Adaptation technology between IP layer and optical layer in optical Internet
NASA Astrophysics Data System (ADS)
Ji, Yuefeng; Li, Hua; Sun, Yongmei
2001-10-01
Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.
Cross-layer restoration with software defined networking based on IP over optical transport networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young
2015-10-01
The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.
Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network
NASA Astrophysics Data System (ADS)
Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.
Effective distance adaptation traffic dispatching in software defined IP over optical network
NASA Astrophysics Data System (ADS)
Duan, Zhiwei; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa; Lin, Yi
2017-10-01
The rapid growth of IP traffic has contributed to the wide deployment of optical devices (ROADM/OXC, etc.). Meanwhile, with the emergence and application of high-performance network services such as ultra-high video transmission, people are increasingly becoming more and more particular about the quality of service (QoS) of network. However, the pass-band shape of WSSs which is utilized in the ROADM/OXC is not ideal, causing narrowing of spectrum. Spectral narrowing can lead to signal impairment. Therefore, guard-bands need to be inserted between adjacent paths. In order to minimize the bandwidth waste due to guard bands, we propose an effective distance-adaptation traffic dispatching algorithm in IP over optical network based on SDON architecture. We use virtualization technology to set up virtual resources direct links by extracting part of the resources on paths which meet certain specific constraints. We also assign different bandwidth to each IP request based on path length. There is no need for guard-bands between the adjacent paths on the virtual link, which can effectively reduce the number of guard-bands and save the spectrum.
Differentiated optical services: a quality of optical service model for WDM networks
NASA Astrophysics Data System (ADS)
Ndousse, Thomas D.; Golmie, Nada
1999-08-01
This paper addresses the issues of guaranteed and scalable end-to-end QoS in Metropolitan DWDM networks serving as transit networks for IP access networks. DWDM offering few wavelengths have in the past been deployed in backbone networks to upgrade point-to-point transmission where sharing is based on coarse granularity. This type of DWDM backbone networks, offering few lightpaths, provides no support for QoS services traversing the network. As DWDM networks with larger numbers of wavelengths penetrate the data-centric Metro environment, specific IP service requirements such as priority restoration, scalability, dynamic provisioning of capacity and routes, and support for coarse-grain QoS capabilities will have to be addressed in the optical domain in order to support end-to-end Service- Level Agreements. In this paper, we focus on the support of QoS in the optical domain in order to achieve end-to-end QoS over a DWDM network. We propose a QoS service model in the optical domain called Differentiated Optical Services (DOS). Service classification in DOS is based on a set of optical parameters that captures the quality and reliability of the optical lightpath.
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Optical switching using IP protocol
NASA Astrophysics Data System (ADS)
Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan
2017-08-01
To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.
Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang
2013-08-01
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.
Research on NGN network control technology
NASA Astrophysics Data System (ADS)
Li, WenYao; Zhou, Fang; Wu, JianXue; Li, ZhiGuang
2004-04-01
Nowadays NGN (Next Generation Network) is the hotspot for discussion and research in IT section. The NGN core technology is the network control technology. The key goal of NGN is to realize the network convergence and evolution. Referring to overlay network model core on Softswitch technology, circuit switch network and IP network convergence realized. Referring to the optical transmission network core on ASTN/ASON, service layer (i.e. IP layer) and optical transmission convergence realized. Together with the distributing feature of NGN network control technology, on NGN platform, overview of combining Softswitch and ASTN/ASON control technology, the solution whether IP should be the NGN core carrier platform attracts general attention, and this is also a QoS problem on NGN end to end. This solution produces the significant practical meaning on equipment development, network deployment, network design and optimization, especially on realizing present network smooth evolving to the NGN. This is why this paper puts forward the research topic on the NGN network control technology. This paper introduces basics on NGN network control technology, then proposes NGN network control reference model, at the same time describes a realizable network structure of NGN. Based on above, from the view of function realization, NGN network control technology is discussed and its work mechanism is analyzed.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
NASA Astrophysics Data System (ADS)
Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong
2008-11-01
The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.
Protocol independent transmission method in software defined optical network
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng
2016-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.
Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures
NASA Astrophysics Data System (ADS)
Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon
2013-09-01
We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.
Architectural and engineering issues for building an optical Internet
NASA Astrophysics Data System (ADS)
St. Arnaud, Bill
1998-10-01
Recent developments in high density Wave Division Multiplexing fiber systems allows for the deployment of a dedicated optical Internet network for large volume backbone pipes that does not require an underlying multi-service SONET/SDH and ATM transport protocol. Some intrinsic characteristics of Internet traffic such as its self similar nature, server bound congestion, routing and data asymmetry allow for highly optimized traffic engineered networks using individual wavelengths. By transmitting GigaBit Ethernet or SONET/SDH frames natively over WDM wavelengths that directly interconnect high performance routers the original concept of the Internet as an intrinsically survivable datagram network is possible. Traffic engineering, restoral, protection and bandwidth management of the network must now be carried out at the IP layer and so new routing or switching protocols such as MPLS that allow for uni- directional paths with fast restoral and protection at the IP layer become essential for a reliable production network. The deployment of high density WDM municipal and campus networks also gives carriers and ISPs the flexibility to offer customers as integrated and seamless set of optical Internet services.
Switching performance of OBS network model under prefetched real traffic
NASA Astrophysics Data System (ADS)
Huang, Zhenhua; Xu, Du; Lei, Wen
2005-11-01
Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.
Performance analysis of signaling protocols on OBS switches
NASA Astrophysics Data System (ADS)
Kirci, Pinar; Zaim, A. Halim
2005-10-01
In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.
Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe
NASA Astrophysics Data System (ADS)
Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi
This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Wu, Jialin; Lin, Yi; Han, Jianrui; Lee, Young
2015-05-18
Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.
NASA Astrophysics Data System (ADS)
Ji, Wei
2013-07-01
Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.
NASA Astrophysics Data System (ADS)
Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.
2005-09-01
Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Optical Ethernet." Additional information can be found on the JON website: http://www.osa-jon.org/submission/
SINET3: advanced optical and IP hybrid network
NASA Astrophysics Data System (ADS)
Urushidani, Shigeo
2007-11-01
This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.
Planning and deployment of DWDM systems: a reality
NASA Astrophysics Data System (ADS)
Mishra, Data S.
2001-10-01
The new definition and implementation of new communication network architectures and elements in the present data-centric world are due to dramatic change in technology, explosive growth in bandwidth requirement and de-regulated, privatized and competitive telecommunication market. Network Convergence, Disruptive Technology and Convulsive Market are the basic forces who are pushing the future network towards Packet based Optical Core Network and varieties of Access Network along with integrated NMS. Well-known Moore's law governs the result of progress in silicon processing and accordingly the present capacity of network must be multiplied by 100 times in 10 years. To build a global network which is 100 times powerful than present one by scaling up today's technology can not be a practical solution due to requirement of 100 fold increase in cost, power and size. Today's two network (Low delay, fixed bandwidth, Poisson voice traffic based, circuit-switched PSTN/PLMN and variable delay, variable bandwidth, no-guaranteed QoS based packet switched internet) are converging towards two-layer network (IP and ATM in lower layer; DWDM in network layer). SDH Network which was well drafted before explosive data traffic and was best suitable for Interoperability, Survivability, Reliability and Manageability will be taken over by DWDM Network by 2005 due to 90% of data traffic. This paper describes the way to build the Communication Network (either by migration or by overlay) with an overview of the equipment and technologies required to design the DWDM Network. Service Providers are facing tough challenges for selection of emerging technologies and advances in network standard for bandwidth hungry, valued customers. The reduction of cost of services due to increased competition , explosive growth of internet and 10GbE Ethernet (which is being considered as an end-to-end network solution) have given surprise to many network architects and designers. To provide transparency to data-rate and data-format the gap between electrical layer and Optical backbone layer has to be filled. By partitioning the Optical Bandwidth of Optical Fibre Cable into the wavelengths (32 to 120) Wavelength Division Multiplexing can transport data rate from 10MB/s to 10GB/s on each wavelength. In this paper we will analyze the difficult strategies of suppliers and obstacles in the way of service providers to make DWDM a reality in the field either as Upgrade or Overlay or New Network. The difficult constraint of protection scheme with respect to compatibility with existing network and network under development has to sorted out along with present standard of Optical Fibre to carry DWDM signal in cost effective way to Access , Edge and Metro part of our network. The future of IP under DWDM is going to be key element for Network Planners in future. Fundamental limitation of bit manipulation in Photonic domain will have implication on the network design, cost and migration to all optical network because Photons are computer un-friendly and not mature enough to give memory and logic devices. In the environment of heterogeneous traffic the DWDM based All Optical Network should behave as per expectation of users whose primary traffic will be multi-media IP type. The quality of service (QoS), Virtual Path Network (VPN) over DWDM, OXC and intelligence at the edge will play a major role in future deployment of DWDM in our network . The development of improved fiber characteristics, EDFAs and Photonic component has led the carriers to go for Dense WDM Network.
Optical burst switching for the next generation Optical Internet
NASA Astrophysics Data System (ADS)
Yoo, Myungsik
2000-11-01
In recent years, Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks for the next generation Internet (or the so-called Optical Internet) have received enormous attention. There are two main drivers for an Optical Internet. One is the explosion of Internet traffic, which seems to keep growing exponentially. The other driver is the rapid advance in the WDM optical networking technology. In this study, key issues in the optical (WDM) layer will be investigated. As a novel switching paradigm for Optical Internet, Optical Burst Switching (OBS) is discussed. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS can combine the best of optical circuit-switching and packet/cell switching. The general concept of JET-based OBS protocol is described, including offset time and delayed reservation. In the next generation Optical Internet, one must address how to support Quality of Service (QoS) at the WDM layer since current IP provides only best effort services. The offset-time- based QoS scheme is proposed as a way of supporting QoS at the WDM layer. Unlike existing QoS schemes, offset- time-based QoS scheme does not mandate the use of buffer to differentiate services. For the bufferless WDM switch, the performance of offset- time-based QoS scheme is evaluated in term of blocking probability. In addition, the extra offset time required for class isolation is quantified and the theoretical bounds on blocking probability are analyzed. The offset-time-based scheme is applied to WDM switch with limited fiber delay line (FDL) buffer. We evaluate the effect of having a FDL buffer on the QoS performance of the offset-time-based scheme in terms of the loss probability and queuing delay of bursts. Finally, in order to dimension the network resources in Optical Internet backbone networks, the performance of the offset-time-based QoS scheme is evaluated for the multi-hop case. In particular, we consider very high performance Backbone Network Service (vBNS) backbone network. Various policies such as drop, retransmission, deflection routing and buffering are considered for performance evaluation. The performance results obtained under these policies are compared to decide the most efficient policy for the WDM backbone network.
NASA Astrophysics Data System (ADS)
Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu
2003-08-01
With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.
Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.
2013-12-01
Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.
Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo
2016-07-25
Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.
Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules
2015-01-01
Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca2+) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca2+ concentration within the injected cell initiating the propagation of a Ca2+ wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca2+ wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research. PMID:24877558
Network architecture in a converged optical + IP network
NASA Astrophysics Data System (ADS)
Wakim, Walid; Zottmann, Harald
2012-01-01
As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.
Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks
NASA Astrophysics Data System (ADS)
Vadrevu, Sree Krishna Chaitanya
Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will preempt IP services routed over them, and thus it is important to ensure IP topology survivability to successfully re-route preempted IP services. Integer-linear-program (ILP) and heuristic solutions have been developed and network cost reduction up to 60% has been observed. In ESnet, we study loaning packet links to support circuit services. Mixed-line-rate (MLR) networks supporting 10/40/100 Gbps on the same fiber are becoming increasingly popular. Services that accept degradation in bandwidth, latency, jitter, etc. under failure scenarios for lower cost are known as degraded services. We study degradation in bandwidth for lower cost under failure scenarios, a concept called partial protection, in the context of MLR networks. We notice partial protection enables significant cost savings compared to full protection. To cope with traffic growth, network operators need to deploy equipment at periodic time intervals, and this is known as the multi-period planning and upgrade problem. We study three important multi-period planning approaches, namely incremental planning, all-period planning, and two-period planning with mixed line rates. Our approaches predict the network equipment that needs to be deployed optimally at which nodes and at which time periods in the network to meet QoS requirements.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-02-01
Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-03-01
Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
Optical multicast system for data center networks.
Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren
2015-08-24
We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-08-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-06-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-05-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-04-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
Traffic shaping and scheduling for OBS-based IP/WDM backbones
NASA Astrophysics Data System (ADS)
Elhaddad, Mahmoud S.; Melhem, Rami G.; Znati, Taieb; Basak, Debashis
2003-10-01
We introduce Proactive Reservation-based Switching (PRS) -- a switching architecture for IP/WDM networks based on Labeled Optical Burst Switching. PRS achieves packet delay and loss performance comparable to that of packet-switched networks, without requiring large buffering capacity, or burst scheduling across a large number of wavelengths at the core routers. PRS combines proactive channel reservation with periodic shaping of ingress-egress traffic aggregates to hide the offset latency and approximate the utilization/buffering characteristics of discrete-time queues with periodic arrival streams. A channel scheduling algorithm imposes constraints on burst departure times to ensure efficient utilization of wavelength channels and to maintain the distance between consecutive bursts through the network. Results obtained from simulation using TCP traffic over carefully designed topologies indicate that PRS consistently achieves channel utilization above 90% with modest buffering requirements.
SHD digital cinema distribution over a long distance network of Internet2
NASA Astrophysics Data System (ADS)
Yamaguchi, Takahiro; Shirai, Daisuke; Fujii, Tatsuya; Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu
2003-06-01
We have developed a prototype SHD (Super High Definition) digital cinema distribution system that can store, transmit and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a video server, a real-time decoder, and a D-ILA projector. Using a gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. With this system, digital cinema contents can be distributed over a wide-area optical gigabit IP network. However, when digital cinema contents are delivered over long distances by using a gigabit IP network and TCP, the round-trip time increases and network throughput either stops rising or diminishes. In a long-distance SHD digital cinema transmission experiment performed on the Internet2 network in October 2002, we adopted enlargement of the TCP window, multiple TCP connections, and shaping function to control the data transmission quantity. As a result, we succeeded in transmitting the SHD digital cinema content data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km.
Research and Simulation on Application of the Mobile IP Network
NASA Astrophysics Data System (ADS)
Yibing, Deng; Wei, Hu; Minghui, Li; Feng, Gao; Junyi, Shen
The paper analysed the mobile node, home agent, and foreign agent of mobile IP network firstly, some key technique, such as mobile IP network basical principle, protocol work principle, agent discovery, registration, and IP packet transmission, were discussed. Then a network simulation model was designed, validating the characteristic of mobile IP network, and some advantages, which were brought by mobile network, were testified. Finally, the conclusion is gained: mobile IP network could realize the expectation of consumer that they can communicate with others anywhere.
Tele-counseling and social-skill trainings using JGNII optical network and a mirror-interface system
NASA Astrophysics Data System (ADS)
Hashimoto, Sayuri; Hashimoto, Nobuyuki; Onozawa, Akira; Hosoya, Eiichi; Harada, Ikuo; Okunaka, Junzo
2007-09-01
"Tele-presence" communication using JGNII - an exclusive optical-fiber network system - was applied to social-skills training in the form of child-rearing support. This application focuses on internet counseling and social training skills that require interactive verbal and none-verbal communications. The motivation for this application is supporting local communities by constructing tele-presence education and entertainment systems using recently available, inexpensive IP networks. This latest application of tele-presence communication uses mirror-interface system which provides to users in remote locations a shared quasi-space where they can see themselves as if they were in the same room by overlapping video images from remote locations.
Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives
NASA Astrophysics Data System (ADS)
Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori
2005-10-01
R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.
Photonic network R and D activities in Japan
NASA Astrophysics Data System (ADS)
Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori
2005-11-01
R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.
SDN architecture for optical packet and circuit integrated networks
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Miyazawa, Takaya
2016-02-01
We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.
Research of future network with multi-layer IP address
NASA Astrophysics Data System (ADS)
Li, Guoling; Long, Zhaohua; Wei, Ziqiang
2018-04-01
The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.
Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults.
Charif, Majida; Nasca, Alessia; Thompson, Kyle; Gerber, Sylvie; Makowski, Christine; Mazaheri, Neda; Bris, Céline; Goudenège, David; Legati, Andrea; Maroofian, Reza; Shariati, Gholamreza; Lamantea, Eleonora; Hopton, Sila; Ardissone, Anna; Moroni, Isabella; Giannotta, Melania; Siegel, Corinna; Strom, Tim M; Prokisch, Holger; Vignal-Clermont, Catherine; Derrien, Sabine; Zanlonghi, Xavier; Kaplan, Josseline; Hamel, Christian P; Leruez, Stephanie; Procaccio, Vincent; Bonneau, Dominique; Reynier, Pascal; White, Frances E; Hardy, Steven A; Barbosa, Inês A; Simpson, Michael A; Vara, Roshni; Perdomo Trujillo, Yaumara; Galehdari, Hamind; Deshpande, Charu; Haack, Tobias B; Rozet, Jean-Michel; Taylor, Robert W; Ghezzi, Daniele; Amati-Bonneau, Patrizia; Lenaers, Guy
2018-01-01
Neurologic disorders with isolated symptoms or complex syndromes are relatively frequent among mitochondrial inherited diseases. Recessive RTN4IP1 gene mutations have been shown to cause isolated and syndromic optic neuropathies. To define the spectrum of clinical phenotypes associated with mutations in RTN4IP1 encoding a mitochondrial quinone oxidoreductase. This study involved 12 individuals from 11 families with severe central nervous system diseases and optic atrophy. Targeted and whole-exome sequencing were performed-at Hospital Angers (France), Institute of Neurology Milan (Italy), Imagine Institute Paris (France), Helmoltz Zentrum of Munich (Germany), and Beijing Genomics Institute (China)-to clarify the molecular diagnosis of patients. Each patient's neurologic, ophthalmologic, magnetic resonance imaging, and biochemical features were investigated. This study was conducted from May 1, 2014, to June 30, 2016. Recessive mutations in RTN4IP1 were identified. Clinical presentations ranged from isolated optic atrophy to severe encephalopathies. Of the 12 individuals in the study, 6 (50%) were male and 6 (50%) were female. They ranged in age from 5 months to 32 years. Of the 11 families, 6 (5 of whom were consanguineous) had a member or members who presented isolated optic atrophy with the already reported p.Arg103His or the novel p.Ile362Phe, p.Met43Ile, and p.Tyr51Cys amino acid changes. The 5 other families had a member or members who presented severe neurologic syndromes with a common core of symptoms, including optic atrophy, seizure, intellectual disability, growth retardation, and elevated lactate levels. Additional clinical features of those affected were deafness, abnormalities on magnetic resonance images of the brain, stridor, and abnormal electroencephalographic patterns, all of which eventually led to death before age 3 years. In these patients, novel and very rare homozygous and compound heterozygous mutations were identified that led to the absence of the protein and complex I disassembly as well as mild mitochondrial network fragmentation. A broad clinical spectrum of neurologic features, ranging from isolated optic atrophy to severe early-onset encephalopathies, is associated with RTN4IP1 biallelic mutations and should prompt RTN4IP1 screening in both syndromic neurologic presentations and nonsyndromic recessive optic neuropathies.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young
2015-11-30
Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.
Briefer assessment of social network drinking: A test of the Important People Instrument-5 (IP-5).
Hallgren, Kevin A; Barnett, Nancy P
2016-12-01
The Important People instrument (IP; Longabaugh et al., 2010) is one of the most commonly used measures of social network drinking. Although its reliability and validity are well-supported, the length of the instrument may limit its use in many settings. The present study evaluated whether a briefer, 5-person version of the IP (IP-5) adequately reproduces scores from the full IP. College freshmen (N = 1,053) reported their own past-month drinking, alcohol-related consequences, and information about drinking in their close social networks at baseline and 1 year later. From this we derived network members' drinking frequency, percentage of drinkers, and percentage of heavy drinkers, assessed for up to 10 (full IP) or 5 (IP-5) network members. We first modeled the expected concordance between full-IP scores and scores from simulated shorter IP instruments by sampling smaller subsets of network members from full IP data. Then, using quasi-experimental methods, we administered the full IP and IP-5 and compared the 2 instruments' score distributions and concurrent and year-lagged associations with participants' alcohol consumption and consequences. Most of the full-IP variance was reproduced from simulated shorter versions of the IP (ICCs ≥ 0.80). The full IP and IP-5 yielded similar score distributions, concurrent associations with drinking (r = 0.22 to 0.52), and year-lagged associations with drinking. The IP-5 retains most of the information about social network drinking from the full IP. The shorter instrument may be useful in clinical and research settings that require frequent measure administration, yielding greater temporal resolution for monitoring social network drinking. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Operational Space Weather Products at IPS
NASA Astrophysics Data System (ADS)
Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.
2008-12-01
IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.
Towards green high capacity optical networks
NASA Astrophysics Data System (ADS)
Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.
2011-09-01
The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.
Intranet and Internet metrological workstation with photonic sensors and transmission
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Dybko, Artur
1999-05-01
We describe in this paper a part of a telemetric network which consists of a workstation with photonic measurement and communication interfaces, structural fiber optic cabling (10/100BaseFX and CAN-FL), and photonic sensors with fiber optic interfaces. The station is equipped with direct photonic measurement interface and most common measuring standards converter (RS, GPIB) with fiber optic I/O CAN bus, O/E converters, LAN and modem ports. The station was connected to the Intranet (ipx/spx) and Internet (tcp/ip) with separate IP number and DNS, WINS names. Virtual measuring environment system program was written specially for such an Intranet and Internet station. The measurement system program communicated with the user via a Graphical User's Interface (GUI). The user has direct access to all functions of the measuring station system through appropriate layers of GUI: telemetric, transmission, visualization, processing, information, help and steering of the measuring system. We have carried out series of thorough simulation investigations and tests of the station using WWW subsystem of the Internet. We logged into the system through the LAN and via modem. The Internet metrological station works continuously under the address http://nms.ipe.pw.edu.pl/nms. The station and the system hear the short name NMS (from Network Measuring System).
Using OpenSSH to secure mobile LAN network traffic
NASA Astrophysics Data System (ADS)
Luu, Brian B.; Gopaul, Richard D.
2002-08-01
Mobile Internet Protocol (IP) Local Area Network (LAN) is a technique, developed by the U.S. Army Research Laboratory, which allows a LAN to be IP mobile when attaching to a foreign IP-based network and using this network as a means to retain connectivity to its home network. In this paper, we describe a technique that uses Open Secure Shell (OpenSSH) software to ensure secure, encrypted transmission of a mobile LAN's network traffic. Whenever a mobile LAN, implemented with Mobile IP LAN, moves to a foreign network, its gateway (router) obtains an IP address from the new network. IP tunnels, using IP encapsulation, are then established from the gateway through the foreign network to a home agent on its home network. These tunnels provide a virtual two-way connection to the home network for the mobile LAN as if the LAN were connected directly to its home network. Hence, when IP mobile, a mobile LAN's tunneled network traffic must traverse one or more foreign networks that may not be trusted. This traffic could be subject to eavesdropping, interception, modification, or redirection by malicious nodes in these foreign networks. To protect network traffic passing through the tunnels, OpenSSH is used as a means of encryption because it prevents surveillance, modification, and redirection of mobile LAN traffic passing across foreign networks. Since the software is found in the public domain, is available for most current operating systems, and is commonly used to provide secure network communications, OpenSSH is the software of choice.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-09-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/ Submission Deadline: 1 October 2005
GMPLS-based control plane for optical networks: early implementation experience
NASA Astrophysics Data System (ADS)
Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan
2002-07-01
Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2004-12-01
Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
Traffic Management for Satellite-ATM Networks
NASA Technical Reports Server (NTRS)
Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul
1998-01-01
Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.
40-Gbps optical backbone network deep packet inspection based on FPGA
NASA Astrophysics Data System (ADS)
Zuo, Yuan; Huang, Zhiping; Su, Shaojing
2014-11-01
In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.
NASA Technical Reports Server (NTRS)
Israel, David J.
2005-01-01
The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, S.J.Ben; Lauer, Gregory S.
Extreme-science drives the need for distributed exascale processing and communications that are carefully, yet flexibly, managed. Exponential growth of data for scientific simulations, experimental data, collaborative data analyses, remote visualization and GRID computing requirements of scientists in fields as diverse as high energy physics, climate change, genomics, fusion, synchrotron radiation, material science, medicine, and other scientific disciplines cannot be accommodated by simply applying existing transport protocols to faster pipes. Further, scientific challenges today demand diverse research teams, heightening the need for and increasing the complexity of collaboration. To address these issues within the network layer and physical layer, we havemore » performed a number of research activities surrounding effective allocation and management of elastic optical network (EON) resources, particularly focusing on FlexGrid transponders. FlexGrid transponders support the opportunity to build Layer-1 connections at a wide range of bandwidths and to reconfigure them rapidly. The new flexibility supports complex new ways of using the physical layer that must be carefully managed and hidden from the scientist end-users. FlexGrid networks utilize flexible (or elastic) spectral bandwidths for each data link without using fixed wavelength grids. The flexibility in spectrum allocation brings many appealing features to network operations. Current networks are designed for the worst case impairments in transmission performance and the assigned spectrum is over-provisioned. In contrast, the FlexGrid networks can operate with the highest spectral efficiency and minimum bandwidth for the given traffic demand while meeting the minimum quality of transmission (QoT) requirement. Two primary focuses of our research are: (1) resource and spectrum allocation (RSA) for IP traffic over EONs, and (2) RSA for cross-domain optical networks. Previous work concentrates primarily on large file transfers within a single domain. Adding support for IP traffic changes the nature of the RSA problem: instead of choosing to accept or deny each request for network support, IP traffic is inherently elastic and thus lends itself to a bandwidth maximization formulation. We developed a number of algorithms that could be easily deployed within existing and new FlexGrid networks, leading to networks that better support scientific collaboration. Cross-domain RSA research is essential to support large-scale FlexGrid networks, since configuration information is generally not shared or coordinated across domains. The results presented here are in their early stages. They are technically feasible and practical, but still require coordination among organizations and equipment owners and a higher-layer framework for managing network requests.« less
Analysis of Handoff Mechanisms in Mobile IP
NASA Astrophysics Data System (ADS)
Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar
2011-06-01
One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.
Design of real-time voice over internet protocol system under bandwidth network
NASA Astrophysics Data System (ADS)
Zhang, Li; Gong, Lina
2017-04-01
With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.
Distributed Dynamic Host Configuration Protocol (D2HCP)
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856
Distributed Dynamic Host Configuration Protocol (D2HCP).
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.
Achieving quality of service in IP networks
NASA Astrophysics Data System (ADS)
Hays, Tim
2001-07-01
The Internet Protocol (IP) has served global networks well, providing a standardized method to transmit data among many disparate systems. But IP is designed for simplicity, and only enables a `best effort' service that can be subject to delays and loss of data. For data networks, this is an acceptable trade-off. In the emerging world of convergence, driven by new applications such as video streaming and IP telephony, minimizing latency and packet loss as well as jitter can be critical. Simply increasing the size of the IP network `pipe' to meet those demands is not always sufficient. In this environment, vendors and standards bodies are endeavoring to create technologies and techniques to enable IP to improve the quality of service it can provide, while retaining the characteristics that has enabled it to become the dominant networking protocol.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-01-01
Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.
Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source—Linphone—in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation. PMID:25300280
Future optical communication networks beyond 160 Gbit/s based on OTDM
NASA Astrophysics Data System (ADS)
Prati, Giancarlo; Bogoni, Antonella; Poti, Luca
2005-01-01
The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.
How long would SDH/SONET be prolonged?
NASA Astrophysics Data System (ADS)
Tao, Zhiyong; Mao, Qian
2004-04-01
As we all know, the increasing speed of data traffic is exceeding gradually from voice in today"s communication network. The main reason is the explosive of Internet. The controversy with IP over ATM/SDH/Optical becomes hotter and hotter, Many people in the telecommunication field are doubt: HOW LONG WOULD SDH/SONET BE PROLONGED? WHAT KIND OF SDH EQUIPMENTS COULD BE USED IN THE NETWORK? With the analysis from several aspects: services in the network, new development with SDH technology, market in transport equipment, This paper is considered that the SDH with some new features would be predominant transport technology in the recent years.
New-generation security network with synergistic IP sensors
NASA Astrophysics Data System (ADS)
Peshko, Igor
2007-09-01
Global Dynamic Monitoring and Security Network (GDMSN) for real-time monitoring of (1) environmental and atmospheric conditions: chemical, biological, radiological and nuclear hazards, climate/man-induced catastrophe areas and terrorism threats; (2) water, soil, food chain quantifiers, and public health care; (3) large government/public/ industrial/ military areas is proposed. Each GDMSN branch contains stationary or mobile terminals (ground, sea, air, or space manned/unmanned vehicles) equipped with portable sensors. The sensory data are transferred via telephone, Internet, TV, security camera and other wire/wireless or optical communication lines. Each sensor is a self-registering, self-reporting, plug-and-play, portable unit that uses unified electrical and/or optical connectors and operates with IP communication protocol. The variant of the system based just on optical technologies cannot be disabled by artificial high-power radio- or gamma-pulses or sunbursts. Each sensor, being supplied with a battery and monitoring means, can be used as a separate portable unit. Military personnel, police officers, firefighters, miners, rescue teams, and nuclear power plant personnel may individually use these sensors. Terminals may be supplied with sensors essential for that specific location. A miniature "universal" optical gas sensor for specific applications in life support and monitoring systems was designed and tested. The sensor is based on the physics of absorption and/or luminescence spectroscopy. It can operate at high pressures and elevated temperatures, such as in professional and military diving equipment, submarines, underground shelters, mines, command stations, aircraft, space shuttles, etc. To enable this capability, the multiple light emitters, detectors and data processing electronics are located within a specially protected chamber.
Experimental GMPLS-Based Provisioning for Future All-Optical DPRing-Based MAN
NASA Astrophysics Data System (ADS)
Mu�oz, Ra�l; V�ctor Mart�nez Rivera, Ricardo; Sorribes, Jordi; Junyent Giralt, Gabriel
2005-10-01
Given the abundance and strategic importance of ring fiber plants in metropolitan area networks (MANs), and the accelerating growth of Internet traffic, it is crucial to extend the existing Internet protocol (IP)-based generalized multiprotocol label switching (GMPLS) framework to provision dynamic wavelength division multiplexing (WDM) optical rings. Nevertheless, the emerging GMPLS-based lightpath provisioning does not cover the intricacies of optical rings. No GMPLS standard exists for optical add-drop multiplexer (OADM) rings, relying instead upon proprietary static solution. The objective of this paper is to propose and evaluate novel GMPLS-based lightpath signaling and wavelength reservation schemes specifically designed for dedicated protection ring (DPRing)-based MANs. Performance evaluation has been carried out in a GMPLS-based testbed named ADRENALINE.
Reliable WDM multicast in optical burst-switched networks
NASA Astrophysics Data System (ADS)
Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun
2000-09-01
IN this paper,l we present a reliable WDM (Wavelength-Division Multiplexing) multicast protocol in optical burst-switched (OBS) networks. Since the burst dropping (loss) probability may be potentially high in a heavily loaded OBS backbone network, reliable multicast protocols that have developed for IP networks at the transport (or application) layer may incur heavy overheads such as a large number of duplicate retransmissions. In addition, it may take a longer time for an end host to detect and then recover from burst dropping (loss) occurred at the WDM layer. For efficiency reasons, we propose burst loss recovery within the OBS backbone (i.e., at the WDM link layer). The proposed protocol requires two additional functions to be performed by the WDM switch controller: subcasting and maintaining burst states, when the WDM switch has more than one downstream on the WDM multicast tree. We show that these additional functions are simple to implement and the overhead associated with them is manageable.
Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system
NASA Astrophysics Data System (ADS)
Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel
2000-04-01
Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.
Research on TCP/IP network communication based on Node.js
NASA Astrophysics Data System (ADS)
Huang, Jing; Cai, Lixiong
2018-04-01
In the face of big data, long connection and high synchronization, TCP/IP network communication will cause performance bottlenecks due to its blocking multi-threading service model. This paper presents a method of TCP/IP network communication protocol based on Node.js. On the basis of analyzing the characteristics of Node.js architecture and asynchronous non-blocking I/O model, the principle of its efficiency is discussed, and then compare and analyze the network communication model of TCP/IP protocol to expound the reasons why TCP/IP protocol stack is widely used in network communication. Finally, according to the large data and high concurrency in the large-scale grape growing environment monitoring process, a TCP server design based on Node.js is completed. The results show that the example runs stably and efficiently.
A Conjoint Analysis of Voice Over IP Attributes.
ERIC Educational Resources Information Center
Zubey, Michael L.; Wagner, William; Otto, James R.
2002-01-01
Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…
Autoconfiguration and Service Discovery
NASA Astrophysics Data System (ADS)
Manner, Jukka
To be useful, IP networking requires various parameters to be set up. A network node needs at least an IP address, routing information, and name services. In a fixed network this configuration is typically done with a centralized scheme, where a server hosts the configuration information and clients query the server with the Dynamic Host Configuration Protocol (DHCP). Companies, university campuses and even home broadband use the DHCP system to configure hosts. This signaling happens in the background, and users seldom need to think about it; only when things are not working properly, manual intervention is needed. The same protocol can be used in mobile networks, where the client device communicates with the access network provider and his DHCP service. The core information provided by DHCP includes a unique IP address for the host, the IP address of the closest IP router for routing messages to other networks, and the location of domain name servers.
Impact of window decrement rate on TCP performance in an adhoc network
NASA Astrophysics Data System (ADS)
Suherman; Hutasuhut, Arief T. W.; Badra, Khaldun; Al-Akaidi, Marwan
2017-09-01
Transmission control protocol (TCP) is a reliable transport protocol handling end to end connection in TCP/IP stack. It works well in copper or optical fibre link, but experiences increasing delay in wireless network. Further, TCP experiences multiple retransmissions due to higher collision probability within wireless network. The situation may get worsen in an ad hoc network. This paper examines the impact half window or window reduction rate to the overall TCP performances. The evaluation using NS-2 simulator shows that the smaller the window decrement rate results the smaller end to end delay. Delay is reduced to 17.05% in average when window decrement rate decreases. Average jitter also decreases 4.15%, while packet loss is not affected.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones... points, cable modems, IP phones, and products containing same that infringe one or more of claims 1, 5, 9...
