ALS control system IP I/O module upgrade

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2004-04-23

    The Control System for the Advanced Light Source uses in-house designed IndustryPack (IP) I/O Modules in compact PCI (cPCI) chassis to control instrumentation. Each module consists of digital I/O ports and 16-bit analog I/O interfaced to instrumentation via a cPCI rear I/O card. During the past few years of installed operation, several factors have prompted investigation into the design of a new IP I/O Module. The ADC channels have significant offset drift over periods of days of initial installed operation. An in-situ calibration procedure was developed to address this problem, but it lacks speed and is inconvenient to perform. Digital I/O port limitations have led to increasing amounts of wasted I/O. Fast orbit feedback requires faster ADC sampling and better filtering than the current IP module offers. This paper discusses the issues related to the current IP I/O Module and the design of a new Double-size IP I/O Module.

  9. Proposal of Secure VoIP System Using Attribute Certificate

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Mook; Jeong, Young-Ae; Hong, Seong-Sik

    VoIP is a service that changes the analogue audio signal into a digital signal and then transfers the audio information to the users after configuring it as a packet; and it has an advantage of lower price than the existing voice call service and better extensibility. However, VoIP service has a system structure that, compared to the existing PSTN (Public Switched Telephone Network), has poor call quality and is vulnerable in the security aspect. To make up these problems, TLS service was introduced to enhance the security. In practical system, however, since QoS problem occurs, it is necessary to develop the VoIP security system that can satisfy QoS at the same time in the security aspect. In this paper, a user authentication VoIP system that can provide a service according to the security and the user through providing a differential service according to the approach of the users by adding AA server at the step of configuring the existing VoIP session is suggested. It was found that the proposed system of this study provides a quicker QoS than the TLS-added system at a similar level of security. Also, it is able to provide a variety of additional services by the different users.

  10. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    NASA Astrophysics Data System (ADS)

    Gao, Hao

    2016-04-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT.

  11. Binding of IRBIT to the IP3 receptor: determinants and functional effects.

    PubMed

    Devogelaere, Benoit; Nadif Kasri, Nael; Derua, Rita; Waelkens, Etienne; Callewaert, Geert; Missiaen, Ludwig; Parys, Jan B; De Smedt, Humbert

    2006-04-28

    IRBIT has previously been shown to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) in an IP3-sensitive way. So far it remained to be elucidated whether this interaction was direct or indirect, and whether it was functionally relevant. We now show that IRBIT can directly interact with the IP3R, and that both the suppressor domain and the IP3-binding core of the IP3R are essential for a strong interaction. Moreover, we identified a PEST motif and a PDZ-ligand on IRBIT which were critical for the interaction with the IP3R. Furthermore, we identified Asp-73 as a critical residue for this interaction. Finally, we demonstrated that this interaction functionally affects the IP3R: IRBIT inhibits both IP3 binding and IP3-induced Ca2+ release.

  12. Measurement of the Luminous-Region Profile at the PEP-II IP, And Application to e^\\pm Bunch-Length Determination

    SciTech Connect

    Viaud, B.F.; Kozanecki, W.; Narsky, I.V.; O'Grady, C.; Perazzo, A.; /SLAC

    2006-02-10

    The three-dimensional luminosity distribution at the interaction point (IP) of the SLAC B-Factory is measured continuously, using e{sup +}e{sup -} {yields} e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} events reconstructed online in the BABAR detector. The centroid of the transverse luminosity profile provides a very precise and reliable monitor of medium- and long-term orbit drifts at the IP. The longitudinal centroid is sensitive to variations in the relative RF phase of the colliding beams, both over time and differentially along the bunch train. The measured horizontal r.m.s. width of the distribution is consistent with a sizeable dynamic-{beta} effect; it is also useful as a benchmark of strong-strong beam-beam simulations. The longitudinal luminosity distribution depends on the e{sup {+-}} bunch lengths and vertical IP {beta}-functions, which can be different in the high- and low-energy rings. Using independent estimates of the {beta}functions, we analyze the longitudinal shape of the luminosity distribution in the presence of controlled variations in accelerating RF voltage and/or beam current, to extract measurements of the e{sup +} and e{sup -} bunch lengths.

  13. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parmeters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  14. Survey of beam instrumentation used in SLC

    SciTech Connect

    Ecklund, S.D.

    1991-03-01

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  15. Phase Resolved X-ray Spectral Analysis of Soft IPs

    NASA Astrophysics Data System (ADS)

    Pekon, Yakup

    2016-07-01

    As a subclass of Cataclysmic Variables, Intermediate Polars (IPs) are magnetic systems which mainly show hard X-ray emission. However, there have been an increasing number of systems that also show a soft emission component arising from reprocessed X-rays from the white dwarf limbs. Due to their relatively short periods, they pose as good canditates to perform phase resolved analysis. In this work, X-ray phase resolved spectral analysis of selected IPs with soft X-ray emission components (such as PQ Gem, V2069 Cyg etc.) over the orbital and/or spin periods will be presented. The analyses will help a better understanding of the complex absorption mechanisms and the nature of the soft X-ray emissions in soft IPs.

  16. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  17. Beam break-up in the two beam accelerator

    SciTech Connect

    Whittum, D.H.; Travish, G.A.; Sessler, A.M.; Craig, G.D.; DeFord, J.F.

    1989-03-01

    We have studied numerically beam break-up (BBU) in the drive beam of a Two-Beam Accelerator (TBA), using transverse wakes calculated numerically using the AMOS Code. We examine only cumulative BBU due to the wake of the linear induction accelerator cavities. We do not consider regenerative BBU due to the relativistic klystron (RK) cavities. We find growth lengths of order /approximately/100 m for typical parameters. 14 refs., 2 figs., 1 tab.

  18. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  19. Energy-aware RWA for IP transport over WDM networks

    NASA Astrophysics Data System (ADS)

    Henriques, M.; Pinho, P.; Teixeira, A.

    2014-08-01

    In this work a mixed integer optimization linear programming (MILP) model applied to IP over WDM networks, in order to reduce network energy consumption. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Several techniques were tested an the bypass technique yielded up to 88% savings, as well as absence of transponders between IP and WDM layer potentially saving up to 48%, by shortest path routing technique. Energy aware routing optimization model, has led to an overall reduction in consumption up to 51% in 2017.

  20. Interfacing the Controllogics PLC over Ethernet/IP.

    SciTech Connect

    Kasemir, K. U.; Dalesio, L. R.

    2001-01-01

    The Allen-Bradley ControlLogix [1] line of programmable logic controllers (PLCs) offers several interfaces: Ethernet, ControlNet, DeviceNet, RS-232 and others. The ControlLogix Ethernet interface module 1756-ENET uses EtherNet/IP, the ControlNet protocol [2], encapsulated in Ethernet packages, with specific service codes [3]. A driver for the Experimental Physics and Industrial Control System (EPICS) has been developed that utilizes this EtherNet/IP protocol for controllers running the vxWorks RTOS as well as a Win32 and Unix/Linux test program. Features, performance and limitations of this interface are presented.

  1. Industrial pollution prevention project (IP3). Summary report

    SciTech Connect

    1995-07-01

    As part of EPA`s emphasis on pollution prevention, the Agency set aside 2% of its FY1991 and FY1992 contract budgets for new pollution prevention initiatives. One of the proposed initiatives selected for funding and initiated in 1991 was the Industrial Pollution Prevention Project (IP3). The IP3 was an Agency-wide, multi-media project undertaken to examine: how industrial pollution prevention can be incorporated into EPA`s regulatory framework, and how the pollution prevention ethic can be promoted throughout industry, the public, and all levels of government.

  2. Application Filters for TCP/IP Industrial Automation Protocols

    NASA Astrophysics Data System (ADS)

    Batista, Aguinaldo B.; Kobayashi, Tiago H.; Medeiros, João Paulo S.; Brito, Agostinho M.; Motta Pires, Paulo S.

    The use of firewalls is a common approach usually meant to secure Automation Technology (AT) from Information Technology (TI) networks. This work proposes a filtering system for TCP/IP-based automation networks in which only certain kind of industrial traffic is permitted. All network traffic which does not conform with a proper industrial protocol pattern or with specific rules for its actions is supposed to be abnormal and must be blocked. As a case study, we developed a seventh layer firewall application with the ability of blocking spurious traffic, using an IP packet queueing engine and a regular expression library.

  3. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  4. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  5. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  6. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  7. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  8. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  9. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  10. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J.

    2006-10-15

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  11. Crosslayer Survivability in Overlay-IP-WDM Networks

    ERIC Educational Resources Information Center

    Pacharintanakul, Peera

    2010-01-01

    As the Internet moves towards a three-layer architecture consisting of overlay networks on top of the IP network layer on top of WDM-based physical networks, incorporating the interaction between and among network layers is crucial for efficient and effective implementation of survivability. This dissertation has four major foci as follows:…

  12. VoIP makes voice heard--functionality is up.

    PubMed

    Wade, Phil; Wakelam, Mathew

    2008-05-01

    Phil Wade, sales and marketing director, and Mathew Wakelam, VoIP product manager, at alarm and communication specialist Static Systems Group, discuss wireless VoLP's potential in healthcare establishments and examine how, in particular, the technology can be successfully integrated with nurse call systems.

  13. IP Teleconferencing in the Wired Classroom: Gratifications for Distance Education

    ERIC Educational Resources Information Center

    Stafford, Thomas F.; Lindsey, Keith L.

    2007-01-01

    Students have various motivations for participating and engaging in courses offered by distance education technologies over the Internet. While many of these courses have traditionally been Web-based asynchronous offerings, enhanced technology and reduced costs of IP-enabled teleconferenced synchronous course sections are encouraging more…

  14. Sensing CMEs Propagating in the Interplanetary Medium. MEXART IPS Observations

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Romero Hernandez, E.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Rodriguez-Martinez, M. R.; Mejia-Ambriz, J. C.

    2014-12-01

    The Mexican Array Radiotelescope (MEXART) is a ground instrument fully dedicated to perform Interplanetary Scintillation (IPS) observations to track large-scale solar wind disturbances within the Sun and the Earth. The MEXART is located at Michoacan (19 degrees 48' North, 101 degrees 41' West) and has an operation frequency of 140 MHz. The IPS technique is based on the scintillations that interplanetary disturbances (e.g., ICMEs) causes on the signal of small diameter cosmic radio sources detected by a radiotelescope. We report the tracking of the first solar disturbances detected by the instrument during the maximum of solar cycle 24. We estimated solar wind velocities and scintillation indexes (m). We present the first curves of the variation of the scintillating index with respect to the heliocentric distance for some strong radio sources using IPS observations at 140 MHZ. We identified events associated with strong scintilltaion in our data. We combine the IPS data with white light chronograph observations to identify the first CMEs in the interplanetary medium detected by the instrument.

  15. IP over optical multicasting for large-scale video delivery

    NASA Astrophysics Data System (ADS)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  16. VoIP makes voice heard--functionality is up.

    PubMed

    Wade, Phil; Wakelam, Mathew

    2008-05-01

    Phil Wade, sales and marketing director, and Mathew Wakelam, VoIP product manager, at alarm and communication specialist Static Systems Group, discuss wireless VoLP's potential in healthcare establishments and examine how, in particular, the technology can be successfully integrated with nurse call systems. PMID:18552104

  17. Obtaining slow beam spills at the SSC collider

    SciTech Connect

    Ritson, D.

    1993-08-01

    There is substantial interest in providing slow-spill external proton beams in parallel with ``interaction running`` at the 20 TeV SSC collider. The proposal is to cause a flux of particles to impinge on a target consisting of a bent crystal extraction channel. Additionally, a slow spill onto a conventional internal target could be used as a source of secondary beams for physics or test purposes and might also be used for B-physics as proposed for HERA. The ``natural`` beam loss rates from elastic and diffractive beam gas scattering and IP collisions are not sufficient to provide suitably intense external proton beams. To prevent loss of luminosity, the rf excitation is non-linear and preferentially blows up the halo of the beam. The ``target`` is to be located at a region of high dispersion forcing particles at the edge of the momentum space onto the target. T. Lohse in this workshop has described a proposed internal target to be used at HERA that will not employ rf excitation but will use the finite loss rates observed at the HERA machine. The Hera losses are caused by a variety of sources in addition to beam gas scattering or IP interactions. Initially, the beam lifetime at HERA was too short to obtain satisfactory integrated luminosities. Subsequently, through careful attention to detail, the beam lifetime was increased to > 20 hours. Even with these changes, present loss rates provide the required intensity onto an internal target. The Tevatron and SPS proton anti-proton colliders have had similar experiences with their investigations of loss rates and also find that beam lifetimes may be substantially shorter than expected solely from beam gas and IP interactions. This paper proposes deliberately introducing controlled errors li

  18. Control of oxidative stress resistance by IP3 kinase in Drosophila melanogaster.

    PubMed

    Monnier, Véronique; Girardot, Fabrice; Audin, Wilfried; Tricoire, Hervé

    2002-11-01

    Oxidative damage is thought to be a major causal factor of aging, and is implicated in several human pathologies such as Alzheimer's and Parkinson's diseases. Nevertheless the genetical determinants of in vivo oxidative stress response are still poorly understood. To identify cellular components whose deregulation leads to oxidative stress resistance, we performed a genetic screen in Drosophila melanogaster. We thus identified in this screen Drosophila Inositol 1,4,5-triphosphate kinase I (D-IP3K1), a Drosophila gene homologous to mammalian IP3Ks. In vertebrates, IP3Ks phosphorylate the second messenger Inositol 1,4,5-triphosphate (IP3) to produce Inositol 1,3,4,5 tetrakiphosphate (IP4). IP3 binding to its receptor (IP3R) triggers Ca(2+) release from the endoplasmic reticulum (ER) to the cytosol, whereas IP4 physiological role remains elusive. We show here that ubiquitous overexpression of D-IP3K1 confers resistance of flies to H(2)O(2)- but not to paraquat-induced oxidative stress. Additional genetic analysis with other members of IP3 and IP4 signaling pathways led us to propose that the D-IP3K1 protective effect is mainly mediated through the reduction of IP3 level (which probably results in reduced Ca(2+) release from internal stores), rather than through the rise of IP4 level.