Integrated Operations Architecture Technology Assessment Study
NASA Technical Reports Server (NTRS)
2001-01-01
As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low data rate network for LEO/MEO, mission spacecraft; and, pursue developmental research for a miniaturized, high data rate optical transceiver.
2010-01-01
Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF) partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2) were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM). A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study) and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes) and targeted TFs (25% of common TFs). The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to further study the underlying mechanisms in breast cancer cells or other human diseases. PMID:21167036
IP voice over ATM satellite: experimental results over satellite channels
NASA Astrophysics Data System (ADS)
Saraf, Koroush A.; Butts, Norman P.
1999-01-01
IP telephony, a new technology to provide voice communication over traditional data networks, has the potential to revolutionize telephone communication within the modern enterprise. This innovation uses packetization techniques to carry voice conversations over IP networks. This packet switched technology promises new integrated services, and lower cost long-distance communication compared to traditional circuit switched telephone networks. Future satellites will need to carry IP traffic efficiently in order to stay competitive in servicing the global data- networking and global telephony infrastructure. However, the effects of Voice over IP over switched satellite channels have not been investigated in detail. To fully understand the effects of satellite channels on Voice over IP quality; several experiments were conducted at Lockheed Martin Telecommunications' Satellite Integration Lab. The result of those experiments along with suggested improvements for voice communication over satellite are presented in this document. First, a detailed introduction of IP telephony as a suitable technology for voice communication over future satellites is presented. This is followed by procedures for the experiments, along with results and strategies. In conclusion we hope that these capability demonstrations will alleviate any uncertainty regarding the applicability of this technology to satellite networks.
RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks
Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon
2009-01-01
The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components. PMID:22412321
RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.
Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon
2009-01-01
The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.
Consideration of IP Telephony Quality on the IEEE802.11a Wireless LAN
NASA Astrophysics Data System (ADS)
Miyashita, Michifumi; Takamatsu, Hideyuki; Kurono, Masahiro
Recently, IP telephony services in wired network are started, and paid attention for its charge-free nature due to IP technology. On the other hand, the Hot-Spot service, which provides one to access the Internet at the public space such as cafe, using the IEEE wireless LAN has been evolved, and it is expected that the IP telephony service on the Hot-Spot network will be developed. However, the IP telephony quality on the IEEE802.11a wireless LAN has not been fully studied yet. In this paper, we discuss about the quality of IP telephony service on the IEEE802.11a wireless LAN from the aspect of R-value, and show ability to improve the IP telephony quality on the Hot-Spot network employing PLC function defined in the ITU-T Recommendation G.711 Appendix I.
Variable weight spectral amplitude coding for multiservice OCDMA networks
NASA Astrophysics Data System (ADS)
Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.
2017-09-01
The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.
1999-12-01
compression technology . The ubiquity of routed Internet Protocol (IP) networks, and the desire to trim telephony costs are the major driving forces of the...mid- s, data and voice began to merge, propelled by advances in compression technology . The ubiquity of routed Internet Protocol (IP) networks...transmit voice over IP networks that are privately owned or publicly utilized. If we have the technology to transmit Voice over the Internet then why not
Mobile-ip Aeronautical Network Simulation Study
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Tran, Diepchi T.
2001-01-01
NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.
Auto-Configuration Protocols in Mobile Ad Hoc Networks
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof) as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity. PMID:22163814
Crosslayer Survivability in Overlay-IP-WDM Networks
ERIC Educational Resources Information Center
Pacharintanakul, Peera
2010-01-01
As the Internet moves towards a three-layer architecture consisting of overlay networks on top of the IP network layer on top of WDM-based physical networks, incorporating the interaction between and among network layers is crucial for efficient and effective implementation of survivability. This dissertation has four major foci as follows:…
Mobility management techniques for the next-generation wireless networks
NASA Astrophysics Data System (ADS)
Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.
2001-10-01
The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.
Network Upgrade for the SLC: PEP II Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, M.; Call, M.; Clark, S.
2011-09-09
The PEP-II control system required a new network to support the system functions. This network, called CTLnet, is an FDDI/Ethernet based network using only TCP/IP protocols. An upgrade of the SLC Control System micro communications to use TCP/IP and SLCNET would allow all PEP-II control system nodes to use TCP/IP. CTLnet is private and separate from the SLAC public network. Access to nodes and control system functions is provided by multi-homed application servers with connections to both the private CTLnet and the SLAC public network. Monitoring and diagnostics are provided using a dedicated system. Future plans and current status informationmore » is included.« less
Teaching Network Security with IP Darkspace Data
ERIC Educational Resources Information Center
Zseby, Tanja; Iglesias Vázquez, Félix; King, Alistair; Claffy, K. C.
2016-01-01
This paper presents a network security laboratory project for teaching network traffic anomaly detection methods to electrical engineering students. The project design follows a research-oriented teaching principle, enabling students to make their own discoveries in real network traffic, using data captured from a large IP darkspace monitor…
Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs
NASA Astrophysics Data System (ADS)
Parraga, N.
2002-01-01
Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite system for multimedia services. EuroSkyWay uses a GEO satellite with onboard switching. It has its own proprietary protocol stack for data link control (DLC), logical link control (LLC) and layer 3 functions such as resource management, call admission control and authentication. Special attention is paid to the IP interworking with Layer 3 function since IP does not support connection set-up and session protocols, thus proper interworking functions with IP signaling protocols for resource reservation routing such as RSVP, BGP, and ICMP need to be developed. Whereas the EuroSkyWay system is an representative for a meshed topology, DVB-RCS systems have usually star configuration with a central hub station. Different data streams are distinguished by program identifiers (PIDs). Recent proposals aim at the evolution of DVB-RCS towards a fully meshed structure. The paper will also discuss the protocol architecture for interconnect SONET LANs over these systems. Finally, a performance comparison of the different solutions will be given in terms of cell overhead rate and signalling effort for selected scenarios.
Local area networking in a radio quiet environment
NASA Astrophysics Data System (ADS)
Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.
2002-11-01
The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2007-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground lightning detection networks, CGLSS and NLDN, during ground and launch operations at the KSC-ER. For these applications, it is very important to understand the location accuracy and detection efficiency of each network near the KSC-ER. If a cloud-to-ground (CG) lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail. To evaluate recent upgrades in the CGLSS sensors in 2000 and the entire NLDN in 2002- 2003, we have compared. measurements provided by these independent networks in the summers of 2005 and 2006. Our analyses have focused on the fraction of first strokes reported individually and in-common by each network (flash detection efficiency), the spatial separation between the strike points reported by both networks (relative location accuracy), and the values of the estimated peak current, Ip, reported by each network. The results within 100 km of the KSC-ER show that the networks produce very similar values of Ip (except for a small scaling difference) and that the relative location accuracy is consistent with model estimates that give median values of 200-300m for the CGLSS and 600-700m for the NLDN in the region of the KSC-ER. Because of differences in the network geometries and sensor gains, the NLDN does not report 10-20% of the flashes that have a low Ip (2 kA < |Ip| < 16 kA), both networks report 99 % of the flashes that have intermediate values of Ip (16< |Ip| < 50 kA), and the CGLSS fails to report 20-30% of the high-current events (|Ip| >=0 kA).
Integrating QoS and security functions in an IP-VPN gateway
NASA Astrophysics Data System (ADS)
Fan, Kuo-Pao; Chang, Shu-Hsin; Lin, Kuan-Ming; Pen, Mau-Jy
2001-10-01
IP-based Virtual Private Network becomes more and more popular. It can not only reduce the enterprise communication cost but also increase the revenue of the service provider. The common IP-VPN application types include Intranet VPN, Extranet VPN, and remote access VPN. For the large IP-VPN market, some vendors develop dedicated IP-VPN devices; while some vendors add the VPN functions into their existing network equipment such as router, access gateway, etc. The functions in the IP-VPN device include security, QoS, and management. The common security functions supported are IPSec (IP Security), IKE (Internet Key Exchange), and Firewall. The QoS functions include bandwidth control and packet scheduling. In the management component, policy-based network management is under standardization in IETF. In this paper, we discuss issues on how to integrate the QoS and security functions in an IP-VPN Gateway. We propose three approaches to do this. They are (1) perform Qos first (2) perform IPSec first and (3) reserve fixed bandwidth for IPSec. We also compare the advantages and disadvantages of the three proposed approaches.
Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Wu, Shaochuan; Tan, Xuezhi
2007-11-01
By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.
Indoor Free Space Optic: a new prototype, realization and evaluation
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian
2008-08-01
The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.
Continuously Connected With Mobile IP
NASA Technical Reports Server (NTRS)
2002-01-01
Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-778] Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP Phones... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones...
SpaceFibre: The Standard, Simulation, IP Cores and Test Equipment
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Ferrer Florit, Albert; Gonzalez Villafranca, Alberto
2015-09-01
SpaceFibre is an emerging new standard for spacecraft on-board data-handling networks. Initially targeted to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, SpaceFibre has developed into a unified network technology that integrates high bandwidth, with low latency, quality of service (QoS) and fault detection, isolation and recovery (FDIR). Furthermore SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network. Developed by the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable and supports data rates of 2 Gbit/s in the near future and up to 5 Gbit/s long-term. Multi-laning improves the data-rate further to well over 20 Gbits/s. This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). It describes the SpaceFibre IP core being developed for ESA. The design of a SpaceFibre demonstration board is introduced and available SpaceFibre test and development equipment is described. The way in which several SpaceWire links can be concentrated over a single SpaceFibre link will be explained.
An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks
NASA Astrophysics Data System (ADS)
Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang
As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.
Integration of the White Sands Complex into a Wide Area Network
NASA Technical Reports Server (NTRS)
Boucher, Phillip Larry; Horan, Sheila, B.
1996-01-01
The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.
Running TCP/IP over ATM Networks.
ERIC Educational Resources Information Center
Witt, Michael
1995-01-01
Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)
A study on efficient detection of network-based IP spoofing DDoS and malware-infected Systems.
Seo, Jung Woo; Lee, Sang Jin
2016-01-01
Large-scale network environments require effective detection and response methods against DDoS attacks. Depending on the advancement of IT infrastructure such as the server or network equipment, DDoS attack traffic arising from a few malware-infected systems capable of crippling the organization's internal network has become a significant threat. This study calculates the frequency of network-based packet attributes and analyzes the anomalies of the attributes in order to detect IP-spoofed DDoS attacks. Also, a method is proposed for the effective detection of malware infection systems triggering IP-spoofed DDoS attacks on an edge network. Detection accuracy and performance of the collected real-time traffic on a core network is analyzed thru the use of the proposed algorithm, and a prototype was developed to evaluate the performance of the algorithm. As a result, DDoS attacks on the internal network were detected in real-time and whether or not IP addresses were spoofed was confirmed. Detecting hosts infected by malware in real-time allowed the execution of intrusion responses before stoppage of the internal network caused by large-scale attack traffic.
Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC
NASA Technical Reports Server (NTRS)
Schnurr, Richard; Marquart, Jane; Lin, Michael
2003-01-01
Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.
ERIC Educational Resources Information Center
Panettieri, Joseph C.
2008-01-01
Despite the hype, IP convergence does not happen overnight. Navigating the IP convergence market is not easy. Some network equipment makers are taking traditional voice over IP (VoIP) product lines and rebranding them as unified communications offerings. But beware: While closely related, VoIP and UC are not the same. Generally speaking, VoIP…
Kim, MinSu; Ham, Hyeong Gyun; Choi, Han-Sol; Bos, Philip J; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee
2017-03-20
The demands for a power-saving mode for displaying static images are ubiquitous not only in portable devices but also in price tags and advertising panels. At a low-frequency driving in liquid crystal displays (LCDs) for low-power consumption, the flexoelectric effect arises even in calamitic liquid crystals and the optical appearance of this physical phenomenon is found to be unusually large, being noticed as an image-flickering. Although the inherent integrated optical transmittance of in-plane switching (IPS) mode is relatively lower than that of fringe-field switching (FFS) mode, the IPS mode shows no static image-flickering but an optical spike (the so-called optical bounce), at the transient moment between signal positive and negative frames. Here, we demonstrate an IPS mode using negative dielectric anisotropy of liquid crystals (Δε < 0) and fine-patterned electrodes (the width w of and the space l between electrodes ≤ 3 μm) with reduced operation voltage (up to 40.7% to a conventional FFS mode with Δε < 0), reduced optical bounce (up to 4.4%. to a conventional FFS mode with Δε < 0) and enhanced transmittance (up to 32.1% to a conventional IPS mode with Δε > 0). We believe the result will contribute not only to the scientific understanding of the optical appearance of flexoelectric effect but also pave the way for engineering of a superior low-power consumption LCD.
Voice over internet protocol with prepaid calling card solutions
NASA Astrophysics Data System (ADS)
Gunadi, Tri
2001-07-01
The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.
An ethernet/IP security review with intrusion detection applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughter, S. A.; Williams, R. D.
2006-07-01
Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IPmore » networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)« less
NASA Astrophysics Data System (ADS)
Takuma, Takehisa; Masugi, Masao
2009-03-01
This paper presents an approach to the assessment of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, we use a hierarchical clustering scheme, which provides a way to classify high-dimensional data with a tree-like structure. Also, in the LRD-based analysis, we employ detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. Based on sequential measurements of IP-network traffic at two locations, this paper derives corresponding values for the LRD-related parameter α that reflects the degree of LRD of measured data. In performing the hierarchical clustering scheme, we use three parameters: the α value, average throughput, and the proportion of network traffic that exceeds 80% of network bandwidth for each measured data set. We visually confirm that the traffic data can be classified in accordance with the network traffic properties, resulting in that the combined depiction of the LRD and other factors can give us an effective assessment of network conditions at different times.
Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs
Islam, Md. Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly. PMID:22319386
Sensor proxy mobile IPv6 (SPMIPv6)--a novel scheme for mobility supported IP-WSNs.
Islam, Md Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.
Internet-Based Partner Services in US Sexually Transmitted Disease Prevention Programs: 2009-2013.
Moody, Victoria; Hogben, Matthew; Kroeger, Karen; Johnson, James
2015-01-01
Social networking sites have become increasingly popular venues for meeting sex partners. Today, some sexually transmitted disease (STD) programs conduct Internet-based partner services (IPS). The purpose of the study was to explore how the Internet is being used by STD prevention programs to perform partner services. We assessed US STD prevention programs receiving funds through the 2008-2013 Comprehensive STD Prevention Systems cooperative agreement. We (1) reviewed 2009 IPS protocols in 57 funding applications against a benchmark of national guidelines and (2) surveyed persons who conducted IPS in jurisdictions conducting IPS in 2012. Of the 57 project areas receiving Comprehensive STD Prevention Systems funds, 74% provided an IPS protocol. States with IPS protocols had larger populations and more gonorrhea and syphilis cases (t = 2.2-2.6; all Ps < .05), although not higher rates of infection. Most protocols included staffing (92%) and IPS documentation (87%) requirements, but fewer had evaluation plans (29%) or social networking site engagement strategies (16%). Authority to perform a complete range of IPS activities (send e-mail, use social networking sites) was associated with contacting more partners via IPSs (P < .05). This study provides a snapshot of IPS activities in STD programs in the United States. Further research is needed to move from assessment to generating data that can assist training efforts and program action and, finally, to enable efficient IPS programs that are integrated into STD prevention and control efforts.
Kim, Sang Jin; Yang, Jianlong; Liu, Gangjun; Huang, David; Campbell, J Peter
2018-04-01
Incontinentia pigmenti (IP) is a rare X-linked dominant disorder that can cause retinal nonperfusion, neovascularization, and retinal detachment. Evaluation of the peripheral retinal vasculature and appropriate treatment can reduce the risk of blindness. The authors report the use of a handheld prototype optical coherence tomography angiography (OCTA) and ultra-widefield OCT (UWF-OCT) during exam under anesthesia of a 2-year-old with a history of severe early onset IP. UWF-OCT and OCTA may be used as noninvasive imaging modalities for IP and similar retinal vascular disorders in supine young children. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:273-275.]. Copyright 2018, SLACK Incorporated.
Traffic-engineering-aware shortest-path routing and its application in IP-over-WDM networks [Invited
NASA Astrophysics Data System (ADS)
Lee, Youngseok; Mukherjee, Biswanath
2004-03-01
Single shortest-path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal-cost multiple shortest paths in open shortest path first and intermediate system-intermediate system protocols does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, a TE-aware shortest path among all the equal-cost multiple shortest paths between each ingress-egress pair can be selected such that the maximum link load is significantly reduced. IP routers can use the globally optimal TE-aware shortest path without any change to existing routing protocols and without any serious configuration overhead. While calculating TE-aware shortest paths, the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next hop toward the destination by looking up the destination prefix. We present a mathematical problem formulation for finding a set of TE-aware shortest paths for the given network as an integer linear program, and we propose a simple heuristic for solving large instances of the problem. Then we explore the usage of our proposed algorithm for the integrated TE method in IP-over-WDM networks. The proposed algorithm is evaluated through simulations in IP networks as well as in IP-over-WDM networks.
The Development of the Command and Control Centre for Trial Kondari
2010-07-01
the C2 centre inside a blue bubble whose modems have privately assigned IP addresses which are authenticated by Telstra’s radius server. No other sim...cards can communicate on this private network unless authorised by the radius server. The Next IP network is a network bubble within the larger Next...for all machines on the network. EPLRS Network Manager (ENM) radio – authenticates and manages all the EPLRS radios. The basic plan’s final
[Infinite optical thickness of dentine porcelain of IPS E.max A color series].
Sun, Ting; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Wen, Ning; Zhang, Wei-wei
2011-02-01
To determine the infinite optical thickness of dentine porcelain of IPS E.max A color series. Cylindrical dentine porcelain specimens of the IPS E.max A color series were prepared with a diameter of 13 mm and thickness of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 mm. The chromatic value of all the specimens was determined with CM-5 spectrometer against standard black and white background. The chromatic aberration (deltaE) was calculated by regression equation. The infinite optical thickness of dentine porcelain of the IPS E.max A color series ranged from 2.341 to 3.333 mm for a deltaE of 1.0, and from 2.064 to 2.904 mm for a deltaE of 1.5. As the chromaticity or thickness increased, the influence by the background color decreased, and the color of specimens became gradually close to the intrinsic color. The thickness of the background dentine porcelain specimens must exceed its infinite optical thickness to represent the intrinsic color and avoid the influence by the extrinsic color.
Integrated Service Provisioning in an Ipv6 over ATM Research Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eli Dart; Helen Chen; Jerry Friesen
1999-02-01
During the past few years, the worldwide Internet has grown at a phenomenal rate, which has spurred the proposal of innovative network technologies to support the fast, efficient and low-latency transport of a wide spectrum of multimedia traffic types. Existing network infrastructures have been plagued by their inability to provide for real-time application traffic as well as their general lack of resources and resilience to congestion. This work proposes to address these issues by implementing a prototype high-speed network infrastructure consisting of Internet Protocol Version 6 (IPv6) on top of an Asynchronous Transfer Mode (ATM) transport medium. Since ATM ismore » connection-oriented whereas IP uses a connection-less paradigm, the efficient integration of IPv6 over ATM is especially challenging and has generated much interest in the research community. We propose, in collaboration with an industry partner, to implement IPv6 over ATM using a unique approach that integrates IP over fast A TM hardware while still preserving IP's connection-less paradigm. This is achieved by replacing ATM's control software with IP's routing code and by caching IP's forwarding decisions in ATM's VPI/VCI translation tables. Prototype ''VR'' and distributed-parallel-computing applications will also be developed to exercise the realtime capability of our IPv6 over ATM network.« less
Using a CLIPS expert system to automatically manage TCP/IP networks and their components
NASA Technical Reports Server (NTRS)
Faul, Ben M.
1991-01-01
A expert system that can directly manage networks components on a Transmission Control Protocol/Internet Protocol (TCP/IP) network is described. Previous expert systems for managing networks have focused on managing network faults after they occur. However, this proactive expert system can monitor and control network components in near real time. The ability to directly manage network elements from the C Language Integrated Production System (CLIPS) is accomplished by the integration of the Simple Network Management Protocol (SNMP) and a Abstract Syntax Notation (ASN) parser into the CLIPS artificial intelligence language.
Fast rerouting schemes for protected mobile IP over MPLS networks
NASA Astrophysics Data System (ADS)
Wen, Chih-Chao; Chang, Sheng-Yi; Chen, Huan; Chen, Kim-Joan
2005-10-01
Fast rerouting is a critical traffic engineering operation in the MPLS networks. To implement the Mobile IP service over the MPLS network, one can collaborate with the fast rerouting operation to enhance the availability and survivability. MPLS can protect critical LSP tunnel between Home Agent (HA) and Foreign Agent (FA) using the fast rerouting scheme. In this paper, we propose a simple but efficient algorithm to address the triangle routing problem for the Mobile IP over the MPLS networks. We consider this routing issue as a link weighting and capacity assignment (LW-CA) problem. The derived solution is used to plan the fast restoration mechanism to protect the link or node failure. In this paper, we first model the LW-CA problem as a mixed integer optimization problem. Our goal is to minimize the call blocking probability on the most congested working truck for the mobile IP connections. Many existing network topologies are used to evaluate the performance of our scheme. Results show that our proposed scheme can obtain the best performance in terms of the smallest blocking probability compared to other schemes.
Mobile Virtual Private Networking
NASA Astrophysics Data System (ADS)
Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny
Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.
ERIC Educational Resources Information Center
Nieuwenhuysen, Paul
1997-01-01
Explores data transfer speeds obtained with various combinations of hardware and software components through a study of access to the Internet from a notebook computer connected to a local area network based on Ethernet and TCP/IP (transmission control protocol/Internet protocol) network protocols. Upgrading is recommended for higher transfer…
Implementation of quantum key distribution network simulation module in the network simulator NS-3
NASA Astrophysics Data System (ADS)
Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav
2017-10-01
As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.
ERIC Educational Resources Information Center
Young, Dan
2005-01-01
Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…
Networks - The Air Force’s Newest Weapon Systems
2006-02-17
Force networks. Marshall T. Rose, The Simple Book: An Introduction to Management of TCP/IP based internets, (Englewood Cliffs, New Jersey: Prentice...18 November 2005 19. Rose, Marshall T. The Simple Book: An Introduction to Management of TCP/IP based internets, (Englewood Cliffs, New Jersey
Computer Networks and Information Warfare: Implications for Military Operations
2000-07-01
specifically referring to this network.” Marshall T. Rose, The Simple Book: An Introduction to Management of TCP/IP based internets (Englewood...Cliffs, New Jersey: Prentice Hall, 1991), p. 2. 22. Marshall T. Rose, The Simple Book: An Introduction to Management of TCP/IP based internets
ERIC Educational Resources Information Center
Panettieri, Joseph C.
2006-01-01
The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…
Design and Evaluation for the End-to-End Detection of TCP/IP Header Manipulation
2014-06-01
Cooperative Association for Internet Data Analysis CDN content delivery network CE congestion encountered CRC cyclic redundancy check CWR congestion...Switzerland was primarily developed as a network neutrality analysis tool to detect when internet service providers (ISPs) were interfering with...maximum 200 words) Understanding, measuring, and debugging IP networks , particularly across administrative domains, is challenging. One aspect of the
VoIP attacks detection engine based on neural network
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Slachta, Jiri
2015-05-01
The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.
Network Quality of Service Monitoring for IP Telephony.
ERIC Educational Resources Information Center
Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.
2001-01-01
Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…
2015-01-06
Carnegie Mellon University rwcut Default Display By default • sIP , sPort • dIP, dPort • protocol • packets, bytes • flags • sTime, eTime, duration...TCP/IP SOCKET IP address: 10.0.0.1 L4 protocol : TCP High-numbered ephemeral port # TCP/IP SOCKET IP address: 203.0.113.1 L4 protocol : TCP Low-numbered...Fields found to be useful in analysis: • source address, destination address • source port, destination port (Internet Control Message Protocol
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
MSFC institutional area network and ATM technology
NASA Technical Reports Server (NTRS)
Amin, Ashok T.
1994-01-01
The New Institutional Area Network (NEWIAN) at Marshall supports over 5000 end users with access to 26 file servers providing work presentation services. It is comprised of some 150 Ethernet LAN's interconnected by bridges/routers which are in turn connected to servers over two dual FDDI rings. The network supports various higher level protocols such as IP, IPX, AppleTalk (AT), and DECNet. At present IPX and AT protocols packets are routed, and IP protocol packets are bridged; however, work is in progress to route all IP packets. The impact of routing IP packets on network operation is examined. Broadband Integrated Services Data Network (BISDN), presently at various stages of development, is intended to provide voice, video, and data transfer services over a single network. BISDN will use asynchronous transfer mode (ATM) as a data transfer technique which provides for transmission, multiplexing, switching, and relaying of small size data units called cells. Limited ATM Wide Area Network (WAN) services are offered by Wiltel, AT&T, Sprint, and others. NASA is testing a pilot ATM WAN with a view to provide Program Support Communication Network services using ATM. ATM supports wide range of data rates and quality of service requirements. It is expected that ATM switches will penetrate campus networks as well. However, presently products in these areas are at various stages of development and standards are not yet complete. We examine development of ATM to help assess its role in the evolution of NEWIAN.
2007-06-01
these devices coupled with the difficulties- working with IP Video Systems (formerly Teraburst and cost-of installing dedicated long-distance fiber optic...dedicated fiber is best revealed that the IP Video Systems solutions seem to be suited for installation for point-to-point communications. the best...Research completion of the SBIR Phase II effort is planned for late (SBIR) effort with IP Video Systems (formerly known as FY 07. This paper will discuss
Evaluation of AL-FEC performance for IP television services QoS
NASA Astrophysics Data System (ADS)
Mammi, E.; Russo, G.; Neri, A.
2010-01-01
The IP television services quality is a critical issue because of the nature of transport infrastructure. Packet loss is the main cause of service degradation in such kind of network platforms. The use of forward error correction (FEC) techniques in the application layer (AL-FEC), between the source of TV service (video server) and the user terminal, seams to be an efficient strategy to counteract packet losses alternatively or in addiction to suitable traffic management policies (only feasible in "managed networks"). A number of AL-FEC techniques have been discussed in literature and proposed for inclusion in TV over IP international standards. In this paper a performance evaluation of the AL-FEC defined in SMPTE 2022-1 standard is presented. Different typical events occurring in IP networks causing different types (in terms of statistic distribution) of IP packet losses have been studied and AL-FEC performance to counteract these kind of losses have been evaluated. The performed analysis has been carried out in view of fulfilling the TV services QoS requirements that are usually very demanding. For managed networks, this paper envisages a strategy to combine the use of AL-FEC with the set-up of a transport quality based on FEC packets prioritization. Promising results regard this kind of strategy have been obtained.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
..., as amended, 19 U.S.C. 1337, on behalf of Avago Technologies Fiber IP (Singapore) Pte. Ltd. of Singapore; Avago Technologies General IP (Singapore) Pte. Ltd. of Singapore; and Avago Technologies U.S. Inc... Technologies Fiber IP, (Singapore) Pte. Ltd., 1 Yishun Avenue 7, Singapore 768923. Avago Technologies General...
NASA Astrophysics Data System (ADS)
Burgos, M. A.; Mateos, D.; Cachorro, V. E.; Toledano, C.; de Frutos, A. M.; Calle, A.; Herguedas, A.; Marcos, J. L.
2018-07-01
This work presents an evaluation of a surprising and unusual high turbidity summer period in 2013 recorded in the north-central Iberian Peninsula (IP). The study is made up of three main pollution episodes characterized by very high aerosol optical depth (AOD) values with the presence of fine aerosol particles: the strongest long-range transport Canadian Biomass Burning (BB) event recorded, one of the longest-lasting European Anthropogenic (A) episodes and an extremely strong regional BB. The Canadian BB episode was unusually strong with maximum values of AOD(440 nm) ∼ 0.8, giving rise to the highest value recorded by photometer data in the IP with a clearly established Canadian origin. The anthropogenic pollution episode originated in Europe is mainly a consequence of the strong impact of Canadian BB events over north-central Europe. As regards the local episode, a forest fire in the nature reserve near the Duero River (north-central IP) impacted on the population over 200 km away from its source. These three episodes exhibited fingerprints in different aerosol columnar properties retrieved by sun-photometers of the AErosol RObotic NETwork (AERONET) as well as in particle mass surface concentrations, PMx, measured by the European Monitoring and Evaluation Programme (EMEP). Main statistics, time series and scatterplots relate aerosol loads (aerosol optical depth, AOD and particulate matter, PM) with aerosol size quantities (Ångström Exponent and PM ratio). More detailed microphysical/optical properties retrieved by AERONET inversion products are analysed in depth to describe these events: contribution of fine and coarse particles to AOD and its ratio (the fine mode fraction), volume particle size distribution, fine volume fraction, effective radius, sphericity fraction, single scattering albedo and absorption optical depth. Due to its relevance in climate studies, the aerosol radiative effect has been quantified for the top and bottom of the atmosphere, obtaining mean daily values for this extraordinary summer period of -14.5 and -47.5 Wm-2, respectively.
Management of ATM-based networks supporting multimedia medical information systems
NASA Astrophysics Data System (ADS)
Whitman, Robert A.; Blaine, G. James; Fritz, Kevin; Goodgold, Ken; Heisinger, Patrick
1997-05-01
Medical information systems are acquiring the ability to collect and deliver many different types of medical information. In support of the increased network demands necessitated by these expanded capabilities, asynchronous transfer mode (ATM) based networks are being deployed in medical care systems. While ATM supplies a much greater line rate than currently deployed networks, the management and standards surrounding ATM are yet to mature. This paper explores the management and control issues surrounding an ATM network supporting medical information systems, and examines how management impacts network performance and robustness. A multivendor ATM network at the BJC Health System/Washington University and the applications using the network are discussed. Performance information for specific applications is presented and analyzed. Network management's influence on application reliability is outlined. The information collected is used to show how ATM network standards and management tools influence network reliability and performance. Performance of current applications using the ATM network is discussed. Special attention is given to issues encountered in implementation of hypertext transfer protocol over ATM internet protocol (IP) communications. A classical IP ATM implementation yields greater than twenty percent higher network performance over LANE. Maximum performance for a host's suite of applications can be obtained by establishing multiple individually engineered IP links through its ATM network connection.
Security for IP Multimedia Services in the 3GPP Third Generation Mobile System.
ERIC Educational Resources Information Center
Horn, G.; Kroselberg, D.; Muller, K.
2003-01-01
Presents an overview of the security architecture of the IP multimedia core network subsystem (IMS) of the third generation mobile system, known in Europe as UMTS. Discusses IMS security requirements; IMS security architecture; authentication between IMS user and home network; integrity and confidentiality for IMS signalling; and future aspects of…
A Network Steganography Lab on Detecting TCP/IP Covert Channels
ERIC Educational Resources Information Center
Zseby, Tanja; Vázquez, Félix Iglesias; Bernhardt, Valentin; Frkat, Davor; Annessi, Robert
2016-01-01
This paper presents a network security laboratory to teach data analysis for detecting TCP/IP covert channels. The laboratory is mainly designed for students of electrical engineering, but is open to students of other technical disciplines with similar background. Covert channels provide a method for leaking data from protected systems, which is a…
2014-09-01
prevention system (IPS), capable of performing real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include protocol... analysis and content searching/matching. Snort can detect a variety of attacks and network probes, such as buffer overflows, port scans and OS...www.digitalbond.com/tools/the- rack/jtr-s7-password-cracking/ Kismet Mike Kershaw Cross- platform Open source wireless network detector and wireless sniffer
Impact of VoIP and QoS on Open and Distance Learning
ERIC Educational Resources Information Center
Saxena, P. C.; Jasola, Sanjay; Sharma, Ramesh C.
2006-01-01
Voice over Internet Protocol (VoIP) is becoming a reality in many organizations. The potential for mobility in voice over wi-fi networks will derive demand for the technology. Wireless VoIP is poised to rival VoIP as an alternative telephony tool. Internet has been used to transport data in the form of packet. In the past, Internet did not support…
Interoperability Is the Foundation for Successful Internet Telephony.
ERIC Educational Resources Information Center
Fromm, Larry
1997-01-01
More than 40 leading computer and telephony companies have united to lead the charge toward open standards and universal interoperability for Internet telephony products. The voice of IP Forum (VoIP) is working to define technical guidelines for two-party, real-time communications over IP networks, including provisions for compatibility with…
Real-time services in IP network architectures
NASA Astrophysics Data System (ADS)
Gilardi, Antonella
1996-12-01
The worldwide internet system seems to be the success key for the provision of real time multimedia services to both residential and business users and someone says that in such a way broadband networks will have a reason to exist. This new class of applications that use multiple media (voice, video and data) impose constraints to the global network nowadays consisting of subnets with various data links. The attention will be focused on the interconnection of IP non ATM and ATM networks. IETF and ATM forum are currently involved in the developing specifications suited to adapt the connectionless IP protocol to the connection oriented ATM protocol. First of all the link between the ATM and the IP service model has to be set in order to match the QoS and traffic requirements defined in the relative environment. A further significant topic is represented by the mapping of IP resource reservation model onto the ATM signalling and in the end it is necessary to define how the routing works when there are QoS parameters associated. This paper, considering only unicast applications, will examine the above issues taking as a starting point the situation where an host launches as call set up request with the relevant QoS and traffic descriptor and at some point a router at the edge of the ATM network has to decide how forwarding and request in order to establish an end to end link with the right capabilities. The aim is to compare the proposals emerging from different standard bodies to point out convergency or incompatibility.
NASA Technical Reports Server (NTRS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-01-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.
NASA Astrophysics Data System (ADS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-02-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
Performance Analysis of the Mobile IP Protocol (RFC 3344 and Related RFCS)
2006-12-01
Encapsulation HMAC Keyed-Hash Message Authentication Code ICMP Internet Control Message Protocol IEEE Institute of Electrical and Electronics Engineers IETF...Internet Engineering Task Force IOS Internetwork Operating System IP Internet Protocol ITU International Telecommunication Union LAN Local Area...network computing. Most organizations today have sophisticated networks that are connected to the Internet. The major benefit reaped from such a
Bandwidth Management in Resource Constrained Networks
2012-03-01
Postgraduate School OSI Open Systems Interconnection QoS Quality of Service TCP Transmission Control Protocol/Internet Protocol TCP/IP Transmission...filtering. B. NORMAL TCP/IP COMMUNICATIONS The Internet is a “complex network WAN that connects LANs and clients around the globe” (Dean, 2009...of the Open Systems Interconnection ( OSI ) model allowing them to route traffic based on MAC address (Kurose & Ross, 2009). While switching
ERIC Educational Resources Information Center
Korzeniowski, Paul
2009-01-01
Voice over IP (VoIP) has been infiltrating campus networks, but more like stray weeds in an unattended garden than like a well-planned crop. Trouble is, in most instances, moving directly from a PBX or Centrex service to VoIP represents a shift too costly and dramatic for many academic institutions to undertake. Instead, schools have been…
47 CFR 400.4 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... proposed to be funded for the implementation and operation of Phase II E-911 services or migration to an IP... telecommunications services in the implementation and delivery of Phase II E-911 services or for migration to an IP...-911 services or for migration to an IP-enabled emergency network. (2) Project budget. A project budget...
47 CFR 400.4 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... proposed to be funded for the implementation and operation of Phase II E-911 services or migration to an IP... telecommunications services in the implementation and delivery of Phase II E-911 services or for migration to an IP...-911 services or for migration to an IP-enabled emergency network. (2) Project budget. A project budget...
Optimization of OSPF Routing in IP Networks
NASA Astrophysics Data System (ADS)
Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan
The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs)
Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd1
NASA Technical Reports Server (NTRS)
Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes; Fox, Ori D.; Morrell, Nidia; Phillips, M. M.; Sollerman, Jesper; Anderson, J. P.; Bolft, Luis; Brown, Peter J.;
2012-01-01
We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broad-band UV, optical and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including: (i) remarkably similar early- and late-phase optical spectra, (ii) a variety of high ionization coronal lines, (iii) long-duration optical and near-IR emission and, (iv) evidence of cold and warm dust components. However, diversity is apparent including an unprecedented late-time r-band excess in SN 2006jd. The observed di erences are attributed to di erences between the mass-loss history of the progenitor stars. We conclude that the progenitor of SN 2006jd likely experienced a signi cant mass-loss event during its pre-SN evolution akin to the great 19th century eruption of eta Carinae. Contrarily, as advocated by Smith et al. (2009), we nd the circumstellar environment of SN 2005ip to be more consistent with a clumpy wind progenitor.
Order Without Intellectual Property Law: Open Science in Influenza.
Kapczynski, Amy
Today, intellectual property (IP) scholars accept that IP as an approach to information production has serious limits. But what lies beyond IP? A new literature on "intellectual production without IP" (or "IP without IP") has emerged to explore this question, but its examples and explanations have yet to convince skeptics. This Article reorients this new literature via a study of a hard case: a global influenza virus-sharing network that has for decades produced critically important information goods, at significant expense, and in a loose-knit group--all without recourse to IP. I analyze the Network as an example of "open science," a mode of information production that differs strikingly from conventional IP, and yet that successfully produces important scientific goods in response to social need. The theory and example developed here refute the most powerful criticisms of the emerging "IP without IP" literature, and provide a stronger foundation for this important new field. Even where capital costs are high, creation without IP can be reasonably effective in social terms, if it can link sources of funding to reputational and evaluative feedback loops like those that characterize open science. It can also be sustained over time, even by loose-knit groups and where the stakes are high, because organizations and other forms of law can help to stabilize cooperation. I also show that contract law is well suited to modes of information production that rely upon a "supply side" rather than "demand side" model. In its most important instances, "order without IP" is not order without governance, nor order without law. Recognizing this can help us better ground this new field, and better study and support forms of knowledge production that deserve our attention, and that sometimes sustain our very lives.
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Fallows, R. A.; Jackson, B. V.; Tokumaru, M.; Gonzalez-Esparza, A.; Morgan, J.; Chashei, I. V.; Mejia-Ambriz, J.; Tyul'bashev, S. A.; Manoharan, P. K.; De la Luz, V.; Aguilar-Rodriguez, E.; Yu, H. S.; Barnes, D.; Chang, O.; Odstrcil, D.; Fujiki, K.; Shishov, V.
2017-12-01
Interplanetary Scintillation (IPS) allows for the determination of velocity and a proxy for plasma density to be made throughout the corona and inner heliosphere. Where sufficient observations are undertaken, the results can be used as input to the University of California, San Diego (UCSD) three-dimensional (3-D) time-dependent tomography suite to allow for the full 3-D reconstruction of both velocity and density throughout the inner heliosphere. By combining IPS results from multiple observing locations around the planet, we can increase both the temporal and spatial coverage across the whole of the inner heliosphere and hence improve forecast capability. During October 2016, a unique opportunity arose whereby the European-based LOw Frequency ARray (LOFAR) radio telescope was used to make nearly four weeks of continuous observations of IPS as a heliospheric space-weather trial campaign. This was expanded into a global effort to include observations of IPS from the Murchison Widefield Array (MWA) in Western Australia and many more observations from various IPS-dedicated WIPSS Network systems. LOFAR is a next-generation low-frequency radio interferometer capable of observing in the radio frequency range 10-250 MHz, nominally with up to 80 MHz bandwidth at a time. MWA in Western Australia is capable of observing in the 80-300 MHz frequency range nominally using up to 32 MHz of bandwidth. IPS data from LOFAR, ISEE, the MEXican Array Radio Telescope (MEXART), and, where possible, other WIPSS Network systems (such as LPI-BSA and Ooty), will be used in this study and we will present some initial findings for these data sets. We also make a first attempt at the 3-D reconstruction of multiple pertinent WIPSS results in the UCSD tomography. We will also try to highlight some of the potential future tools that make LOFAR a very unique system to be able to test and validate a whole plethora of IPS analysis methods with the same set of IPS data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi Veeraraghavan
2007-10-31
A high-speed optical circuit network is one that offers users rate-guaranteed connectivity between two endpoints, unlike today’s IP-routed Internet in which the rate available to a pair of users fluctuates based on the volume of competing traffic. This particular research project advanced our understanding of circuit networks in two ways. First, transport protocols were developed for circuit networks. In a circuit network, since bandwidth resources are reserved for each circuit on an end-to-end basis (much like how a person reserves a seat on every leg of a multi-segment flight), and the sender is limited to send at the rate ofmore » the circuit, there is no possibility of congestion during data transfer. Therefore, no congestion control functions are necessary in a transport protocol designed for circuits. However, error control and flow control are still required because bits can become errored due to noise and interference even on highly reliable optical links, and receivers can, due to multitasking or other reasons, not deplete the receive buffer fast enough to keep up with the sending rate (e.g., if the receiving host is multitasking between receiving a file transfer and some other computation). In this work, we developed two transport protocols for circuits, both of which are described below. Second, this project developed techniques for internetworking different types of connection-oriented networks, which are of two types: circuit-switched or packet-switched. In circuit-switched networks, multiplexing on links is “position based,” where “position” refers to the frequency, time slot, and port (fiber), while connection-oriented packet-switched networks use packet header information to demultiplex packets and switch them from node to node. The latter are commonly referred to as virtual circuit networks. Examples of circuit networks are time-division multiplexed Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Wavelength Division Multiplexing (WDM) networks, while examples of virtual-circuit networks are MultiProtocol Label Switched (MPLS) networks and Ethernet Virtual Local Area Network (VLAN) networks. A series of new technologies have been developed to carry Ethernet VLAN tagged frames on SONET/SDH and WDM networks, such as Generic Framing Procedure (GFP) and ITU G.709, respectively. These technologies form the basis of our solution for connection-oriented internetworking. The benefit of developing such an architecture is that it allows different providers to choose different connection-oriented networking technologies for their networks, and yet be able to allow their customers to connect to those of other providers. As Metcalfe, the inventor of Ethernet, noted, the value of a network service grows exponentially with the number of endpoints to which any single endpoint can connect. Therefore internetworking solutions are key to commercial success. The technical effectiveness of our solutions was measured with proof-of-concept prototypes and experiments. These solutions were shown to be highly effective. Economic feasibility requires business case analyses that were beyond the scope of this project. The project results are beneficial to the public as they demonstrate the viability of simultaneously supporting different types of networks and data communication services much like the variety of services available for the transportation of people and goods. For example, Fedex service offers a deadline based delivery while the USPS offers basic package delivery service. Similarly, a circuit network can offer a deadline based delivery of a data file while the IP-routed network offers only basic delivery service with no guarantees. Two project Web sites, 13 publications, 7 software programs, 21 presentations resulted from this work. This report provides the complete list of publications, software programs and presentations. As for student education and training (human resources), this DOE project, along with an NSF project, jointly supported two postdoctoral fellowships, three PhDs, three Masters, and two undergraduate students. Specifically, two of the Masters students were directly funded on this DOE project.« less
Novel mechanism of network protection against the new generation of cyber attacks
NASA Astrophysics Data System (ADS)
Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit
2012-06-01
A new intelligent mechanism is presented to protect networks against the new generation of cyber attacks. This mechanism integrates TCP/UDP/IP protocol stack protection and attacker/intruder deception to eliminate existing TCP/UDP/IP protocol stack vulnerabilities. It allows to detect currently undetectable, highly distributed, low-frequency attacks such as distributed denial-of-service (DDoS) attacks, coordinated attacks, botnet, and stealth network reconnaissance. The mechanism also allows insulating attacker/intruder from the network and redirecting the attack to a simulated network acting as a decoy. As a result, network security personnel gain sufficient time to defend the network and collect the attack information. The presented approach can be incorporated into wireless or wired networks that require protection against known and the new generation of cyber attacks.
2018-01-01
Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release. PMID:29756029
Absence of visual experience modifies the neural basis of numerical thinking.
Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina
2016-10-04
In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.
Nicholson, Benjamin P; Nigam, Divya; Toy, Brian; Stetson, Paul F; Agrón, Elvira; Jacobs-El, Naima; Cunningham, Denise; Cukras, Catherine; Wong, Wai; Wiley, Henry; Chew, Emily; Ferris, Frederick; Meyerle, Catherine B
2015-01-01
The purpose of this 1-year prospective study was to investigate how induction/pro re nata ranibizumab intravitreal treatment of eyes with neovascular age-related macular degeneration affects the anatomy of choroidal neovascularization (CNV) and the overlying outer retinal tissue. High-speed indocyanine green (HS-ICG) angiography measurements provided quantification of the CNV size in 60 patients followed for 1 year. Minimum intensity projection optical coherence tomography (MinIP OCT), a novel algorithm assessing minimum optical intensity between the internal limiting membrane and retinal pigment epithelium, measured the area of outer retinal disruption overlying the CNV. Fluorescein angiography was also assessed to evaluate late retinal leakage. After 1 year, the mean area of CNV measured with indocyanine green angiography decreased by 5.8%. The mean area of MinIP OCT of outer retinal disruption overlying the CNV decreased by 4.2%. Mean area of fluorescein angiography leakage decreased by 6.3%. Both the area of outer retinal disruption measured with MinIP OCT and the area of leakage on fluorescein angiography typically exceeded the area of CNV on indocyanine green angiography at baseline and 1 year. Choroidal neovascularization treated with induction/pro re nata intravitreal ranibizumab for 1 year essentially remained static. Minimum intensity projection optical coherence tomography suggests that the area of outer retinal disruption overlying the CNV may be greater than the CNV itself and often correlates with the leakage area on fluorescein angiography. Additionally, there was minimal change in the area of outer retinal disruption on MinIP OCT even when fluid resolved. Measurements of the extent of CNV lesions based on indocyanine green angiography and MinIP OCT may provide useful outcome variables to help assess the CNV complex longitudinally and warrant further validation.
IPS guidestar selection for stellar mode (ASTRO)
NASA Technical Reports Server (NTRS)
Mullins, Larry; Wooten, Lewis
1988-01-01
This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.
Xu, Hai-Yu; Liu, Zhen-Ming; Fu, Yan; Zhang, Yan-Qiong; Yu, Jian-Jun; Guo, Fei-Fei; Tang, Shi-Huan; Lv, Chuan-Yu; Su, Jin; Cui, Ru-Yi; Yang, Hong-Jun
2017-09-01
Recently, integrative pharmacology(IP) has become a pivotal paradigm for the modernization of traditional Chinese medicines(TCM) and combinatorial drugs discovery, which is an interdisciplinary science for establishing the in vitro and in vivo correlation between absorption, distribution, metabolism, and excretion/pharmacokinetic(ADME/PK) profiles of TCM and the molecular networks of disease by the integration of the knowledge of multi-disciplinary and multi-stages. In the present study, an internet-based Computation Platform for IP of TCM(TCM-IP, www.tcmip.cn) is established to promote the development of the emerging discipline. Among them, a big data of TCM is an important resource for TCM-IP including Chinese Medicine Formula Database, Chinese Medical Herbs Database, Chemical Database of Chinese Medicine, Target Database for Disease and Symptoms, et al. Meanwhile, some data mining and bioinformatics approaches are critical technology for TCM-IP including the identification of the TCM constituents, ADME prediction, target prediction for the TCM constituents, network construction and analysis, et al. Furthermore, network beautification and individuation design are employed to meet the consumer's requirement. We firmly believe that TCM-IP is a very useful tool for the identification of active constituents of TCM and their involving potential molecular mechanism for therapeutics, which would wildly applied in quality evaluation, clinical repositioning, scientific discovery based on original thinking, prescription compatibility and new drug of TCM, et al. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Chakraborty, Tamal; Saha Misra, Iti
2016-03-01
Secondary Users (SUs) in a Cognitive Radio Network (CRN) face unpredictable interruptions in transmission due to the random arrival of Primary Users (PUs), leading to spectrum handoff or dropping instances. An efficient spectrum handoff algorithm, thus, becomes one of the indispensable components in CRN, especially for real-time communication like Voice over IP (VoIP). In this regard, this paper investigates the effects of spectrum handoff on the Quality of Service (QoS) for VoIP traffic in CRN, and proposes a real-time spectrum handoff algorithm in two phases. The first phase (VAST-VoIP based Adaptive Sensing and Transmission) adaptively varies the channel sensing and transmission durations to perform intelligent dropping decisions. The second phase (ProReact-Proactive and Reactive Handoff) deploys efficient channel selection mechanisms during spectrum handoff for resuming communication. Extensive performance analysis in analytical and simulation models confirms a decrease in spectrum handoff delay for VoIP SUs by more than 40% and 60%, compared to existing proactive and reactive algorithms, respectively and ensures a minimum 10% reduction in call-dropping probability with respect to the previous works in this domain. The effective SU transmission duration is also maximized under the proposed algorithm, thereby making it suitable for successful VoIP communication.
Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher
2005-08-01
Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.
NASA Astrophysics Data System (ADS)
Radev, Dimitar; Lokshina, Izabella
2010-11-01
The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.
From Fob to Noc: A Pathway to a Cyber Career for Combat Veterans
2014-06-01
Assurance Certifications GS general schedule HSAC Homeland Security Advisory Council IDS intrusion detection system IP internet protocol IPS...NIPRNET non-secure internet protocol router network NIST National Institute for Standards and Technology NOC network operations center NSA National...twice a day on an irregular schedule or during contact with the enemy to keep any observing enemy wary of the force protection 13 condition at any
Malicious Hubs: Detecting Abnormally Malicious Autonomous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalafut, Andrew J.; Shue, Craig A; Gupta, Prof. Minaxi
While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using 12 popular blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted and others account for large fractions of blacklisted IPs. Overall, we conclude that examining malicious activity at the AS granularity can unearth networks with lax security or thosemore » that harbor cybercrime.« less
Packet flow monitoring tool and method
Thiede, David R [Richland, WA
2009-07-14
A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.
Höland, W; Schweiger, M; Frank, M; Rheinberger, V
2000-01-01
The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Sevcik, L.; Uhrin, D.; Frnda, J.; Voznak, M.; Toral-Cruz, Homer; Mikulec, M.; Jakovlev, Sergej
2015-05-01
Nowadays, the interest in real-time services, like audio and video, is growing. These services are mostly transmitted over packet networks, which are based on IP protocol. It leads to analyses of these services and their behavior in such networks which are becoming more frequent. Video has become the significant part of all data traffic sent via IP networks. In general, a video service is one-way service (except e.g. video calls) and network delay is not such an important factor as in a voice service. Dominant network factors that influence the final video quality are especially packet loss, delay variation and the capacity of the transmission links. Analysis of video quality concentrates on the resistance of video codecs to packet loss in the network, which causes artefacts in the video. IPsec provides confidentiality in terms of safety, integrity and non-repudiation (using HMAC-SHA1 and 3DES encryption for confidentiality and AES in CBC mode) with an authentication header and ESP (Encapsulating Security Payload). The paper brings a detailed view of the performance of video streaming over an IP-based network. We compared quality of video with packet loss and encryption as well. The measured results demonstrated the relation between the video codec type and bitrate to the final video quality.
IP access networks with QoS support
NASA Astrophysics Data System (ADS)
Sargento, Susana; Valadas, Rui J. M. T.; Goncalves, Jorge; Sousa, Henrique
2001-07-01
The increasing demand of new services and applications is pushing for drastic changes on the design of access networks targeted mainly for residential and SOHO users. Future access networks will provide full service integration (including multimedia), resource sharing at the packet level and QoS support. It is expected that using IP as the base technology, the ideal plug-and-play scenario, where the management actions of the access network operator are kept to a minimum, will be achieved easily. This paper proposes an architecture for access networks based on layer 2 or layer 3 multiplexers that allows a number of simplifications in the network elements and protocols (e.g. in the routing and addressing functions). We discuss two possible steps in the evolution of access networks towards a more efficient support of IP based services. The first one still provides no QoS support and was designed with the goal of reusing as much as possible current technologies; it is based on tunneling to transport PPP sessions. The second one introduces QoS support through the use of emerging technologies and protocols. We illustrate the different phases of a multimedia Internet access session, when using SIP for session initiation, COPS for the management of QoS policies including the AAA functions and RSVP for resource reservation.
Globally altered structural brain network topology in grapheme-color synesthesia.
Hänggi, Jürgen; Wotruba, Diana; Jäncke, Lutz
2011-04-13
Synesthesia is a perceptual phenomenon in which stimuli in one particular modality elicit a sensation within the same or another sensory modality (e.g., specific graphemes evoke the perception of particular colors). Grapheme-color synesthesia (GCS) has been proposed to arise from abnormal local cross-activation between grapheme and color areas because of their hyperconnectivity. Recently published studies did not confirm such a hyperconnectivity, although morphometric alterations were found in occipitotemporal, parietal, and frontal regions of synesthetes. We used magnetic resonance imaging surface-based morphometry and graph-theoretical network analyses to investigate the topology of structural brain networks in 24 synesthetes and 24 nonsynesthetes. Connectivity matrices were derived from region-wise cortical thickness correlations of 2366 different cortical parcellations across the whole cortex and from 154 more common brain divisions as well. Compared with nonsynesthetes, synesthetes revealed a globally altered structural network topology as reflected by reduced small-worldness, increased clustering, increased degree, and decreased betweenness centrality. Connectivity of the fusiform gyrus (FuG) and intraparietal sulcus (IPS) was changed as well. Hierarchical modularity analysis revealed increased intramodular and intermodular connectivity of the IPS in GCS. However, connectivity differences in the FuG and IPS showed a low specificity because of global changes. We provide first evidence that GCS is rooted in a reduced small-world network organization that is driven by increased clustering suggesting global hyperconnectivity within the synesthetes' brain. Connectivity alterations were widespread and not restricted to the FuG and IPS. Therefore, synesthetic experience might be only one phenotypic manifestation of the globally altered network architecture in GCS.
Absence of visual experience modifies the neural basis of numerical thinking
Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina
2016-01-01
In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 − 12 = x vs. 7 − 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these “visual” regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness. PMID:27638209
Forward Tracking with the JLab/MEIC Detector Concept
NASA Astrophysics Data System (ADS)
Hyde, Charles; JLab/MEIC Design Team
2015-10-01
At a future electron ion collider (EIC), the quark-gluon structure of the NN force can be probed in e . g . deeply virtual exclusive scattering on a tensor polarized Deuteron and diffractive DIS on the deuteron with tagging of the NN final state. The MEIC design includes two Interaction Points (IPs), each of which can operate simultaneously at full luminosity. The detector and beam-line optics for IP1 are designed to be nearly hermetic for all particles outside the presumed 10-sigma admittance (longitudinal and transverse) of the figure-8 accelerator lattice. The integration of the IP1 detector with the lattice extends 40 m downstream of the IP in both the electron and ion directions. The central region of the detector is a new 4 m long 3 m diameter 3 Tesla solenoid. Analysis in the forward ion direction is enhanced by the 50 mrad crossing angle at the IP, and a two-stage spectrometer integrated into the first 36 m of the accelerator lattice. In this talk I will present the optics and resolution of the forward ion spectrometer, including resolution effects of an initial beam pipe design. Supported by U.S. Department of Energy.
A Real-Time System for Abusive Network Traffic Detection
2011-03-01
examine the spamming behavior at the network layer (IP layer) by correlating data collected from three sources: a sinkhole , a large e-mail provider, and...which spam originates • autonomous systems that sent spam messages to their sinkhole • BGP route announcements With respect to IP address space, their...applications or machines to communicate with each other. They exchange XML- formatted data [58] using the HTTP [59] protocol. Specifically, the client uses the
Evaluation of the Presentation of Network Data via Visualization Tools for Network Analysts
2014-03-01
A. (eds.) The Human Computer Interaction Handbook, pp.544–582. Lawrence Erlbaum Associates, Mawah, NJ, 2003. 4. Goodall , John R. Introduction to...of either display type being used in the analysis of cyber security tasks. Goodall (19) is one of few whose work focused on comparing user...relating source IP address to destination IP address and time, Goodall remains the only known approach comparing tabular and graphical displays
Secure Networks for First Responders and Special Forces
NASA Technical Reports Server (NTRS)
2005-01-01
When NASA needed help better securing its communications with orbiting satellites, the Agency called on Western DataCom Co., Inc., to help develop a prototype Internet Protocol (IP) router. Westlake, Ohio-based Western DataCom designs, develops, and manufactures hardware that secures voice, video, and data transmissions over any IP-based network. The technology that it jointly developed with NASA is now serving as a communications solution in military and first-response situations.
Airpower In The Information Age: Embracing TCP/IP Within Airborne Networks
2015-04-01
proved successful at seamlessly connecting large numbers of users to a vast array of applications. Airborne TCP/IP communication systems within DoD are...behind the development of next generation weapons systems. Admiral Fitzgerald recommends that the network architecture be developed and the...environment makes traditional ISR much more difficult and the military will need to rely on fifth- generation platforms like the F-35 that are able to
DDN (Defense Data Network) Protocol Implementations and Vendors Guide,
1988-02-01
TELNET) TCP/IP on an ethernet network. The program simulates a Hayes modem through the serial port. BWFTP is a thorough implementation of the FTP...25 IMP interface at VV from 19.2 Kbps to 56K bps. The IP, ICMP, TCP, Telnet. FFP and SMTP protocols are implemented along with R-Utxities...WANs. microcomputers, dataswitches. minicomputers. "black boxes" and modems . DOCUMENTATION: Software System Overview, Generic X.25 Porting Guide
Network Configuration Analysis for Formation Flying Satellites
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.
2001-01-01
The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea
2012-07-02
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less
Computer Networks and Networking: A Primer.
ERIC Educational Resources Information Center
Collins, Mauri P.
1993-01-01
Provides a basic introduction to computer networks and networking terminology. Topics addressed include modems; the Internet; TCP/IP (Transmission Control Protocol/Internet Protocol); transmission lines; Internet Protocol numbers; network traffic; Fidonet; file transfer protocol (FTP); TELNET; electronic mail; discussion groups; LISTSERV; USENET;…
Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion.
Yamamoto, Yasunori; Yoshida, Asuka; Miyazaki, Naoyuki; Iwasaki, Kenji; Sakisaka, Toshiaki
2014-02-15
The ER (endoplasmic reticulum) consists of the nuclear envelope and a peripheral network of membrane sheets and tubules. Two classes of the evolutionarily conserved ER membrane proteins, reticulons and REEPs (receptor expression-enhancing proteins)/DP1 (deleted in polyposis locus 1)/Yop1 (YIP 1 partner), shape high-curvature ER tubules. In mammals, four members of the reticulon family and six members of the REEP family have been identified so far. In the present paper we report that Arl6IP1(ADP-ribosylation factor-like 6 interacting protein 1), an anti-apoptotic protein specific to multicellular organisms, is a potential player in shaping the ER tubules in mammalian cells. Arl6IP1, which does not share an overall primary sequence homology with reticulons, harbours reticulon-like short hairpin transmembrane domains and binds to atlastin, a GTPase that mediates the formation of the tubular ER network. Overexpression of Arl6IP1 induced extensive tubular structures of the ER and excluded a luminal protein. Furthermore, overexpression of Arl6IP1 stabilized the ER tubules, allowing the cells to maintain the ER tubules even in the absence of microtubules. Arl6IP1 constricted liposomes into tubules. The short hairpin structures of the transmembrane domains were required for the membrane-shaping activity of Arl6IP1. The results of the present study indicate that Arl6IP1 has the ability to shape high-curvature ER tubules in a reticulon-like fashion.
IP Network Design and Implementation for the Caltech-USGS Element of TriNet
NASA Astrophysics Data System (ADS)
Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.
2001-12-01
The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are sometimes referred to as group "12". LANs with IP addresses of 10.23.0.0/24 have T1-2 as the primary circuit, and T1-3 as the alternate circuit. Static routes on the acquisition system are used to direct traffic through the primary T1. The network can operate in one of three modes. The most common and desirable mode is "normal", where all three T1's are operational and Caltech has both a primary and secondary central acquisition system running. The second mode is a "failover", where the primary acquisition system is down (due to maintenance or failure) and the secondary acquisition system assumes the primary role. This includes sending acknowledgments to dataloggers and multicasts to the rest of the network. The third mode is a circuit detour. The port numbers on the central acquisition system for the dataloggers on the failed T1 are changed to match the auxiliary ports on the dataloggers. This allows for the auxiliary ports on the dataloggers to receive acknowledgements from the acquiring system through the detoured circuit. The static routes on the system are changed to go through the detoured circuit as specified by the group's IP numbers. At this point the two working T1's will be running at full capacity but the data acquisition will continue with minimal interruption while the third T1 is being restored. The primary acquisition computer continues to listen for data on the failed T1 should things improve spontaneously.
ACTS 118x: High Speed TCP Interoperability Testing
NASA Technical Reports Server (NTRS)
Brooks, David E.; Buffinton, Craig; Beering, Dave R.; Welch, Arun; Ivancic, William D.; Zernic, Mike; Hoder, Douglas J.
1999-01-01
With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer over satellite links using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The NASA's ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine to what extent the protocol can be optimized over a 622 Mbps satellite link. Through partnerships with the government technology oriented labs, computer, telecommunication, and satellite industries NASA Glenn was able to: (1) promote the development of interoperable, high-performance TCP/IP implementations across multiple computing / operating platforms; (2) work with the satellite industry to answer outstanding questions regarding the use of standard protocols (TCP/IP and ATM) for the delivery of advanced data services, and for use in spacecraft architectures; and (3) conduct a series of TCP/IP interoperability tests over OC12 ATM over a satellite network in a multi-vendor environment using ACTS. The experiments' various network configurations and the results are presented.
Duncan, R G; Shabot, M M
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR).
Duncan, R. G.; Shabot, M. M.
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR). PMID:11079875
Research into alternative network approaches for space operations
NASA Technical Reports Server (NTRS)
Kusmanoff, Antone L.; Barton, Timothy J.
1990-01-01
The main goal is to resolve the interoperability problem of applications employing DOD TCP/IP (Department of Defence Transmission Control Protocol/Internet Protocol) family of protocols on a CCITT/ISO based network. The objective is to allow them to communicate over the CCITT/ISO protocol GPLAN (General Purpose Local Area Network) network without modification to the user's application programs. There were two primary assumptions associated with the solution that was actually realized. The first is that the solution had to allow for future movement to the exclusive use of the CCITT/ISO standards. The second is that the solution had to be software transparent to the currently installed TCP/IP and CCITT/ISO user application programs.
Spacewire router IP-core with priority adaptive routing
NASA Astrophysics Data System (ADS)
Shakhmatov, A. V.; Chekmarev, S. A.; Vergasov, M. Y.; Khanov, V. Kh
2015-10-01
Design of modern spacecraft focuses on using network principles of interaction on-board equipment, in particular in network SpaceWire. Routers are an integral part of most SpaceWire networks. The paper presents an adaptive routing algorithm with a prioritization, allowing more flexibility to manage the routing process. This algorithm is designed to transmit SpaceWire packets over a redundant network. Also a method is proposed for rapid restoration of working capacity after power by saving the routing table and the router configuration in an external non-volatile memory. The proposed solutions used to create IP-core router, and then tested in the FPGA device. The results illustrate the realizability and rationality of the proposed solutions.
Distributed Grooming in Multi-Domain IP/MPLS-DWDM Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qing
2009-12-01
This paper studies distributed multi-domain, multilayer provisioning (grooming) in IP/MPLS-DWDM networks. Although many multi-domain studies have emerged over the years, these have primarily considered 'homogeneous' network layers. Meanwhile, most grooming studies have assumed idealized settings with 'global' link state across all layers. Hence there is a critical need to develop practical distributed grooming schemes for real-world networks consisting of multiple domains and technology layers. Along these lines, a detailed hierarchical framework is proposed to implement inter-layer routing, distributed grooming, and setup signaling. The performance of this solution is analyzed in detail using simulation studies and future work directions are alsomore » high-lighted.« less
NASA Technical Reports Server (NTRS)
Shepard, Timothy J.; Partridge, Craig; Coulter, Robert
1997-01-01
The designers of the TCP/IP protocol suite explicitly included support of satellites in their design goals. The goal of the Internet Project was to design a protocol which could be layered over different networking technologies to allow them to be concatenated into an internet. The results of this project included two protocols, IP and TCP. IP is the protocol used by all elements in the network and it defines the standard packet format for IP datagrams. TCP is the end-to-end transport protocol commonly used between end systems on the Internet to derive a reliable bi-directional byte-pipe service from the underlying unreliable IP datagram service. Satellite links are explicitly mentioned in Vint Cerf's 2-page article which appeared in 1980 in CCR [2] to introduce the specifications for IP and TCP. In the past fifteen years, TCP has been demonstrated to work over many differing networking technologies, including over paths including satellites links. So if satellite links were in the minds of the designers from the beginning, what is the problem? The problem is that the performance of TCP has in some cases been disappointing. A goal of the authors of the original specification of TCP was to specify only enough behavior to ensure interoperability. The specification left a number of important decisions, in particular how much data is to be sent when, to the implementor. This was deliberately' done. By leaving performance-related decisions to the implementor, this would allow the protocol TCP to be tuned and adapted to different networks and situations in the future without the need to revise the specification of the protocol, or break interoperability. Interoperability would continue while future implementations would be allowed flexibility to adapt to needs which could not be anticipated at the time of the original protocol design.
Application of Mobile-ip to Space and Aeronautical Networks
NASA Technical Reports Server (NTRS)
Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.
2001-01-01
The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.
Vaccines and IP Rights: A Multifaceted Relationship.
Durell, Karen
2016-01-01
Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.
Blacklist Ecosystem Analysis Update: 2014
2014-12-01
example, we checked to see if any of the blacklisted IP addresses were known sinkhole IP addresses. This information would essentially invalidate the...indicator as an indicator of malicious activity, since sinkholes are operated by CERTCC-2014-82 4 Blacklist Ecosystem Analysis CERT/CC network defenders who...clean up and collect intelligence on threats. Only one list out of 67, LI_3, contained any sinkhole IP addresses and that list contained only 10. All
Evaluating the Effectiveness of IP Hopping via an Address Routing Gateway
2013-03-01
37 DARPA Defense Advanced Research Projects Agency . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DHCP Dynamic Host...Protocol ( DHCP ) to force the changes. Through the use of a slightly intelligent DHCP server that leases IPs for a only a short time frame (on the order of...tens of minutes) and only offers IPs that have not been used recently, most networks already using DHCP can quickly change to a randomized scheme. This
First-principles real-space study of electronic and optical excitations in rutile TiO 2 nanocrystals
Hung, Linda; Baishya, Kopinjol; Öğüt, Serdar
2014-10-17
We model rutile titanium dioxide nanocrystals (NCs) up to ~1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G 0W 0) and ΔSCF method for NCs up to 24 and 64 TiO 2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs upmore » to 64 TiO 2 units. For a NC containing only 2 TiO 2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G 0W 0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G 0W 0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Finally, altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO 2 NCs of subnanometer size.« less
First-principles real-space study of electronic and optical excitations in rutile TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Hung, Linda; Baishya, Kopinjol; Ã-ǧüt, Serdar
2014-10-01
We model rutile titanium dioxide nanocrystals (NCs) up to ˜1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G0W0) and ΔSCF method for NCs up to 24 and 64 TiO2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs up to 64 TiO2 units. For a NC containing only 2 TiO2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G0W0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G0W0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO2 NCs of subnanometer size.
Forwarding techniques for IP fragmented packets in a real 6LoWPAN network.
Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi
2011-01-01
Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under.
Forwarding Techniques for IP Fragmented Packets in a Real 6LoWPAN Network
Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi
2011-01-01
Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under. PMID:22346615
Remote Memory Access Protocol Target Node Intellectual Property
NASA Technical Reports Server (NTRS)
Haddad, Omar
2013-01-01
The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.