  19. A beam source model for scanned proton beams

    NASA Astrophysics Data System (ADS)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  20. A beam source model for scanned proton beams.

    PubMed

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  1. The ROI of VoIP: Everybody Says VoIP Saves Big Bucks. But Does It?

    ERIC Educational Resources Information Center

    Villano, Matt

    2006-01-01

    Advocates of Voice over Internet Protocol (VoIP) say it saves money on long distance calls by sending them over the Internet, improves communication by eliminating the Private Branch Exchange (PBX), and offers a host of neat features such as call forwarding, e-mail accessible voicemail, and more. When it comes to measuring the dollars-and-cents…

  2. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  3. Investigating the Acquisition of the Split-IP Parameter and the V2 Parameter in Second Language Afrikaans

    ERIC Educational Resources Information Center

    Conradie, Simone

    2006-01-01

    Researchers who assume that Universal Grammar (UG) plays a role in second language (L2) acquisition are still debating whether L2 learners have access to UG in its entirety (the Full Access hypothesis; e.g. Schwartz and Sprouse, 1994; 1996; White, 1989; 2003) or only to those aspects of UG that are instantiated in their first language (L1) grammar…

  4. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  5. Individual placement and support (IPS) for patients with offending histories: the IPSOH feasibility cluster randomised trial protocol

    PubMed Central

    Khalifa, N; Talbot, E; Schneider, J; Walker, D M; Bates, P; Bird, Y; Davies, D; Brookes, C; Hall, J; Völlm, B

    2016-01-01

    Introduction People with involvement in forensic psychiatric services face many obstacles to employment, arising from their offending, as well as their mental health problems. This study aims to assess the feasibility of conducting a randomised controlled trial (RCT) to evaluate the effectiveness of individual placement and support (IPS), in improving employment rates and associated psychosocial outcomes in forensic psychiatric populations. IPS has been found consistently to achieve employment rates above 50% in psychiatric patients without a history of involvement in criminal justice services. Methods/design This is a single-centre feasibility cluster RCT. Clusters will be defined according to clinical services in the community forensic services of Nottinghamshire Healthcare NHS Foundation Trust (NHCT). IPS will be implemented into 2 of the randomly assigned intervention clusters in the community forensic services of NHCT. A feasibility cluster RCT will estimate the parameters required to design a full RCT. The primary outcome is the proportion of people in open employment at 12-month follow-up. Secondary outcome measures will include employment, educational activities, psychosocial and economic outcomes, as well as reoffending rates. Outcome measures will be recorded at baseline, 6 months and 12 months. In accordance with the UK Medical Research Council guidelines on the evaluation of complex interventions, a process evaluation will be carried out; qualitative interviews with patients and staff will explore general views of IPS as well as barriers and facilitators to implementation. Fidelity reviews will assess the extent to which the services follow the principles of IPS prior, during and at the end of the trial. Ethics and dissemination Ethical approval was obtained from the East Midlands Research Ethics Committee-Nottingham 1 (REC reference number 15/EM/0253). Final and interim reports will be prepared for project funders, the study sponsor and clinical

  6. IP Eridani: A surprising long-period binary system hosting a He white dwarf

    NASA Astrophysics Data System (ADS)

    Merle, T.; Jorissen, A.; Masseron, T.; Van Eck, S.; Siess, L.; Van Winckel, H.

    2014-07-01

    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M⊙, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are Teff = 4960 K, log g = 3.3, [Fe/H] = 0.09 and ξ = 1.5 km s-1. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, Nd) elements. We conclude that IP Eri abundances agree with those of normal field stars of the same metallicity. The long period and non-null eccentricity indicate that this system cannot be the end product of a common-envelope phase; it calls instead for another less catastrophic binary-evolution channel presented in detail in a companion paper. Appendix A is available in electronic form at http://www.aanda.orgHERMES spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A30

  7. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways

    PubMed Central

    Inuzuka, Hiroyuki

    2014-01-01

    Deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), is a tumor suppressor that serves as a scaffold protein involved in coordinately regulating cell proliferation, survival and apoptotic pathways. DAB2IP is epigenetically down-regulated in a variety of tumors through the action of the histone methyltransferase EZH2. Although DAB2IP is transcriptionally down-regulated in a variety of tumors, it remains unclear if other mechanisms contribute to functional inactivation of DAB2IP. Here we demonstrate that DAB2IP can be functionally down-regulated by two independent mechanisms. First, we identified that Akt1 can phosphorylate DAB2IP on S847, which regulates the interaction between DAB2IP and its effector molecules H-Ras and TRAF2. Second, we demonstrated that DAB2IP can be degraded in part through ubiquitin-proteasome pathway by SCFFbw7. DAB2IP harbors two Fbw7 phosho-degron motifs, which can be regulated by the kinase, CK1δ. Our data hence indicate that in addition to epigenetic down-regulation, two additional pathways can functional inactivate DAB2IP. Given that DAB2IP has previously been identified to possess direct causal role in tumorigenesis and metastasis, our data indicate that a variety of pathways may pass through DAB2IP to govern cancer development, and therefore highlight DAB2IP agonists as potential therapeutic approaches for future anti-cancer drug development. PMID:24912918

  8. [Retinal Cell Therapy Using iPS Cells].

    PubMed

    Takahashi, Masayo

    2016-03-01

    Progress in basic research, starting with the work on neural stem cells in the middle 1990's to embryonic stem (ES) cells and induced pluripotent stem (iPS) cells at present, will lead the cell therapy (regenerative medicine) of various organs, including the central nervous system to a big medical field in the future. The author's group transplanted iPS cell-derived retinal pigment epithelial (RPE) cell sheets to the eye of a patient with exudative age-related macular degeneration (AMD) in 2014 as a clinical research. Replacement of the RPE with the patient's own iPS cell-derived young healthy cell sheet will be one new radical treatment of AMD that is caused by cellular senescence of RPE cells. Since it was the first clinical study using iPS cell-derived cells, the primary endpoint was safety judged by the outcome one year after surgery. The safety of the cell sheet has been confirmed by repeated tumorigenisity tests using immunodeficient mice, as well as purity of the cells, karyotype and genetic analysis. It is, however, also necessary to prove the safety by clinical studies. Following this start, a good strategy considering cost and benefit is needed to make regenerative medicine a standard treatment in the future. Scientifically, the best choice is the autologous RPE cell sheet, but autologous cell are expensive and sheet transplantation involves a risky part of surgical procedure. We should consider human leukocyte antigen (HLA) matched allogeneic transplantation using the HLA 6 loci homozyous iPS cell stock that Prof. Yamanaka of Kyoto University is working on. As the required forms of donor cells will be different depending on types and stages of the target diseases, regenerative medicine will be accomplished in a totally different manner from the present small molecule drugs. Proof of concept (POC) of photoreceptor transplantation in mouse is close to being accomplished using iPS cell-derived photoreceptor cells. The shortest possible course for treatment

  9. Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)

    SciTech Connect

    Sramek, C

    2003-11-20

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.

  10. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels.

    PubMed

    Várnai, Péter; Balla, András; Hunyady, László; Balla, Tamas

    2005-05-31

    Virtually all functions of a cell are influenced by cytoplasmic [Ca(2+)] increases. Inositol 1,4,5-trisphosphate receptor (IP(3)R) channels, located in the endoplasmic reticulum (ER), release Ca(2+) in response to binding of the second messenger, IP(3).IP(3)Rs thus are part of the information chain interpreting external signals and transforming them into cytoplasmic Ca(2+) transients. IP(3)Rs function as tetramers, each unit comprising an N-terminal ligand-binding domain (LBD) and a C-terminal channel domain linked by a long regulatory region. It is not yet understood how the binding of IP(3) to the LBD regulates the gating properties of the channel. Here, we use the expression of IP(3) binding protein domains tethered to the surface of the endoplasmic reticulum (ER) to show that the all-helical domain of the IP(3)R LBD is capable of depleting the ER Ca(2+) pools by opening the endogenous IP(3)Rs, even without IP(3) binding. This effect requires the domain to be within 50 A of the ER membrane and is impaired by the presence of the N-terminal inhibitory segment on the LBD. These findings raise the possibility that the helical domain of the LBD functions as an effector module possibly interacting with the channel domain, thereby being part of the gating mechanisms by which the IP(3)-induced conformational change within the LBD regulates Ca(2+) release.

  11. Beam wander of partially coherent array beams through non-Kolmogorov turbulence.

    PubMed

    Huang, Yongping; Zeng, Anping; Gao, Zenghui; Zhang, Bin

    2015-04-15

    Based on the theory of second moments and non-Kolmogorov spectrum, the beam wander theory is extend to non-Kolmogorov turbulence, the general analytical expression of beam wander in non-Kolmogorov turbulence is derived. Beam wander depends on the non-Kolmogorov turbulence parameters and the initial second moments of the laser beam at the input plane. Taking the Gaussian Schell model array beams as an example, the effects of the generalized exponent parameter, inner scale, and outer scale of non-Kolmogorov turbulence and the beam separation distance, beam number, and coherence degree on the beam wander are studied in detail. It has been shown that the beam wander varies non-monotonically with increasing generalized exponent parameter of the turbulence. Furthermore, it increases as the inner scale decreases or outer scale increases, and decreases as the beam separation distance and beam number increase and the coherence of the beam becomes weaker. Our results also indicate that the beam wander could be reduced by adjusting the beam parameters appropriately.

  12. Beam dynamics issues for linear colliders

    SciTech Connect

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  13. Flash photolysis of caged IP3 to trigger intercellular Ca2+ waves.

    PubMed

    Decrock, Elke; De Bock, Marijke; Wang, Nan; Bol, Mélissa; Gadicherla, Ashish K; Leybaert, Luc

    2015-03-01

    Caged IP3 is an inactive form of the second messenger IP3, consisting of the biologically active molecule linked to a cage group through a photolabile bond. This bond is cleaved by exposure to brief "flashes" of ultraviolet (UV) light, thereby releasing the active IP3 molecule. The protection of caged IP3 against metabolic transformation in combination with a defined time point of fast photoliberation of IP3 provides an efficient way to temporally and spatially control the cytosolic release of IP3 and subsequent increase of cytoplasmic Ca(2+). These properties make it an ideal method for kinetic studies and also a well-suited procedure to initiate intercellular Ca(2+) waves from a point source of IP3. This protocol describes cell loading with membrane impermeable caged IP3 and the UV flash illumination procedure.

  14. On the implementation of IP protection using biometrics based information hiding and firewall

    NASA Astrophysics Data System (ADS)

    Basu, Abhishek; Nandy, Kingshuk; Banerjee, Avishek; Giri, Supratick; Sarkar, Souvik; Sarkar, Subir Kumar

    2016-02-01

    System-on-chip-based design style creates a revolution in very large scale integration industry with design efficiency, operating speed and development time. To support this process, reuse and exchange of components are essential in electronic form called intellectual property (IP). This, however, increases the possibility of encroachment of IP of the design. So copyright protection of IP against piracy is the most important concern for IP vendors. The existing solutions for IP protection are still not secure enough with flexibility, cost, etc. This paper proposes an information-hiding-based solution for IP protection by embedding a biometric copyright information and firewall inside an IP in the form of a finite state machine with unique configuration. The scheme first introduces biometric signature-based copyright as ownership proof. Second, firewall interrupts the normal functionality of IP at the end of the user time period. The experimental outcomes of field-programmable-gate-array implementation illustrate the efficiency of the proposed method.

  15. Ionospheric Disturbances and Their Impact on IPS Using MEXART Observations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, M.; Pérez-Enríquez, H. R.; Carrillo-Vargas, A.; López-Montes, R.; Araujo-Pradere, E. A.; Casillas-Pérez, G. A.; Cruz-Abeyro, J. A. L.

    2014-07-01

    We study the impact of ionospheric disturbances on the Earth's environment caused by the solar events that occurred from 20 April to 31 May 2010, using observations from the Mexican Array Radio Telescope (MEXART). During this period of time, several astronomical sources presented fluctuations in their radio signals. Wavelet analysis, together with complementary information such as the vertical total electron content ( vTEC) and the Dst index, were used to identify and understand when the interplanetary scintillation (IPS) could be contaminated by ionospheric disturbances (IOND). We find that radio signal perturbations were sometimes associated with IOND and/or IPS fluctuations; however, in some cases, it was not possible to clearly identify their origin. Our Fourier and wavelet analyses showed that these fluctuations had frequencies in the range ≈ 0.01 Hz - ≈ 1.0 Hz (periodicities of 100 s to 1 s).