100G Ethernet in the wild - first experiences
NASA Astrophysics Data System (ADS)
Hoeft, Bruno; Stoy, Robert; Schröder, Frank; Reymund, Aurelie; Niederberger, Ralf; Mextorf, Olaf; Werner, Sabine
2011-12-01
A 100 Gigabit Testbed was established in a collaboration of 6 partners. Three industry partners have contributed the fiber infrastructure, the DWDM equipment, as well as the required routers. 447 kilometer was the distance of the wide area testbed established in collaboration with the German NREN DFN between Karlsruhe Institute of Technology and Forschungszentrum Jülich Before starting, DFN assured the quality of the fiber infrastructure, the operation of the DWDM systems at both locations, as well as the connection of the routers to this WAN link with a bandwidth of 100GE. 12*10GE interfaces were available at each site for connecting the local testnodes to the routers. A monitoring and measurement framework was installed for recording the most important IP network performance metrics, among them the One Way Delay (OWD) and its Variation, Packet Loss and Packet Reordering. The delay measurements were conducted between the GPS time synchronized Hades[1]measurement nodes at each location. Additionally all relevant counters at the routers have been recorded using a SNMP based Network Manangement Station and supplemented special command line interface output gathering and parsing scripts. The interfaces statistics were stored in 60 second intervals. The aim of the testbed was to demonstrate a failure-free transmission of one or more IP datastreams over 100GE during the whole period of 4 weeks.This included the evaluation of the 100 Gbit/s optical transmission system, the 100GE interfaces between the routers and the optical system, and the evaluation of a sustained 100GE transmission as well as the evaluation of the use of 100GE in a production like environment. The evaluation included a circulated (in a routing loop) tunable load between 1 and 100 Gbit/s, measurement of transmission quality of TCP and UDP datastreams between the endsystems, measurements of one way latency, a ramping up data transmission from approx. 8 Gbit/s up to 96 Gbit/s.
LAN attack detection using Discrete Event Systems.
Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar
2011-01-01
Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harshaw, Chris R; Bridges, Robert A; Iannacone, Michael D
This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called \\textit{GraphPrints}. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets\\textemdash small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84\\% at the time-interval level, and 0.05\\% at the IP-level with 100\\% truemore » positive rates at both.« less
Client/Server data serving for high performance computing
NASA Technical Reports Server (NTRS)
Wood, Chris
1994-01-01
This paper will attempt to examine the industry requirements for shared network data storage and sustained high speed (10's to 100's to thousands of megabytes per second) network data serving via the NFS and FTP protocol suite. It will discuss the current structural and architectural impediments to achieving these sorts of data rates cost effectively today on many general purpose servers and will describe and architecture and resulting product family that addresses these problems. The sustained performance levels that were achieved in the lab will be shown as well as a discussion of early customer experiences utilizing both the HIPPI-IP and ATM OC3-IP network interfaces.
Mupparapu, Muralidhar
2008-03-01
Voice over Internet protocol (VoIP) is a revolutionary new technology that is causing a stir in the telecommunications industry and threatening the existence of traditional telephone service providers. Based on a simple method of converting analog audio signals into digital data before being transmitted over the Internet, VoIP has gained immense popularity among consumers. The technology is now regarded as an alternative to traditional telephone service for the orthodontic office. When the economics are considered, it is cost-effective, especially for a busy orthodontic practice where the call volumes both in and out are always high. VoIP has the potential to reduce costs, break the barriers between local vs long-distance calling, and make life easier for the office staff. However, deploying VoIP requires a cautious and thought-out process. Users should fully understand the risks and benefits before switching from the public switched telephone network. VoIP customers and service providers are vulnerable to many of the same impersonation-based attacks by those who attempt toll fraud, and identity and information theft. In this article, VoIP is introduced to orthodontic practitioners, who might be unfamiliar with this technology. Internet protocol based private branch exchange systems that are currently marketed as open-source technologies are also reviewed. Additionally, VoIP is compared with the traditional public switched telephone network technology and evaluated for its potential applications in an orthodontic office for both increased efficiency and cost savings.
Implementation of evidence-based supported employment in regional Australia.
Morris, Adrienne; Waghorn, Geoffrey; Robson, Emma; Moore, Lyndell; Edwards, Emma
2014-06-01
To implement the Individual Placement and Support (IPS) approach at 4 locations in regional New South Wales, Australia. Outcomes attained were compared with a national non-IPS program and with international trials of IPS within and outside the United States. Four IPS programs were established through formal partnerships between mental health services and disability employment services. Ninety-five mental health service clients commenced employment assistance and were tracked for a minimum of 12 months. Two sites achieved good fidelity to IPS principles, and 2 sites achieved fair fidelity. IPS clients had 3.5 times greater odds of attaining 13 weeks' employment than those receiving assistance in the national network of disability employment services. Implementing IPS is challenging in the Australian service delivery context. Factors other than program fidelity appear to contribute to excellent employment outcomes. Further research is needed to identify these factors.
NASA Astrophysics Data System (ADS)
Zhuge, Qunbi; Chen, Xi
2018-02-01
Global IP traffic is predicted to increase nearly threefold over the next 5 years, driven by emerging high-bandwidth-demanding applications, such as cloud computing, 5G wireless, high-definition video streaming, and virtual reality. This results in a continuously increasing demand on the capacity of backbone optical networks. During the past decade, advanced digital signal processing (DSP), modulation formats, and forward error correction (FEC) were commercially realized to exploit the capacity potential of long-haul fiber channels, and have increased per channel data rate from 10 Gb/s to 400 Gb/s. DSP has played a crucial role in coherent transceivers to accommodate channel impairments including chromatic dispersion (CD), polarization mode dispersion (PMD), laser phase noise, fiber nonlinearities, clock jitter, and so forth. The advance of DSP has also enabled innovations in modulation formats to increase spectral efficiency, improve linear/nonlinear noise tolerance, and realize flexible bandwidth. Moving forward to next generation 1 Tb/s systems on conventional single mode fiber (SMF) platform, more innovations in DSP techniques are needed to further reduce cost per bit, increase network efficiency, and close the gap to the Shannon limit. To further increase capacity per fiber, spatial-division multiplexing (SDM) systems can be used. DSP techniques such as advanced channel equalization methods and distortion compensation can help SDM systems to achieve higher system capacity. In the area of short-reach transmission, the rapid increase of data center network traffic has driven the development of optical technologies for both intra- and inter-data center interconnects (DCI). In particular, DSP has been exploited in intensity-modulation direct detection (IM/DD) systems to realize 400 Gb/s pluggable optical transceivers. In addition, multi-dimensional direct detection modulation schemes are being investigated to increase the data rate per wavelength targeting 1 Tb/s interface.
Internet over the VDL-2 Subnetwork: the VDL-2/IP Aviation Datalink System
NASA Technical Reports Server (NTRS)
Grappel, R. D.
2000-01-01
This report describes the design to operate the standard Internet communications protocols (IP) over the VHF aviation Data Link Mode 2 (VDL-2) subnetwork. The VDL-2/IP system specified in this report can operate transparently with the current aviation users of VDL-2 (Airline Communications and Reporting System, ACARS and Aeronautical Telecommunications Network, ATN) and proposed users (Flight Information Service via Broadcast, FIS-B). The VDL-2/IP system provides a straightforward mechanisms to utilize inexpensive, commercial off-the-shelf (COTS) communications packages developed for the Internet as part of the aviation datalink system.
NASA Astrophysics Data System (ADS)
Hutchinson, Steve; Erbacher, Robert F.
2015-05-01
Network security monitoring is currently challenged by its reliance on human analysts and the inability for tools to generate indications and warnings for previously unknown attacks. We propose a reputation system based on IP address set membership within the Autonomous System Number (ASN) system. Essentially, a metric generated based on the historic behavior, or misbehavior, of nodes within a given ASN can be used to predict future behavior and provide a mechanism to locate network activity requiring inspection. This will provide reinforcement of notifications and warnings and lead to inspection for ASNs known to be problematic even if initial inspection leads to interpretation of the event as innocuous. We developed proof of concept capabilities to generate the IP address to ASN set membership and analyze the impact of the results. These results clearly show that while some ASNs are one-offs with individual or small numbers of misbehaving IP addresses, there are definitive ASNs with a history of long term and wide spread misbehaving IP addresses. These ASNs with long histories are what we are especially interested in and will provide an additional correlation metric for the human analyst and lead to new tools to aid remediation of these IP address blocks.
Improving Service Management in the Internet of Things
Sammarco, Chiara; Iera, Antonio
2012-01-01
In the Internet of Things (IoT) research arena, many efforts are devoted to adapt the existing IP standards to emerging IoT nodes. This is the direction followed by three Internet Engineering Task Force (IETF) Working Groups, which paved the way for research on IP-based constrained networks. Through a simplification of the whole TCP/IP stack, resource constrained nodes become direct interlocutors of application level entities in every point of the network. In this paper we analyze some side effects of this solution, when in the presence of large amounts of data to transmit. In particular, we conduct a performance analysis of the Constrained Application Protocol (CoAP), a widely accepted web transfer protocol for the Internet of Things, and propose a service management enhancement that improves the exploitation of the network and node resources. This is specifically thought for constrained nodes in the abovementioned conditions and proves to be able to significantly improve the node energetic performance when in the presence of large resource representations (hence, large data transmissions).
Using the ACR/NEMA standard with TCP/IP and Ethernet
NASA Astrophysics Data System (ADS)
Chimiak, William J.; Williams, Rodney C.
1991-07-01
There is a need for a consolidated picture archival and communications system (PACS) in hospitals. At the Bowman Gray School of Medicine of Wake Forest University (BGSM), the authors are enhancing the ACR/NEMA Version 2 protocol using UNIX sockets and TCP/IP to greatly improve connectivity. Initially, nuclear medicine studies using gamma cameras are to be sent to PACS. The ACR/NEMA Version 2 protocol provides the functionality of the upper three layers of the open system interconnection (OSI) model in this implementation. The images, imaging equipment information, and patient information are then sent in ACR/NEMA format to a software socket. From there it is handed to the TCP/IP protocol, which provides the transport and network service. TCP/IP, in turn, uses the services of IEEE 802.3 (Ethernet) to complete the connectivity. The advantage of this implementation is threefold: (1) Only one I/O port is consumed by numerous nuclear medicine cameras, instead of a physical port for each camera. (2) Standard protocols are used which maximize interoperability with ACR/NEMA compliant PACSs. (3) The use of sockets allows a migration path to the transport and networking services of OSIs TP4 and connectionless network service as well as the high-performance protocol being considered by the American National Standards Institute (ANSI) and the International Standards Organization (ISO) -- the Xpress Transfer Protocol (XTP). The use of sockets also gives access to ANSI's Fiber Distributed Data Interface (FDDI) as well as other high-speed network standards.
Current status of the UCSF second-generation PACS
NASA Astrophysics Data System (ADS)
Huang, H. K.; Arenson, Ronald L.; Wong, Albert W. K.; Bazzill, Todd M.; Lou, Shyhliang A.; Andriole, Katherine P.; Wang, Jun; Zhang, Jianguo; Wong, Stephen T. C.
1996-05-01
This paper describes the current status of the second generation PACS at UCSF commenced in October 1992. The UCSF PACS is designed in-house as a hospital-integrated PACS based on an open architecture concept using industrial standards including UNIX operating system, C programming language, X-Window user interface, TCP/IP communication protocol, DICOM 3.0 image standard and HL7 health data format. Other manufacturer's PACS components which conform with these standards can be easily integrated into the system. Relevant data from HIS and RIS is automatically incorporated into the PACS using HL7 data format and TCP/IP communication protocol. The UCSF system also takes advantage of state-of-the-art communication, storage, and software technologies in ATM, multiple storage media, automatic programming, multilevel processes for a better cost-performance system. The primary PACS network is the 155 Mbits/sec OC3 ATM with the Ethernet as the back-up. The UCSF PACS also connects Mt. Zion Hospital and San Francisco VA Medical Center in the San Francisco Bay area via an ATM wide area network with a T1 line as the back-up. Currently, five MR and five CT scanners from multiple sites, two computed radiography systems, two film digitizers, one US PACS module, the hospital HIS and the department RIS have been connected to the PACS network. The image data is managed by a mirrored database (Sybase). The PACS controller, with its 1.3 terabyte optical disk library, acquires 2.5 gigabytes digital data daily. Four 2K, five, 1,600-line multiple monitor display workstations are on line in neuroradiology, pediatric radiology and intensive care units for clinical use. In addition, the PACS supports over 100 Macintosh users in the department and selected hospital sites for both images and textual retrieval through a client/server mechanism. We are also developing a computation and visualization node in the PACS network for advancing radiology research.
Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David
2003-09-01
As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less
Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd
NASA Astrophysics Data System (ADS)
Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes; Fox, Ori D.; Morrell, Nidia; Phillips, M. M.; Sollerman, Jesper; Anderson, J. P.; Boldt, Luis; Brown, Peter J.; Campillay, Abdo; Castellon, Sergio; Contreras, Carlos; Folatelli, Gastón; Habergham, S. M.; Hamuy, Mario; Hjorth, Jens; James, Phil A.; Krzeminski, Wojtek; Mattila, Seppo; Persson, Sven E.; Roth, Miguel
2012-09-01
We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including (1) remarkably similar early- and late-phase optical spectra, (2) a variety of high-ionization coronal lines, (3) long-duration optical and near-IR emission, and (4) evidence of cold and warm dust components. However, diversity is apparent, including an unprecedented late-time r-band excess in SN 2006jd. The observed differences are attributed to differences between the mass-loss history of the progenitor stars. We conclude that the progenitor of SN 2006jd likely experienced a significant mass-loss event during its pre-SN evolution akin to the great 19th century eruption of η Carinae. Contrarily, as advocated by Smith et al., the circumstellar environment of SN 2005ip is found to be more consistent with a clumpy wind progenitor. This paper includes data gathered with the 6.5 m Magellan Telescopes, located at Las Campanas Observatory, Chile; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q-67, PI: Stritzinger); the ESO NTT, La Silla, Chile (Program 076.A-0156 and 078.D-0048, PI: Hamuy); and the INT and the NOT (Proposal number 45 - 004, PI: Taddia), La Palma, Spain.
Bartés-Serrallonga, M; Adan, A; Solé-Casals, J; Caldú, X; Falcón, C; Pérez-Pàmies, M; Bargalló, N; Serra-Grabulosa, J M
2014-04-01
One of the most used paradigms in the study of attention is the Continuous Performance Test (CPT). The identical pairs version (CPT-IP) has been widely used to evaluate attention deficits in developmental, neurological and psychiatric disorders. However, the specific locations and the relative distribution of brain activation in networks identified with functional imaging, varies significantly with differences in task design. To design a task to evaluate sustained attention using functional magnetic resonance imaging (fMRI), and thus to provide data for research concerned with the role of these functions. Forty right-handed, healthy students (50% women; age range: 18-25 years) were recruited. A CPT-IP implemented as a block design was used to assess sustained attention during the fMRI session. The behavioural results from the CPT-IP task showed a good performance in all subjects, higher than 80% of hits. fMRI results showed that the used CPT-IP task activates a network of frontal, parietal and occipital areas, and that these are related to executive and attentional functions. In relation to the use of the CPT to study of attention and working memory, this task provides normative data in healthy adults, and it could be useful to evaluate disorders which have attentional and working memory deficits.
Audio CAPTCHA for SIP-Based VoIP
NASA Astrophysics Data System (ADS)
Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris
Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.
INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Vasiliy; Derbenev, Yaroslav; Lin, Fanglei
2016-05-01
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required tomore » allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.« less
Safety management of Ethernet broadband access based on VLAN aggregation
NASA Astrophysics Data System (ADS)
Wang, Li
2004-04-01
With broadband access network development, the Ethernet technology is more and more applied access network now. It is different from the private network -LAN. The differences lie in four points: customer management, safety management, service management and count-fee management. This paper mainly discusses the safety management related questions. Safety management means that the access network must secure the customer data safety, isolate the broad message which brings the customer private information, such as ARP, DHCP, and protect key equipment from attack. Virtue LAN (VLAN) technology can restrict network broadcast flow. We can config each customer port with a VLAN, so each customer is isolated with others. The IP address bound with VLAN ID can be routed rightly. But this technology brings another question: IP address shortage. VLAN aggregation technology can solve this problem well. Such a mechanism provides several advantages over traditional IPv4 addressing architectures employed in large switched LANs today. With VLAN aggregation technology, we introduce the notion of sub-VLANs and super-VLANs, a much more optimal approach to IP addressing can be realized. This paper will expatiate the VLAN aggregation model and its implementation in Ethernet access network. It is obvious that the customers in different sub-VLANs can not communication to each other because the ARP packet is isolated. Proxy ARP can enable the communication among them. This paper will also expatiate the proxy ARP model and its implementation in Ethernet access network.
Triage Visualization for Digital Media Exploitation
2013-09-01
and responding to threats. Previous work includes NVisionIP [17], a network visualization 8 tool that processes Argus NetFlow [18] data. NVisionIP...2012.02.021 [17] K. Lakkaraju et al., “Nvisionip: netflow visualizations of system state for security situational awareness,” in Proceedings of the 2004 ACM
Strategy for Developing Expert-System-Based Internet Protocols (TCP/IP)
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1997-01-01
The Satellite Networks and Architectures Branch of NASA's Lewis Research is addressing the issue of seamless interoperability of satellite networks with terrestrial networks. One of the major issues is improving reliable transmission protocols such as TCP over long latency and error-prone links. Many tuning parameters are available to enhance the performance of TCP including segment size, timers and window sizes. There are also numerous congestion avoidance algorithms such as slow start, selective retransmission and selective acknowledgment that are utilized to improve performance. This paper provides a strategy to characterize the performance of TCP relative to various parameter settings in a variety of network environments (i.e. LAN, WAN, wireless, satellite, and IP over ATM). This information can then be utilized to develop expert-system-based Internet protocols.
Distributed Communications Resource Management for Tracking and Surveillance Networks
2005-08-01
Principles of Economics , Ludwig von Mises Institute, Auburn, AL, 2004. 13. J. Wang, L. Li, S. H. Low and J. C. Doyle, “Cross-layer Optimization in TCP/IP Networks,” IEEE/ACM Trans. on Networking, 2005, to appear.
2003-04-01
usage times. End users may range from today’s typical users, such as home and business users, to futuristic users such as automobiles , appliances, hand...has the ability to drop a reprogrammable quantity of wavelengths into the node. The second technological requirement is a protocol that automatically...goal of the R-OADM is to have the ability to drop a reprogrammable number of wavelengths. If it is determined that at peak usage the node must receive M
NASA Astrophysics Data System (ADS)
Elgamri, Abdelghafor
The increased demand from IP traffic, video application and cell backhaul has placed fiber routes under severe stains. The high demands for large bandwidth from enormous numbers from cell sites on a network made the capacity of yesterday's networks not adequate for today's bandwidth demand. Carries considered Dense Wavelength Division Multiplexing (DWDM) network to overcome this issue. Recently, there has been growing interest in fiber Raman amplifiers due to their capability to upgrade the wavelength-division-multiplexing bandwidth, arbitrary gain bandwidth. In addition, photonic crystal fibers have been widely modeled, studied, and fabricated due to their peculiar properties that cannot be achieved with conventional fibers. The focus of this thesis is to develop a low-noise broadband Raman amplification system based on photonic crystal Fiber that can be implemented in high capacity DWDM network successfully. The design a module of photonic crystal fiber Raman amplifier is based on the knowledge of the fiber cross-sectional characteristics i.e. the geometric parameters and the Germania concentration in the dope area. The module allows to study different air-hole dimension and disposition, with or without a central doped area. In addition the design integrates distributed Raman amplifier and nonlinear optical loop mirror to improve the signal to noise ratio and overall gain in large capacity DWDM networks.
Exploring biological interaction networks with tailored weighted quasi-bicliques
2012-01-01
Background Biological networks provide fundamental insights into the functional characterization of genes and their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces many algorithmic challenges. Results We introduce novel weighted quasi-biclique problems to identify functional modules in biological networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-hard, we also describe IP formulations to compute exact solutions for moderately sized networks. Conclusions We verify the effectiveness of our IP solutions using both simulation and empirical data. The simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted quasi-bicliques in extracting features and recovering missing interactions from biological networks. PMID:22759421
NASA Technical Reports Server (NTRS)
Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric
2005-01-01
This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.
Neural Mechanisms Underlying the Computation of Hierarchical Tree Structures in Mathematics
Nakai, Tomoya; Sakai, Kuniyoshi L.
2014-01-01
Whether mathematical and linguistic processes share the same neural mechanisms has been a matter of controversy. By examining various sentence structures, we recently demonstrated that activations in the left inferior frontal gyrus (L. IFG) and left supramarginal gyrus (L. SMG) were modulated by the Degree of Merger (DoM), a measure for the complexity of tree structures. In the present study, we hypothesize that the DoM is also critical in mathematical calculations, and clarify whether the DoM in the hierarchical tree structures modulates activations in these regions. We tested an arithmetic task that involved linear and quadratic sequences with recursive computation. Using functional magnetic resonance imaging, we found significant activation in the L. IFG, L. SMG, bilateral intraparietal sulcus (IPS), and precuneus selectively among the tested conditions. We also confirmed that activations in the L. IFG and L. SMG were free from memory-related factors, and that activations in the bilateral IPS and precuneus were independent from other possible factors. Moreover, by fitting parametric models of eight factors, we found that the model of DoM in the hierarchical tree structures was the best to explain the modulation of activations in these five regions. Using dynamic causal modeling, we showed that the model with a modulatory effect for the connection from the L. IPS to the L. IFG, and with driving inputs into the L. IFG, was highly probable. The intrinsic, i.e., task-independent, connection from the L. IFG to the L. IPS, as well as that from the L. IPS to the R. IPS, would provide a feedforward signal, together with negative feedback connections. We indicate that mathematics and language share the network of the L. IFG and L. IPS/SMG for the computation of hierarchical tree structures, and that mathematics recruits the additional network of the L. IPS and R. IPS. PMID:25379713
Use and Effectiveness of Intraperitoneal Chemotherapy for Treatment of Ovarian Cancer
Wright, Alexi A.; Cronin, Angel; Milne, Dana E.; Bookman, Michael A.; Burger, Robert A.; Cohn, David E.; Cristea, Mihaela C.; Griggs, Jennifer J.; Keating, Nancy L.; Levenback, Charles F.; Mantia-Smaldone, Gina; Matulonis, Ursula A.; Meyer, Larissa A.; Niland, Joyce C.; Weeks, Jane C.; O'Malley, David M.
2015-01-01
Purpose A 2006 randomized trial demonstrated a 16-month survival benefit with intraperitoneal and intravenous (IP/IV) chemotherapy administered to patients who had ovarian cancer, compared with IV chemotherapy alone, but more treatment-related toxicities. The objective of this study was to examine the use and effectiveness of IP/IV chemotherapy in clinical practice. Patients and Methods Prospective cohort study of 823 women with stage III, optimally cytoreduced ovarian cancer diagnosed at six National Comprehensive Cancer Network institutions. We examined IP/IV chemotherapy use in all patients diagnosed between 2003 and 2012 (N = 823), and overall survival and treatment-related toxicities with Cox regression and logistic regression, respectively, in a propensity score–matched sample (n = 402) of patients diagnosed from 2006 to 2012, excluding trial participants, to minimize selection bias. Results Use of IP/IV chemotherapy increased from 0% to 33% between 2003 and 2006, increased to 50% from 2007 to 2008, and plateaued thereafter. Between 2006 and 2012, adoption of IP/IV chemotherapy varied by institution from 4% to 67% (P < .001) and 43% of patients received modified IP/IV regimens at treatment initiation. In the propensity score–matched sample, IP/IV chemotherapy was associated with significantly improved overall survival (3-year overall survival, 81% v 71%; hazard ratio, 0.68; 95% CI, 0.47 to 0.99), compared with IV chemotherapy, but also more frequent alterations in chemotherapy delivery route (adjusted rates discontinuation or change, 20.4% v 10.0%; adjusted odds ratio, 2.83; 95% CI, 1.47 to 5.47). Conclusion Although the use of IP/IV chemotherapy increased significantly at National Comprehensive Cancer Network centers between 2003 and 2012, fewer than 50% of eligible patients received it. Increasing IP/IV chemotherapy use in clinical practice may be an important and underused strategy to improve ovarian cancer outcomes. PMID:26240233
Client Location in 802.11 Networks
2007-03-01
The Encyclopedia of Networking. 1995. Alameda. 3. Forouzan, Behrouz A. TCP/IP Protocol Suite. 2nd ed. New York: Mc- Graw Hill, 2003. 4. Holt, Keith...Proceedings. April 2003: 1353-1358. 18. Willingham, Stephen . Navy Pursuing ‘Smaller, Deployable, Interactive’ Networked Systems. Nov 2000. National
All-IP-Ethernet architecture for real-time sensor-fusion processing
NASA Astrophysics Data System (ADS)
Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya
2016-03-01
Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.
The inadvertent disclosure of personal health information through peer-to-peer file sharing programs
Neri, Emilio; Jonker, Elizabeth; Sokolova, Marina; Peyton, Liam; Neisa, Angelica; Scassa, Teresa
2010-01-01
Objective There has been a consistent concern about the inadvertent disclosure of personal information through peer-to-peer file sharing applications, such as Limewire and Morpheus. Examples of personal health and financial information being exposed have been published. We wanted to estimate the extent to which personal health information (PHI) is being disclosed in this way, and compare that to the extent of disclosure of personal financial information (PFI). Design After careful review and approval of our protocol by our institutional research ethics board, files were downloaded from peer-to-peer file sharing networks and manually analyzed for the presence of PHI and PFI. The geographic region of the IP addresses was determined, and classified as either USA or Canada. Measurement We estimated the proportion of files that contain personal health and financial information for each region. We also estimated the proportion of search terms that return files with personal health and financial information. We ascertained and discuss the ethical issues related to this study. Results Approximately 0.4% of Canadian IP addresses had PHI, as did 0.5% of US IP addresses. There was more disclosure of financial information, at 1.7% of Canadian IP addresses and 4.7% of US IP addresses. An analysis of search terms used in these file sharing networks showed that a small percentage of the terms would return PHI and PFI files (ie, there are people successfully searching for PFI and PHI on the peer-to-peer file sharing networks). Conclusion There is a real risk of inadvertent disclosure of PHI through peer-to-peer file sharing networks, although the risk is not as large as for PFI. Anyone keeping PHI on their computers should avoid installing file sharing applications on their computers, or if they have to use such tools, actively manage the risks of inadvertent disclosure of their, their family's, their clients', or patients' PHI. PMID:20190057
Voice Over Internet Protocol (VoIP) in a Control Center Environment
NASA Technical Reports Server (NTRS)
Pirani, Joseph; Calvelage, Steven
2010-01-01
The technology of transmitting voice over data networks has been available for over 10 years. Mass market VoIP services for consumers to make and receive standard telephone calls over broadband Internet networks have grown in the last 5 years. While operational costs are less with VoIP implementations as opposed to time division multiplexing (TDM) based voice switches, is it still advantageous to convert a mission control center s voice system to this newer technology? Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) has converted its mission voice services to a commercial product that utilizes VoIP technology. Results from this testing, design, and installation have shown unique considerations that must be addressed before user operations. There are many factors to consider for a control center voice design. Technology advantages and disadvantages were investigated as they refer to cost. There were integration concerns which could lead to complex failure scenarios but simpler integration for the mission infrastructure. MSFC HOSC will benefit from this voice conversion with less product replacement cost, less operations cost and a more integrated mission services environment.
NASA Technical Reports Server (NTRS)
Holland, W. E.
1972-01-01
In order to study focal individuals within informal communications networks, a special variable was constructed: information potential (IP) was defined as the information-source value placed on an individual by his colleagues. Four hypotheses involving IP were tested in three R&D organizations using questionnaires and pencil-and-paper tests. Results indicated that the individual with high IP used more and different sources of technical information, was seen to be a credible information source and to have a strong ability to associate seemingly unrelated ideas, and was as approachable as the other members of his organization. Four tentative conclusions may be drawn from this study concerning the person with high IP. He is (1) an identifiable individual in several different kinds of organizations; (2) a distinctive information transceiver (transmitter and receiver); (3) both a producer and a catalyst in his own organization; and (4) an extender and an amplifier of information search. To affect the efficiency of informal information flow, the research manager's best hope for positively influencing informal networks lies in the identification and motivation of the special communicators in his organization.
All-IP wireless sensor networks for real-time patient monitoring.
Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua
2014-12-01
This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Nathan; Miller, Adam; Li Weidong
2010-04-15
We present progenitor-star detections, light curves, and optical spectra of supernova (SN) 2009ip and the 2009 optical transient in UGC 2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were luminous blue variables (LBVs). Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of the prototypical LBVs {eta} Carinae and SN 1954J (V12 in NGC 2403), with intermediate progenitor luminosities. Hubble Space Telescope detections a decade before discovery indicate that the SN 2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80more » M {sub sun} and {approx}>20 M {sub sun}, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km s{sup -1}, plus evidence for faster material up to 5000 km s{sup -1}, resembling the slow Homunculus and fast blast wave of {eta} Carinae. In contrast, U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [Ca II] emission and an infrared excess indicative of dust, similar to SN 2008S and the 2008 optical transient in NGC 300 (N300-OT). The [Ca II] emission is probably tied to a dusty pre-outburst environment, and is not a distinguishing property of the outburst mechanism. The LBV nature of SN 2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and the unusual dust-obscured transients SN 2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBV eruptions in massive stars.« less
Lightweight SIP/SDP compression scheme (LSSCS)
NASA Astrophysics Data System (ADS)
Wu, Jian J.; Demetrescu, Cristian
2001-10-01
In UMTS new IP based services with tight delay constraints will be deployed over the W-CDMA air interface such as IP multimedia and interactive services. To integrate the wireline and wireless IP services, 3GPP standard forum adopted the Session Initiation Protocol (SIP) as the call control protocol for the UMTS Release 5, which will implement next generation, all IP networks for real-time QoS services. In the current form the SIP protocol is not suitable for wireless transmission due to its large message size which will need either a big radio pipe for transmission or it will take far much longer to transmit than the current GSM Call Control (CC) message sequence. In this paper we present a novel compression algorithm called Lightweight SIP/SDP Compression Scheme (LSSCS), which acts at the SIP application layer and therefore removes the information redundancy before it is sent to the network and transport layer. A binary octet-aligned header is added to the compressed SIP/SDP message before sending it to the network layer. The receiver uses this binary header as well as the pre-cached information to regenerate the original SIP/SDP message. The key features of the LSSCS compression scheme are presented in this paper along with implementation examples. It is shown that this compression algorithm makes SIP transmission efficient over the radio interface without losing the SIP generality and flexibility.
Quality of Service for Real-Time Applications Over Next Generation Data Networks
NASA Technical Reports Server (NTRS)
Ivancic, William; Atiquzzaman, Mohammed; Bai, Haowei; Su, Hongjun; Jain, Raj; Duresi, Arjan; Goyal, Mukyl; Bharani, Venkata; Liu, Chunlei; Kota, Sastri
2001-01-01
This project, which started on January 1, 2000, was funded by NASA Glenn Research Center for duration of one year. The deliverables of the project included the following tasks: Study of QoS mapping between the edge and core networks envisioned in the Next Generation networks will provide us with the QoS guarantees that can be obtained from next generation networks. Buffer management techniques to provide strict guarantees to real-time end-to-end applications through preferential treatment to packets belonging to real-time applications. In particular, use of ECN to help reduce the loss on high bandwidth-delay product satellite networks needs to be studied. Effect of Prioritized Packet Discard to increase goodput of the network and reduce the buffering requirements in the ATM switches. Provision of new IP circuit emulation services over Satellite IP backbones using MPLS will be studied. Determine the architecture and requirements for internetworking ATN and the Next Generation Internet for real-time applications.
Global Interoperability of High Definition Video Streams Via ACTS and Intelsat
NASA Technical Reports Server (NTRS)
Hsu, Eddie; Wang, Charles; Bergman, Larry; Pearman, James; Bhasin, Kul; Clark, Gilbert; Shopbell, Patrick; Gill, Mike; Tatsumi, Haruyuki; Kadowaki, Naoto
2000-01-01
In 1993, a proposal at the Japan.-U.S. Cooperation in Space Program Workshop lead to a subsequent series of satellite communications experiments and demonstrations, under the title of Trans-Pacific High Data Rate Satellite Communications Experiments. The first of which is a joint collaboration between government and industry teams in the United States and Japan that successfully demonstrated distributed high definition video (HDV) post-production on a global scale using a combination of high data rate satellites and terrestrial fiber optic asynchronous transfer mode (ATM) networks. The HDV experiment is the first GIBN experiment to establish a dual-hop broadband satellite link for the transmission of digital HDV over ATM. This paper describes the team's effort in using the NASA Advanced Communications Technology Satellite (ACTS) at rates up to OC-3 (155 Mbps) between Los Angeles and Honolulu, and using Intelsat at rates up to DS-3 (45 Mbps) between Kapolei and Tokyo, with which HDV source material was transmitted between Sony Pictures High Definition Center (SPHDC) in Los Angeles and Sony Visual Communication Center (VCC) in Shinagawa, Tokyo. The global-scale connection also used terrestrial networks in Japan, the States of Hawaii and California. The 1.2 Gbps digital HDV stream was compressed down to 22.5 Mbps using a proprietary Mitsubishi MPEG-2 codec that was ATM AAL-5 compatible. The codec: employed four-way parallel processing. Improved versions of the codec are now commercially available. The successful post-production activity performed in Tokyo with a HDV clip transmitted from Los Angeles was predicated on the seamless interoperation of all the equipment between the sites, and was an exciting example in deploying a global-scale information infrastructure involving a combination of broadband satellites and terrestrial fiber optic networks. Correlation of atmospheric effects with cell loss, codec drop-out, and picture quality were made. Current efforts in the Trans-Pacific series plan to examine the use of Internet Protocol (IP)-related technologies over such an infrastructure. The use of IP allows the general public to be an integral part of the exciting activities, helps to examine issues in constructing the solar-system internet, and affords an opportunity to tap the research results from the (reliable) multicast and distributed systems communities. The current Trans- Pacific projects, including remote astronomy and digital library (visible human) are briefly described.
Green, Tamar; Saggar, Manish; Ishak, Alexandra; Hong, David S; Reiss, Allan L
2017-07-18
Attention deficit hyperactivity disorder (ADHD) is strongly affected by sex, but sex chromosomes' effect on brain attention networks and cognition are difficult to examine in humans. This is due to significant etiologic heterogeneity among diagnosed individuals. In contrast, individuals with Turner syndrome (TS), who have substantially increased risk for ADHD symptoms, share a common genetic risk factor related to the absence of the X-chromosome, thus serving as a more homogeneous genetic model. Resting-state functional MRI was employed to examine differences in attention networks between girls with TS (n = 40) and age- sex- and Tanner-matched controls (n = 33). We compared groups on resting-state functional connectivity measures from data-driven independent components analysis (ICA) and hypothesis-based seed analysis. Using ICA, reduced connectivity was observed in both frontoparietal and dorsal attention networks. Similarly, using seeds in the bilateral intraparietal sulcus (IPS), reduced connectivity was observed between IPS and frontal and cerebellar regions. Finally, we observed a brain-behavior correlation between IPS-cerebellar connectivity and cognitive attention measures. These findings indicate that X-monosomy contributes affects to attention networks and cognitive dysfunction that might increase risk for ADHD. Our findings not only have clinical relevance for girls with TS, but might also serve as a biological marker in future research examining the effects of the intervention that targets attention skills. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rohr, Christiane S; Vinette, Sarah A; Parsons, Kari A L; Cho, Ivy Y K; Dimond, Dennis; Benischek, Alina; Lebel, Catherine; Dewey, Deborah; Bray, Signe
2017-09-01
Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Liang, Peipeng; Wang, Zhiqun; Yang, Yanhui; Li, Kuncheng
2012-01-01
The Inferior parietal cortex (IPC), including the intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SG), plays an important role in episodic memory, and is considered to be one of the specific neuroimaging markers in predicting the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, it is still unclear whether the connectivity of the IPC is impaired in MCI patients. In the present study, we used resting state fMRI to examine the functional connectivity of the three subdivisions of the IPC in MCI patients after controlling the impact of regional grey matter atrophy. It was found that, using IPS, AG, and SG as seeds of functional connectivity, three canonical functional networks could be correspondingly traced, i.e., executive control network (ECN), default mode network (DMN), and salience network (SN), and the three networks are differently altered in MCI patients. In contrast to the healthy controls, it was found that in MCI patients: 1) AG connectivity was significantly reduced within the DMN; 2) IPS showed decreased connectivity with the right inferior frontal gyrus while showing increased connectivity with the left frontal regions within the ECN; and 3) SG displayed decreased connectivity with a distribution of regions including the frontal and parietal regions, and increased connectivity with some sub-cortical areas within the SN. Moreover, the connectivity within the three networks was correlated with episodic memory and general cognitive impairment in MCI patients. These results extend well beyond the DMN, and further suggest that MCI is associated with alteration of large-scale functional brain networks.
Aeronautical Related Applications Using ATN and TCP/IP Research Report
NASA Technical Reports Server (NTRS)
Dhas, C.; Mulkerin, T.; Wargo, C.; Nielsen, R.; Gaughan, T.; Griner, James H., Jr. (Technical Monitor)
2000-01-01
The course for the future aeronautical communications architecture has been defined for more than 10 years and is known as the Aeronautical Telecommunication Network (ATN). However, the operational implementations of making use of the ATN remain 3-5 years away, and these implementations are still only in the early phases of long-range projects. Thus, it is an objective of this effort to consider what the potential outcome within the air transport industry may be, given the rapid growth in commercial-off-the-shelf (COTS) products, networks, and services that are based upon the Internet TCP/IP protocol suite.
2005-03-24
1 :45PM- 3 :30PM Panel: Establishing a Business Mission Area in the Department of...Minimum MaximumLEVEL OF INTEROPERABILITY Level 1 Level 2 Level 3 Level 4 10 COTS Native IP Network IP TCP UDP Network QoS Layer IIOP NTP SNMP Legacy...2005 Page 1 3 /27/2005 Page 2 3 /27/2005 Page 3 3 /27/2005 Page 4 3 /27/2005 Page 5 3 /27/2005 Page 6 3 /27/2005 Page 7 3 /27/2005 Page 8 3 /27/2005 Page 9 3
Transfer Error and Correction Approach in Mobile Network
NASA Astrophysics Data System (ADS)
Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou
With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.
Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui
2008-03-01
An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.
MoNET: media over net gateway processor for next-generation network
NASA Astrophysics Data System (ADS)
Elabd, Hammam; Sundar, Rangarajan; Dedes, John
2001-12-01
MoNETTM (Media over Net) SX000 product family is designed using a scalable voice, video and packet-processing platform to address applications with channel densities from few voice channels to four OC3 per card. This platform is developed for bridging public circuit-switched network to the next generation packet telephony and data network. The platform consists of a DSP farm, RISC processors and interface modules. DSP farm is required to execute voice compression, image compression and line echo cancellation algorithms for large number of voice, video, fax, and modem or data channels. RISC CPUs are used for performing various packetizations based on RTP, UDP/IP and ATM encapsulations. In addition, RISC CPUs also participate in the DSP farm load management and communication with the host and other MoP devices. The MoNETTM S1000 communications device is designed for voice processing and for bridging TDM to ATM and IP packet networks. The S1000 consists of the DSP farm based on Carmel DSP core and 32-bit RISC CPU, along with Ethernet, Utopia, PCI, and TDM interfaces. In this paper, we will describe the VoIP infrastructure, building blocks of the S500, S1000 and S3000 devices, algorithms executed on these device and associated channel densities, detailed DSP architecture, memory architecture, data flow and scheduling.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Technologies'') to amend the complaint and notice of investigation (``NOI''). FOR FURTHER INFORMATION CONTACT... Fiber Optic Communications, Components Thereof, and Products Containing Same; Commission Determination Not To Review an Initial Determination Granting Complainants Avago Technologies General IP (Singapore...
Enhancing the Classification Accuracy of IP Geolocation
2013-10-01
accurately identify the geographic location of Internet devices has signficant implications for online- advertisers, application developers , network...Real Media, Comedy Central, Netflix and Spotify) and target advertising (e.g., Google). More re- cently, IP geolocation techniques have been deployed...distance to delay function and how they triangulate the position of the target. Statistical Geolocation [14] develops a joint probability density
Network Upgrade for the SLC: Control System Modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, M.; Mackenzie, R.; Sass, R.
2011-09-09
Current communications between the SLAC Linear Collider control system central host and the SLCmicros is built upon the SLAC developed SLCNET communication hardware and protocols. We will describe how the Internet Suite of protocols (TCP/IP) are used to replace the SLCNET protocol interface. The major communication pathways and their individual requirements are described. A proxy server is used to reduce the number of total system TCP/IP connections. The SLCmicros were upgraded to use Ethernet and TCP/IP as well as SLCNET. Design choices and implementation experiences are addressed.
Uddin, Lucina Q; Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A; Greicius, Michael D; Menon, Vinod
2010-11-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus-regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition.
Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A.; Greicius, Michael D.; Menon, Vinod
2010-01-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus—regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition. PMID:20154013
Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC
NASA Astrophysics Data System (ADS)
Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei
2017-02-01
Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.
THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, Jose L.; Brimacombe, J.; Drake, A. J.
2013-02-01
Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present {approx}100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25more » and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M{sub I} {approx_equal} -14.2) to I = 13.7 mag (M{sub I} {approx_equal} -17.9) on October 9.6, radiating {approx}3 Multiplication-Sign 10{sup 49} erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.« less
Mobile Router Developed and Tested
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2002-01-01
The NASA Glenn Research Center, under a NASA Space Act Agreement with Cisco Systems, has been performing joint networking research to apply Internet-based technologies and protocols to space-based communications. As a result of this research, NASA performed stringent performance testing of the mobile router, including the interaction of routing and the transport-level protocol. In addition, Cisco Systems developed the mobile router for both commercial and Government markets. The code has become part of the Cisco Systems Internetworking Operating System (IOS) as of release 12.2 (4) T--which will make this capability available to the community at large. The mobile router is software code that resides in a network router and enables entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both Government and commercial sectors, including the "wireless battlefield." NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is also a key enabling technology for aviation-based information applications. Mobile routing will make it possible for information such as weather, air traffic control, voice, and video to be transmitted to aircraft using Internet-based protocols. This technology shows great promise in reducing congested airways and mitigating aviation disasters due to bad weather. The mobile router can also be incorporated into emergency vehicles (such as ambulances and life-flight aircraft) to provide real-time connectivity back to the hospital and health-care experts, enabling the timely application of emergency care. Commercial applications include entertainment services, Internet protocol (IP) telephone, and Internet connectivity for cruise ships, commercial shipping, tour buses, aircraft, and eventually cars. A mobile router, which is based on mobile IP, allows hosts (mobile nodes) to seamlessly "roam" among various IP subnetworks. This is essential in many wireless networks. A mobile router, unlike a mobile IP node, allows entire networks to roam. Hence, a device connected to the mobile router does not need to be a mobile node because the mobile router provides the roaming capabilities. There are three basic elements in the mobile IP: the home agent, the foreign agent, and the mobile node. The home agent is a router on a mobile node's home network that tunnels datagrams for delivery to the mobile node when it is away from home. The foreign agent is a router on a remote network that provides routing services to a registered mobile node. The mobile node is a host or router that changes its point of attachment from one network or subnetwork to another. In mobile routing, virtual communications are maintained by the home agent, which forwards all packets for the mobile networks to the foreign agent. The foreign agent passes the packets to the mobile router, which then forwards the packets to the devices on its networks. As the mobile router moves, it will register with its home agent on its whereabouts via the foreign agent to assure continuous connectivity.
Gao, Ning; Bozeman, Erica N; Qian, Weiping; Wang, Liya; Chen, Hongyu; Lipowska, Malgorzata; Staley, Charles A; Wang, Y Andrew; Mao, Hui; Yang, Lily
2017-01-01
The major obstacles in intraperitoneal (i.p.) chemotherapy of peritoneal tumors are fast absorption of drugs into the blood circulation, local and systemic toxicities, inadequate drug penetration into large tumors, and drug resistance. Targeted theranostic nanoparticles offer an opportunity to enhance the efficacy of i.p. therapy by increasing intratumoral drug delivery to overcome resistance, mediating image-guided drug delivery, and reducing systemic toxicity. Herein we report that i.p. delivery of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (IONPs) led to intratumoral accumulation of 17% of total injected nanoparticles in an orthotopic mouse pancreatic cancer model, which was three-fold higher compared with intravenous delivery. Targeted delivery of near infrared dye labeled IONPs into orthotopic tumors could be detected by non-invasive optical and magnetic resonance imaging. Histological analysis revealed that a high level of uPAR targeted, PEGylated IONPs efficiently penetrated into both the peripheral and central tumor areas in the primary tumor as well as peritoneal metastatic tumor. Improved theranostic IONP delivery into the tumor center was not mediated by nonspecific macrophage uptake and was independent from tumor blood vessel locations. Importantly, i.p. delivery of uPAR targeted theranostic IONPs carrying chemotherapeutics, cisplatin or doxorubicin, significantly inhibited the growth of pancreatic tumors without apparent systemic toxicity. The levels of proliferating tumor cells and tumor vessels in tumors treated with the above theranostic IONPs were also markedly decreased. The detection of strong optical signals in residual tumors following i.p. therapy suggested the feasibility of image-guided surgery to remove drug-resistant tumors. Therefore, our results support the translational development of i.p. delivery of uPAR-targeted theranostic IONPs for image-guided treatment of peritoneal tumors.
Theory of the high-frequency chiral optical response of a p(x) + ip(y) superconductor.
Yakovenko, Victor M
2007-02-23
The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a two-dimensional chiral p(x) + ip(y) superconductor, where the time-reversal symmetry is spontaneously broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent experimental measurement in Sr2RuO4 by Xia et al. [Phys. Rev. Lett. 97, 167002 (2006)10.1103/PhysRevLett.97.167002]. The theory predicts that the Kerr angle is proportional to the square of the superconducting energy gap and is inversely proportional to the cube of frequency, which can be verified experimentally.
Liu, Tin Yan Alvin; Han, Ian C; Goldberg, Morton F; Linz, Marguerite O; Chen, Connie J; Scott, Adrienne W
2018-05-01
Incontinentia pigmenti (IP) is a rare, X-linked dominant disease with potentially severe ocular complications that predominantly affect the peripheral retina. However, little is known about its effects on the macula. To describe the structural and vascular abnormalities observed in the maculas of patients with IP and to correlate these findings with peripheral pathologies. Prospective, cross-sectional study at Wilmer Eye Institute, Johns Hopkins University. Five participants with a clinical diagnosis of IP were included and underwent multimodal imaging with ultra-wide-field fluorescein angiography (FA), spectral-domain optical coherence tomography (OCT), and OCT angiography. The structural and vascular abnormalities observed on spectral-domain OCT and OCT angiography and their correlation with peripheral pathologies seen on ultra-wide-field FA. A total of 9 eyes from 5 patients (median age, 20.5 years; range, 8.4-54.2 years) were included. Median Snellen visual acuity was 20/32 (range, 20/16 to 20/63). ultra-wide-field FA-identified retinal vascular abnormalities in all 7 eyes in which FA was obtained. These abnormalities included microaneurysms, areas of nonperfusion, and vascular anastomoses, most of which were peripheral to the standard view of 30° FA with peripheral sweeps. Structural abnormalities were observed in 6 eyes on spectral-domain OCT, including inner retinal thinning and irregularities in the outer plexiform layer. Optical coherence tomography angiography abnormalities were noted in all 9 eyes, including decreased vascular density, abnormal vascular loops, and flow loss in the superficial and deep plexuses, which corresponded to areas of retinal thinning on spectral-domain OCT. Although our study is limited by the small sample size, the findings suggest that multimodal imaging is useful for detecting structural and vascular abnormalities that may not be apparent on ophthalmoscopy in patients with IP. Macular pathologies, especially a decrease in vascular density on OCT angiography, are common. Further studies are needed to characterize further the association between macular and peripheral abnormalities in patients with IP.
A subjective scheduler for subjective dedicated networks
NASA Astrophysics Data System (ADS)
Suherman; Fakhrizal, Said Reza; Al-Akaidi, Marwan
2017-09-01
Multiple access technique is one of important techniques within medium access layer in TCP/IP protocol stack. Each network technology implements the selected access method. Priority can be implemented in those methods to differentiate services. Some internet networks are dedicated for specific purpose. Education browsing or tutorial video accesses are preferred in a library hotspot, while entertainment and sport contents could be subjects of limitation. Current solution may use IP address filter or access list. This paper proposes subjective properties of users or applications are used for priority determination in multiple access techniques. The NS-2 simulator is employed to evaluate the method. A video surveillance network using WiMAX is chosen as the object. Subjective priority is implemented on WiMAX scheduler based on traffic properties. Three different traffic sources from monitoring video: palace, park, and market are evaluated. The proposed subjective scheduler prioritizes palace monitoring video that results better quality, xx dB than the later monitoring spots.
RM-SORN: a reward-modulated self-organizing recurrent neural network.
Aswolinskiy, Witali; Pipa, Gordon
2015-01-01
Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.
Comprehensive neural networks for guilty feelings in young adults.
Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta
2015-01-15
Feelings of guilt are associated with widespread self and social cognitions, e.g., empathy, moral reasoning, and punishment. Neural correlates directly related to the degree of feelings of guilt have not been detected, probably due to the small numbers of subjects, whereas there are growing numbers of neuroimaging studies of feelings of guilt. We hypothesized that the neural networks for guilty feelings are widespread and include the insula, inferior parietal lobule (IPL), amygdala, subgenual cingulate cortex (SCC), and ventromedial prefrontal cortex (vmPFC), which are essential for cognitions of guilt. We investigated the association between regional gray matter density (rGMD) and feelings of guilt in 764 healthy young students (422 males, 342 females; 20.7 ± 1.8 years) using magnetic resonance imaging and the guilty feeling scale (GFS) for the younger generation which comprises interpersonal situation (IPS) and rule-breaking situation (RBS) scores. Both the IPS and RBS were negatively related to the rGMD in the right posterior insula (PI). The IPS scores were negatively correlated with rGMD in the left anterior insula (AI), right IPL, and vmPFC using small volume correction. A post hoc analysis performed on the significant clusters identified through these analyses revealed that rGMD activity in the right IPL showed a significant negative association with the empathy quotient. These findings at the whole-brain level are the widespread comprehensive neural network regions for guilty feelings. Interestingly, the novel finding in this study is that the PI was implicated as a common region for feelings of guilt with interaction between the IPS and RBS. Additionally, the neural networks including the IPL were associated with empathy and with regions implicated in moral reasoning (AI and vmPFC), and punishment (AI). Copyright © 2014 Elsevier Inc. All rights reserved.
Goltz, Dominique; Gundlach, Christopher; Nierhaus, Till; Villringer, Arno; Müller, Matthias; Pleger, Burkhard
2015-05-20
Previous studies on sustained tactile attention draw conclusions about underlying cortical networks by averaging over experimental conditions without considering attentional variance in single trials. This may have formed an imprecise picture of brain processes underpinning sustained tactile attention. In the present study, we simultaneously recorded EEG-fMRI and used modulations of steady-state somatosensory evoked potentials (SSSEPs) as a measure of attentional trial-by-trial variability. Therefore, frequency-tagged streams of vibrotactile stimulations were simultaneously presented to both index fingers. Human participants were cued to sustain attention to either the left or right finger stimulation and to press a button whenever they perceived a target pulse embedded in the to-be-attended stream. In-line with previous studies, a classical general linear model (GLM) analysis based on cued attention conditions revealed increased activity mainly in somatosensory and cerebellar regions. Yet, parametric modeling of the BOLD response using simultaneously recorded SSSEPs as a marker of attentional trial-by-trial variability quarried the intraparietal sulcus (IPS). The IPS in turn showed enhanced functional connectivity to a modality-unspecific attention network. However, this was only revealed on the basis of cued attention conditions in the classical GLM. By considering attentional variability as captured by SSSEPs, the IPS showed increased connectivity to a sensorimotor network, underpinning attentional selection processes between competing tactile stimuli and action choices (press a button or not). Thus, the current findings highlight the potential value by considering attentional variations in single trials and extend previous knowledge on the role of the IPS in tactile attention. Copyright © 2015 the authors 0270-6474/15/357938-12$15.00/0.
GATEWAY - COMMUNICATIONS GATEWAY SOFTWARE FOR NETEX, DECNET, AND TCP/IP
NASA Technical Reports Server (NTRS)
Keith, B.
1994-01-01
The Communications Gateway Software, GATEWAY, provides process-to-process communication between remote applications programs in different protocol domains. Communicating peer processes may be resident on any paired combination of NETEX, DECnet, or TCP/IP hosts. The gateway provides the necessary mapping from one protocol to another and will facilitate practical intermachine communications in a cost effective manner by eliminating the need to standardize on a single protocol or the need to implement multiple protocols in the host computers. The purpose of the gateway is to support data transfers between application programs on different host computers using different protocols. The gateway computer must be physically connected to both host computers and must contain the system software needed to use the communication protocols of both host computers. The communication process between application partners can be divided into three phases: session establishment, data transfer, and session termination. The communication protocols supported by GATEWAY (DECnet, NETEX, and TCP/IP) have addressing mechanisms that allow an application to identify itself and distinguish among other applications on the network. The exact form of the address varies depending on whether an application is passively offering (awaiting the receipt of a network connection from another network application) or actively connecting to another network. When the gateway is started, GATEWAY reads a file of address pairs. One of the address pairs is used by GATEWAY for passively offering on one network while the other address in the pair is used for actively connecting on the other network establishing the session. Now the two application partners can send and receive data in a manner appropriate to their home networks. GATEWAY accommodates full duplex transmissions. Thus, if the application partners are sophisticated enough, they can send and receive simultaneously. GATEWAY also keeps track of the number of bytes contained in each ransferred data packet. If GATEWAY detects an error during the data transfer, the sessions on both networks are terminated and the passive offer on the appropriate network is reissued. After performing the desired data transfer, one of the remote applications will send a network disconnect to the gateway to close its communication link. Upon detecting this network disconnect, GATEWAY replies with its own disconnect to ensure that the network connection has been fully terminated. Then, GATEWAY terminates its session with the other application by closing the communication link. GATEWAY has been implemented on a DEC VAX under VMS 4.7. It is written in ADA and has a central memory requirement of approximately 406K bytes. The communications protocols supported by GATEWAY are Network Systems Corporation's Network Executive (NETEX), Excelan's TCP/IP, and DECnet. GATEWAY was developed in 1988.
Detecting and Blocking Network Attacks at Ultra High Speeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paxson, Vern
2010-11-29
Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was tomore » keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank's server farms cannot safely omit a subset of the traffic from analysis. In this environment, Shunting cannot realize its main performance benefits, and the monitoring task likely calls for using custom hardware instead. However, in many other environments we find Shunting holds promise for delivering major performance gains. This arises due to the the widely documented 'heavy tail' nature of most forms of network traffic, which we might express as 'a few of the connections carry just about all the bytes.' The key additional insight is '... and very often for these few large connections, the very beginning of the connection contains nearly all the information of interest from a security analysis perspective.' We argue that this second claim holds because it is at the beginning of connections that authentication exchanges occur, data or file names and types are specified, request and reply status codes conveyed, and encryption is negotiated. Once these occur, we have seen most of the interesting facets of the dialog. Certainly the remainder of the connection might also yield some grist for analysis, but this is generally less likely, and thus if we want to lower analysis load at as small a loss as possible of information relevant to security analysis, we might best do so by skipping the bulk of large connections. In a different context, the 'Time Machine' work by Kornexl and colleagues likewise shows that in some environments we can realize major reductions in the volume of network traffic processed, by limiting the processing to the first 10-20 KB of each connection. As a concrete example, consider an IPS that monitors SSH traffic. When a new SSH connection arrives and the Shunt fails to find an entry for it in any of its tables (per-address, per-port, per-connection), it executes the default action of diverting the connection through the IPS. The IPS analyzes the beginning of the connection in this fashion. As long as it is satisified with the dialog, it reinjects the packets forwarded to it so that the connection can continue. If the connection successfully negotiates encryption, the IPS can no longer profitably analyze it, so it downloads a per-connection table entry to the Shunt specifying that the action for the connection in the future is 'forward.' For heavy-tailed connections, this means a very large majority of the connection's packets will now pass through the Shunt device without burdening the IPS with any further analysis load. On the other hand, if the IPS is dissatisfied with some element of the initial dialog, it downloads a 'drop' entry to terminate the connection. Note that by providing for reinjection, we can promote an intrusion detection system into an intrusion prevention system, one that does not merely detect attacks but can block them before they complete. Reinjection also allows the IPS to normalize traffic to remove ambiguities that attackers can leverage to evade the IPS.« less
Chromatin Immunoprecipitation (ChIP) Protocol for Low-abundance Embryonic Samples.
Rehimi, Rizwan; Bartusel, Michaela; Solinas, Francesca; Altmüller, Janine; Rada-Iglesias, Alvaro
2017-08-29
Chromatin immunoprecipitation (ChIP) is a widely-used technique for mapping the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes at a given locus or on a genome-wide scale. The combination of ChIP assays with next-generation sequencing (i.e., ChIP-Seq) is a powerful approach to globally uncover gene regulatory networks and to improve the functional annotation of genomes, especially of non-coding regulatory sequences. ChIP protocols normally require large amounts of cellular material, thus precluding the applicability of this method to investigating rare cell types or small tissue biopsies. In order to make the ChIP assay compatible with the amount of biological material that can typically be obtained in vivo during early vertebrate embryogenesis, we describe here a simplified ChIP protocol in which the number of steps required to complete the assay were reduced to minimize sample loss. This ChIP protocol has been successfully used to investigate different histone modifications in various embryonic chicken and adult mouse tissues using low to medium cell numbers (5 x 10 4 - 5 x 10 5 cells). Importantly, this protocol is compatible with ChIP-seq technology using standard library preparation methods, thus providing global epigenomic maps in highly relevant embryonic tissues.
The Deployment of IPv6 in an IPv4 World and Transition Strategies.
ERIC Educational Resources Information Center
Bouras, C.; Ganos, P.; Karaliotas, A.
2003-01-01
The current version of the IP protocol, IPv4, is the most widely used protocol in computer networks. This article describes mechanisms that can be used to facilitate the transition to the new version of the IP protocol, IPv6, and examines usability, usefulness and manageability. Describes how some of these mechanisms were applied to the Greek…
The MEXART ips observations in route to the next solar maximum
NASA Astrophysics Data System (ADS)
Carrillo-Vargas, Armando; Gonzalez-Esparza, Americo; Andrade, Ernesto; Perez-Enriquez, Roman; Aguilar-Rodriguez, Ernesto; Casillas-Perez, Gilberto; Jeyakumar, Solai; Kurtz, Stanley; Sierra, Pablo; Vazquez, Samuel
We report the status of the Mexican Array Radio Telescope (MEXART) in preparation for the next solar maximum. During this epoch, the MEXART will be one of the four dedicated radio telescopes (with the ORT in India; STEL in Japan; and MWA in Australia) to track large-scale structures in the solar wind using the interplanetary scintillation (IPS) technique. This network of IPS observatories would produce, for the first time four g maps of the sky showing the size and shape of disturbances between the Sun and the Earth. We describe the operation and current observations of the first IPS radio sources at 140 MHz detected by the MEXART. These observations use a plane dipole array of 1024 elements (16 lines with 64 dipoles each one), feeding a Butler matrix of 16x16 ports. This system generates a 16 lobes at fixed declinations covering 120 degrees (from 40 degrees South to 80 degrees North). The beam fan uses the Earth's rotation to cover the whole sky. The observations that will be made with the network of observatories of interplanetary flashing will complement the observations of other observatories, instruments in situ, space probes, satellite, among others.
A native IP satellite communications system
NASA Astrophysics Data System (ADS)
Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner-Puschl, S.; Riedler, W.
2004-08-01
≪ In the framework of ESA's ARTES-5 program the Institute of Applied Systems Technology (Joanneum Research) in cooperation with the Department of Communications and Wave Propagation has developed a novel meshed satellite communications system which is optimised for Internet traffic and applications (L*IP—Local Network Interconnection via Satellite Systems Using the IP Protocol Suite). Both symmetrical and asymmetrical connections are supported. Bandwidth on demand and guaranteed quality of service are key features of the system. A novel multi-frequency TDMA access scheme utilises efficient methods of IP encapsulation. In contrast to other solutions it avoids legacy transport network techniques. While the DVB-RCS standard is based on ATM or MPEG transport cells, the solution of the L*IP system uses variable-length cells which reduces the overhead significantly. A flexible and programmable platform based on Linux machines was chosen to allow the easy implementation and adaptation to different standards. This offers the possibility to apply the system not only to satellite communications, but provides seamless integration with terrestrial fixed broadcast wireless access systems. The platform is also an ideal test-bed for a variety of interactive broadband communications systems. The paper describes the system architecture and the key features of the system.
Are You Neutral About Net Neutrality
2007-06-20
Alaska War on Terrorism Universal Service Reform Streamlining Franchising Process Video Content Municipal Broadband Wireless Innovation Networks Digital...Chair, Joe Barton (R), Texas National Video Franchising Network Neutrality/Enforcement of Broadband Policy VoIP/E9ll Municipal Provision of Services
ERIC Educational Resources Information Center
Lynch, Clifford A.
1989-01-01
Reviews the history of the network that supports the MELVYL online union catalog, describes current technological and policy issues, and discusses the role the network plays in integrating local automation, the union catalog, access to resource databases, and other initiatives. Sidebars by Mark Needleman discuss the TCP/IP protocol suite, internet…
Influence of Security Mechanisms on the Quality of Service of VoIP
NASA Astrophysics Data System (ADS)
Backs, Peter; Pohlmann, Norbert
While Voice over IP (VoIP) is advancing rapidly in the telecommunications market, the interest to protect the data transmitted by this new service is also rising. However, in contrast to other internet services such as email or HTTP, VoIP is real-time media, and therefore must meet a special requirement referred to as Quality-of-Service to provide a comfortable flow of speech. Speech quality is worsened when transmitted over the network due to delays in transmission or loss of packets. Often, voice quality is at a level that even prevents comprehensive dialog. Therefore, an administrator who is to setup a VoIP infrastructure might consider avoiding additional decreases in voice quality resulting from security mechanisms, and might leave internet telephony unprotected as a result. The inspiration for this paper is to illustrate that security mechanisms have negligible impact on speech quality and should in fact be encouraged.
Corporations' Resistance to Innovation: The Adoption of the Internet Protocol Version 6
ERIC Educational Resources Information Center
Pazdrowski, Tomasz
2013-01-01
Computer networks that brought unprecedented growth in global communication have been using Internet Protocol version 4 (IPv4) as a standard for routing. The exponential increase in the use of the networks caused an acute shortage of available identification numbers (IP addresses). The shortage and other network communication issues are…
Achieving High Throughput for Data Transfer over ATM Networks
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.; Townsend, Jeffrey N.
1996-01-01
File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.
Analysis of the Digital Evidence Presented in the Yahoo! Case
NASA Astrophysics Data System (ADS)
Kwan, Michael; Chow, Kam-Pui; Lai, Pierre; Law, Frank; Tse, Hayson
The “Yahoo! Case” led to considerable debate about whether or not an IP address is personal data as defined by the Personal Data (Privacy) Ordinance (Chapter 486) of the Laws of Hong Kong. This paper discusses the digital evidence presented in the Yahoo! Case and evaluates the impact of the IP address on the verdict in the case. A Bayesian network is used to quantify the evidentiary strengths of hypotheses in the case and to reason about the evidence. The results demonstrate that the evidence about the IP address was significant to obtaining a conviction in the case.
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Genome wide approaches to identify protein-DNA interactions.
Ma, Tao; Ye, Zhenqing; Wang, Liguo
2018-05-29
Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Technology: Cookies, Web Profilers, Social Network Cartography, and Proxy Servers
ERIC Educational Resources Information Center
Van Horn, Royal
2004-01-01
The Internet was designed as an open system that promoted the two-way flow of information. In other words, everything that is sent has a return address called an IP or Internet Protocol address of the form: 000.11.222.33. Whenever you connect to a website, the site learns your IP address. It also learns the type of computer you are using, the…
Active Computer Network Defense: An Assessment
2001-04-01
sufficient base of knowledge in information technology can be assumed to be working on some form of computer network warfare, even if only defensive in...the Defense Information Infrastructure (DII) to attack. Transmission Control Protocol/ Internet Protocol (TCP/IP) networks are inherently resistant to...aims to create this part of information superiority, and computer network defense is one of its fundamental components. Most of these efforts center
ACTS 118x Final Report High-Speed TCP Interoperability Testing
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Zernic, Mike; Hoder, Douglas J.; Brooks, David E.; Beering, Dave R.; Welch, Arun
1999-01-01
With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The satellite system providers are interested in solving TCP efficiency problems associated with long delays and error-prone links. Similarly, the terrestrial community is interested in solving TCP problems over high-bandwidth links. Whereas the wireless community is interested in improving TCP performance over bandwidth constrained, error-prone links. NASA realized that solutions had already been proposed for most of the problems associated with efficient data transfer over large bandwidth-delay links (which include satellite links). The solutions are detailed in various Internet Engineering Task Force (IETF) Request for Comments (RFCs). Unfortunately, most of these solutions had not been tested at high-speed (155+ Mbps). Therefore, the NASA's ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine how far the protocol can be optimized over a 622 Mbps satellite link. These experiments were known as the 118i and 118j experiments. During the 118i and 118j experiments, NASA worked closely with SUN Microsystems and FORE Systems to improve the operating system, TCP stacks. and network interface cards and drivers. We were able to obtain instantaneous data throughput rates of greater than 520 Mbps and average throughput rates of 470 Mbps using TCP over Asynchronous Transfer Mode (ATM) over a 622 Mbps Synchronous Optical Network (SONET) OC12 link. Following the success of these experiments and the successful government/industry collaboration, a new series of experiments. the 118x experiments. were developed.
A Lossless Network for Data Acquisition
NASA Astrophysics Data System (ADS)
Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw
2017-06-01
The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.
Cyber Infrastructure Protection
2011-05-01
274 TOWARD A SOLUTION THAT WORKS Building on our long history of involvement in assuring all types of communications networks, Tel- cordia has...wireless, and security areas. He currently has responsibility for a new Tel- cordia software product in IP network management, and has led all product
Efficient eNB inter-communication scheme in converged mobile and NG-PON2 system
NASA Astrophysics Data System (ADS)
Xiao, Simiao; Sun, Xiao; Zhang, Kaibin
2016-02-01
In LTE, a new X2-interface is defined to facilitate direct communication between neighboring eNBs. Since LTE is an all-IP network, the X2-interface traffic currently needs to be routed and transponded in L3 at the edge router by IP addressing. As mobile data increases, it is a promising trend to backhaul mobile services based on PON. In this paper, an effective approach for eNB inter-communication over TWDM-PON is proposed. By associating the IP address of eNB and the MAC address of ONU, the "inter-eNB communication in L3" can be mapped into "inter-ONU communication in L2" and transponded via the protocol of PON at the OLT. Thus, fast and cost-effective eNB inter-communication can be realized based on TWDM-PON within one wavelength channel and between different wavelength channels. The increasing data traffic pressure to the core network can also be alleviated.
Classifier fusion for VoIP attacks classification
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Rezac, Filip
2017-05-01
SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.