  16. Apiaceous Vegetable Consumption Decreases PhIP-Induced DNA Adducts and Increases Methylated PhIP Metabolites in the Urine Metabolome in Rats123

    PubMed Central

    Kim, Jae Kyeom; Gallaher, Daniel D; Chen, Chi; Yao, Dan; Trudo, Sabrina P

    2015-01-01

    Background: Heterocyclic aromatic amines, such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), are carcinogenic compounds produced during heating of protein-containing foods. Apiaceous vegetables inhibit PhIP-activating enzymes, whereas cruciferous vegetables induce both PhIP-activating and -detoxifying enzymes. Objective: We investigated the effects of these vegetables, either alone or combined, on PhIP metabolism and colonic DNA adduct formation in rats. Methods: Male Wistar rats were fed cruciferous vegetables (21%, wt:wt), apiaceous vegetables (21%, wt:wt), or a combination of both vegetables (10.5% wt:wt of each). Negative and positive control groups were fed an AIN-93G diet. After 6 d, all groups received an intraperitoneal injection of PhIP (10 mg · kg body weight−1) except for the negative control group, which received only vehicle. Urine was collected for 24 h after the injection for LC–tandem mass spectrometry metabolomic analyses. On day 7, rats were killed and tissues processed. Results: Compared with the positive control, cruciferous vegetables increased the activity of hepatic PhIP-activating enzymes [39.5% and 45.1% for cytochrome P450 (CYP) 1A1 (P = 0.0006) and CYP1A2 (P < 0.0001), respectively] and of uridine 5′-diphospho-glucuronosyltransferase 1A (PhIP-detoxifying) by 24.5% (P = 0.0267). Apiaceous vegetables did not inhibit PhIP-activating enzymes, yet reduced colonic PhIP-DNA adducts by 20.4% (P = 0.0496). Metabolomic analyses indicated that apiaceous vegetables increased the relative abundance of urinary methylated PhIP metabolites. The sum of these methylated metabolites inversely correlated with colonic PhIP-DNA adducts (r = −0.43, P = 0.01). We detected a novel methylated urinary PhIP metabolite and demonstrated that methylated metabolites are produced in the human liver S9 fraction. Conclusions: Apiaceous vegetables did not inhibit the activity of PhIP-activating enzymes in rats, suggesting that the reduction in PhIP

  17. Science spin: iPS cell research in the news.

    PubMed

    Caulfield, T; Rachul, C

    2011-05-01

    Big scientific developments have always been spun to meet particular social agendas. We have seen it in the context of global warming, nuclear power, and genetically modified organisms. But few stories illustrate the phenomenon of spin as well as the reaction, and concomitant media coverage, that surrounded the November 2007 announcement regarding the reprogramming of skin cells to produce cells with qualities comparable to those of human embryonic stem cells (hESCs) known as induced pluripotent stem (iPS) cells.

  18. A Learning-Based Approach for IP Geolocation

    NASA Astrophysics Data System (ADS)

    Eriksson, Brian; Barford, Paul; Sommers, Joel; Nowak, Robert

    The ability to pinpoint the geographic location of IP hosts is compelling for applications such as on-line advertising and network attack diagnosis. While prior methods can accurately identify the location of hosts in some regions of the Internet, they produce erroneous results when the delay or topology measurement on which they are based is limited. The hypothesis of our work is that the accuracy of IP geolocation can be improved through the creation of a flexible analytic framework that accommodates different types of geolocation information. In this paper, we describe a new framework for IP geolocation that reduces to a machine-learning classification problem. Our methodology considers a set of lightweight measurements from a set of known monitors to a target, and then classifies the location of that target based on the most probable geographic region given probability densities learned from a training set. For this study, we employ a Naive Bayes framework that has low computational complexity and enables additional environmental information to be easily added to enhance the classification process. To demonstrate the feasibility and accuracy of our approach, we test IP geolocation on over 16,000 routers given ping measurements from 78 monitors with known geographic placement. Our results show that the simple application of our method improves geolocation accuracy for over 96% of the nodes identified in our data set, with on average accuracy 70 miles closer to the true geographic location versus prior constraint-based geolocation. These results highlight the promise of our method and indicate how future expansion of the classifier can lead to further improvements in geolocation accuracy.

  19. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  20. Characterization and monitoring of contaminated sites by multi-geophysical approach (IP, ERT and GPR).

    NASA Astrophysics Data System (ADS)

    Giampaolo, Valeria; Capozzoli, Luigi; Votta, Mario; Rizzo, Enzo

    2014-05-01

    The contamination of soils and groundwater by hydrocarbons, due to blow out, leakage from tank or pipe and oil spill, is a heavy environmental problem because infiltrated oil can persist in the ground for a long time leading to important changes on soils and physical and biogeochemical properties, which impact on ecosystems and shallow aquifers. The existing methods used for the characterization of hydrocarbon contaminated sites are invasive, time consuming and expensive. Therefore, in the last years, there was a growing interest in the use of geophysical methods for environmental monitoring (Börner et al., 1993; Vanhala, 1997; Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009). The goal of this work is to characterize underground contaminant distributions and monitoring a remediation activity using a multi-geophysical approach (cross-hole IP and ERT, GPR). The experiments consist in geophysical measurements both in surface and boreholes, to monitor a simulated hydrocarbon leachate into a ~1 m3 box. The tank is filled with quartz-rich sand (k = 1.16 x 10-12 m2) and it is equipped with six boreholes and 72 stainless steel ring electrodes, at 5 cm spacing, for cross-hole electrical resistivity and time-domain IP measurements. 25 additional stainless steel electrodes were installed at the surface of the tank. Two measurement phases were realized: first, we monitored electrical resistivity, IP, and dielectric conductivity of the uncontaminated soil; the second experimental phase consists in the geophysical monitoring of a crude oil controlled spill. Results showed significant changes in the responses of geoelectrical measurements in presence of a crude oil contamination. Instead IP results give a phase angle distribution related to the presence of hydrocarbon in the system but not so clear in the location of plume. Therefore, to clearly delineate the areas interested by contamination, we estimate the imaginary component of electrical

  1. iPS cell technology: Future impact on renal care.

    PubMed

    Freedman, Benjamin S; Steinman, Theodore I

    2015-08-01

    iPS cells from patients with kidney disease are a new tool with the potential to impact the future of renal care. They can be used in the laboratory to model the pathophysiology of human kidney disease, and have the potential to establish a new area of immunocompatible, on-demand renal transplantation. Critical challenges remain before the full potential of these cells can be accurately assessed. We need to understand whether the derived cell types are mature and can replace kidney function(s). To what extent can iPS cells model kidney disease in the simplified environment of cell culture? Ultimately, successful integration of these cells as autograft therapies will require demonstration of safety and efficacy equal or superior to the existing gold standards of kidney allograft transplantation and dialysis. Specific educational and infrastructural changes will be necessary if these specialized technologies are to be adopted as an accepted modalities in clinical medicine. Given these barriers, the first fruit of these labors is likely to be improved understanding of pathophysiological pathways in human IPS cell disease models, followed by drug discovery and testing. These experiments will lead naturally to improvements in differentiation and experiments in animal models testing function. The time course to achieve the desired goals remains unknown, but the ultimate hope is that new, more effective and less expensive modalities for renal replacement therapy will occur in the foreseeable future. A new standard of care for patients is anticipated that addresses limitations of currently available treatments. PMID:26454909

  2. IP-based narrow-band videophone system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengbing; Zhu, Dongmei; Xue, Liang; Zhu, Guangxi

    2005-02-01

    Architecture of an IP-based narrow-band videophone system is proposed in this paper for convenient videophone calls between any two computers even if being placed in two different LANs within network agents. The bandwidth need of each call is less than 256 kbps. The system consists of two kinds of entities: Videophone Terminals (VPT) and a Video Call Server (VCS). A VPT is actually a microcomputer program, composed of 4 primary parts, an audio codec, a video codec, a media deliverer/receiver and a call controller. The basic functions of the VCS include videophone number generation and management, access admission and address resolution. The VCS with a public IP address plays an important role in the system especially when a video call has to penetrate through network agents. Each VPT in the system gets its own external transport address from the VCS through registration process. A calling VPT would receive the external transport address of the called VPT from the VCS through address resolution. The proposed system works and is helpful to accelerate the realization of people's videophone dream over IP networks.

  3. SLCA/IP power alternative screening method (SPASM)

    SciTech Connect

    Palmer, S.C. |; Ancrile, J.D.

    1995-03-01

    This report describes the SLCA/IP Power Alternative Screening Method (SPASM), which was used to screen 784 possible combinations of electric power marketing alternatives and dam operational scenarios to provide a representative range for analysis in the Western Area Power Administration Salt Lake City Area Integrated Projects (SLCA/IP) Electric Power Marketing Environmental Impact Statement (EIS). Each combination consists of one energy and capacity commitment level and one operational scenario for each of the hydroelectric facilities at Glen Canyon Dam, Flaming Gorge Dam, and the Aspinall Unit. The total annual cost to the SLCA/IP firm power customers of each of the 784 combinations is estimated and included in a relative frequency distribution. A relative frequency distribution is also generated for each marketing alternative. The number of combinations is reduced to 12 by taking the mean value and endpoint value for each of four marketing alternatives. Some minor deviations from this procedure, which are made for political purposes, are explained. 9 figs., 14 tabs.

  4. iPS cell transplantation for traumatic spinal cord injury

    PubMed Central

    Goulão, Miguel; Lepore, Angelo C.

    2016-01-01

    A large body of work has been published on transplantation of a wide range of neural stem and progenitor cell types derived from the developing and adult CNS, as well as from pluripotent embryonic stem cells, in models of traumatic spinal cord injury (SCI). However, many of these cell-based approaches present practical issues for clinical translation such as ethical cell derivation, generation of potentially large numbers of homogenously prepared cells, and immune rejection. With the advent of induced Pluripotent Stem (iPS) cell technology, many of these issues may potentially be overcome. To date, a number of studies have demonstrated integration, differentiation into mature CNS lineages, migration and long-term safety of iPS cell transplants in a variety of SCI models, as well as therapeutic benefits in some cases. Given the clinical potential of this advance in stem cell biology, we present a concise review of studies published to date involving iPS cell transplantation in animal models of SCI. PMID:26201863

  5. 47 CFR 51.913 - Transition for VoIP-PSTN traffic.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Transition for VoIP-PSTN traffic. 51.913... (CONTINUED) INTERCONNECTION Transitional Access Service Pricing § 51.913 Transition for VoIP-PSTN traffic. (a... originates and/or terminates in IP format shall be subject to a rate equal to the relevant...

  6. 47 CFR 51.913 - Transition for VoIP-PSTN traffic.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Transition for VoIP-PSTN traffic. 51.913... (CONTINUED) INTERCONNECTION Transitional Access Service Pricing § 51.913 Transition for VoIP-PSTN traffic. (a... originates and/or terminates in IP format shall be subject to a rate equal to the relevant...

  7. 47 CFR 51.913 - Transition for VoIP-PSTN traffic.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Transition for VoIP-PSTN traffic. 51.913... (CONTINUED) INTERCONNECTION Transitional Access Service Pricing § 51.913 Transition for VoIP-PSTN traffic. (a... originates and/or terminates in IP format shall be subject to a rate equal to the relevant...

  8. Beam tuning

    SciTech Connect

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  9. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    SciTech Connect

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  10. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  11. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq)

    PubMed Central

    Lodhi, Niraj; Tulin, Alexei V.

    2011-01-01

    Poly(ADP-ribose) polymerase1 (PARP1) is a global regulator of different cellular mechanisms, ranging from DNA damage repair to control of gene expression. Since PARP1 protein and pADPr have been shown to persist in chromatin through cell cycle, they may both act as epigenetic markers. However, it is not known how many loci are occupied by PARP1 protein during mitosis genome-wide. To reveal the genome-wide PARP1 binding sites, we used the ChIP-seq approach, an emerging technique to study genome-wide PARP1 protein interaction with chromatin. Here, we describe how to perform ChIP-seq in the context of PARP1 binding sites identification in chromatin, using human embryonic kidney cell lines. PMID:21870262

  12. Characterizing a proton beam with two different methods in beam halo experiments

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ping; Fu, Shi-Nian; Peng, Jun; Cheng, Peng; Huang, Tao; Li, Peng; Li, Fang; Li, Jian; Liu, Hua-Chang; Liu, Mei-Fei; Meng, Ming; Meng, Cai; Mu, Zhen-Cheng; Rong, Lin-Yan; Ouyang, Hua-Fu; Sun, Biao; Wang, Bo; Tian, Jian-Min; Wang, Biao; Wang, Sheng-Chang; Yao, Yuan; Xu, Tao-Guang; Xu, Xin-An; Xin, Wen-Qu; Zhao, Fu-Xiang; Zeng, Lei; Zhou, Wen-Zhong

    2014-08-01

    In beam halo experiments, it is very important to correctly characterize the RFQ output proton beam. In order to simulate the beam dynamics properly, we must first know the correct initial beam parameters. We have used two different methods, quadrupole scans and multi-wire scanners to determine the transverse phase-space properties of the proton beam. The experimental data were analyzed by fitting to the 3-D nonlinear simulation code IMPACT. For the quadrupole scan method, we found that the RMS beam radius and the measured beam-core profiles agreed very well with the simulations. For the multi-wire scanner method, we choose the case of a matched beam. By fitting the IMPACT simulation results to the measured data, we obtained the Courant-Snyder parameters and the emittance of the beam. The difference between the two methods is about eight percent, which is acceptable in our experiments.

  13. Investigation of Viral and Host Chromatin by ChIP-PCR or ChIP-Seq Analysis.

    PubMed

    Günther, Thomas; Theiss, Juliane M; Fischer, Nicole; Grundhoff, Adam

    2016-01-01

    Complex regulation of viral transcription patterns and DNA replication levels is a feature of many DNA viruses. This is especially true for those viruses which establish latent or persistent infections (e.g., herpesviruses, papillomaviruses, polyomaviruses, or adenovirus), as long-term persistence often requires adaptation of gene expression programs and/or replication levels to the cellular milieu. A key factor in the control of such processes is the establishment of a specific chromatin state on promoters or replication origins, which in turn will determine whether or not the underlying DNA is accessible for other factors that mediate downstream processes. Chromatin immunoprecipitation (ChIP) is a powerful technique to investigate viral chromatin, in particular to study binding patterns of modified histones, transcription factors or other DNA-/chromatin-binding proteins that regulate the viral lifecycle. Here, we provide protocols that are suitable for performing ChIP-PCR and ChIP-Seq studies on chromatin of large and small viral genomes. PMID:26855283

  14. Investigation of Viral and Host Chromatin by ChIP-PCR or ChIP-Seq Analysis.

    PubMed

    Günther, Thomas; Theiss, Juliane M; Fischer, Nicole; Grundhoff, Adam

    2016-02-08

    Complex regulation of viral transcription patterns and DNA replication levels is a feature of many DNA viruses. This is especially true for those viruses which establish latent or persistent infections (e.g., herpesviruses, papillomaviruses, polyomaviruses, or adenovirus), as long-term persistence often requires adaptation of gene expression programs and/or replication levels to the cellular milieu. A key factor in the control of such processes is the establishment of a specific chromatin state on promoters or replication origins, which in turn will determine whether or not the underlying DNA is accessible for other factors that mediate downstream processes. Chromatin immunoprecipitation (ChIP) is a powerful technique to investigate viral chromatin, in particular to study binding patterns of modified histones, transcription factors or other DNA-/chromatin-binding proteins that regulate the viral lifecycle. Here, we provide protocols that are suitable for performing ChIP-PCR and ChIP-Seq studies on chromatin of large and small viral genomes.

  15. Reconstruction of FXR Beam Conditions

    SciTech Connect

    Nexen, W E; Scarpetti, R D; Zentler, J

    2001-05-31

    Beam-envelope radius, envelope angle, and beam emittance can be derived from measurements of beam radius for at least three different transport conditions. We have used this technique to reconstruct exit parameters from the FXR injector and accelerator. We use a diamagnetic loop (DML) to measure the magnetic moment of the high current beam. With no assumptions about radial profile, we can derive the beam mean squire radius from the moment under certain easily met conditions. Since it is this parameter which is required for the reconstruction, it is evident that the DML is the ideal diagnostic for this technique. The simplest application of this technique requires at least three shots for a reconstruction but in reality requires averaging over many more shots because of shot to shot variation. Since DML measurements do not interfere with the beam, single shot time resolved measurements of the beam parameters appear feasible if one uses an array of at least three DMLs separated by known transport conditions.

  16. Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor

    SciTech Connect

    Kim, Youngim; Heo, Ae-young; Kim, Eun-San; Boogert, Stewart; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; May, Justin; McCormick, Douglas; Smith, Tonee; /SLAC

    2012-08-14

    Nanometer resolution beam position monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam has to be measured to within a few nanometers at the interaction point. In order to achieve this performance, electronics for the low-Q IP-BPM was developed. Every component of the electronics have been simulated and checked on the bench and using the ATF2 beam. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. ATF2 is a final focus test beam line for ILC in the framework of the ATF international collaboration. The new beam line was constructed to extend the extraction line at ATF, KEK, Japan. The first goal of ATF2 is the acheiving of a 37 nm vertical beam size at focal point (IP). The second goal is to stabilize the beam at the focal point at a few nanometer level for a long period in order to ensure the high luminosity. To achieve these goals a high resolution IP-BPM is essential. In addition for feedback applications a low-Q system is desirable.

  17. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    SciTech Connect

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  18. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  19. CtIP: A DNA damage response protein at the intersection of DNA metabolism.

    PubMed

    Makharashvili, Nodar; Paull, Tanya T

    2015-08-01

    The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also examine the regulation of CtIP function by post-translational modifications, and its involvement in transcription- and replication-dependent functions through association with other protein complexes. The tumor suppressor function of CtIP likely is dependent on a combination of these roles in many aspects of DNA metabolism.

  20. ChIP-PIT: Enhancing the Analysis of ChIP-Seq Data Using Convex-Relaxed Pair-Wise Interaction Tensor Decomposition.

    PubMed

    Zhu, Lin; Guo, Wei-Li; Deng, Su-Ping; Huang, De-Shuang

    2016-01-01

    In recent years, thanks to the efforts of individual scientists and research consortiums, a huge amount of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experimental data have been accumulated. Instead of investigating them independently, several recent studies have convincingly demonstrated that a wealth of scientific insights can be gained by integrative analysis of these ChIP-seq data. However, when used for the purpose of integrative analysis, a serious drawback of current ChIP-seq technique is that it is still expensive and time-consuming to generate ChIP-seq datasets of high standard. Most researchers are therefore unable to obtain complete ChIP-seq data for several TFs in a wide variety of cell lines, which considerably limits the understanding of transcriptional regulation pattern. In this paper, we propose a novel method called ChIP-PIT to overcome the aforementioned limitation. In ChIP-PIT, ChIP-seq data corresponding to a diverse collection of cell types, TFs and genes are fused together using the three-mode pair-wise interaction tensor (PIT) model, and the prediction of unperformed ChIP-seq experimental results is formulated as a tensor completion problem. Computationally, we propose efficient first-order method based on extensions of coordinate descent method to learn the optimal solution of ChIP-PIT, which makes it particularly suitable for the analysis of massive scale ChIP-seq data. Experimental evaluation the ENCODE data illustrate the usefulness of the proposed model.

  1. TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues

    PubMed Central

    Matsuura, Katsuhisa; Seta, Hiroyoshi; Haraguchi, Yuji; Alsayegh, Khaled; Sekine, Hidekazu; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Yamazaki, Kenji; Okano, Teruo

    2016-01-01

    The development of a suitable strategy for eliminating remaining undifferentiated cells is indispensable for the use of human-induced pluripotent stem (iPS) cell-derived cells in regenerative medicine. Here, we show for the first time that TRPV-1 activation through transient culture at 42 °C in combination with agonists is a simple and useful strategy to eliminate iPS cells from bioengineered cardiac cell sheet tissues. When human iPS cells were cultured at 42 °C, almost all cells disappeared by 48 hours through apoptosis. However, iPS cell-derived cardiomyocytes and fibroblasts maintained transcriptional and protein expression levels, and cardiac cell sheets were fabricated after reducing the temperature. TRPV-1 expression in iPS cells was upregulated at 42 °C, and iPS cell death at 42 °C was TRPV-1-dependent. Furthermore, TRPV-1 activation through thermal or agonist treatment eliminated iPS cells in cardiac tissues for a final concentration of 0.4% iPS cell contamination. These findings suggest that the difference in tolerance to TRPV-1 activation between iPS cells and iPS cell-derived cardiac cells could be exploited to eliminate remaining iPS cells in bioengineered cell sheet tissues, which will further reduce the risk of tumour formation. PMID:26888607

  2. Beam modeling and verification of a photon beam multisource model

    SciTech Connect

    Ahnesjoe, Anders; Weber, Lars; Murman, Anders; Saxner, Mikael; Thorslund, Ingvar; Traneus, Erik

    2005-06-15

    Dose calculations for treatment planning of photon beam radiotherapy require a model of the beam to drive the dose calculation models. The beam shaping process involves scattering and filtering that yield radiation components which vary with collimator settings. The necessity to model these components has motivated the development of multisource beam models. We describe and evaluate clinical photon beam modeling based on multisource models, including lateral beam quality variations. The evaluation is based on user data for a pencil kernel algorithm and a point kernel algorithm (collapsed cone) used in the clinical treatment planning systems Helax-TMS and Nucletron-Oncentra. The pencil kernel implementations treat the beam spectrum as lateral invariant while the collapsed cone involves off axis softening of the spectrum. Both algorithms include modeling of head scatter components. The parameters of the beam model are derived from measured beam data in a semiautomatic process called RDH (radiation data handling) that, in sequential steps, minimizes the deviations in calculated dose versus the measured data. The RDH procedure is reviewed and the results of processing data from a large number of treatment units are analyzed for the two dose calculation algorithms. The results for both algorithms are similar, with slightly better results for the collapsed cone implementations. For open beams, 87% of the machines have maximum errors less than 2.5%. For wedged beams the errors were found to increase with increasing wedge angle. Internal, motorized wedges did yield slightly larger errors than external wedges. These results reflect the increased complexity, both experimentally and computationally, when wedges are used compared to open beams.

  3. Exploitation of wireless link QoS mechanisms in IP QoS architectures

    NASA Astrophysics Data System (ADS)

    Manner, Jukka; Kojo, Markku; Laukkanen, Aki; Liljeberg, Mika; Suihko, Tapio; Raatikainen, Kimmo

    2001-07-01

    TCP/IP protocols make minimal assumptions about the capabilities of a link layer used to carry IP packets between nodes. The recent evolution of IP-based mobile and wireless communication has driven the design of wireless link layers and new features, including support for different QoS levels, are being included in the new link layer designs. The current IP QoS architectures are based purely on IP-layer decision making, packet buffering and scheduling through a single link-layer service access point. However, mobile wireless networks pose new challenges for IP QoS architecture implementations. In this paper, we introduce a generic convergence layer interface for controlling the capabilities of wireless network interfaces. Emphasis is on discovering the link layer functionalities and mapping IP QoS mechanisms to the available link layer features. Issues such as packet buffering and scheduling are discussed.

  4. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Hong, Yean Ju; Do, Jeong Tae

    2016-01-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by overexpression of defined transcription factors. iPS cells can perpetually self-renew and differentiate into all cell types of an organism. iPS cells were first generated through infection with retroviruses that contain reprogramming factors. However, development of an exogene-free iPS cell generation method is crucial for future therapeutic applications, because integrated exogenes result in the formation of tumors in chimeras and regain pluripotency after differentiation in vitro. Here, we describe a method to generate iPS cells by transfection of plasmid vectors and to convert partially reprogrammed cells into fully reprogrammed iPS cells by switching from mouse ESC culture conditions to KOSR-based media with bFGF. We also describe basic methods used to characterize fully reprogrammed iPS cells.

  5. Implementation of IP Telemetry in Support of Portable Deployments for Earthquake Response

    NASA Astrophysics Data System (ADS)

    Edwards, N.; Torrisi, J.; Austin, W.; Smith, K. D.; Biasi, G.; Anooshehpoor, R.; Slater, D.

    2008-12-01

    IP spread spectrum radios have revolutionized the operation of remote seismic networks. In two separate deployments this year, the Nevada Seismological Laboratory implemented 900 MHz point-to-multipoint IP radio systems for portable seismographs in response to two important Nevada earthquake sequences: the Mw 6.0 event that struck Wells on February 21, 2008; and an energetic earthquake swarm in urban Reno that began in mid-February (mainshock Mw 5.0, April 26, 2008, 06:40 UTC). In cooperation with the USGS, ten portable stations were deployed in the Wells area response. Also, 10 IRIS RAMP instruments were included in the urban Reno deployment. These instruments were outfitted with Motorola Canopy radios and integrated with the regional telemetry infrastructure. As configured, these radios will support a large deployment, high sample rate dataloggers, and a flexible network topology with a working range of at least 30 miles. Real time IP telemetry can improve portable network performance in the following areas: 1. Simplified data flow- Real-time data from portable deployments is integrated with the regional and national networks. Portable instrument data does not have to be retrieved from the field, extracted from mass storage, and separately incorporated into data archives. The need to reanalyze events as locally-recorded portable data becomes available is eliminated. 2. Improved real-time products- Real-time data from portable stations can be used to improve the precision and timeliness of data products (e.g., ShakeMap) for the public, the local and national media, and emergency managers. 3. State-of-health monitoring- Systems (power, memory, etc.) can be monitored, allowing for less frequent and better targeted maintenance visits. The monitoring of these parameters can then be assumed by software packages such as Nagios or SeisNetWatch. 4. Remote management- Datalogger parameters can be managed remotely. The radios can also be remotely managed, allowing for

  6. Tuning the beam: a physics perspective on beam diagnostic instrumentation

    SciTech Connect

    Gulley, Mark S

    2010-01-01

    In a nutshell, the role of a beam diagnostic measurement is to provide information needed to get a particle beam from Point A (injection point) to Point B (a target) in a useable condition, with 'useable' meaning the right energy and size and with acceptable losses. Specifications and performance requirements of diagnostics are based on the physics of the particle beam to be measured, with typical customers of beam parameter measurements being the accelerator operators and accelerator physicists. This tutorial will be a physics-oriented discussion of the interplay between tuning evolutions and the beam diagnostics systems that support the machine tune. This will include the differences between developing a tune and maintaining a tune, among other things. Practical longitudinal and transverse tuning issues and techniques from a variety of proton and electron machines will also be discussed.