A Novel Addressing Scheme for PMIPv6 Based Global IP-WSNs
Islam, Md. Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are being used in healthcare, home automation, industrial control and agricultural monitoring. In most of these applications global addressing of individual IP-WSN nodes and layer-three routing for mobility enabled IP-WSN with special attention to reliability, energy efficiency and end to end delay minimization are a few of the major issues to be addressed. Most of the routing protocols in WSN are based on layer-two approaches. For reliability and end to end communication enhancement the necessity of layer-three routing for IP-WSNs is generating significant attention among the research community, but due to the hurdle of maintaining routing state and other communication overhead, it was not possible to introduce a layer-three routing protocol for IP-WSNs. To address this issue we propose in this paper a global addressing scheme and layer-three based hierarchical routing protocol. The proposed addressing and routing approach focuses on all the above mentioned issues. Simulation results show that the proposed addressing and routing approach significantly enhances the reliability, energy efficiency and end to end delay minimization. We also present architecture, message formats and different routing scenarios in this paper. PMID:22164084
A novel addressing scheme for PMIPv6 based global IP-WSNs.
Islam, Md Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are being used in healthcare, home automation, industrial control and agricultural monitoring. In most of these applications global addressing of individual IP-WSN nodes and layer-three routing for mobility enabled IP-WSN with special attention to reliability, energy efficiency and end to end delay minimization are a few of the major issues to be addressed. Most of the routing protocols in WSN are based on layer-two approaches. For reliability and end to end communication enhancement the necessity of layer-three routing for IP-WSNs is generating significant attention among the research community, but due to the hurdle of maintaining routing state and other communication overhead, it was not possible to introduce a layer-three routing protocol for IP-WSNs. To address this issue we propose in this paper a global addressing scheme and layer-three based hierarchical routing protocol. The proposed addressing and routing approach focuses on all the above mentioned issues. Simulation results show that the proposed addressing and routing approach significantly enhances the reliability, energy efficiency and end to end delay minimization. We also present architecture, message formats and different routing scenarios in this paper.
2015-03-01
unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art
Temperature Dependence of IP3-Mediated Local and Global Ca2+ Signals
Dickinson, George D.; Parker, Ian
2013-01-01
We examined the effect of temperature (12–40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP3R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics. PMID:23442860
Mantokoudis, Georgios; Dubach, Patrick; Pfiffner, Flurin; Kompis, Martin; Caversaccio, Marco; Senn, Pascal
2012-07-16
Telephone communication is a challenge for many hearing-impaired individuals. One important technical reason for this difficulty is the restricted frequency range (0.3-3.4 kHz) of conventional landline telephones. Internet telephony (voice over Internet protocol [VoIP]) is transmitted with a larger frequency range (0.1-8 kHz) and therefore includes more frequencies relevant to speech perception. According to a recently published, laboratory-based study, the theoretical advantage of ideal VoIP conditions over conventional telephone quality has translated into improved speech perception by hearing-impaired individuals. However, the speech perception benefits of nonideal VoIP network conditions, which may occur in daily life, have not been explored. VoIP use cannot be recommended to hearing-impaired individuals before its potential under more realistic conditions has been examined. To compare realistic VoIP network conditions, under which digital data packets may be lost, with ideal conventional telephone quality with respect to their impact on speech perception by hearing-impaired individuals. We assessed speech perception using standardized test material presented under simulated VoIP conditions with increasing digital data packet loss (from 0% to 20%) and compared with simulated ideal conventional telephone quality. We monaurally tested 10 adult users of cochlear implants, 10 adult users of hearing aids, and 10 normal-hearing adults in the free sound field, both in quiet and with background noise. Across all participant groups, mean speech perception scores using VoIP with 0%, 5%, and 10% packet loss were 15.2% (range 0%-53%), 10.6% (4%-46%), and 8.8% (7%-33%) higher, respectively, than with ideal conventional telephone quality. Speech perception did not differ between VoIP with 20% packet loss and conventional telephone quality. The maximum benefits were observed under ideal VoIP conditions without packet loss and were 36% (P = .001) for cochlear implant users, 18% (P = .002) for hearing aid users, and 53% (P = .001) for normal-hearing adults. With a packet loss of 10%, the maximum benefits were 30% (P = .002) for cochlear implant users, 6% (P = .38) for hearing aid users, and 33% (P = .002) for normal-hearing adults. VoIP offers a speech perception benefit over conventional telephone quality, even when mild or moderate packet loss scenarios are created in the laboratory. VoIP, therefore, has the potential to significantly improve telecommunication abilities for the large community of hearing-impaired individuals.
Dubach, Patrick; Pfiffner, Flurin; Kompis, Martin; Caversaccio, Marco
2012-01-01
Background Telephone communication is a challenge for many hearing-impaired individuals. One important technical reason for this difficulty is the restricted frequency range (0.3–3.4 kHz) of conventional landline telephones. Internet telephony (voice over Internet protocol [VoIP]) is transmitted with a larger frequency range (0.1–8 kHz) and therefore includes more frequencies relevant to speech perception. According to a recently published, laboratory-based study, the theoretical advantage of ideal VoIP conditions over conventional telephone quality has translated into improved speech perception by hearing-impaired individuals. However, the speech perception benefits of nonideal VoIP network conditions, which may occur in daily life, have not been explored. VoIP use cannot be recommended to hearing-impaired individuals before its potential under more realistic conditions has been examined. Objective To compare realistic VoIP network conditions, under which digital data packets may be lost, with ideal conventional telephone quality with respect to their impact on speech perception by hearing-impaired individuals. Methods We assessed speech perception using standardized test material presented under simulated VoIP conditions with increasing digital data packet loss (from 0% to 20%) and compared with simulated ideal conventional telephone quality. We monaurally tested 10 adult users of cochlear implants, 10 adult users of hearing aids, and 10 normal-hearing adults in the free sound field, both in quiet and with background noise. Results Across all participant groups, mean speech perception scores using VoIP with 0%, 5%, and 10% packet loss were 15.2% (range 0%–53%), 10.6% (4%–46%), and 8.8% (7%–33%) higher, respectively, than with ideal conventional telephone quality. Speech perception did not differ between VoIP with 20% packet loss and conventional telephone quality. The maximum benefits were observed under ideal VoIP conditions without packet loss and were 36% (P = .001) for cochlear implant users, 18% (P = .002) for hearing aid users, and 53% (P = .001) for normal-hearing adults. With a packet loss of 10%, the maximum benefits were 30% (P = .002) for cochlear implant users, 6% (P = .38) for hearing aid users, and 33% (P = .002) for normal-hearing adults. Conclusions VoIP offers a speech perception benefit over conventional telephone quality, even when mild or moderate packet loss scenarios are created in the laboratory. VoIP, therefore, has the potential to significantly improve telecommunication abilities for the large community of hearing-impaired individuals. PMID:22805169
Upscaling of spectral induced polarization response using random tube networks
NASA Astrophysics Data System (ADS)
Maineult, Alexis; Revil, André; Camerlynck, Christian; Florsch, Nicolas; Titov, Konstantin
2017-05-01
In order to upscale the induced polarization (IP) response of porous media, from the pore scale to the sample scale, we implement a procedure to compute the macroscopic complex resistivity response of random tube networks. A network is made of a 2-D square-meshed grid of connected tubes, which obey to a given tube radius distribution. In a simplified approach, the electrical impedance of each tube follows a local Pelton resistivity model, with identical resistivity, chargeability and Cole-Cole exponent values for all the tubes-only the time constant varies, as it depends on the radius of each tube and on a diffusion coefficient also identical for all the tubes. By solving the conservation law for the electrical charge, the macroscopic IP response of the network is obtained. We fit successfully the macroscopic complex resistivity also by a Pelton resistivity model. Simulations on uncorrelated and correlated networks, for which the tube radius distribution is so that the decimal logarithm of the radius is normally distributed, evidence that the local and macroscopic model parameters are the same, except the Cole-Cole exponent: its macroscopic value diminishes with increasing heterogeneity (i.e. with increasing standard deviation of the radius distribution), compared to its local value. The methodology is also applied to six siliciclastic rock samples, for which the pore radius distributions from mercury porosimetry are available. These samples exhibit the same behaviour as synthetic media, that is, the macroscopic Cole-Cole exponent is always lower than the local one. As a conclusion, the pore network method seems to be a promising tool for studying the upscaling of the IP response of porous media.
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Gonzalez-Esparza, A.; Jackson, B. V.; Aguilar-Rodriguez, E.; Tokumaru, M.; Chashei, I. V.; Tyul'bashev, S. A.; Manoharan, P. K.; Fallows, R. A.; Chang, O.; Mejia-Ambriz, J. C.; Yu, H. S.; Fujiki, K.; Shishov, V.
2016-12-01
The phenomenon of space weather - analogous to terrestrial weather which describes the changing low-altitude atmospheric conditions on Earth - is essentially a description of the changes in the plasma environment at and near the Earth. Some key parameters for space-weather purposes driving space weather at the Earth include velocity, density, magnetic field, high-energy particles, and radiation coming into and within the near-Earth space environment. Interplanetary scintillation (IPS) can be used to provide a global measure of velocity and density as well as indications of changes in the plasma and magnetic-field rotations along each observational line of sight. If the observations are formally inverted into a three-dimensional (3-D) tomographic reconstruction (such as using the University of California, San Diego - UCSD - kinematic model and reconstruction technique), then source-surface magnetic fields can also be propagated out to the Earth (and beyond) as well as in-situ data also being incorporated into the reconstruction. Currently, this has been done using IPS data only from the Institute for Space-Earth Environmental (ISEE) and has been scientifically since the 1990s, and in a forecast mode since around 2000. There is now a defined IPS Common Data Format (IPSCDFv1.0) which is being implemented by the majority of the IPS community (this also feeds into the tomography). The Worldwide IPS Stations (WIPSS) Network aims to bring together, using IPSCDFv1.0, the worldwide real-time capable IPS observatories with well-developed and tested analyses techniques being unified across all single-site systems (such as MEXART, Pushchino, and Ooty) and cross-calibrated to the multi-site ISEE system (as well as learning from the scientific-based systems such as EISCAT, LOFAR, and the MWA), into the UCSD 3-D tomography to improve the accuracy, spatial and temporal data coverage, and both the spatial and temporal resolution for improved space-weather science and forecast capabilities.
NASA Astrophysics Data System (ADS)
Bisi, Mario Mark; Americo Gonzalez-Esparza, J.; Jackson, Bernard; Aguilar-Rodriguez, Ernesto; Tokumaru, Munetoshi; Chashei, Igor; Tyul'bashev, Sergey; Manoharan, Periasamy; Fallows, Richard; Chang, Oyuki; Yu, Hsiu-Shan; Fujiki, Ken'ichi; Shishov, Vladimir; Barnes, David
2017-04-01
The phenomenon of space weather - analogous to terrestrial weather which describes the changing low-altitude atmospheric conditions on Earth - is essentially a description of the changes in the plasma environment at and near the Earth. Some key parameters for space-weather purposes driving space weather at the Earth include velocity, density, magnetic field, high-energy particles, and radiation coming into and within the near-Earth space environment. Interplanetary scintillation (IPS) can be used to provide a global measure of velocity and density as well as indications of changes in the plasma and magnetic-field rotations along each observational line of sight. If the observations are formally inverted into a three-dimensional (3-D) tomographic reconstruction (such as using the University of California, San Diego - UCSD - kinematic model and reconstruction technique), then source-surface magnetic fields can also be propagated out to the Earth (and beyond) as well as in-situ data also being incorporated into the reconstruction. Currently, this has been done using IPS data only from the Institute for Space-Earth Environmental (ISEE) and has been scientifically since the 1990s, and in a forecast mode since around 2000. There is now a defined (and updated) IPS Common Data Format (IPSCDFv1.1) which is being implemented by the majority of the IPS community (this also feeds into the UCSD tomography). The Worldwide IPS Stations (WIPSS) Network aims to bring together, using IPSCDFv1.1, the worldwide real-time capable IPS observatories with well-developed and tested analyses techniques being unified across all single-site systems (such as MEXART, Pushchino, and Ooty) and cross-calibrated to the multi-site ISEE system (as well as learning from the scientific-based systems such as EISCAT, LOFAR, and the MWA), into the UCSD 3-D tomography to improve the accuracy, spatial and temporal data coverage, and both the spatial and temporal resolution for improved space-weather science and forecast capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less
A cost-effective traffic data collection system based on the iDEN mobile telecommunication network.
DOT National Transportation Integrated Search
2008-10-01
This report describes a cost-effective data collection system for Caltrans 170 traffic signal : controller. The data collection system is based on TCP/IP communication over existing : low-cost mobile communication networks and Motorola iDEN1 mobile...
A Mobility-Aware QoS Signaling Protocol for Ambient Networks
NASA Astrophysics Data System (ADS)
Jeong, Seong-Ho; Lee, Sung-Hyuck; Bang, Jongho
Mobility-aware quality of service (QoS) signaling is crucial to provide seamless multimedia services in the ambient environment where mobile nodes may move frequently between different wireless access networks. The mobility of an IP-based node in ambient networks affects routing paths, and as a result, can have a significant impact on the operation and state management of QoS signaling protocols. In this paper, we first analyze the impact of mobility on QoS signaling protocols and how the protocols operate in mobility scenarios. We then propose an efficient mobility-aware QoS signaling protocol which can operate adaptively in ambient networks. The key features of the protocol include the fast discovery of a crossover node where the old and new paths converge or diverge due to handover and the localized state management for seamless services. Our analytical and simulation/experimental results show that the proposed/implemented protocol works better than existing protocols in the IP-based mobile environment.
Abnormally Malicious Autonomous Systems and their Internet Connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shue, Craig A; Kalafut, Prof. Andrew; Gupta, Prof. Minaxi
While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using ten popular blacklists, plus local spam data, and extensive DNS resolutions based on the contents of the blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted. Yet others account for large fractions of blacklisted IP addresses. Several ASes regularlymore » peer with ASes associated with significant malicious activity. We also find that malicious ASes as a whole differ from benign ones in other properties not obviously related to their malicious activities, such as more frequent connectivity changes with their BGP peers. Overall, we conclude that examining malicious activity at AS granularity can unearth networks with lax security or those that harbor cybercrime.« less
Jamming Attack in Wireless Sensor Network: From Time to Space
NASA Astrophysics Data System (ADS)
Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming
Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.
Network architecture for global biomedical monitoring service.
Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia
2005-01-01
Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.
Discrete Mathematical Approaches to Graph-Based Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.
2014-04-01
Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In thismore » paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.« less
Gigabit Network Communications Research
1992-12-31
additional BPF channels, raw bytesync support for video codecs, and others. All source file modifications were logged with RCS. Source and object trees were...34 (RFCs). 20 RFCs were published this quarter: RFC 1366: Gerich, E., " Guidelines for Management of IP Address Space", Merit, October 1992. RFC 1367...Topolcic, C., "Schedule for IP Address Space Management Guidelines ", CNRI, October 1992. RFC 1368: McMaster, D. (Synoptics Communications, Inc.), K
NASA Astrophysics Data System (ADS)
Anderson, Alison M.; Kalimutho, Murugan; Harten, Sarah; Nanayakkara, Devathri M.; Khanna, Kum Kum; Ragan, Mark A.
2017-01-01
In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
FTP Extensions for Variable Protocol Specification
NASA Technical Reports Server (NTRS)
Allman, Mark; Ostermann, Shawn
2000-01-01
The specification for the File Transfer Protocol (FTP) assumes that the underlying network protocols use a 32-bit network address and a 16-bit transport address (specifically IP version 4 and TCP). With the deployment of version 6 of the Internet Protocol, network addresses will no longer be 32-bits. This paper species extensions to FTP that will allow the protocol to work over a variety of network and transport protocols.
NASA Technical Reports Server (NTRS)
Frantz, Brian D.; Ivancic, William D.
2001-01-01
Asynchronous Transfer Mode (ATM) Quality of Service (QoS) experiments using the Transmission Control Protocol/Internet Protocol (TCP/IP) were performed for various link delays. The link delay was set to emulate a Wide Area Network (WAN) and a Satellite Link. The purpose of these experiments was to evaluate the ATM QoS requirements for applications that utilize advance TCP/IP protocols implemented with large windows and Selective ACKnowledgements (SACK). The effects of cell error, cell loss, and random bit errors on throughput were reported. The detailed test plan and test results are presented herein.
Stawarczyk, Bogna; Liebermann, Anja; Eichberger, Marlis; Güth, Jan-Frederik
2015-03-01
To determine the mechanical and optical properties of CAD/CAM composites (LAVA Ultimate, Cerasmart, Shofu Block and two exp. CAD/CAM composites), a hybrid material (VITA Enamic), a leucite (IPS Empress CAD) and a lithium disilicate glass-ceramic (IPS e.max CAD). Three-point flexural strength (FS) was investigated according ISO 6872:2008 (N=240/n=30). Two-body wear (TBW) was analyzed in a chewing simulator (1,200,000 cycles, 50N, 5°/55°C) using human teeth as antagonists (N=120/n=15). Quantitative analysis of wear was carried out with a 3D-scanner and associated matching software. Discoloration rate (DR) after 14 days of storage in cress, curry, red wine, and distilled water (N=384/n=12), and translucency (T) (N=384/n=48) of CAD/CAM materials were measured in a spectrophotometer (400-700nm wavelength). Data were analyzed using two-/one-way ANOVA with Scheffé post-hoc test, Kruskal-Wallis-H test, and linear mixed models (α=0.05). IPS e.max CAD showed the highest FS (p<0.001), followed by LAVA Ultimate; however, not different from the remaining CAD/CAM composites (exception: Shofu Block). The lowest FS showed VITA Enamic and IPS Empress CAD (p<0.001). IPS Empress CAD, VITA Enamic, exp. CAD/CAM composite 2, followed by IPS e.max presented lower material TBW than the remaining CAD/CAM materials (p<0.001). The highest antagonist wear was observed for the tested glass-ceramics and the hybrid material (p<0.001). Storage medium (red wine>curry>cress>distilled water) exerted the highest influence on DR (p<0.001), closely followed by CAD/CAM material. Glass-ceramics showed lower DR than CAD/CAM composites (p<0.001). CAD/CAM composites presented moderate FS, high T and antagonist friendly behavior. Glass-ceramic demonstrated the most favorable DR and lowest TBW on the material side. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.
2012-01-01
A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.
Sulaiman, Taiseer A; Abdulmajeed, Aous A; Shahramian, Khalil; Hupa, Leena; Donovan, Terrence E; Vallittu, Pekka; Närhi, Timo O
2015-12-01
To evaluate the surface topography and optical properties of monolithic zirconia after immersion in simulated gastric acid. Four partially stabilized (PSZ) and one fully stabilized (FSZ) zirconia materials were selected for the study: Prettau (PRT, Zirkonzahn), Zenostar (ZEN, Ivoclar), Bruxzir (BRX, Glidewell), Katana (KAT, Noritake) and FSZ Prettau Anterior (PRTA, Zirkonzahn). IPS e.max (Ivoclar) was used as a control. The specimens (10×10×1.2mm, n=5 per material) were cut, sintered, polished and cleaned before immersed in 5ml of simulated gastric acid solution (Hydrochloric acid (HCl) 0.06M, 0.113% solution in deionized distal water, pH 1.2) for 96h in a 37°C incubator. Specimens were weighed and examined for morphological changes under scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Surface roughness was evaluated by a confocal microscope. Surface gloss and translucency parameter (TP) values were determined by a reflection spectrophotometer before and after acid immersion. The data was analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p<0.05). PRTA displayed the most weight loss (1.40%) among the zirconia specimens. IPS e.max showed about three times more weight loss (3.05%) than zirconia specimens as an average. SEM examination indicated areas of degradation, bead-like shapes and smoothening of the polishing scratches after acid immersion. EDX displayed ion interactions and possible ion leaching from all specimens. Sa and Sq values for PRTA, ZEN and IPS e.max were significantly lower (p<0.05) after acid immersion. TP values increased significantly for PRT, ZEN and IPS e.max (p<0.05), while the surface gloss of ZEN, PRTA and IPS e.max increased (p<0.05). Monolithic zirconia materials show some surface alterations in an acidic environment with minimum effect on their optical properties. Whether a smoother surface is in fact a sign of true corrosion resistance or is purely the result of an evenly progressive corrosive process is yet to be confirmed by further research. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Low-earth-orbit Satellite Internet Protocol Communications Concept and Design
NASA Technical Reports Server (NTRS)
Slywezak, Richard A.
2004-01-01
This report presents a design concept for a low-Earth-orbit end-to-end Internet-Protocol- (IP-) based mission. The goal is to maintain an up-to-date communications infrastructure that makes communications seamless with the protocols used in terrestrial computing. It is based on the premise that the use of IPs will permit greater interoperability while also reducing costs and providing users the ability to retrieve data directly from the satellite. However, implementing an IP-based solution also has a number of challenges, since wireless communications have different characteristics than wired communications. This report outlines the design of a low-Earth-orbit end-to-end IP-based mission; the ideas and concepts of Space Internet architectures and networks are beyond the scope of this document. The findings of this report show that an IP-based mission is plausible and would provide benefits to the user community, but the outstanding issues must be resolved before a design can be implemented.
Mosier, Jarrod; Joseph, Bellal; Sakles, John C
2013-02-01
Since the first remote intubation with telemedicine guidance, wireless technology has advanced to enable more portable methods of telemedicine involvement in remote airway management. Three voice over Internet protocol (VoIP) services were evaluated for quality of image transmitted, data lag, and audio quality with remotely observed and assisted intubations in an academic emergency department. The VoIP clients evaluated were Apple (Cupertino, CA) FaceTime(®), Skype™ (a division of Microsoft, Luxembourg City, Luxembourg), and Tango(®) (TangoMe, Palo Alto, CA). Each client was tested over a Wi-Fi network as well as cellular third generation (3G) (Skype and Tango). All three VoIP clients provided acceptable image and audio quality. There is a significant data lag in image transmission and quality when VoIP clients are used over cellular broadband (3G) compared with Wi-Fi. Portable remote telemedicine guidance is possible with newer technology devices such as a smartphone or tablet, as well as VoIP clients used over Wi-Fi or cellular broadband.
NASA Technical Reports Server (NTRS)
Bailey, Brandon
2015-01-01
Historically security within organizations was thought of as an IT function (web sites/servers, email, workstation patching, etc.) Threat landscape has evolved (Script Kiddies, Hackers, Advanced Persistent Threat (APT), Nation States, etc.) Attack surface has expanded -Networks interconnected!! Some security posture factors Network Layer (Routers, Firewalls, etc.) Computer Network Defense (IPS/IDS, Sensors, Continuous Monitoring, etc.) Industrial Control Systems (ICS) Software Security (COTS, FOSS, Custom, etc.)
Enabling end-user network monitoring via the multicast consolidated proxy monitor
NASA Astrophysics Data System (ADS)
Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew
2001-07-01
The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.
Accretion Flows in Magnetic White Dwarf Systems
NASA Technical Reports Server (NTRS)
Imamura, James N.
2005-01-01
We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.
NASA Astrophysics Data System (ADS)
Nikitin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.; Botygin, I. A.
2017-02-01
The results of the research of existent routing protocols in wireless networks and their main features are discussed in the paper. Basing on the protocol data, the routing protocols in wireless networks, including search routing algorithms and phone directory exchange algorithms, are designed with the ‘WiFi-Direct’ technology. Algorithms without IP-protocol were designed, and that enabled one to increase the efficiency of the algorithms while working only with the MAC-addresses of the devices. The developed algorithms are expected to be used in the mobile software engineering with the Android platform taken as base. Easier algorithms and formats of the well-known route protocols, rejection of the IP-protocols enables to use the developed protocols on more primitive mobile devices. Implementation of the protocols to the engineering industry enables to create data transmission networks among working places and mobile robots without any access points.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Socket Widget Class ("Class" is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network connections for graphical-user-interface (GUI) computer programs. UNIX Transmission Control Protocol/Internet Protocol (TCP/IP) socket programming libraries require many method calls to configure, operate, and destroy sockets. Most X Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Socket Widget Class encapsulates UNIX TCP/IP socket-management tasks within the framework of an X Windows widget. Using the widget framework, X Windows GUI programs can treat one or more network socket instances in the same manner as that of other graphical widgets, making it easier to program sockets. Wrapping ISP socket programming libraries inside a widget framework enables a programmer to treat a network interface as though it were a GUI.
Automatic analysis of attack data from distributed honeypot network
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Voznak, MIroslav; Rezac, Filip; Partila, Pavol; Tomala, Karel
2013-05-01
There are many ways of getting real data about malicious activity in a network. One of them relies on masquerading monitoring servers as a production one. These servers are called honeypots and data about attacks on them brings us valuable information about actual attacks and techniques used by hackers. The article describes distributed topology of honeypots, which was developed with a strong orientation on monitoring of IP telephony traffic. IP telephony servers can be easily exposed to various types of attacks, and without protection, this situation can lead to loss of money and other unpleasant consequences. Using a distributed topology with honeypots placed in different geological locations and networks provides more valuable and independent results. With automatic system of gathering information from all honeypots, it is possible to work with all information on one centralized point. Communication between honeypots and centralized data store use secure SSH tunnels and server communicates only with authorized honeypots. The centralized server also automatically analyses data from each honeypot. Results of this analysis and also other statistical data about malicious activity are simply accessible through a built-in web server. All statistical and analysis reports serve as information basis for an algorithm which classifies different types of used VoIP attacks. The web interface then brings a tool for quick comparison and evaluation of actual attacks in all monitored networks. The article describes both, the honeypots nodes in distributed architecture, which monitor suspicious activity, and also methods and algorithms used on the server side for analysis of gathered data.
Design of redundant array of independent DVD libraries based on iSCSI
NASA Astrophysics Data System (ADS)
Chen, Yupeng; Pan, Longfa
2003-04-01
This paper presents a new approach to realize the redundant array of independent DVD libraries (RAID-LoIP) by using the iSCSI technology and traditional RAID algorithms. Our design reaches the high performance of optical storage system with following features: large storage size, highly accessing rate, random access, long distance of DVD libraries, block I/O storage, long storage life. Our RAID-LoIP system can be a good solution for broadcasting media asset storage system.
NASA Astrophysics Data System (ADS)
Peng, Chaorong; Chen, Chang Wen
2008-04-01
Malicious nodes are mounting increasingly sophisticated attacking operations on the Mobile Ad Hoc Networks (MANETs). This is mainly because the IP-based MANETs are vulnerable to attacks by various malicious nodes. However, the defense against malicious attack can be improved when a new layer of network architecture can be developed to separate true IP address from disclosing to the malicious nodes. In this paper, we propose a new algorithm to improve the defense against malicious attack (IDMA) that is based on a recently developed Assignment Router Identify Protocol (ARIP) for the clustering-based MANET management. In the ARIP protocol, we design the ARIP architecture based on the new Identity instead of the vulnerable IP addresses to provide the required security that is embedded seamlessly into the overall network architecture. We make full use of ARIP's special property to monitor gateway forward packets by Reply Request Route Packets (RREP) without additional intrusion detection layer. We name this new algorithm IDMA because of its inherent capability to improve the defense against malicious attacks. Through IDMA, a watching algorithm can be established so as to counterattack the malicious node in the routing path when it unusually drops up packets. We provide analysis examples for IDMA for the defense against a malicious node that disrupts the route discovery by impersonating the destination, or by responding with state of corrupted routing information, or by disseminating forged control traffic. The IDMA algorithm is able to counterattack the malicious node in the cases when the node lunch DoS attack by broadcast a large number of route requests, or make Target traffic congestion by delivering huge mount of data; or spoof the IP addresses and send forge packets with a fake ID to the same Target causing traffic congestion at that destination. We have implemented IDMA algorism using the GloMoSim simulator and have demonstrated its performance under a variety of operational conditions.
The Network Protocol Analysis Technique in Snort
NASA Astrophysics Data System (ADS)
Wu, Qing-Xiu
Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.
Electronic Reference Library: Silverplatter's Database Networking Solution.
ERIC Educational Resources Information Center
Millea, Megan
Silverplatter's Electronic Reference Library (ERL) provides wide area network access to its databases using TCP/IP communications and client-server architecture. ERL has two main components: The ERL clients (retrieval interface) and the ERL server (search engines). ERL clients provide patrons with seamless access to multiple databases on multiple…
Quality of Service in Networks Supporting Cultural Multimedia Applications
ERIC Educational Resources Information Center
Kanellopoulos, Dimitris N.
2011-01-01
Purpose: This paper aims to provide an overview of representative multimedia applications in the cultural heritage sector, as well as research results on quality of service (QoS) mechanisms in internet protocol (IP) networks that support such applications. Design/methodology/approach: The paper's approach is a literature review. Findings: Cultural…
Communication protocol in chassis detecting wireless transmission system based on WiFi
USDA-ARS?s Scientific Manuscript database
In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...
Surveillance Jumps on the Network
ERIC Educational Resources Information Center
Raths, David
2011-01-01
Internet protocol (IP) network-based cameras and digital video management software are maturing, and many issues that have surrounded them, including bandwidth, data storage, ease of use, and integration are starting to become clearer as the technology continues to evolve. Prices are going down and the number of features is going up. Many school…
Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu
2017-01-04
The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1991-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), comprises multiple distributed local area networks (LAN's) residing in New Mexico and California. The TCP/IP protocol suite is used for inter-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File Server (CFS). Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Service (NSS) and its requirements are described. An application or functional description of the NSS is given. The final section adds performance, capacity, and access constraints to the requirements.
Digital cinema system using JPEG2000 movie of 8-million pixel resolution
NASA Astrophysics Data System (ADS)
Fujii, Tatsuya; Nomura, Mitsuru; Shirai, Daisuke; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu
2003-05-01
We have developed a prototype digital cinema system that can store, transmit and display extra high quality movies of 8-million pixel resolution, using JPEG2000 coding algorithm. The image quality is 4 times better than HDTV in resolution, and enables us to replace conventional films with digital cinema archives. Using wide-area optical gigabit IP networks, cinema contents are distributed and played back as a video-on-demand (VoD) system. The system consists of three main devices, a video server, a real-time JPEG2000 decoder, and a large-venue LCD projector. All digital movie data are compressed by JPEG2000 and stored in advance. The coded streams of 300~500 Mbps can be continuously transmitted from the PC server using TCP/IP. The decoder can perform the real-time decompression at 24/48 frames per second, using 120 parallel JPEG2000 processing elements. The received streams are expanded into 4.5Gbps raw video signals. The prototype LCD projector uses 3 pieces of 3840×2048 pixel reflective LCD panels (D-ILA) to show RGB 30-bit color movies fed by the decoder. The brightness exceeds 3000 ANSI lumens for a 300-inch screen. The refresh rate is chosen to 96Hz to thoroughly eliminate flickers, while preserving compatibility to cinema movies of 24 frames per second.
Changes in resting-state fMRI in vestibular neuritis.
Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F
2014-11-01
Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric responsiveness, postural sway). VN leads to a change in resting-state activity of the contralateral IPS adjacent to the SMG, which reverses during vestibular compensation over 3 months. The ventral intraparietal area in the IPS contains multimodal regions with directionally selective responses to vestibular stimuli making them suitable for participating in spatial orientation and multisensory integration. The clinical importance is indicated by the fact that the increase in resting-state activity tended to be larger in those patients with only little disability at the follow-up examination. This may indicate powerful restitution-related or compensatory cortical changes in resting-state activity.
Optical Communications Channel Combiner
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.
Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets
Anh, Khuong Quoc; Choo, Hyunseung
2017-01-01
Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently. PMID:28968450
Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets.
Kang, Byungseok; Anh, Khuong Quoc; Choo, Hyunseung
2017-01-01
Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently.
Remote Observing with the Keck Telescope Using the ACTS Satellite
NASA Technical Reports Server (NTRS)
Cohen, Judy; Shopbell, Patrick; Bergman, Larry
1998-01-01
As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.
Fuzz Testing of Industrial Network Protocols in Programmable Logic Controllers
2017-12-01
PLCs) are vital components in these cyber-physical systems. The industrial network protocols used to communicate between nodes in a control network...AB/RA) MicroLogix 1100 PLC through its implementation of EtherNet/IP, Common Industrial Protocol (CIP), and Programmable Controller Communication ...Commands (PCCC) communication protocols. This research also examines whether cross-generational vulnerabilities exist in the more advanced AB/RA
Techniques for the Detection of Faulty Packet Header Modifications
2014-03-12
layer approaches to check if packets are being altered by middleboxes and were primarily developed as network neutrality analysis tools. Switzerland works...local and metropolitan area networks –specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications...policy or position of the Department of Defense or the U.S. Government. Understanding, measuring, and debugging IP networks , particularly across
Identity Management Task Force Report 2008
2008-01-01
Telecommunication Grid ( GTG ) consists of the public- switched telecommunications network (PSTN), various forms of Internet protocol (IP) networks...to network providers) to a large community of nomadic users and access devices over a wide range of access technologies. The GTG is notional, and...DOC Dr. Myra Gray , DOD Greg Hall, DNI Celia Hanley, DOD Patrick Hannon, DNI James Hass, IC Linda Hill, SSA Bobby Jones, DOC Patrick Hannon
Insider Threats in the Software Development Lifecycle
2014-11-05
employee, contractor, or other business partner who • has or had authorized access to an organization’s network , system or data and • intentionally...organization’s network , system, or data and who, through • their action/inaction without malicious intent • cause harm or substantially increase...and female Male Target Network , systems, or data PII or Customer Information IP (trade secrets) or Customer Information Access Used
ERIC Educational Resources Information Center
Wu, Wentao
2012-01-01
The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…
Sonification of network traffic flow for monitoring and situational awareness
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543
Sonification of network traffic flow for monitoring and situational awareness.