  7. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGESBeta

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  8. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    NASA Astrophysics Data System (ADS)

    Xu, YongJian; Hu, ChunDong

    2011-12-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  9. Scalability-performance tradeoffs in MPLS and IP routing

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selma; Matta, Ibrahim

    2002-07-01

    MPLS (Multi-Protocol Label Switching) has recently emerged to facilitate the engineering of network traffic. This can be achieved by directing packet flows over paths that satisfy multiple requirements. MPLS has been regarded as an enhancement to traditional IP routing, which has the following problems: (1) all packets with the same IP destination address have to follow the same path through the network; and (2) paths have often been computed based on static and single link metrics. These problems may cause traffic concentration, and thus degradation in quality of service. In this paper, we investigate by simulations a range of routing solutions and examine the tradeoff between scalability and performance. At one extreme, IP packet routing using dynamic link metrics provides a stateless solution but may lead to routing oscillations. At the other extreme, we consider a recently proposed Profile-based Routing (PBR), which uses knowledge of potential ingress-egress pairs as well as the traffic profile among them. Minimum Interference Routing (MIRA) is another recently proposed MPLS-based scheme, which only exploits knowledge of potential ingress-egress pairs but not their traffic profile. MIRA and the more conventional widest-shortest path (WSP) routing represent alternative MPLS-based approaches on the spectrum of routing solutions. We compare these solutions in terms of utility, bandwidth acceptance ratio as well as their scalability (routing state and computational overhead) and load balancing capability. While the simplest of the per-flow algorithms we consider, the performance of WSP is close to dynamic per-packet routing, without the potential instabilities of dynamic routing.

  10. VoIP attacks detection engine based on neural network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  11. A New Luminous Outburst from SN 2009ip

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Howerton, S.; McNaught, R.; Djorgovski, S. G.; Mahabal, A. A.; Graham, M. J.; Williams, R.; Prieto, J.; Catelan, M.; Christensen, E.; Larson, S.

    2012-08-01

    Further to Drake et al. (2010, Atel#2897), we report the discovery of a new bright outburst from spectroscopically confirmed LBV (Supernova Impostor) SN 2009ip (Maza et al. 2009; CBET#1928, Berger et al. 2009, ATEL#2184; Smith et al. 2010; Foley et al. 2011) in images taken by the Siding Spring Survey (SSS).

  12. Cooperative treatment planning in creating IPS Empress SMILES.

    PubMed

    Dickerson, W G

    1996-01-01

    With the continued increase in patient expectations for appearance-related restorations, the final result may be deficient in aesthetic qualities, such as color, contour, and shape. This is generally due to a breakdown in communication among the patient, dentist, and laboratory technician with regard to basic smile design principles prior to fabrication of the restoration. With the introduction of advanced porcelain systems (IPS Empress System, Ivoclar Williams, Amherst, NY), the clinician and technician can produce restorations that mimic the optical characteristics and color vitality of natural teeth. This article presents methods to improve communication, effectively evaluate smile design principles, and fabricate aesthetic all-ceramic restorations.

  13. DIFFERENTIAL DIAGNOSIS IN PAINFUL ISCHIOPUBIC SYNCHONDROSIS (IPS): A CASE REPORT

    PubMed Central

    Oliveira, Fillipe

    2010-01-01

    Synchondroses are temporary joints that only exist during skeletal maturation. Bilateral widening of the ischiopubic synchondrosis (IPS) is a normal growth phenomenon, but when it is unilateral and painful it can become a diagnostic challenge. An eight-year-old child with an enlarged symptomatic unilateral synchondrosis is presented. Failure of conservative treatment and its pseudo-tumoral appearance led us to intervene surgically. Pathology revealed a stress fracture. Based on this clinical case, we made a revision of policy regarding pathology, diagnostic workup and treatment strategies for symptomatic synchondrosis. PMID:21045998

  14. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  15. The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness

    PubMed Central

    Zhou, Yue; Mao, Hongli; Joddar, Binata; Umeki, Nobuhisa; Sako, Yasushi; Wada, Ken-Ichi; Nishioka, Chieko; Takahashi, Eiki; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    The biological activity of cell-derived substrates to maintain undifferentiated murine-induced pluripotent stem (iPS) cells was correlated to membrane fluidity as a new parameter of cell culture substrates. Murine embryonic fibroblasts (MEFs) were employed as feeder cells and their membrane fluidity was tuned by chemical fixation using formaldehyde (FA). Membrane fluidity was evaluated by real-time single-molecule observations of green fluorescent protein-labeled epidermal growth factor receptors on chemically fixed MEFs. Biological activity was monitored by colony formation of iPS cells. Treatment with a low concentration of FA sustained the membrane fluidity and biological activity, which were comparable to those of mitomycin C-treated MEFs. The biological activity was further confirmed by sustained expression of alkaline phosphatase, SSEA-1, and other pluripotency markers in iPS cells after 3–5 days of culture on FA-fixed MEFs. Chemical fixation of feeder cells has several advantages such as providing ready-to-use culture substrates without contamination by proliferating feeder cells. Therefore, our results provide an important basis for the development of chemically fixed culture substrates for pluripotent stem cell culture as an alternative to conventional treatment by mitomycin C or x-ray irradiation. PMID:26065582

  16. Experimental observations and theoretical models for beam-beam phenomena

    SciTech Connect

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  17. Solitary waves in particle beams

    SciTech Connect

    Bisognano, J.J.

    1996-07-01

    Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally.

  18. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.F.

    1998-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC), two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beam line vault by a 160-ft long X-Band waveguide. The authors describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  19. Beam loss

    NASA Astrophysics Data System (ADS)

    VanGinneken, A.; Edwards, D.; Harrison, M.

    1989-04-01

    This paper presents results from simulations of beam losses during the operation of a superconducting accelerator. The calculations use a combination of hadron/electromagnetic cascade plus elastic scattering codes with accelerator tracking routines. These calculations have been used in conjunction with the design of the Fermilab Tevatron. First accelerator geometry is described. The rest of the paper discusses a detailed attempt to simulate a fast extraction cycle, essentially in chronological order. Beginning with an unperturbed beam, the simulation generates proton phase-space distributions incident on the electrostatic septum. These interact either elastically or inelastically with the septum wires, and the products of these interactions are traced through the machine. Where these leave the accelerator, energy deposition levels in the magnets are calculated together with the projected response of the beam-loss monitors in this region. Finally, results of the calculation are compared with experimental data. (AIP)

  20. Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli

    2015-09-01

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  1. Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings

    SciTech Connect

    None, None

    2015-07-13

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  2. Sheet Beam Klystron Instability Analysis

    SciTech Connect

    Bane, K.L.F.; Jensen, A.; Li, Z.; Stupakov, G.; Adolphsen, C.; /SLAC

    2009-05-08

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.

  3. iPS cells: a source of cardiac regeneration.

    PubMed

    Yoshida, Yoshinori; Yamanaka, Shinya

    2011-02-01

    For the treatment of heart failure, a new strategy to improve cardiac function and inhibit cardiac remodeling needs to be established. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are pluripotent cells that can differentiate into cell types from all three germ layers both in vitro and in vivo. The therapeutic effect of ES/iPS cell-derived progeny was reported in animal model. Mouse and human somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the transduction of four transcription factors, Oct 3/4, Sox2, Klf4, and c-Myc. However, the low induction efficiency hinders the clinical application of iPS technology, and efforts have been made to improve the reprogramming efficiency. There are variations in the characteristics in ES/iPS cell lines, and the further understanding is necessary for the applications of ES/iPS cell technology. Some improvements were also made in the methods to induce cardiomyocytes from ES/iPS cells efficiently. This review article is focused on generation of iPS cells, cardiomyocyte differentiation from ES/iPS cells, and transplantation of derived cardiomyocytes.This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  4. Real-time delay statistics in wireless IP networks

    NASA Astrophysics Data System (ADS)

    Huo, D.

    2012-09-01

    In the wireless communication, the variation of the transmission delay is called jitter and is one of the variables responsible for the degradation of the service quality. Jitter is present in every section of the transmission system. Its stochastic behavior depends on the technology implemented in the system and the service provided by the system. This paper focuses on mathematical modeling and phenomenological analysis of the jitter encountered by the real-time services in a wireless network. Using the data made available to the public by the wireless industry, we explore the stochastic characterizations of the jitter in a wireless IP networks. Within the scope of real-time service, we studied the relation between delay, jitter and the inter-packet time. Evaluation of the sample data indicates a long range dependence of the inter-packet time of the received packets in a real-time connection. The result helps understanding the transmission delay encountered by the real-time service over wireless IP networks.

  5. Luminal Ca2+ dynamics during IP3R mediated signals

    NASA Astrophysics Data System (ADS)

    Lopez, Lucia F.; Ponce Dawson, Silvina

    2016-06-01

    The role of cytosolic Ca2+ on the kinetics of Inositol 1,4,5-triphosphate receptors (IP3Rs) and on the dynamics of IP3R-mediated Ca2+ signals has been studied at large both experimentally and by modeling. The role of luminal Ca2+ has not been investigated with that much detail although it has been found that it is relevant for signal termination in the case of Ca2+ release through ryanodine receptors. In this work we present the results of observing the dynamics of luminal and cytosolic Ca2+ simultaneously in Xenopus laevis oocytes. Combining observations and modeling we conclude that there is a rapid mechanism that guarantees the availability of free Ca2+ in the lumen even when a relatively large Ca2+ release is evoked. Comparing the dynamics of cytosolic and luminal Ca2+ during a release, we estimate that they are consistent with a 80% of luminal Ca2+ being buffered. The rapid availability of free luminal Ca2+ correlates with the observation that the lumen occupies a considerable volume in several regions across the images.

  6. Iconographic Professional Interests Inventory (3IP): A New Validation Study

    PubMed Central

    Boerchi, Diego; Magnano, Paola

    2015-01-01

    Interests have been a central focus of counselling psychology (and vocational psychology in particular) for over 100 years. The awareness of professional interests increases self-knowledge and provides occupational information. In career counselling, vocational interests are assessed more frequently than any other vocational construct, though early evaluations (before 13 years old) of professional interests are very rare. The aim of this research is to examine the 3IP construct (Iconographic Professional Interests Inventory; an inventory composed of 65 stylised pictures that represent people in the act of performing a job) in depth, testing more models in addition to the 19 vocational areas proposed in the 3IP manual. Results show that most of the vocational areas can be grouped into 4 second-level areas (“things”, “people”, “leisure”, and “culture”). Moreover, Holland’s RIASEC model is tested; an accurate selection of items reveals that this model works well using 24 specific jobs. The research concludes that the inventory has good psychometric qualities which can grow further by mean of the increasing, in a targeted way, of the number of jobs. PMID:27247679

  7. An Early Fire Detection Algorithm Using IP Cameras

    PubMed Central

    Millan-Garcia, Leonardo; Sanchez-Perez, Gabriel; Nakano, Mariko; Toscano-Medina, Karina; Perez-Meana, Hector; Rojas-Cardenas, Luis

    2012-01-01

    The presence of smoke is the first symptom of fire; therefore to achieve early fire detection, accurate and quick estimation of the presence of smoke is very important. In this paper we propose an algorithm to detect the presence of smoke using video sequences captured by Internet Protocol (IP) cameras, in which important features of smoke, such as color, motion and growth properties are employed. For an efficient smoke detection in the IP camera platform, a detection algorithm must operate directly in the Discrete Cosine Transform (DCT) domain to reduce computational cost, avoiding a complete decoding process required for algorithms that operate in spatial domain. In the proposed algorithm the DCT Inter-transformation technique is used to increase the detection accuracy without inverse DCT operation. In the proposed scheme, firstly the candidate smoke regions are estimated using motion and color smoke properties; next using morphological operations the noise is reduced. Finally the growth properties of the candidate smoke regions are furthermore analyzed through time using the connected component labeling technique. Evaluation results show that a feasible smoke detection method with false negative and false positive error rates approximately equal to 4% and 2%, respectively, is obtained. PMID:22778607

  8. Enhanced service zone architecture for multiservices over IP

    NASA Astrophysics Data System (ADS)

    Michaely, Boaz; Mohan, Seshadri

    2001-07-01

    Recently, the field of IP Telephony has been experienced considerable evolution through the specification of new protocols and introduction of products implementing these protocols. We visualize IP Telephony evolving to soon offer multiservices encompassing not only voice, but also data, video and multimedia. While the progress has focused on refining protocols and architectures, very little attention has been given to business models for offering these services. This paper introduces the concept of a Service Zone, which from a service provider/network operator perspective fits within the operator's administrative domain, but is viewed as an independent zone with its own management and services, requiring minimal integration with the core network services. Besides its own management, the Enhanced Services Zone may also provide provisioning and maintenance features needed to provide the customer services and availability that subscribers expect from a telephony service providers. The platform must provide reliable service over time, be scalable to meet increased capacity demands, and be upgradeable to incorporate advanced services and features as they become available. Signaling flows are illustrated using SIP and H.323.