Debashi, Mohamed; Vickers, Paul
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Colonna-Romano, John; Eslami, Mohammed
2017-05-01
The United States increasingly relies on cyber-physical systems to conduct military and commercial operations. Attacks on these systems have increased dramatically around the globe. The attackers constantly change their methods, making state-of-the-art commercial and military intrusion detection systems ineffective. In this paper, we present a model to identify functional behavior of network devices from netflow traces. Our model includes two innovations. First, we define novel features for a host IP using detection of application graph patterns in IP's host graph constructed from 5-min aggregated packet flows. Second, we present the first application, to the best of our knowledge, of Graph Semi-Supervised Learning (GSSL) to the space of IP behavior classification. Using a cyber-attack dataset collected from NetFlow packet traces, we show that GSSL trained with only 20% of the data achieves higher attack detection rates than Support Vector Machines (SVM) and Naïve Bayes (NB) classifiers trained with 80% of data points. We also show how to improve detection quality by filtering out web browsing data, and conclude with discussion of future research directions.
Enhanced service zone architecture for multiservices over IP
NASA Astrophysics Data System (ADS)
Michaely, Boaz; Mohan, Seshadri
2001-07-01
Recently, the field of IP Telephony has been experienced considerable evolution through the specification of new protocols and introduction of products implementing these protocols. We visualize IP Telephony evolving to soon offer multiservices encompassing not only voice, but also data, video and multimedia. While the progress has focused on refining protocols and architectures, very little attention has been given to business models for offering these services. This paper introduces the concept of a Service Zone, which from a service provider/network operator perspective fits within the operator's administrative domain, but is viewed as an independent zone with its own management and services, requiring minimal integration with the core network services. Besides its own management, the Enhanced Services Zone may also provide provisioning and maintenance features needed to provide the customer services and availability that subscribers expect from a telephony service providers. The platform must provide reliable service over time, be scalable to meet increased capacity demands, and be upgradeable to incorporate advanced services and features as they become available. Signaling flows are illustrated using SIP and H.323.
Shemdoe, Georges S
2009-11-01
The concept of Intellectual Property (IP) in the domain of technology has assumed enhanced importance and the subject matter has attracted more interest with time. As the world moves towards a knowledge-based economy, where wealth creation is no longer based on the capital investment per se, but rather more and more on the brainpower and ability to create, Intellectual Property has become an integral part of world business and a major source for wealth creation and economic growth (ARIPO, 2002). In recognizing the importance of IPR, African Malaria Network Trust (AMANET) has decided to include a module of intellectual property rights in its Health Research Ethics Training Courses for Investigators. This paper is introducing the subject of IP to investigators in health research so that they are able to recognize its importance as IP creators and utilizers of the IP system.
A System Implementation for Cooperation between UHF RFID Reader and TCP/IP Device
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Jin, Ik Soo
This paper presents a system implementation for cooperation between UHF RFID reader and TCP/IP device that can be used as a home gateway. The system consists of an UHF RFID tag, an UHF RFID reader, a RF end-device, a RF coordinator and a TCP/IP I/F. The UHF RFID reader is compatible with EPC Class-0/Gen1, Class-1/Gen1, 2 and ISO18000-6B, operating at the 915MHz. In particular, UHF RFID reader can be combined with a RF end device/coordinator for ZigBee(IEEE 802.15.4) interface which is low power wireless standard. The TCP/IP device is communicated with RFID reader via wired type. On the other hand, it is connected with ZigBee end-device via wireless type. The experimental results show that the developed system can provide the right networking.
Speech transport for packet telephony and voice over IP
NASA Astrophysics Data System (ADS)
Baker, Maurice R.
1999-11-01
Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.
Constructing Cost-Effective and Targetable ICS Honeypots Suited for Production Networks
2015-03-26
introducing Honeyd+ has a marginal impact on performance. Notable findings are that the Raspberry Pi is the preferred hosting platform for the EtherNet/IP... Raspberry Pi or Gumstix, which is a low-cost approach to replicating multiple decoys. One hidden drawback to low- interaction honeypots is the extensive time...EtherNet/IP industrial protocol. Honeyd+ is hosted on a low-cost computing platform ( Raspberry Pi running Raspbian, approximately $50) and a high-cost
Very High-Speed Report File System
1992-12-15
1.5 and 45 Mb/s and is expected 1 Introduction to reach 150 Mb/s. These new technologies pose some challenges to The Internet Protocol (IP) family (IP... Internet Engineering Task Force (IETF) has R taken up the issue, but a definitive answer is probably some time away. The basic issues are the choice of AAL...by an IEEE 802. la Subnetwork Access Protocol (SNAP) However, with a large number of networks all header. The third proposal identifies the protocol
Technology Developments Integrating a Space Network Communications Testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.
Modrák, Martin; Vohradský, Jiří
2018-04-13
Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
IP Addressing: Problem-Based Learning Approach on Computer Networks
ERIC Educational Resources Information Center
Jevremovic, Aleksandar; Shimic, Goran; Veinovic, Mladen; Ristic, Nenad
2017-01-01
The case study presented in this paper describes the pedagogical aspects and experience gathered while using an e-learning tool named IPA-PBL. Its main purpose is to provide additional motivation for adopting theoretical principles and procedures in a computer networks course. In the proposed model, the sequencing of activities of the learning…
2014-05-01
developed techniques for building better IP geolocation systems. Geolocation has many applications, such as presenting advertisements for local business ...presenting advertisements for local business establishments on web pages to debugging network performance issues to attributing attack traffic to...Pennsylvania.” Geolocation has many applications, such as presenting advertisements for local business establishments on web pages to debugging network
Mirza, Hussnain; Laptook, Abbot R; Oh, William; Vohr, Betty R; Stoll, Barbara J; Kandefer, Sarah; Stonestreet, Barbara S
2016-09-01
Indomethacin prophylaxis (IP) reduces the risk of intraventricular haemorrhage (IVH) and patent ductus arteriosus (PDA) in preterm infants. However, the optimal time to administer IP has not been determined. We hypothesised that IP at ≤6 h is associated with a lower incidence of IVH or death than if administered at >6-24 h of age. We performed a retrospective cohort study of extremely low birth weight infants (≤1000 g birth weight) treated in the neonatal intensive care units in the Neonatal Research Network from 2003 to 2010 and who received IP in the first 24 h of age. Infants were dichotomised based upon receipt of IP at ≤6 or >6-24 h of age. The primary outcomes were IVH alone and IVH or death. Secondary outcomes were PDA alone and PDA or death. We used multivariable analyses to determine associations between the age of IP and the study outcomes expressed as an OR and 95% CI. IP was given at ≤6 h to 2340 infants and at >6-24 h to 1915 infants. Infants given IP at ≤6 h had more antenatal steroid exposure, more inborn and less cardiopulmonary resuscitation (p<0.01). After multivariable analyses, age of IP receipt was not associated with IVH, and IVH or death but PDA receiving treatment/ligation or death was lower among IP at ≤6 h compared with IP at >6-24 h (OR 0.83, 95% CI 0.71 to 0.98). IP at ≤6 h of age is not associated with less IVH or death, but is associated with less PDA receiving treatment/ligation or death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tools for Administration of a UNIX-Based Network
NASA Technical Reports Server (NTRS)
LeClaire, Stephen; Farrar, Edward
2004-01-01
Several computer programs have been developed to enable efficient administration of a large, heterogeneous, UNIX-based computing and communication network that includes a variety of computers connected to a variety of subnetworks. One program provides secure software tools for administrators to create, modify, lock, and delete accounts of specific users. This program also provides tools for users to change their UNIX passwords and log-in shells. These tools check for errors. Another program comprises a client and a server component that, together, provide a secure mechanism to create, modify, and query quota levels on a network file system (NFS) mounted by use of the VERITAS File SystemJ software. The client software resides on an internal secure computer with a secure Web interface; one can gain access to the client software from any authorized computer capable of running web-browser software. The server software resides on a UNIX computer configured with the VERITAS software system. Directories where VERITAS quotas are applied are NFS-mounted. Another program is a Web-based, client/server Internet Protocol (IP) address tool that facilitates maintenance lookup of information about IP addresses for a network of computers.
NASA Astrophysics Data System (ADS)
Chakraborty, Shibalik; Boolchand, Punit
2014-03-01
Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.
Quality of Service for Real-Time Applications Over Next Generation Data Networks
NASA Technical Reports Server (NTRS)
Atiquzzaman, Mohammed; Jain, Raj
2001-01-01
This project, which started on January 1, 2000, was funded by the NASA Glenn Research Center for duration of one year. The deliverables of the project included the following tasks: (1) Study of QoS mapping between the edge and core networks envisioned in the Next Generation networks will provide us with the QoS guarantees that can be obtained from next generation networks; (2) Buffer management techniques to provide strict guarantees to real-time end-to-end applications through preferential treatment to packets belonging to real-time applications. In particular, use of ECN to help reduce the loss on high bandwidth-delay product satellite networks needs to be studied; (3) Effect of Prioritized Packet Discard to increase goodput of the network and reduce the buffering requirements in the ATM switches; (4) Provision of new IP circuit emulation services over Satellite IP backbones using MPLS will be studied; and (5) Determine the architecture and requirements for internetworking ATN and the Next Generation Internet for real-time applications. The project has been completed on time. All the objectives and deliverables of the project have been completed. Research results obtained from this project have been published in a number of papers in journals, conferences, and technical reports, included in this document.
VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)
NASA Astrophysics Data System (ADS)
Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.
2014-11-01
Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).
Instantaneous network RTK in Orange County, California
NASA Astrophysics Data System (ADS)
Bock, Y.
2003-04-01
The Orange County Real Time GPS Network (OCRTN) is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming, analysis, and dissemination. The project is a collaborative effort of the California Spatial Reference Center (CSRC) and the Orange County Public Resource and Facilities Division, with partners from the geophysical community, local and state government, and the private sector. Currently, ten sites are streaming 1 Hz raw data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays for quality control and detection of ground motion, and (3) RINEX data to decimated to 30 seconds. Data recovery is typically 99-100%. The server also produces 1 Hz RTCM data (messages 18, 19, 3 and 22) that are available by means of TCP/IP to RTK clients with wireless Internet modems. Coverage is excellent throughout the county. The server supports standard RTK users and is compatible with existing GPS instrumentation. Typical latency is 1-2 s, with initialization times of several seconds to minutes OCRTN site spacing is 10-15 km. In addition, the server supports “smart clients” who can retrieve data from the closest n sites (typically 3) and obtain an instantaneous network RTK position with 1-2 s latency. This mode currently requires a PDA running the RTD client software, and a wireless card. Since there is no initialization and re-initialization required this approach is well suited to support high-precision (centimeter-level) dynamic applications such as intelligent transportation and aircraft landing. We will discuss the results of field tests of this system, indicating that instantaneous network RTK can be performed accurately and reliably. If an Internet connection is available we will present a real-time demonstration.
Experience with Delay-Tolerant Networking from Orbit
NASA Technical Reports Server (NTRS)
Ivancic, W.; Eddy, W. M.; Stewart, D.; Wood, L.; Northam, J.; Jackson, C.
2010-01-01
We describe the first use from space of the Bundle Protocol for Delay-Tolerant Networking (DTN) and lessons learned from experiments made and experience gained with this protocol. The Disaster Monitoring Constellation (DMC), constructed by Surrey Satellite Technology Ltd (SSTL), is a multiple-satellite Earth-imaging low-Earth-orbit sensor network in which recorded image swaths are stored onboard each satellite and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with capture and later download gives each satellite the characteristics of a node in a disruption-tolerant network. Originally developed for the Interplanetary Internet, DTNs are now under investigation in an Internet Research Task Force (IRTF) DTN research group (RG), which has developed a bundle architecture and protocol. The DMC is technically advanced in its adoption of the Internet Protocol (IP) for its imaging payloads and for satellite command and control, based around reuse of commercial networking and link protocols. These satellites use of IP has enabled earlier experiments with the Cisco router in Low Earth Orbit (CLEO) onboard the constellation s UK-DMC satellite. Earth images are downloaded from the satellites using a custom IP-based high-speed transfer protocol developed by SSTL, Saratoga, which tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force (IETF) for wider adoption. We experiment with the use of DTNRG bundle concepts onboard the UK-DMC satellite, by examining how Saratoga can be used as a DTN convergence layer to carry the DTNRG Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. Our practical experience with the first successful use of the DTNRG Bundle Protocol in a space environment gives us insights into the design of the Bundle Protocol and enables us to identify issues that must be addressed before wider deployment of the Bundle Protocol. Published in 2010 by John Wiley & Sons, Ltd. KEY WORDS: Internet; UK-DMC; satellite; Delay-Tolerant Networking (DTN); Bundle Protocol
Fiber-Optic Terahertz Data-Communication Networks
NASA Technical Reports Server (NTRS)
Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.
1994-01-01
Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.
Multi-board kernel communication using socket programming for embedded applications
NASA Astrophysics Data System (ADS)
Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita
2016-03-01
It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.
Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.
Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine
2014-08-01
In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.
Cao, Dingcai; Nicandro, Nathaniel; Barrionuevo, Pablo A.
2015-01-01
Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs. PMID:25624466
Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats.
Capelo, Isabelle Oliveira Jatai; Batista, Avner Marcos Alves; Brito, Yuri Neyson Ferreira; Diniz, Krissia Braga; Brito, Gerly Anne de Castro; Freitas, Marcos Rabelo de
2017-10-01
To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.
Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan
2007-02-18
To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.
Network-wide BGP route prediction for traffic engineering
NASA Astrophysics Data System (ADS)
Feamster, Nick; Rexford, Jennifer
2002-07-01
The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.
2015-08-01
Experimental environment 5 Table 1 Hardware specifications Name Manufacture Model CPU Memory Hard Drive IP Address Bilbo Dell PowerEdge R610 Intel...10 we replayed the same hour of network traffic from the CDX 20093 that we used in our theoretical2 exploration to show the impact of our packet... replay the traffic at arbitrary speeds. Table 3 lists the speed multiplier that we used and the packet loss we observed. Table 3 Network packet loss
2014-11-01
Canada (Department of National Defence), 2014 c© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2014 Abstract In recent...2006), Network security mechanisms utilising network address translation, International journal of critical infrastructures, 2(1), 10–49. [5] Dunlop...Lu, S. (2008), Full service hopping for proactive cyber-defense, In ICNSC 2008: IEEE International Conference on Networking, Sensing and Control, pp
Spacewire Routers Implemented with FPGA Technology
NASA Astrophysics Data System (ADS)
Habinc, Sandi; Isomaki, Marko
2011-08-01
Routers are an integral part of SpaceWire networks. Aeroflex Gaisler has developed a highly configurable SpaceWire router VHDL IP core to meet the needs for technology independent router designs. The main design goals have been configurability, technology independence, support of the standard and expandability. The IP core being technologically independent allows it to be used in both ASIC and FPGA technology. The latter is now being used to produce versatile standard products that can reach the market faster than for example an ASIC based product.
Security Analysis of Session Initiation Protocol
2010-06-01
traffic as Bob@biloxi.com), a VPN was established with OpenVPN 2.1_rc19 between all relevant entities. Configuration files used by the clients and...static key is created by running the command ’ openvpn --genkey --secret static.key.’ By 22 rerouting all SIP traffic through VPNs as needed, a network... OpenVPN , and VM 2’s routing table is modified so that all IP packets except those addressed to VM 1’s publicly facing IP are routed through the OpenVPN
NASA Astrophysics Data System (ADS)
Slavata, Oldřich; Holub, Jan
2015-02-01
This paper deals with an analysis of the relation between the codec that is used, the QoS method, and the final voice transmission quality. The Cisco 2811 router is used for adjusting QoS. VoIP client Linphone is used for adjusting the codec. The criterion for transmission quality is the MOS parameter investigated with the ITU-T P.862 PESQ and P.863 POLQA algorithms.
Securing internet by eliminating DDOS attacks
NASA Astrophysics Data System (ADS)
Niranchana, R.; Gayathri Devi, N.; Santhi, H.; Gayathri, P.
2017-11-01
The major threat caused to the authorised usage of Internet is Distributed Denial of Service attack. The mechanisms used to prevent the DDoS attacks are said to overcome the attack’s ability in spoofing the IP packets source addresses. By utilising Internet Protocol spoofing, the attackers cause a consequential load over the networks destination for policing attack packets. To overcome the IP Spoofing level on the Internet, We propose an Inter domain Packet Filter (IPF) architecture. The proposed scheme is not based on global routing information. The packets with reliable source addresses are not rejected, the IPF frame work works in such a manner. The spoofing capability of attackers is confined by IPF, and also the filter identifies the source of an attack packet by minimal number of candidate network.
Standardization efforts in IP telephony
NASA Astrophysics Data System (ADS)
Sengodan, Senthil; Bansal, Raj
1999-11-01
The recent interest in IP telephony has led to a tremendous increase of standardization activities in the area. The three main standards bodies in the area of IP telephony are the International Telecommunication Union's (ITU-T) Study Group (SG) 16, the Internet Engineering Task Force (IETF) and the European Telecommunication Standards Institute's (ETSI) TIPHON project. In addition, forums such as the International Multimedia Teleconferencing Consortium (IMTC), the Intelligent Network Forum (INF), the International Softswitch Consortium (ISC), the Electronic Computer Telephony Forum (ECTF), and the MIT's Internet Telephony Consortium (ITC) are looking into various other aspects that aim at the growth of this industry. This paper describes the main tasks (completed and in progress) undertaken by these organizations. In describing such work, an overview of the underlying technology is also provided.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1992-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), was designed in 1989 and comprises multiple distributed local area networks (LAN's) residing in Albuquerque, New Mexico and Livermore, California. The TCP/IP protocol suite is used for inner-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File System (CFS) developed by Los Alamos National Laboratory. Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Services (NSS) and is requirements are described in this paper. The next section gives an application or functional description of the NSS. The final section adds performance, capacity, and access constraints to the requirements.
Challenges in sending large radiology images over military communications channels
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Levine, Betty A.; Norton, Gary S.; Mundur, Padmavathi V.
1997-05-01
In cooperation with the US Army, Georgetown University Medical Center (GUMC) deployed a teleradiology network to sites in Bosnia-Herzegovina, Hungary, and Germany in early 1996. This deployment was part of Operation Primetime III, a military project to provide state-of-the-art medical care to the 20,000 US troops stationed in Bosnia-Herzegovina.In a three-month time frame from January to April 1996, the Imaging Sciences and Information Systems (ISIS) Center at GUMC worked with the Army to design, develop, and deploy a teleradiology network for the digital storage and transmission of radiology images. This paper will discuss some of the problems associated with sending large files over communications networks with significant delays such as those introduced by satellite transmissions.Radiology images of up to 10 megabytes are acquired, stored, and transmitted over the wide area network (WAN). The WAN included leased lines from Germany to Hungary and a satellite link form Germany to Bosnia-Herzegovina. The communications links provided at least a T-1 bandwidth. The satellite link introduces a round-trip delay of approximately 500 milliseconds. This type of high bandwidth, high delay network is called a long fat network. The images are transferred across this network using the Transmission Control Protocol (TCP/IP). By modifying the TCP/IP software to increase the window size, the throughput of the satellite link can be greatly improved.
Allocation of spectral and spatial modes in multidimensional metro-access optical networks
NASA Astrophysics Data System (ADS)
Gao, Wenbo; Cvijetic, Milorad
2018-04-01
Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.
Optical reprogramming with ultrashort femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten
2015-03-01
The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
NASA Technical Reports Server (NTRS)
2005-01-01
The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.
Shipboard Calibration Network Extension Utilizing COTS Products
2014-09-01
to emulate the MCS system console. C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH A ServSwitch Wizard IP Plus KVM switch is used to allow remote access...9 C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH .......................... 10 D. ROUTER...mechanical, and electrical KVM Keyboard Video and Mouse LAN Local Area Network MCS Machinery Control Systems NIST National Institute of Standards and
World Without Wires: Is Your District Ready to Go Wireless?
ERIC Educational Resources Information Center
Villano, Matt
2005-01-01
In this article, the author presents the latest wireless equipments available in market. For starters, wireless networks offer mobility and flexibility: users of laptops, PDAs, tablet PCs, and wireless Voice over IP telephones can move freely about campus while staying connected to the Internet. There are two kinds of wireless networks: ad-hoc, or…
Proposal of Secure VoIP System Using Attribute Certificate
NASA Astrophysics Data System (ADS)
Kim, Jin-Mook; Jeong, Young-Ae; Hong, Seong-Sik
VoIP is a service that changes the analogue audio signal into a digital signal and then transfers the audio information to the users after configuring it as a packet; and it has an advantage of lower price than the existing voice call service and better extensibility. However, VoIP service has a system structure that, compared to the existing PSTN (Public Switched Telephone Network), has poor call quality and is vulnerable in the security aspect. To make up these problems, TLS service was introduced to enhance the security. In practical system, however, since QoS problem occurs, it is necessary to develop the VoIP security system that can satisfy QoS at the same time in the security aspect. In this paper, a user authentication VoIP system that can provide a service according to the security and the user through providing a differential service according to the approach of the users by adding AA server at the step of configuring the existing VoIP session is suggested. It was found that the proposed system of this study provides a quicker QoS than the TLS-added system at a similar level of security. Also, it is able to provide a variety of additional services by the different users.
Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking
NASA Technical Reports Server (NTRS)
Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph
2008-01-01
The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the effective bending point of the flex-joint. The second plate is pressed against two screw actuators by the weight of the IP. The screw actuators are orthogonal to each other and are used to adjust the inclination of the second plate. The actuators are driven by stepper motors. The whole IP system is housed in a box made of Lexan plastic plates to provide isolation from air currents and temperature variations. The signals from the sensors are processed and recorded with a PC using the xPC Target realtime environment of Math- Works. The control algorithms are written using the Simulink package from The MathWorks.
Analysis of blocking probability for OFDM-based variable bandwidth optical network
NASA Astrophysics Data System (ADS)
Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi
2011-12-01
Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.
Development of ISO connection-oriented/correctionless gateways
NASA Technical Reports Server (NTRS)
Landweber, Lawrence H.
1991-01-01
The project had two goals, establishment of a gateway between French and U.S. academic networks and studies of issues related to the development of ISO connection-oriented/connectionless (CO/CL) gateways. The first component involved installation of a 56K bps line between Princeton Univ. and INRIA in France. The end-points of these lines were connected by Vitalink link level bridges. The Princeton end was then connected to the NSFNET via the John Von Neumann Supercomputer Center. The French end was connected to Transpac, the French X.25 public data network and to the French IP research internet. U.S. users may communicate with users of the French internet by e-mail and may access computational and data resources in France by use of remote login and file transfer. The connection to Transpac enables U.S. users to access the SIMBAD astronomical database outside of Paris. Access to this database from the U.S. can be via TCP/IP or DECNET (via a DECNET to TCP/IP gateway) protocols utilizing a TCP/IP to X.25 gateway developed and operated by INRIA. The second component of the project involved experiments aimed at understanding the issues involved is ISO CO/CL gateways. An experimental gateway was developed at Wisconsin and a preliminary report was prepared. Because of the need to devote most resources to the first component of the project, work in this area did not go beyond development of a prototype gateway.
Demonstrating a Realistic IP Mission Prototype
NASA Technical Reports Server (NTRS)
Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith
2003-01-01
Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.
CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors
Corbo, Joseph C.; Lawrence, Karen A.; Karlstetter, Marcus; Myers, Connie A.; Abdelaziz, Musa; Dirkes, William; Weigelt, Karin; Seifert, Martin; Benes, Vladimir; Fritsche, Lars G.; Weber, Bernhard H.F.; Langmann, Thomas
2010-01-01
Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl−/− retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease. PMID:20693478
Kinesthetic working memory and action control within the dorsal stream.
Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank
2008-02-01
There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.
Digital Video Over Space Systems and Networks
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2010-01-01
This slide presentation reviews the improvements and challenges that digital video provides over analog video. The use of digital video over IP options and trade offs, link integrity and latency are reviewed.
Intelligentization: an efficient means to get more from optical networking
NASA Astrophysics Data System (ADS)
Chen, Zhi Yun
2001-10-01
Infocom is a term used to describe the merger of Information and Communications and is used to show the radical changes in today's network traffic. The continuous growth of Infocom traffic, especially that of Internet, is driving Infocom networks to expand rapidly. To service providers, the traffic is consuming the bandwidth of their network. Simultaneously, users are complaining too slow, the net never stopped in China. It is the reality faced by both the service providers and equipment vendors. Demands from both the customers and competition in market call for an efficient network infrastructure. What should a Service Provider do? This paper will first analyze the development trends of optical networking and the formation of the concepts of Intelligent Optical Network (ION) and Automatic Switched Optical Network (ASON) as a solution to this problem. Next it will look at the ways to bring intelligence into optical networks, discussing the benefits to service providers by showing some application examples. Finally, it concludes that the development of optical networking has arrived at a point of introducing intelligence into optical networks. The intelligent optical networks and Automatic Switched Optical Networks will immediately bring a wide range of benefit to service providers, equipment vendors, and, of course, the end users.
Optical network democratization.
Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra
2016-03-06
The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)
2000-01-01
The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.
Internetting tactical security sensor systems
NASA Astrophysics Data System (ADS)
Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.
1998-08-01
The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software
Mejías, Andrés; Herrera, Reyes S.; Márquez, Marco A.; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-01
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)—this one designed using the intuitive graphical system of EJS—located on the user’s computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented. PMID:28067801
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software.
Mejías, Andrés; Herrera, Reyes S; Márquez, Marco A; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-05
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)-this one designed using the intuitive graphical system of EJS-located on the user's computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented.
Research on an IP disaster recovery storage system
NASA Astrophysics Data System (ADS)
Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng
2008-12-01
According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.
Optical RRH working in an all-optical fronthaul network
NASA Astrophysics Data System (ADS)
Zakrzewski, Zbigniew
2017-12-01
The paper presents an example of an optical RRH (Remote Radio Head) design, which is equipped with photonic components for direct connection to an all-optical network. The features that can be fulfilled by an all-optical network are indicated to support future 5G mobile networks. The demand for optical bandwidth in fronthaul/midhaul distribution network links, working in D-RoF and A-RoF formats was performed. The increase in demand is due to the very large traffic generated by the Optical Massive-MIMO RRH/RRU will work in format of an Active-Distributed Antenna System (A-DAS). An exemplary next-generation mobile network that will utilize O-RRH and an all-optical backbone is presented. All components of presented network will work in the Centralized/Cloud Radio Access Network (C-RAN) architecture, which is achievable by control with the use of the OpenFlow (OF).
Simulation of cyber attacks with applications in homeland defense training
NASA Astrophysics Data System (ADS)
Brown, Bill; Cutts, Andrew; McGrath, Dennis; Nicol, David M.; Smith, Timothy P.; Tofel, Brett
2003-09-01
We describe a tool to help exercise and train IT managers who make decisions about IP networks in the midst of cyber calamity. Our tool is interactive, centered around a network simulation. It includes various modes of communications one would use to make informed decisions. Our tool is capable of simulating networks with hundreds of components and dozens of players. Test indicate that it could support an exercise an order of magnitude larger and more complex.
The design of the m-health service application using a Nintendo DS game console.
Lee, Sangjoon; Kim, Jungkuk; Lee, Myoungho
2011-03-01
In this article, we developed an m-health monitoring system using a Nintendo DS game console to demonstrate its utility. The proposed system consists of a biosignal acquisition device, wireless sensor network, base-station for signal reception from the sensor network and signal conversion according to Internet protocol, personal computer display program, and the Nintendo DS game console. The system collects three-channel electrocardiogram (ECG) signals for cardiac abnormality detection and three-axis accelerometer signals for fall detection of a person. The collected signals are then transmitted to the base-station through the wireless sensor network, where they are transformed according to the transmission control protocol/Internet protocol (TCP/IP) and sent to the destination IP through Internet network. To test the developed system, the collected signals were displayed on a computer located in different building through wired Internet network and also simultaneously displayed on the Nintendo DS game console connected to Internet network wirelessly. The system was able to collect and transmit signals for more than 24 h without any interruptions or malfunctions, showing the possibility of integrating healthcare monitoring functions into a small handheld-type electronic device developed for different purposes without significant complications. It is expected that the system can be used in an ambulance, nursing home, or general hospital where efficient patient monitoring from long distance is necessary.
TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP)
NASA Technical Reports Server (NTRS)
Carnright, Robert; Stodden, David; Coggi, John
2009-01-01
The Transmission Control Protocol/ Internet protocol (TCP/IP) interface for the Satellite Orbit Analysis Program (SOAP) provides the means for the software to establish real-time interfaces with other software. Such interfaces can operate between two programs, either on the same computer or on different computers joined by a network. The SOAP TCP/IP module employs a client/server interface where SOAP is the server and other applications can be clients. Real-time interfaces between software offer a number of advantages over embedding all of the common functionality within a single program. One advantage is that they allow each program to divide the computation labor between processors or computers running the separate applications. Secondly, each program can be allowed to provide its own expertise domain with other programs able to use this expertise.
Epigenome analysis of pluripotent stem cells
Ricupero, Christopher L.; Swerdel, Mavis R.; Hart, Ronald P.
2015-01-01
Summary Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to isolate and enrich chromatin fragments using antibodies against specific chromatin modifications, such as DNA binding proteins or covalent histone modifications. Until recently, many ChIP protocols required millions of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis, that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain. PMID:23546758
A General Purpose Connections type CTI Server Based on SIP Protocol and Its Implementation
NASA Astrophysics Data System (ADS)
Watanabe, Toru; Koizumi, Hisao
In this paper, we propose a general purpose connections type CTI (Computer Telephony Integration) server that provides various CTI services such as voice logging where the CTI server communicates with IP-PBX using the SIP (Session Initiation Protocol), and accumulates voice packets of external line telephone call flowing between an IP telephone for extension and a VoIP gateway connected to outside line networks. The CTI server realizes CTI services such as voice logging, telephone conference, or IVR (interactive voice response) with accumulating and processing voice packets sampled. Furthermore, the CTI server incorporates a web server function which can provide various CTI services such as a Web telephone directory via a Web browser to PCs, cellular telephones or smart-phones in mobile environments.
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2004-12-01
Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.
Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joslyn, Cliff A.; Choudhury, S.; Haglin, David J.
2013-06-19
We describe the significance and prominence of network traffic analysis (TA) as a graph- and network-theoretical domain for advancing research in graph database systems. TA involves observing and analyzing the connections between clients, servers, hosts, and actors within IP networks, both at particular times and as extended over times. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. IPFLOW databases are routinely interrogated statistically and visualized for suspicious patterns. But the ability to cast IPFLOW data as a massive graph and query itmore » interactively, in order to e.g.\\ identify connectivity patterns, is less well advanced, due to a number of factors including scaling, and their hybrid nature combining graph connectivity and quantitative attributes. In this paper, we outline requirements and opportunities for graph-structured IPFLOW analytics based on our experience with real IPFLOW databases. Specifically, we describe real use cases from the security domain, cast them as graph patterns, show how to express them in two graph-oriented query languages SPARQL and Datalog, and use these examples to motivate a new class of "hybrid" graph-relational systems.« less
DNET: A communications facility for distributed heterogeneous computing
NASA Technical Reports Server (NTRS)
Tole, John; Nagappan, S.; Clayton, J.; Ruotolo, P.; Williamson, C.; Solow, H.
1989-01-01
This document describes DNET, a heterogeneous data communications networking facility. DNET allows programs operating on hosts on dissimilar networks to communicate with one another without concern for computer hardware, network protocol, or operating system differences. The overall DNET network is defined as the collection of host machines/networks on which the DNET software is operating. Each underlying network is considered a DNET 'domain'. Data communications service is provided between any two processes on any two hosts on any of the networks (domains) that may be reached via DNET. DNET provides protocol transparent, reliable, streaming data transmission between hosts (restricted, initially to DECnet and TCP/IP networks). DNET also provides variable length datagram service with optional return receipts.
NASA Technical Reports Server (NTRS)
Younes, Badri A.; Schier, James S.
2010-01-01
The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.
Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B
2014-01-13
Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.
An Architecture for Coexistence with Multiple Users in Frequency Hopping Cognitive Radio Networks
2013-03-01
the base WARP system, a custom IP core written in VHDL , and the Virtex IV’s embedded PowerPC core with C code to implement the radio and hopset...shown in Appendix C as Figure C.2. All VHDL code necessary to implement this IP core is included in Appendix G. 69 Figure 3.19: FPGA bus structure...subsystem functionality. A total of 1,430 lines of VHDL code were implemented for this research. 1 library ieee; 2 use ieee.std logic 1164.all; 3 use
Giovanni, Mazza G; Shenvi, Rohit; Battles, Marcie; Orthner, Helmuth F
2008-11-06
The eMonitor is a component of the ePatient system; a prototype system used by emergency medical services (EMS) personnel in the field to record and transmits electronic patient care report (ePCR) information interactively. The eMonitor component allows each Mobile Data Terminal (MDT) on an unreliable Cisco MobileIP wireless network to securely send and received XML messages used to update patient information to and from the MDT before, during and after the transport of a patient.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link
NASA Technical Reports Server (NTRS)
Nguyen, Sam P.; Pang, Jackson; Clare, Loren P.; Cheng, Michael K.