  9. Smurf1 regulation of DAB2IP controls cell proliferation and migration

    PubMed Central

    Wan, Lixin; Inuzuka, Hiroyuki; Sun, Liankun; North, Brian J.

    2016-01-01

    Tumor cell proliferation, survival and migration are regulated by the deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), a tumor suppressor that serves as a scaffold protein for H-Ras and TRAF2. Importantly, the oncogenic histone methyl-transferase EZH2 epigenetically down-regulates DAB2IP in a variety of tumors. Recently, we demonstrated that DAB2IP is negatively regulated by Akt-dependent phosphorylation and SCFFbw7-mediated degradation. Here, we further identify the oncoprotein Smurf1, an E3-ubiquitin ligase, as a novel negative regulator of DAB2IP. Smurf1-mediated cellular proliferation and migration are largely dependent on the presence of DAB2IP, suggesting that DAB2IP is a key effector molecule of Smurf1 oncogenic function. Additionally, we identify that similar to DAB2IP, Smurf1 is also a target of phosphorylation by both Akt1 and Akt2 kinases, which enhances Smurf1 abundance, leading to a reduction in DAB2IP. Given the role of DAB2IP in tumorigenesis and metastasis, our data identify Smurf1 as an upstream oncogenic factor that negatively regulates DAB2IP to govern aberrant cell growth and migration. PMID:27036023

  10. Active Beam Spectroscopy

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  11. Simulations of coherent beam-beam effects with head-on compensation

    SciTech Connect

    White S.; Fischer, W.; Luo. Y.

    2012-05-20

    Electron lenses are under construction for installation in RHIC in order to mitigate the head-on beam-beam effects. This would allow operation with higher bunch intensity and result in a significant increase in luminosity. We report on recent strong-strong simulations and experiments that were carried out using the RHIC upgrade parameters to assess the impact of coherent beam-beam effects in the presence of head-on compensation.

  12. Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses.

    PubMed

    Mukai, Hiroki; Hatta, Tamao; Kitazawa, Hideaki; Yamada, Hirohisa; Yaita, Tsuyoshi; Kogure, Toshihiro

    2014-11-18

    Radioactive soil particles several tens of micrometers in size were collected from litter soil in the radiation contaminated area by the Fukushima nuclear plant accident and characterized using electron and X-ray microanalyses. The radioactive particles were discriminated by autoradiography using imaging plates (IP) on which microgrids were formed by laser ablation in order to find the particles under microscopy. Fifty radioactive particles were identified and classified into three types from their morphology and chemical composition, namely: (1) aggregates of clay minerals, (2) organic matter containing clay mineral particulates, and (3) weathered biotite originating from local granite. With respect to the second type, dissolution of the organic matter did not reduce the radiation, suggesting that the radionuclides were also fixed by the clay minerals. The weathered biotite grains have a plate-like shape with well-developed cleavages inside the grains, and kaolin group minerals and goethite filling the cleavage spaces. The reduction of the radiation intensity was measured before and after the trimming of the plate edges using a focused ion beam (FIB), to examine whether radioactive cesium primarily sorbed at frayed edges. The radiation was attenuated in proportion to the volume decrease by the edge trimming, implying that radioactive cesium was sorbed uniformly in the porous weathered biotite. PMID:25343443

  13. Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses.

    PubMed

    Mukai, Hiroki; Hatta, Tamao; Kitazawa, Hideaki; Yamada, Hirohisa; Yaita, Tsuyoshi; Kogure, Toshihiro

    2014-11-18

    Radioactive soil particles several tens of micrometers in size were collected from litter soil in the radiation contaminated area by the Fukushima nuclear plant accident and characterized using electron and X-ray microanalyses. The radioactive particles were discriminated by autoradiography using imaging plates (IP) on which microgrids were formed by laser ablation in order to find the particles under microscopy. Fifty radioactive particles were identified and classified into three types from their morphology and chemical composition, namely: (1) aggregates of clay minerals, (2) organic matter containing clay mineral particulates, and (3) weathered biotite originating from local granite. With respect to the second type, dissolution of the organic matter did not reduce the radiation, suggesting that the radionuclides were also fixed by the clay minerals. The weathered biotite grains have a plate-like shape with well-developed cleavages inside the grains, and kaolin group minerals and goethite filling the cleavage spaces. The reduction of the radiation intensity was measured before and after the trimming of the plate edges using a focused ion beam (FIB), to examine whether radioactive cesium primarily sorbed at frayed edges. The radiation was attenuated in proportion to the volume decrease by the edge trimming, implying that radioactive cesium was sorbed uniformly in the porous weathered biotite.

  14. Energy Focusability of Annular Beams

    NASA Astrophysics Data System (ADS)

    Astadjov, Dimo N.

    2010-01-01

    A simulation of coherent annular flat two-level beams by two-dimensional Fast Fourier Transform is presented. After parameterization of the source beam (the `input') we examined the influence of its parameters on the shape and proportions of the output beam profile. The output pattern has a prominent central peak and faint rings concentrically surrounding it. The fraction of the central peak energy to the whole energy of beam, PF0 gives a notion of energy spread within the focal spot: PF0 is a function of beam annularity, k (i.e. `inside diameter/outside diameter' ratio) and the intensity dip, Idip of annulus central area (i.e. ring intensity minus central-bottom intensity, normalized). Up to k = 0.8 and Idip = 0.75, PF0 does not change too much—it is ⩾0.7 which is ⩾90% of PF0 maximum (0.778 at k = 0 and Idip = 0). Simulations revealed that even great changes in the shape of input beam annulus lead to small variations in the energy spread of output beam profile in the range of practical use of coherent annular beams.

  15. Beam-beam simulations with non-Gaussian distributions for SLC and SLC-2000

    SciTech Connect

    Bane, K.L.F.; Chen, P.; Zimmermann, F.

    1997-05-01

    Due to various upstream beam manipulations, the longitudinal bunch shape at the interactions point of the Stanford Linear Collider (SLC) is highly non-Gaussian. In this paper, we report beam-beam simulations with realistic longitudinal bunch shapes for the present SLC parameters and for the SLC-2000 luminosity upgrade. The simulation results allow us to estimate the luminosity enhancement due to the pinch effect and to find optimum parameter settings for the bunch compressor and the linac.

  16. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  17. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    PubMed

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  18. Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: Identifying ChIP-quality p300 monoclonal antibodies

    PubMed Central

    Gasper, William C.; Marinov, Georgi K.; Pauli-Behn, Florencia; Scott, Max T.; Newberry, Kimberly; DeSalvo, Gilberto; Ou, Susan; Myers, Richard M.; Vielmetter, Jost; Wold, Barbara J.

    2014-01-01

    Chromatin immunoprecipitation coupled with DNA sequencing (ChIP-seq) is the major contemporary method for mapping in vivo protein-DNA interactions in the genome. It identifies sites of transcription factor, cofactor and RNA polymerase occupancy, as well as the distribution of histone marks. Consortia such as the ENCyclopedia Of DNA Elements (ENCODE) have produced large datasets using manual protocols. However, future measurements of hundreds of additional factors in many cell types and physiological states call for higher throughput and consistency afforded by automation. Such automation advances, when provided by multiuser facilities, could also improve the quality and efficiency of individual small-scale projects. The immunoprecipitation process has become rate-limiting, and is a source of substantial variability when performed manually. Here we report a fully automated robotic ChIP (R-ChIP) pipeline that allows up to 96 reactions. A second bottleneck is the dearth of renewable ChIP-validated immune reagents, which do not yet exist for most mammalian transcription factors. We used R-ChIP to screen new mouse monoclonal antibodies raised against p300, a histone acetylase, well-known as a marker of active enhancers, for which ChIP-competent monoclonal reagents have been lacking. We identified, validated for ChIP-seq, and made publicly available a monoclonal reagent called ENCITp300-1. PMID:24919486

  19. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.

    PubMed

    Pillai, Smitha; Chellappan, Srikumar P

    2015-01-01

    Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.

  20. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.

    PubMed

    Chen, Xi; Jung, Jin-Gyoung; Shajahan-Haq, Ayesha N; Clarke, Robert; Shih, Ie-Ming; Wang, Yue; Magnani, Luca; Wang, Tian-Li; Xuan, Jianhua

    2016-04-20

    Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways.

  1. Infrared imaging diagnostics for INTF ion beam

    NASA Astrophysics Data System (ADS)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  2. Beam halo studies in LEHIPA DTL

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  3. 10th anniversary of iPS cells: the challenges that lie ahead.

    PubMed

    Aoi, Takashi

    2016-09-01

    In 2006, induced pluripotent stem (iPS) cells were generated by Yamanaka and Takahashi for the first time from a mouse fibroblast culture by introducing four factors. In the 10 years since then, this breakthrough discovery has been making waves in the fields of biology and medical science. For example, various technologies for generating iPS cells have been developed, and we have cultivated a better understanding of the mechanisms involved in reprogramming. In addition, many researchers have explored the applications of iPS cells, such as drug discovery, the study of disease mechanisms and regenerative medicine, and the development of advanced technologies for the differentiation and qualification of the cells. Furthermore, the concept of iPS cell generation has inspired a number of studies that do not use iPS cells. We herein review and discuss the past, present and future of iPS cells and their related issues.

  4. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity

    PubMed Central

    Lev, Sophie; Li, Cecilia; Desmarini, Desmarini; Saiardi, Adolfo; Fewings, Nicole L.; Schibeci, Stephen D.; Sharma, Raghwa; Sorrell, Tania C.

    2015-01-01

    ABSTRACT Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. PMID:26037119

  5. CtIP-mediated resection is essential for viability and can operate independently of BRCA1.

    PubMed

    Polato, Federica; Callen, Elsa; Wong, Nancy; Faryabi, Robert; Bunting, Samuel; Chen, Hua-Tang; Kozak, Marina; Kruhlak, Michael J; Reczek, Colleen R; Lee, Wen-Hwa; Ludwig, Thomas; Baer, Richard; Feigenbaum, Lionel; Jackson, Stephen; Nussenzweig, André

    2014-06-01

    Homologous recombination (HR) is initiated by DNA end resection, a process in which stretches of single-strand DNA (ssDNA) are generated and used for homology search. Factors implicated in resection include nucleases MRE11, EXO1, and DNA2, which process DNA ends into 3' ssDNA overhangs; helicases such as BLM, which unwind DNA; and other proteins such as BRCA1 and CtIP whose functions remain unclear. CDK-mediated phosphorylation of CtIP on T847 is required to promote resection, whereas CDK-dependent phosphorylation of CtIP-S327 is required for interaction with BRCA1. Here, we provide evidence that CtIP functions independently of BRCA1 in promoting DSB end resection. First, using mouse models expressing S327A or T847A mutant CtIP as a sole species, and B cells deficient in CtIP, we show that loss of the CtIP-BRCA1 interaction does not detectably affect resection, maintenance of genomic stability or viability, whereas T847 is essential for these functions. Second, although loss of 53BP1 rescues the embryonic lethality and HR defects in BRCA1-deficient mice, it does not restore viability or genome integrity in CtIP(-/-) mice. Third, the increased resection afforded by loss of 53BP1 and the rescue of BRCA1-deficiency depend on CtIP but not EXO1. Finally, the sensitivity of BRCA1-deficient cells to poly ADP ribose polymerase (PARP) inhibition is partially rescued by the phospho-mimicking mutant CtIP (CtIP-T847E). Thus, in contrast to BRCA1, CtIP has indispensable roles in promoting resection and embryonic development.

  6. Impact of VoIP and QoS on Open and Distance Learning

    ERIC Educational Resources Information Center

    Saxena, P. C.; Jasola, Sanjay; Sharma, Ramesh C.

    2006-01-01

    Voice over Internet Protocol (VoIP) is becoming a reality in many organizations. The potential for mobility in voice over wi-fi networks will derive demand for the technology. Wireless VoIP is poised to rival VoIP as an alternative telephony tool. Internet has been used to transport data in the form of packet. In the past, Internet did not support…

  7. Research on an IP disaster recovery storage system

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  8. Spacewire router IP-core with priority adaptive routing

    NASA Astrophysics Data System (ADS)

    Shakhmatov, A. V.; Chekmarev, S. A.; Vergasov, M. Y.; Khanov, V. Kh

    2015-10-01

    Design of modern spacecraft focuses on using network principles of interaction on-board equipment, in particular in network SpaceWire. Routers are an integral part of most SpaceWire networks. The paper presents an adaptive routing algorithm with a prioritization, allowing more flexibility to manage the routing process. This algorithm is designed to transmit SpaceWire packets over a redundant network. Also a method is proposed for rapid restoration of working capacity after power by saving the routing table and the router configuration in an external non-volatile memory. The proposed solutions used to create IP-core router, and then tested in the FPGA device. The results illustrate the realizability and rationality of the proposed solutions.

  9. IPS observations of heliospheric density structures associated with active regions

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.

    1996-01-01

    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  10. ChIP-seq Identification of Weakly Conserved Heart Enhancers

    SciTech Connect

    Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2010-07-01

    Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type.

  11. Localization and socialization: Experimental insights into the functional architecture of IP3 receptors

    NASA Astrophysics Data System (ADS)

    Diambra, Luis; Marchant, Jonathan S.

    2009-09-01

    Inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals display great spatiotemporal malleability. This malleability depends on diversity in both the cellular organization and in situ functionality of IP3 receptors (IP3Rs) that regulate Ca2+ release from the endoplasmic reticulum (ER). Recent experimental data imply that these considerations are not independent, such that—as with other ion channels—the local organization of IP3Rs impacts their functionality, and reciprocally IP3R activity impacts their organization within native ER membranes. Here, we (i) review experimental data that lead to our understanding of the "functional architecture" of IP3Rs within the ER, (ii) propose an updated terminology to span the organizational hierarchy of IP3Rs observed in intact cells, and (iii) speculate on the physiological significance of IP3R socialization in Ca2+ dynamics, and consequently the emerging need for modeling studies to move beyond gridded, planar, and static simulations of IP3R clustering even over short experimental timescales.

  12. Mapping Protein-DNA Interactions Using ChIP-exo and Illumina-Based Sequencing.

    PubMed

    Barfeld, Stefan J; Mills, Ian G

    2016-01-01

    Chromatin immunoprecipitation (ChIP) provides a means of enriching DNA associated with transcription factors, histone modifications, and indeed any other proteins for which suitably characterized antibodies are available. Over the years, sequence detection has progressed from quantitative real-time PCR and Southern blotting to microarrays (ChIP-chip) and now high-throughput sequencing (ChIP-seq). This progression has vastly increased the sequence coverage and data volumes generated. This in turn has enabled informaticians to predict the identity of multi-protein complexes on DNA based on the overrepresentation of sequence motifs in DNA enriched by ChIP with a single antibody against a single protein. In the course of the development of high-throughput sequencing, little has changed in the ChIP methodology until recently. In the last three years, a number of modifications have been made to the ChIP protocol with the goal of enhancing the sensitivity of the method and further reducing the levels of nonspecific background sequences in ChIPped samples. In this chapter, we provide a brief commentary on these methodological changes and describe a detailed ChIP-exo method able to generate narrower peaks and greater peak coverage from ChIPped material.

  13. QoS-guaranteed burst transmission for VoIP service over optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Tachibana, Takuji; Kasahara, Shoji

    2007-08-01

    We propose a burst transmission method that guarantees the voice over Internet protocol (VoIP) service. The proposed method consists of three techniques: round-robin burst assembly with slotted scheduling, priority control with void filling, and hop-based preemption. Each technique is utilized so that the burst loss probability and the burst transmission delay satisfy VoIP quality of service (QoS). We evaluate by simulation the performance of the proposed method in NSFNET with 14 nodes. Numerical examples show that our proposed method is effective for guaranteeing the VoIP QoS while accommodating a large number of VoIP users.

  14. Comparison of H.323 and SIP for IP telephony signaling

    NASA Astrophysics Data System (ADS)

    Dalgic, Ismail; Fang, Hanlin

    1999-11-01

    Two standards currently compete for the dominance of IP telephony signaling: the H.323 protocol suite by ITU-T, and the Session Initiation Protocol (SIP) by IETF. Both of these signaling protocols provide mechanisms for call establishment and teardown, call control and supplementary services, and capability exchange. We investigate and compare these two protocols in terms of Functionality, Quality of Service (QoS), Scalability, Flexibility, Interoperability, and Ease of Implementation. For fairness of comparison, we consider similar scenarios for both protocols. In particular, we focus on scenarios that involve a gatekeeper for H.323, and a Proxy/Redirect server for SIP. The reason is that medium-to-large IP Telephony systems are not manageable without a gatekeeper or proxy server. We consider all three versions of H.323. In terms of functionality and services that can be supported, H.323 version 2 and SIP are very similar. However, supplementary services in H.323 are more rigorously defined, and therefore fewer interoperability issues are expected among its implementations. Furthermore, H.323 has taken more steps to ensure compatibility among its different versions, and to interoperate with PSTN. The two protocols are comparable in their QoS support [similar call setup delays, no support for resource reservation or class of service (CoS) setting], but H.323 version 3 will allow signaling of the requested CoS. SIP's primary advantages are (1) flexibility to add new features, and (2) relative ease of implementation and debugging. Finally, we note that H.323 and SIP are improving themselves by learning from each other, and the differences between them are diminishing with each new version.

  15. Identifying differential transcription factor binding in ChIP-seq

    PubMed Central

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R.; Siegmund, Kimberly D.

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement. PMID:25972895

  16. Depth profile characterization with noncollinear beam mixing

    SciTech Connect

    Freed, Shaun L. E-mail: jeong.na@wyle.com; Na, Jeong K. E-mail: jeong.na@wyle.com

    2015-03-31

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  17. Free Vibration of Curved Layered Composite Beams

    NASA Astrophysics Data System (ADS)

    Yavuz, Mustafa; Ergzgüven, M. Ertaç

    In practice, fibrous and layered composite beams have periodically and locally curved layers because of the design considerations and manufacturing processes. In this study, the effect of these curvatures and composite material properties to the natural frequencies of the beams is investigated. The periodically curved layered composite material of the considered beam is modelled with the use of the continuum theory proposed by Akbarov and Guz. The free vibration problems are solved by employing the finite element method. Obtained natural frequencies of the beams are presented for the different parameters of the curvature, modulus of elasticity and support condition of the beams. For the case that the ratio of the modulus of elasticity of the layers equals to one and the parameter of the curvature equals to zero, the results converge to natural frequencies of a classical Euler-Bernoulli beam. Results are in good agreement with the literature.

  18. External Beam Therapy (EBT)

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  19. Golden beam data for proton pencil-beam scanning.

    PubMed

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-03-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  20. Golden beam data for proton pencil-beam scanning

    NASA Astrophysics Data System (ADS)

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B.; Kooy, Hanne M.

    2012-03-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a ‘Golden’ beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm2 Gp-1, where Gp equals 109 (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  1. Dynamic chromatin remodelling of ciliate macronuclear DNA as determined by an optimized chromatin immunoprecipitation (ChIP) method for Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Simon, Martin

    2013-03-01

    We report the detailed evaluation of crucial parameters for chromatin immunoprecipitation (ChIP) of macronuclear DNA in the unicellular eukaryote Paramecium tetraurelia. Optimized parameters include crosslinking conditions, chromatin sonication and antibody titration thus providing a detailed protocol for successful ChIP in P. tetraurelia. As this ciliate is bacterivorous and RNAi by feeding represents a powerful tool for analysis of gene function, we moreover determined the effects of ingested nucleic acids by food bacteria. Feasibility of our protocol is demonstrated by characterisation of chromatin remodelling at promoters of cytosolic HSP70 isoforms during transcriptional activation under heat shock conditions by analyzing RNA abundance, nucleosome occupancy and levels of H3 lysine 9 acetylation.

  2. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  3. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Miao, Zhuang; He, Chao; Pang, Fufei; Li, Yingchun; Wang, Tingyun

    2016-03-01

    We propose the generation of novel composite vortex beams by coaxial superposition of Laguerre-Gaussian (LG) beams with common waist position and waist parameter. Computer-generated holography by conjugate-symmetric extension is applied to produce the holograms of several composite vortex beams. Utilizing the holograms, fantastic light modes including optical ring lattice, double dark-ring and double bright-ring composite vortex beams etc. are numerically reconstructed. The generated composite vortex beams show diffraction broadening with some of them showing dynamic rotation around beam centers while propagating. Optical experiments based on a computer-controlled spatial light modulator (SLM) verify the numerical results. These novel composite vortex beams possess more complicated distribution and more controllable parameters for their potential application in comparison to conventional optical ring lattice.

  4. Parameter identification in continuum models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.

    1983-01-01

    Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented. Previously announced in STAR as N83-28934

  5. Parameter identification in continuum models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.

    1983-01-01

    Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented.

  6. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    DOEpatents

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  7. CEBAF beam loss accounting

    SciTech Connect

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  8. Impact of the codec and various QoS methods on the final quality of the transferred voice in an IP network

    NASA Astrophysics Data System (ADS)

    Slavata, Oldřich; Holub, Jan

    2015-02-01

    This paper deals with an analysis of the relation between the codec that is used, the QoS method, and the final voice transmission quality. The Cisco 2811 router is used for adjusting QoS. VoIP client Linphone is used for adjusting the codec. The criterion for transmission quality is the MOS parameter investigated with the ITU-T P.862 PESQ and P.863 POLQA algorithms.

  9. IBEX - annular beam propagation experiment

    SciTech Connect

    Mazarakis, M G; Miller, R B; Shope, S L; Poukey, J W; Ramirez, J J; Ekdahl, C A; Adler, R J

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations.

  10. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    PubMed

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling. PMID:25721469

  11. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    PubMed

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling.

  12. The NSNS High Energy Beam Transport Line

    NASA Astrophysics Data System (ADS)

    Raparia, D.; Alessi, J.; Lee, Y. Y.; Ruggiero, A. G.; Weng, W. T.

    1997-05-01

    In the NSNS design, a 160 meter long transport line connects the 1 GeV linac to an accumulator ring and provides the desired foot-print. The linac beam has a current of 56 mA and pulse length of about 1 ms. This line consists of forteen 90^circ FODO cells, and accommodates a 60^circ achromatic bend, an energy compressor, part of the injection system, and enough diagnostic devices to measure the beam quality before injection. To reduce the uncontrolled beam losses this line has four beam halo scrapers and very tight tolerances of both transverse and longitudinal beam dynamics under space charge conditions. The design of this line will be presented together with input beam parameters and acceptance criteria of the beam at the accumulator.

  13. Space Charge Waves in Mismatched Beams

    SciTech Connect

    Poole, B R; Blackfield, D T; Chen, Y; Harris, J R; O'Shea, P G

    2009-04-17

    Mismatch oscillations resulting from the propagation of space charge waves in intense beams may lead to halo generation, beam loss, and modification of longitudinal beam properties. These oscillations have amplitudes and frequencies different from that of the main beam and are particularly important in machines such as the University of Maryland Electron Ring (UMER), in which the beam dynamics scales to parameters associated with heavy ion fusion drivers. To study these effects, we use the particle in cell code LSP [1] to simulate space charge wave dynamics in an intense electron beam propagating in a smooth focusing channel with 2-D cylindrical symmetry. We examine the evolution of linear and nonlinear density perturbations for both matched and mismatched beams. Comparisons between LSP simulations and numerical models are presented.

  14. Asymmetric Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  15. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D. H.; Seidel, M.; Ng, C. K.; McCormick, D.; Bane, K. L. F.

    1999-07-12

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  16. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.

    1999-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations. {copyright} {ital 1999 American Institute of Physics.}

  17. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  18. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  19. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  20. Experience at the Los Alamos Meson Physics Facility with the use of alloy Inconel 718 as an enclosure for a beam degrader and as a proton beam entry window

    NASA Astrophysics Data System (ADS)

    Sommer, W. F.; Ferguson, P. D.; Brown, R. D.; Cedillo, C. M.; Zimmerman, E.

    Operation of the Los Alamos Meson Physics Facility (LAMPF) began in 1972 and continues at present. An injector delivers protons to a 0.8 km long line ar accelerator which produces a particle energy of 800 MeV; the protons are then transported to a variety of experimental areas. The proton beam is transported in a vacuum tube, controlled and bent by electromagnets. The highest intensity beam, at a maximum level of 1 mA, is delivered to the experimental area designated as Area A. At the end of the experimental area, the beam is transported through an interface between beamline vacuum and one atmosphere air pressure. This interface is made of metal and is generally referred to as a beam entry window. At LAMPF, after the beam has exited the vacuum tube, it becomes incident on a number of experiments or 'targets.' These include capsules for radiation damage studies, a beam 'degrader' for the long-term neutrino experiment, and as many nine targets in the Isotope Production (IP) stringer system used to produce medically significant isotopes. Following the IP system is a beam stop used for the purpose its name implies. The beam stop also contains a beam entry window, whose purpose is to separate the 250 psig water cooling environment from 1 atmosphere of air. The beam entry window, the beam degrader, and the beam stop window are made of alloy Inconel 718, have endured a lengthy irradiation service time at LAMPF, and are the subject of this report.

  1. Tau physics with polarized beams

    SciTech Connect

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  2. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The dynamic equations and the mathematical model of the continuous-data IPS control system are developed. The IPS model considered included one flexible body mode and was hardmounted to the Orbiter/Pallet. The model contains equations describing a torque feed-forward loop (using accelerometers as inputs) which will aid in reducing the pointing errors caused by Orbiter disturbances.

  3. 78 FR 54201 - Misuse of Internet Protocol (IP) Captioned Telephone Service; Telecommunications Relay Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... action, in the IP CTS Interim Order, published at 78 FR 8032, February 5, 2013, to terminate, on an... (CTS). See 2007 TRS Rate Methodology Order, published at 73 FR 3197, January 17, 2008. At the time the... IP Relay in the VRS Structural Reform Order published at 78 FR 40407, July 5, 2013? Should...

  4. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    NASA Astrophysics Data System (ADS)

    Zhu, Xin-Ying; Zhang, Xi-Zhen; Zhang, Hong-Bo; Kong, De-Qing; Qu, Hui-Peng

    2012-07-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time.

  5. ERP44 inhibits human lung cancer cell migration mainly via IP3R2.

    PubMed

    Huang, Xue; Jin, Meng; Chen, Ying-Xiao; Wang, Jun; Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-06-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.

  6. Validation of the Children's Interview for Psychiatric Syndromes (ChIPS) with Psychiatrically Hospitalized Adolescents

    ERIC Educational Resources Information Center

    Swenson, Lance P.; Esposito-Smythers, Christianne; Hunt, Jeffrey I.; Hollander, Beth L. G.; Dyl, Jennifer; Rizzo, Christie J.; Steinley, Douglas L.; Spirito, Anthony

    2007-01-01

    A study was conducted to examine the concurrent validity of the Children's Interview for Psychiatric Syndromes (ChIPS) for adolescent inpatients aged 12 to 18. The results reveal moderate agreement between ChIPS diagnoses and Schedule for Affective Disorder sand Schizophrenia for School-Age Children-Present and Lifetime version diagnoses.

  7. ERP44 inhibits human lung cancer cell migration mainly via IP3R2

    PubMed Central

    Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-01-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway. PMID:27347718

  8. Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment

    PubMed Central

    Chen, Shih-Kuo; Chew, Kylie S.; McNeill, David S.; Keeley, Patrick W.; Ecker, Jennifer L.; Mao, Buqing Q.; Pahlberg, Johan; Kim, Bright; Lee, Sammy C. S.; Fox, Michael; Guido, William; Wong, Kwoon Y.; Sampath, Alapakkam P.; Reese, Benjamin E.; Kuruvilla, Rejji; Hattar, Samer

    2012-01-01

    SUMMARY The retina consists of ordered arrays of individual types of neurons for processing vision. Here we show that such order is necessary for intrinsically photosensitive retinal ganglion cells (ipRGCs) to function as irradiance detectors. We found that during development, ipRGCs undergo proximity-dependent Bax-mediated apoptosis. Bax mutant mice exhibit disrupted ipRGC spacing and dendritic stratification with an increase in abnormally localized synapses. ipRGCs are the sole conduit for light input to circadian photoentrainment, and either their melanopsin-based photosensitivity or ability to relay rod-cone input is sufficient for circadian photoentrainment. Remarkably, the disrupted ipRGC spacing does not affect melanopsin-based circadian photoentrainment, but severely impairs rod/cone-driven photoentrainment. We demonstrate reduced rod-cone driven cFos activation and electrophysiological responses in ipRGCs, suggesting that impaired synaptic input to ipRGCs underlies the photoentrainment deficits. Thus, for irradiance detection, developmental apoptosis is necessary for the spacing and connectivity of ipRGCs that underlie their functioning within a neural network. PMID:23395376

  9. 47 CFR 64.606 - VRS and IP Relay provider and TRS program certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Telecommunications Relay Services and Related Customer Premises Equipment for Persons With Disabilities § 64.606 VRS and IP Relay... provide VRS or IP Relay services, independent from any certified state TRS program or any TRS...

  10. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress.

    PubMed

    Ceppi, Margarita Georgina; Oukarroum, Abdallah; Çiçek, Nuran; Strasser, Reto J; Schansker, Gert

    2012-03-01

    The hypothesis that changes in the IP amplitude of the fluorescence transient OJIP reflect changes in leaf photosystem I (PSI) content was tested using mineral-deficient sugar beet plants. Young sugar beet plants (Beta vulgaris) were grown hydroponically on nutrient solutions containing either 1 mM or no Mg(2+) and 2.1 µM to 1.88 mM SO(4)(2-) for 4 weeks. During this period two leaf pairs were followed: the already developed second leaf pair and the third leaf pair that was budding at the start of the treatment. The IP amplitude [ΔF(IP) (fluorescence amplitude of the I-to-P-rise) and its relative contribution to the fluorescence rise: ΔV(IP) (amplitude of the relative variable fluorescence of the I-to-P-rise = relative contribution of the I-to-P-rise to the OJIP-rise)] and the amplitude of the transmission change at 820 nm (difference between all plastocyanin and the primary electron donor of photosystems I oxidized and reduced, respectively) relative to the total transmission signal (ΔI(max) /I(tot)) were determined as a function of the treatment time. Correlating the transmission and the two fluorescence parameters yielded approximately linear relationships in both cases. For the least severely affected leaves the parameter ΔV(IP) correlated considerably better with ΔI(max) /I(tot) than ΔF(IP) indicating that it is the ratio PSII:PSI that counts. To show that the relationship also holds for other plants and treatments, data from salt- and drought-stressed plants of barley, chickpea and pea are shown. The relationship between ΔV(IP) and PSI content was confirmed by western blot analysis using an antibody against psaD. The good correlations between ΔI(max) /I(tot) and ΔF(IP) and ΔV(IP) , respectively, suggest that changes in the IP amplitude can be used as semi-quantitative indicators for (relative) changes in the PSI content of the leaf.

  11. The extended TRIP supporting VoIP routing reservation with distributed QoS

    NASA Astrophysics Data System (ADS)

    Wang, Furong; Wu, Ye

    2004-04-01

    In this paper, an existing protocol, i.e. TRIP (Telephony Routing over IP) is developed to provide distributed QoS when making resource reservations for VoIP services such as H.323, SIP. Enhanced LSs (location servers) are deployed in ITADs (IP Telephony Administrative Domains) to take in charge of intra-domain routing policy because of small propagation price. It is an easy way to find an IP telephone route for intra-domain VoIP media association and simultaneously possess intra-domain load balancing features. For those routing reservations bridging domains, inter-domain routing policy is responsible for finding the shortest inter-domain route with enough resources. I propose the routing preference policy based on QoS price when the session traffic is shaped by a token bucket, related QoS messages, and message cooperation.

  12. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  13. Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization.

    PubMed

    Taslim, Cenny; Huang, Kun; Huang, Tim; Lin, Shili

    2012-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a high-throughput antibody-based method to study genome-wide protein-DNA binding interactions. ChIP-seq technology allows scientist to obtain more accurate data providing genome-wide coverage with less starting material and in shorter time compared to older ChIP-chip experiments. Herein we describe a step-by-step guideline in analyzing ChIP-seq data including data preprocessing, nonlinear normalization to enable comparison between different samples and experiments, statistical-based method to identify differential binding sites using mixture modeling and local false discovery rates (fdrs), and binding pattern characterization. In addition, we provide a sample analysis of ChIP-seq data using the steps provided in the guideline.

  14. iPS cell technology-based research for the treatment of diabetic nephropathy.

    PubMed

    Osafune, Kenji

    2012-09-01

    Regenerative medicine strategies using induced pluripotent stem (iPS) cells are among the candidate approaches to treat diabetic nephropathy caused by type 1 diabetes. Cell transplantation therapy and disease modeling with patient-derived iPS cells should be examined for diabetic renal disease. Considerable work already has been performed with regard to the generation of renal lineage cells from mouse embryonic stem cells, however, few reports have described research with human embryonic stem cells or iPS cells. Further elucidation of the mechanisms of kidney development and establishing the method for directed differentiation from human iPS cells into renal lineage cells will be required for the development of iPS cell technology-based treatment for diabetic nephropathy. PMID:23062989

  15. iPS cell technologies: significance and applications to CNS regeneration and disease

    PubMed Central

    2014-01-01

    In 2006, we demonstrated that mature somatic cells can be reprogrammed to a pluripotent state by gene transfer, generating induced pluripotent stem (iPS) cells. Since that time, there has been an enormous increase in interest regarding the application of iPS cell technologies to medical science, in particular for regenerative medicine and human disease modeling. In this review article, we outline the current status of applications of iPS technology to cell therapies (particularly for spinal cord injury), as well as neurological disease-specific iPS cell research (particularly for Parkinson’s disease and Alzheimer’s disease). Finally, future directions of iPS cell research are discussed including a) development of an accurate assay system for disease-associated phenotypes, b) demonstration of causative relationships between genotypes and phenotypes by genome editing, c) application to sporadic and common diseases, and d) application to preemptive medicine. PMID:24685317

  16. Beam geometry selection using sequential beam addition

    SciTech Connect

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  17. Characterization of E158 Beam

    SciTech Connect

    Farrell, Joe

    2003-09-05

    Stanford Linear Accelerator Center (SLAC) parity violation experiment E-158 uses a high intensity electron beam accelerated to either 45GeV or 48GeV in the SLAC Linac and requires a small energy spread, small off axis position motion, and low jitter. The purpose of our research was to better quantify the current values of energy, intensity, and position jitter as well as the relations between them and to further the understanding of the beam dynamics involved. Specifically, our method was to take data on a series of pulse lengths shorter than the experimental beam to gain information about the length dependence of the different beam parameters, effectively enabling us to create jitter, position, and energy profiles of the beam. Position was measured by beam position monitors (BPMs), intensity was measured by toroids, and energy was measured by a Synchrotron Light Monitor (SLM) as well as several energy BPMs. Data was collected using the SLAC Control Program (SCP) and analyzed using Matlab. Position jitter was found to, in general, increase linearly (10microns per 50ns) with pulse length. The peak to peak energy difference across each pulse is currently about 0.4% of the total energy, with the RMS energy jitter usually ranging from 0.013% to 0.10% for the different pulse lengths. Intensity jitter had no discernable correlation with pulse length. The slope of the linear relation between energy and intensity (beam loading relation) varied significantly with pulse length as well as with the method used to extract energy data. The position, intensity and energy profile data agree qualitatively with accepted theories and provide a more encompassing picture of the beam dynamics for E-158. The same is true, to a lesser extent, for the energy jitter and beam loading data, although some results here were unexpected.

  18. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  19. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins.

    PubMed

    Teytelman, Leonid; Thurtle, Deborah M; Rine, Jasper; van Oudenaarden, Alexander

    2013-11-12

    Chromatin immunoprecipitation (ChIP) is the gold-standard technique for localizing nuclear proteins in the genome. We used ChIP, in combination with deep sequencing (Seq), to study the genome-wide distribution of the Silent information regulator (Sir) complex in Saccharomyces cerevisiae. We analyzed ChIP-Seq peaks of the Sir2, Sir3, and Sir4 silencing proteins and discovered 238 unexpected euchromatic loci that exhibited enrichment of all three. Surprisingly, published ChIP-Seq datasets for the Ste12 transcription factor and the centromeric Cse4 protein indicated that these proteins were also enriched in the same euchromatic regions with the high Sir protein levels. The 238 loci, termed "hyper-ChIPable", were in highly expressed regions with strong polymerase II and polymerase III enrichment signals, and the correlation between transcription level and ChIP enrichment was not limited to these 238 loci but extended genome-wide. The apparent enrichment of various proteins at hyper-ChIPable loci was not a consequence of artifacts associated with deep sequencing methods, as confirmed by ChIP-quantitative PCR. The localization of unrelated proteins, including the entire silencing complex, to the most highly transcribed genes was highly suggestive of a technical issue with the immunoprecipitations. ChIP-Seq on chromatin immunoprecipitated with a nuclear-localized GFP reproduced the above enrichment in an expression-dependent manner: induction of the GAL genes resulted in an increased ChIP signal of the GFP protein at these loci, with presumably no biological relevance. Whereas ChIP is a broadly valuable technique, some published conclusions based upon ChIP procedures may merit reevaluation in light of these findings.

  20. Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role.

    PubMed

    Nassal, Drew M; Wan, Xiaoping; Liu, Haiyan; Deschênes, Isabelle

    2016-01-01

    Cardiac ion channels and their respective accessory subunits are critical in maintaining proper electrical activity of the heart. Studies have indicated that the K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for the channel Kv4, a component of the transient outward K+ channel (Ito), is a Ca2+ binding protein whose regulatory function does not appear restricted to Kv4 modulation. Indeed, the guinea pig myocardium does not express Kv4, yet we show that it still maintains expression of KChIP2, suggesting roles for KChIP2 beyond this canonical auxiliary interaction with Kv4 to modulate Ito. In this study, we capitalize on the guinea pig as a system for investigating how KChIP2 influences the cardiac action potential, independent of effects otherwise attributed to Ito, given the endogenous absence of the current in this species. By performing whole cell patch clamp recordings on isolated adult guinea pig myocytes, we observe that knock down of KChIP2 significantly prolongs the cardiac action potential. This prolongation was not attributed to compromised repolarizing currents, as IKr and IKs were unchanged, but was the result of enhanced L-type Ca2+ current due to an increase in Cav1.2 protein. In addition, cells with reduced KChIP2 also displayed lowered INa from reduced Nav1.5 protein. Historically, rodent models have been used to investigate the role of KChIP2, where dramatic changes to the primary repolarizing current Ito may mask more subtle effects of KChIP2. Evaluation in the guinea pig where Ito is absent, has unveiled additional functions for KChIP2 beyond its canonical regulation of Ito, which defines KChIP2 as a master regulator of cardiac repolarization and depolarization.