2010-01-01
NASA is moving toward a networkcentric communications architecture and, in particular, is building toward use of Internet Protocol (IP) in space. The use of IP is motivated by its ubiquitous application in many communications networks and in available commercial off-the-shelf (COTS) technology. The Constellation Program intends to fit two or more voice (over IP) channels on both the forward link to, and the return link from, the Orion Crew Exploration Vehicle (CEV) during all mission phases. Efficient bandwidth utilization of the links is key for voice applications. In Voice over IP (VoIP), the IP packets are limited to small sizes to keep voice latency at a minimum. The common voice codec used in VoIP is G.729. This new algorithm produces voice audio at 8 kbps and in packets of 10-milliseconds duration. Constellation has designed the VoIP communications stack to use the combination of IP/UDP/RTP protocols where IP carries a 20-byte header, UDP (User Datagram Protocol) carries an 8-byte header, and RTP (Real Time Transport Protocol) carries a 12-byte header. The protocol headers total 40 bytes and are equal in length to a 40-byte G.729 payload, doubling the VoIP latency. Since much of the IP/UDP/RTP header information does not change from IP packet to IP packet, IP/UDP/RTP header compression can avoid transmission of much redundant data as well as reduce VoIP latency. The benefits of IP header compression are more pronounced at low data rate links such as the forward and return links during CEV launch. IP/UDP/RTP header compression codecs are well supported by many COTS routers. A common interface to the COTS routers is through frame relay. However, enabling IP header compression over frame relay, according to industry standard (Frame Relay IP Header Compression Agreement FRF.20), requires a duplex link and negotiations between the compressor router and the decompressor router. In Constellation, each forward to and return link from the CEV in space is treated independently as a simplex link. Without negotiation, the COTS routers are prevented from entering into the IP header compression mode, and no IP header compression would be performed. An algorithm is proposed to enable IP header compression in COTS routers on a simplex link with no negotiation or with a one-way messaging. In doing so, COTS routers can enter IP header compression mode without the need to handshake through a bidirectional link as required by FRF.20. This technique would spoof the routers locally and thereby allow the routers to enter into IP header compression mode without having the negotiations between routers actually occur. The spoofing function is conducted by a frame relay adapter (also COTS) with the capability to generate control messages according to the FRF.20 descriptions. Therefore, negotiation is actually performed between the FRF.20 adapter and the connecting COTS router locally and never occurs over the space link. Through understanding of the handshaking protocol described by FRF.20, the necessary FRF.20 negotiations messages can be generated to control the connecting router, not only to turn on IP header compression but also to adjust the compression parameters. The FRF.20 negotiation (or control) message is composed in the FRF.20 adapter by interpreting the incoming router request message. Many of the fields are simply transcribed from request to response while the control field indicating response and type are modified.
Implementation of Distributed Services for a Deep Sea Moored Instrument Network
NASA Astrophysics Data System (ADS)
Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.
2004-12-01
The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low-bandwidth connections. Thus power and wireless bandwidth are limited resources that constrain our choice of service technologies and wireless access strategy. We describe and evaluate system performance in light of actual deployment of observatory elements in Monterey Bay, and discuss how the system can be developed further. We also consider management and control strategies for the cable-to-shore observatory known as MARS ("Monterey Accelerated Research System"). The MARS cable will provide high power and continuous high-bandwidth connectivity between seafloor instrument nodes and shore, thus removing key limitations of the moored observatory. Moreover MARS functional requirements may differ significantly from MOOS requirements. In light of these differences, we discuss how elements of our MOOS moored observatory architecture might be adapted to MARS.
NASA Astrophysics Data System (ADS)
Uemura, Satoshi; Fukumoto, Norihiro; Yamada, Hideaki; Nakamura, Hajime
A feature of services provided in a Next Generation Network (NGN) is that the end-to-end quality is guaranteed. This is quite a challenging issue, given the considerable fluctuation in network conditions within a Fixed Mobile Convergence (FMC) network. Therefore, a novel approach, whereby a network node and a mobile terminal such as a cellular phone cooperate with each other to control service quality is essential. In order to achieve such cooperation, the mobile terminal needs to become more intelligent so it can estimate the service quality, including the user's perceptual quality, and notify the measurement result to the network node. Subsequently, the network node implements some kind of service control function, such as a resource and admission control function, based on the notification from the mobile terminal. In this paper, the role of the mobile terminal in such collaborative system is focused on. As a part of a QoS/QoE measurement system, we describe an objective speech quality assessment with payload discrimination of lost packets to measure the user's perceptual quality of VoIP. The proposed assessment is so simple that it can be implemented on a cellular phone. We therefore did this as part of the QoS/QoE measurement system. By using the implemented system, we can measure the user's perceptual quality of VoIP as well as the network QoS metrics, in terms of criteria such as packet loss rate, jitter and burstiness in real time.
da Costa, Juliana B; Pelogia, Fernanda; Hagedorn, Bradley; Ferracane, Jack L
2010-01-01
This study evaluated the marginal gaps on several surfaces of onlays created with the Cerec 3D system using one intraoral and two extraoral optical impression methods. A human molar (#19) was mounted with its adjacent teeth on a typodont (Frasaco) and prepared for a MODL onlay. The typodont was assembled in the mannequin head in order to simulate clinical conditions. The same operator took 36 individual optical impressions using a CEREC 3D camera. For group 1 (IP), a thin layer of titanium dioxide powder (CEREC powder-VITA) was applied directly onto the surface of the preparation for imaging (n = 12). For group 2 (EP), a sectional impression was taken with hydrocolloid Identic Syringable (Dux Dental), a die made with polyvinylsiloxane KwikkModel Scan (R-dental Dentalerzeugnisse GmbH) and powdered with titanium dioxide for imaging (n = 12). For group 3 (ES), a sectional impression was taken with PVS and a sectional stock tray, a die fabricated in stone (Diamond die- HI-TEC Dental Products) and the die being imaged without powdering (n = 12). One operator designed and machined the onlays in VitaBlocks Mark II for Cerec (VITA) using a CEREC 3D. The marginal gaps (microm) were measured with an optical microscope (50x) at 12 points, three on each surface of the MODL. The results were analyzed by two-way ANOVA/ Tukey's (p = 0.05). The overall mean marginal gaps (microm) for the three methods were: IP = 111.6 (+/- 34.0); EP = 161.4 (+/- 37.6) and ES = 116.8 (+/- 42.3). IP and ES were equal, but both were significantly less than EP. The pooled mean marginal gaps (microm) for the occlusal = 110.5 (+/- 39) and lingual = 111.5 (+/- 30.5) surfaces were equivalent and significantly less than the distal = 136.5 (+/- 42.5) and mesial = 161.1 (+/- 43.3). The marginal gap of CEREC 3D onlay restorations was not different when the optical impression was taken intraorally vs extraorally using a stone cast that does not require powdering. The lingual and occlusal surfaces showed the lowest gaps.
History, structure, and function of the Internet.
Glowniak, J
1998-04-01
The Internet stands at the forefront of telecommunications in medicine. This worldwide system of computers had its beginnings in networking projects in the United States and western Europe in the 1960s and 1970s. The precursor of the Internet was ARPANET, a long-distance telecommunication network funded by the Department of Defense that linked together computers throughout the United States. In the 1980s, ARPANET was superseded by NSFNET, a series of networks created by the National Science Foundation, which established the present-day structure of the Internet. The physical structure of the Internet resembles and is integrated with the telephone system. Long-distance data transport services are provided by large telecommunication companies, called network service providers (NSPs), through high-capacity, high-speed national and international fiber optic cables. These transport services are accessed through Internet service providers, ISPs. ISPs, the equivalent of regional Bell operating companies, provide the physical link to the NSPs for individuals and organizations. Telecommunications on the Internet are standardized by a set of communications protocols, the TCP/IP protocol suite, that describe routing of messages over the Internet, computer naming conventions, and commonly used Internet services such as e-mail. At present, the Internet consists of over 20 million computer worldwide and is continuing to grow at a rapid rate. Along with the growth of the Internet, higher speed access methods are offering a range of new services such as real-time video and voice communications. Medical education, teaching, and research, as well as clinical practice, will be affected in numerous different ways by these advances.
NASA Astrophysics Data System (ADS)
Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang
2016-02-01
With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.
Design alternatives for wavelength routing networks
NASA Astrophysics Data System (ADS)
Miliotis, K.; Papadimitriou, G. I.; Pomportsis, A. S.
2003-03-01
This paper attempts to provide a high level overview of many of the technologies employed in optical networks with a focus on wavelength-routing networks. Optical networks involve a number of technologies from the physics of light through protocols and networks architectures. In fact there is so much technology and know-how that most people involved with optical networks only have a full understanding of the narrow area they deal with. We start first examining the principles that govern light and its use as a wave guide, and then turn our focus to the various components that constitute an optical network and conclude with the description of all optical networks and wavelength-routed networks in greater detail.
NASA Astrophysics Data System (ADS)
Morgan, J. S.; Macquart, J. P.; Ekers, R.; Bisi, M. M.; Jackson, B. V.; Tokumaru, M.; Manoharan, P. K.; Chhetri, R.
2016-12-01
Interplanetary scintillation (IPS) is a phenomenon which can be used to probe both the heliospheric plasma and the structure of compact astrophysical radio sources. It is a vital tool for near-real-time monitoring of space weather. Previous IPS studies have generally relied on single concentrated collecting areas (either phased arrays or dishes). The Murchison Widefield Array (MWA) by contrast is a new-generation instrument consisting of a 128-element interferometer with an extremely wide field of view, and outstanding instantaneous imaging capability. This enables IPS studies of 1000 sources simultaneously, increasing the number of daily measurements that can be made by a factor of two or more. Here we report on progress from an ongoing IPS survey with the MWA where observations are made simultaneously at 80MHz and 150MHz. Dual-frequency observations allow solar wind velocities to be determined even with a single station, more accurately than from the analyses of a single-frequency IPS spectrum alone. Furthermore, the different refractive indices at different wavelengths leads to a lag in the cross correlation of the two frequency bands. This allows the bulk density of the outer solar corona to be probed along multiple lines of sight. We will discuss recent results and how they might be integrated into international Space Weather Prediction efforts such as the Worldwide IPS Stations (WIPSS) Network.
Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E
2018-04-01
The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
Smith, Stephen E P; Bida, Anya T; Davis, Tessa R; Sicotte, Hugues; Patterson, Steven E; Gil, Diana; Schrum, Adam G
2012-01-01
Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.
Image motion compensation on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/
NASA Technical Reports Server (NTRS)
Tarbell, T. D.; Duncan, D. W.; Finch, M. L.; Spence, G.
1981-01-01
The SOUP experiment on Spacelab 2 includes a 30 cm visible light telescope and focal plane package mounted on the Instrument Pointing System (IPS). Scientific goals of the experiment dictate pointing stability requirements of less than 0.05 arcsecond jitter over periods of 5-20 seconds. Quantitative derivations of these requirements from two different aspects are presented: (1) avoidance of motion blurring of diffraction-limited images; (2) precise coalignment of consecutive frames to allow measurement of small image differences. To achieve this stability, a fine guider system capable of removing residual jitter of the IPS and image motions generated on the IPS cruciform instrument support structure has been constructed. This system uses solar limb detectors in the prime focal plane to derive an error signal. Image motion due to pointing errors is compensated by the agile secondary mirror mounted on piezoelectric transducers, controlled by a closed-loop servo system.
IGR J14257-6117, a magnetic accreting white dwarf with a very strong strong X-ray orbital modulation
NASA Astrophysics Data System (ADS)
Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M.
2018-04-01
IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by XMM-Newton at 0.3-10 keV, complemented with 10-80 keV coverage by Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5 s and a longer periodic variability at 4.05 h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ˜100% in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH ˜ 1022 - 23 cm-2), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate (50o ≲ i ≲ 70o). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.
Hung, Linda; da Jornada, Felipe H.; Souto-Casares, Jaime; ...
2016-08-15
Here, we present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the GW and Bethe-Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space basis for ground-state and a transition-space basis for excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test variants of the GW approximation that include a local density approximation (LDA)–derived vertex function (Γ LDA ) andmore » quasiparticle-self-consistent (QS) iterations. We find that Γ LDA and quasiparticle self-consistency shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs. G0W0 and QS GWΓ LDA are more accurate for IPs, while G 0W 0Γ LDA and QS GW are best for EAs. For optical excitations, we find that perturbative GW-BSE underestimates the singlet excitation energy, while self-consistent GW-BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and G0W0Γ LDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment but at a smaller computational cost.« less
Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik; Wegener, Marianne; Hannibal, Jens; Milea, Dan
2013-01-01
The intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, which is sensitive to blue light. Previous chromatic pupillometry studies have shown that the post-illumination response is considered an indicator of the melanopsin activation. The aim of this study was to investigate the ipRGC mediated pupil response in patients with a unilateral non-arteritic anterior ischemic optic neuropathy (NAION). Consensual pupil responses during and after exposure to continuous 20 s blue (470 nm) or red (660 nm) light of high intensity (300 cd/m2) were recorded in each eye for 10 patients. Comparisons were performed both intra-individually (affected versus non-affected eyes) and inter-individually (compared with healthy controls). The pupil response was calculated both during the illumination and during the post-illumination phase. The pupil responses to blue and red colors were significantly reduced in the NAION-affected eyes, compared with the fellow non-affected eyes. When comparing the affected eyes with the healthy control eyes, the post-illumination responses were not significantly different. In addition, the post-illumination pupil responses after blue light exposure were increased in the fellow non-affected patients’ eyes, compared with the healthy controls. However, significance was only reached for the late post-illumination response. In conclusion, chromatic pupillometry disclosed reduced post-illumination pupil responses in the NAION-affected eyes, compared with the non-affected fellow eyes, suggesting dysfunction of the ipRGCs. Compared with the responses of the healthy controls, the blue light post-illumination pupil responses were similar in the affected eyes and increased in the fellow non-affected eyes. This suggests a possible adaptive phenomenon, involving the ipRGCs of both eyes after unilateral NAION. PMID:23717301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Linda; da Jornada, Felipe H.; Souto-Casares, Jaime
Here, we present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the GW and Bethe-Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space basis for ground-state and a transition-space basis for excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test variants of the GW approximation that include a local density approximation (LDA)–derived vertex function (Γ LDA ) andmore » quasiparticle-self-consistent (QS) iterations. We find that Γ LDA and quasiparticle self-consistency shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs. G0W0 and QS GWΓ LDA are more accurate for IPs, while G 0W 0Γ LDA and QS GW are best for EAs. For optical excitations, we find that perturbative GW-BSE underestimates the singlet excitation energy, while self-consistent GW-BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and G0W0Γ LDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment but at a smaller computational cost.« less
CyberPetri at CDX 2016: Real-time Network Situation Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin L.; Best, Daniel M.; Burtner, Edwin R.
CyberPetri is a novel visualization technique that provides a flexible map of the network based on available characteristics, such as IP address, operating system, or service. Previous work introduced CyberPetri as a visualization feature in Ocelot, a network defense tool that helped security analysts understand and respond to an active defense scenario. In this paper we present a case study in which we use the CyberPetri visualization technique to support real-time situation awareness during the 2016 Cyber Defense Exercise.
Design of beam optics for the future circular collider e + e - collider rings
Oide, Katsunobu; Aiba, M.; Aumon, S.; ...
2016-11-21
A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less
Design of beam optics for the future circular collider e + e - collider rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oide, Katsunobu; Aiba, M.; Aumon, S.
A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less
Design of beam optics for the future circular collider e+e- collider rings
NASA Astrophysics Data System (ADS)
Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.
2016-11-01
A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study.
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Dynamic autonomous routing technology for IP-based satellite ad hoc networks
NASA Astrophysics Data System (ADS)
Wang, Xiaofei; Deng, Jing; Kostas, Theresa; Rajappan, Gowri
2014-06-01
IP-based routing for military LEO/MEO satellite ad hoc networks is very challenging due to network and traffic heterogeneity, network topology and traffic dynamics. In this paper, we describe a traffic priority-aware routing scheme for such networks, namely Dynamic Autonomous Routing Technology (DART) for satellite ad hoc networks. DART has a cross-layer design, and conducts routing and resource reservation concurrently for optimal performance in the fluid but predictable satellite ad hoc networks. DART ensures end-to-end data delivery with QoS assurances by only choosing routing paths that have sufficient resources, supporting different packet priority levels. In order to do so, DART incorporates several resource management and innovative routing mechanisms, which dynamically adapt to best fit the prevailing conditions. In particular, DART integrates a resource reservation mechanism to reserve network bandwidth resources; a proactive routing mechanism to set up non-overlapping spanning trees to segregate high priority traffic flows from lower priority flows so that the high priority flows do not face contention from low priority flows; a reactive routing mechanism to arbitrate resources between various traffic priorities when needed; a predictive routing mechanism to set up routes for scheduled missions and for anticipated topology changes for QoS assurance. We present simulation results showing the performance of DART. We have conducted these simulations using the Iridium constellation and trajectories as well as realistic military communications scenarios. The simulation results demonstrate DART's ability to discriminate between high-priority and low-priority traffic flows and ensure disparate QoS requirements of these traffic flows.
Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.
Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra
2011-12-12
This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America
Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo
2014-04-21
Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.
Optical Studies of 15 Hard X-Ray Selected Cataclysmic Binaries
NASA Astrophysics Data System (ADS)
Halpern, Jules P.; Thorstensen, John R.; Cho, Patricia; Collver, Gabriel; Motsoaledi, Mokhine; Breytenbach, Hannes; Buckley, David A. H.; Woudt, Patrick A.
2018-06-01
We conducted time-resolved optical spectroscopy and/or time-series photometry of 15 cataclysmic binaries that were discovered in hard X-ray surveys by the Swift Burst Alert Telescope and the International Gamma-Ray Astrophysics Laboratory, with the goal of measuring their orbital periods and searching for spin periods. Four of the objects in this study are new optical identifications: Swift J0535.2+2830, Swift J2006.4+3645, IGR J21095+4322, and Swift J2116.5+5336. Coherent pulsations are detected from three objects for the first time, Swift J0535.2+2830 (1523 s), 2PBC J1911.4+1412 (747 s), and 1SWXRT J230642.7+550817 (464 s), indicating that they are intermediate polars (IPs). We find two new eclipsing systems in time-series photometry: 2PBC J0658.0‑1746, a polar with a period of 2.38 hr, and Swift J2116.5+5336, a disk system that has an eclipse period of 6.56 hr. Exact or approximate spectroscopic orbital periods are found for six additional targets. Of note is the long 4.637-day orbit for Swift J0623.9‑0939, which is revealed by the radial velocities of the photospheric absorption lines of the secondary star. We also discover a 12.76 hr orbital period for RX J2015.6+3711, which confirms that the previously detected 2.00 hr X-ray period from this star is the spin period of an IP, as inferred by Coti Zelati et al. These results support the conclusion that hard X-ray selection favors magnetic CVs, with IPs outnumbering polars.
Telemetry Standards, RCC Standard 106-17, Chapter 27, RF Network Access Layer
2017-07-01
27-13 27.5.5 Frame Check Sequence Field........................................................................... 27-13 27.6 Power Transients...to the physical media (i.e., the wireless RF network). On the transmission side, it is responsible for framing IP packets for physical transmission...parameters of a radio shall be stored to maintain communications with RF link management after a power interruption or software-initiated reset
Meeting the Challenge of Distributed Real-Time & Embedded (DRE) Systems
2012-05-10
IP RTOS Middleware Middleware Services DRE Applications Operating Sys & Protocols Hardware & Networks Middleware Middleware Services DRE...Services COTS & standards-based middleware, language, OS , network, & hardware platforms • Real-time CORBA (TAO) middleware • ADAPTIVE Communication...SPLs) F-15 product variant A/V 8-B product variant F/A 18 product variant UCAV product variant Software Produce-Line Hardware (CPU, Memory, I/O) OS
Team Faces Tough Odds to Implement New Phone Network | Poster
It was a Saturday, in the final stretch of winter in late February, and the temperature peaked to a pleasant 66 degrees. Many people were outside enjoying the spring-like weather; however, the Voice over Internet Protocol (VoIP) Deployment Team was hard at work at Industry Lane. The team of 10 was installing the new voice-only network, including deploying 145 phones, switching
Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew
2015-06-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.
The 10 Hottest Technologies in Telecom.
ERIC Educational Resources Information Center
Flanagan, Patrick
1997-01-01
Presents the fourth annual listing of the 10 "hottest" telecommunications technologies. Describes Web broadcasting, remote-access servers, extranets, Internet telephony, enterprise network directory services, Web site management tools, IP (Internet Protocols) switching, wavelength division multiplexing, digital subscriber lines, and…
Using OPC technology to support the study of advanced process control.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2015-03-01
OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
Ethernet direct display: a new dimension for in-vehicle video connectivity solutions
NASA Astrophysics Data System (ADS)
Rowley, Vincent
2009-05-01
To improve the local situational awareness (LSA) of personnel in light or heavily armored vehicles, most military organizations recognize the need to equip their fleets with high-resolution digital video systems. Several related upgrade programs are already in progress and, almost invariably, COTS IP/Ethernet is specified as the underlying transport mechanism. The high bandwidths, long reach, networking flexibility, scalability, and affordability of IP/Ethernet make it an attractive choice. There are significant technical challenges, however, in achieving high-performance, real-time video connectivity over the IP/Ethernet platform. As an early pioneer in performance-oriented video systems based on IP/Ethernet, Pleora Technologies has developed core expertise in meeting these challenges and applied a singular focus to innovating within the required framework. The company's field-proven iPORTTM Video Connectivity Solution is deployed successfully in thousands of real-world applications for medical, military, and manufacturing operations. Pleora's latest innovation is eDisplayTM, a smallfootprint, low-power, highly efficient IP engine that acquires video from an Ethernet connection and sends it directly to a standard HDMI/DVI monitor for real-time viewing. More costly PCs are not required. This paper describes Pleora's eDisplay IP Engine in more detail. It demonstrates how - in concert with other elements of the end-to-end iPORT Video Connectivity Solution - the engine can be used to build standards-based, in-vehicle video systems that increase the safety and effectiveness of military personnel while fully leveraging the advantages of the lowcost COTS IP/Ethernet platform.
Analysis of Optimal Jitter Buffer Size for VoIP QoS under WiMAX Power-Saving Mode
NASA Astrophysics Data System (ADS)
Kim, Hyungsuk; Kim, Taehyoun
VoIP service is expected as one of the key applications of Mobile WiMAX, but the speech quality of VoIP service often suffers deterioration due to the fluctuating transmission delay called jitter. This is commonly ameliorated by a de-jitter buffer, and we aim to find the optimal size of de-jitter buffer to achieve speech quality comparable to PSTN. We developed a new model of the packet drops at the de-jitter buffer and the end-to-end packet delay which takes account of the additional delay introduced by the WiMAX power-saving mode. Using our model, we analyzed the optimal size of the de-jitter buffer for various network parameters, and showed that the results obtained by analysis accord with simulation results.
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Sikirica, Mladen; Begusic, Dinko
2018-05-01
This paper gives an overview and background of optical access network deployment in Croatia. Optical access network development in Croatia has been put into a global as well as in the European Union context. All the challenges and the driving factors for optical access networks deployment are considered. Optical access network architectures that have been deployed by most of the investors in Croatian telecommunication market are presented, as well as the architectures that are in early phase of deployment. Finally, an overview on current status of mobile networks of the fifth generation and Internet of Things is given.
Painter, David R; Dux, Paul E; Mattingley, Jason B
2015-07-01
Setting attention for an elementary visual feature, such as color or motion, results in greater spatial attentional "capture" from items with target compared with distractor features. Thus, capture is contingent on feature-based control settings. Neuroimaging studies suggest that this contingent attentional capture involves interactions between dorsal and ventral frontoparietal networks. To examine the distinct causal influences of these networks on contingent capture, we applied continuous theta-burst stimulation (cTBS) to alter neural excitability within the dorsal intraparietal sulcus (IPS), the ventral temporoparietal junction (TPJ) and a control site, visual area MT. Participants undertook an attentional capture task before and after stimulation, in which they made speeded responses to color-defined targets that were preceded by spatial cues in the target or distractor color. Cues appeared either at the target location (valid) or at a non-target location (invalid). Reaction times were slower for targets preceded by invalid compared with valid cues, demonstrating spatial attentional capture. Cues with the target color captured attention to a greater extent than those with the distractor color, consistent with contingent capture. Effects of cTBS were not evident at the group level, but emerged instead from analyses of individual differences. Target capture magnitude was positively correlated pre- and post-stimulation for all three cortical sites, suggesting that cTBS did not influence target capture. Conversely, distractor capture was positively correlated pre- and post-stimulation of MT, but uncorrelated for IPS and TPJ, suggesting that stimulation of IPS and TPJ selectively disrupted distractor capture. Additionally, the effects of IPS stimulation were predicted by pre-stimulation attentional capture, whereas the effects of TPJ stimulation were predicted by pre-stimulation distractor suppression. The results are consistent with the existence of distinct neural circuits underlying target and distractor capture, as well as distinct roles for the IPS and TPJ. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope
NASA Astrophysics Data System (ADS)
Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren
2018-01-01
An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.
All-Optical Fibre Networks For Coal Mines
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1987-09-01
A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan
2005-06-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New
2005-04-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan
2005-05-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
Improving management performance of P2PSIP for mobile sensing in wireless overlays.
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-11-08
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP.
Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-01-01
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP PMID:24217358
CHEETAH: circuit-switched high-speed end-to-end transport architecture
NASA Astrophysics Data System (ADS)
Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun
2003-10-01
Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.
A TCP/IP framework for ethernet-based measurement, control and experiment data distribution
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Minny, J.
2010-11-01
A complete modular but scalable TCP/IP based scientific instrument control and data distribution system has been designed and realized. The system features an IEEE 802.3 compliant 10 Mbps Medium Access Controller (MAC) and Physical Layer Device that is suitable for the full-duplex monitoring and control of various physically widespread measurement transducers in the presence of a local network infrastructure. The cumbersomeness of exchanging and synchronizing data between the various transducer units using physical storage media led to the choice of TCP/IP as a logical alternative. The system and methods developed are scalable for broader usage over the Internet. The system comprises a PIC18f2620 and ENC28j60 based hardware and a software component written in C, Java/Javascript and Visual Basic.NET programming languages for event-level monitoring and browser user-interfaces respectively. The system exchanges data with the host network through IPv4 packets requested and received on a HTTP page. It also responds to ICMP echo, UDP and ARP requests through a user selectable integrated DHCP and static IPv4 address allocation scheme. The round-trip time, throughput and polling frequency are estimated and reported. A typical application to temperature monitoring and logging is also presented.
Evaluation of multilayer perceptron algorithms for an analysis of network flow data
NASA Astrophysics Data System (ADS)
Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz
2016-09-01
The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Mambretti Richard desJardins
2006-05-01
A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describingmore » agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying, evaluating, and implementing the services, technologies, and interoperability mechanisms required. The roadmaps were formulated and presented not so much to reconcile the roadmaps with each other but rather to provide a means to compare the major ongoing and planned optical networking activities in the R&E community, organized by categories of activities and communities of interest. In addition, a 5-15 year network research perspective was provided by Panel E, which presented a report on two recent National Science Foundation workshops that examined long term research goals and directions, and industry perspectives on forthcoming optical networking technologies and services were presented in Panel F by representatives from optical technologies and network services industries. The report, “Mapping a Future for Optical Networking and Communications” is available on the NSF website (www.nsf.gov), and the industry perspectives will be available on the ONT2 website.« less
NASA Technical Reports Server (NTRS)
Bartelt, Hartmut (Editor)
1990-01-01
The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.
Hierarchy Bayesian model based services awareness of high-speed optical access networks
NASA Astrophysics Data System (ADS)
Bai, Hui-feng
2018-03-01
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.
High Speed All-Optical Data Distribution Network
NASA Astrophysics Data System (ADS)
Braun, Steve; Hodara, Henri
2017-11-01
This article describes the performance and capabilities of an all-optical network featuring low latency, high speed file transfer between serially connected optical nodes. A basic component of the network is a network interface card (NIC) implemented through a unique planar lightwave circuit (PLC) that performs add/drop data and optical signal amplification. The network uses a linear bus topology with nodes in a "T" configuration, as described in the text. The signal is sent optically (hence, no latency) to all nodes via wavelength division multiplexing (WDM), with each node receiver tuned to wavelength of choice via an optical de-multiplexer. Each "T" node routes a portion of the signal to/from the bus through optical couplers, embedded in the network interface card (NIC), to each of the 1 through n computers.
NASA Astrophysics Data System (ADS)
Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir
2012-01-01
The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.
Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Kostrzewski, Andrew
1994-09-01
During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.
Network analysis of ChIP-Seq data reveals key genes in prostate cancer.
Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai
2014-09-03
Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.
Application of SQL database to the control system of MOIRCS
NASA Astrophysics Data System (ADS)
Yoshikawa, Tomohiro; Omata, Koji; Konishi, Masahiro; Ichikawa, Takashi; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Nishimura, Tetsuo
2006-06-01
MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru telescope. In order to perform observations of near-infrared imaging and spectroscopy with cold slit mask, MOIRCS contains many device components, which are distributed on an Ethernet LAN. Two PCs wired to the focal plane array electronics operate two HAWAII2 detectors, respectively, and other two PCs are used for integrated control and quick data reduction, respectively. Though most of the devices (e.g., filter and grism turrets, slit exchange mechanism for spectroscopy) are controlled via RS232C interface, they are accessible from TCP/IP connection using TCP/IP to RS232C converters. Moreover, other devices are also connected to the Ethernet LAN. This network distributed structure provides flexibility of hardware configuration. We have constructed an integrated control system for such network distributed hardwares, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS has also network distributed software design, applying TCP/IP socket communication to interprocess communication. In order to help the communication between the device interfaces and the user interfaces, we defined three layers in T-LECS; an external layer for user interface applications, an internal layer for device interface applications, and a communication layer, which connects two layers above. In the communication layer, we store the data of the system to an SQL database server; they are status data, FITS header data, and also meta data such as device configuration data and FITS configuration data. We present our software system design and the database schema to manage observations of MOIRCS with Subaru.
Anderson, Brian A
2017-03-01
Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications
NASA Astrophysics Data System (ADS)
Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.
2002-01-01
Next-generation LEO System Research Center (NeLS) was formed in the end of 1997 as a research group under the Telecommunications Advancement Organization of Japan, in cooperation with the telecommunications operators, manufacturers, universities and governmental research organization. The aim of this project is to develop new technology for global multimedia mobile satellite communications services with a user data rate around 2Mbps for handy terminals. component of the IMT-2000, and the second generation of the big-LEO systems. In prosecuting this project, two-phase approach, phase 1 and phase 2, is considered. Phase 1 is the system definition and development of key technologies. In Phase 2, we plan to verify the developed technology in Phase 1 on space. From this year we shifted the stage to Phase 2, and are now developing the prototype of on-board communication systems for flight tests, which will be planed at around 2006. The satellite altitude is assumed to be 1200 km in order to reduce the number of satellites, to avoid the Van Allen radiation belts and to increase the minimum elevation angle. Ten of the circular orbits with 55 degree of inclination are selected to cover the earth surface from -70 to 70 degree in latitude. 12 satellites are positioned at regular intervals in each orbit. In this case, the minimum elevation angle from the user terminal can be keep more than 20 degree for the visibility of the satellite, and 15 degree for simultaneous visibility of two satellites. Then, NeLS Research Center was focusing on the development of key technologies as the phase 1 project. Four kinds of key technologies; DBF satellite antenna, optical inter-satellite link system, satellite network technology with on-board ATM switch and variable rate modulation were selected. Satellite Antenna Technology: Development of on-board direct radiating active phased array antenna with digital beam forming technology would be one of the most important breakthroughs for the satellite communication systems. Therefore, the experimental DBF network with 16 radiating elements was developed for confirming a basic signal processing performance. A/D sampled data are processed by using FPGA circuit for beam forming by real-time basis. Optical Inter-Satellite Link Technology: The inter-satellite link (ISL) technology is also important, because the inter-satellite network is essential to realize the low delay network connection for multimedia services. The optical ISL simulator was developed for the study of optical modem and optical tracking mechanism. And the sensitivity of 56 photons/bit at 10-9 of error rate has been achieved by employing the Erbium doped fiber amplifier, polarizing filter and narrow band optical filter. Coude path type, the active universal joint (AUJ) type and two flat mirror type of optical antenna mechanism were developed. Satellite Network Technology: For constructing this optical ISL ring, the utilization of wavelength division multiplexing (WDM) technology is envisaged. By applying WDM technology to the optical intra-orbital ISL, logical mesh connections can be achieved by assigning the appropriate wavelength for the links among satellites. By using inclined orbit, inter-orbital ISL connection can be keep continuously. Therefore, WDM technology is also applicable to the inter-orbital ISL network. The satellite ATM network simulator was developed in order to investigate the effect of delay fluctuation caused by the satellite constellations. This simulator works as real-time basis by using commercial ATM switches and personal computers. This simulator was installed Dijkstra's algorithm to determine satellite routing path in order to minimize the end-to-end delay time from the source terminal to the destination terminal. The satellite IP network simulator has been developed in order to evaluate the congestion of the multimedia traffic. Variable Rate Modulation Technology: Considering the propagation impairments in the mobile conditions, we employ the variable rate transmission, which maintains the communication service by decreasing the data rate while the user link condition is degraded. CDMA and OFDM techniques are candidates for such a variable rate transmission scheme. In order to study the variable rate modem, the software simulation tools and hardware simulator were prepared. The hardware simulator can generate various kinds of propagation impairments, such as Rayleigh, multi-path, Doppler shift, etc by inputting satellite constellation parameters and fading models. In this paper, we briefly introduce the results of development in Phase 1and a current status in Phase 2.
Implementing TCP/IP and a socket interface as a server in a message-passing operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipp, E.; Wiltzius, D.
1990-03-01
The UNICOS 4.3BSD network code and socket transport interface are the basis of an explicit network server for NLTSS, a message passing operating system on the Cray YMP. A BSD socket user library provides access to the network server using an RPC mechanism. The advantages of this server methodology are its modularity and extensibility to migrate to future protocol suites (e.g. OSI) and transport interfaces. In addition, the network server is implemented in an explicit multi-tasking environment to take advantage of the Cray YMP multi-processor platform. 19 refs., 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameme, Dan Selorm Kwami; Guttromson, Ross
This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selectionmore » within the simulated network.« less
Service-Oriented Architecture Afloat: A Capabilities-Based Prioritization Scheme
2013-04-01
to “information superiority,” ultimately enhancing warfighting capability. Introduction The Program Executive Office for Command, Control...gateway architecture for IP satellite networks with dynamic resource mangement and DiffServ QoS provision. International Journal of Satellite
NASA Astrophysics Data System (ADS)
Glamočanin, D.
2017-05-01
In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.
NASA Astrophysics Data System (ADS)
1986-10-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Technical Reports Server (NTRS)
1986-01-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Astrophysics Data System (ADS)
Dao, Thanh Hai
2018-01-01
Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.
A Protocol Specification-Based Intrusion Detection System for VoIP and Its Evaluation
NASA Astrophysics Data System (ADS)
Phit, Thyda; Abe, Kôki
We propose an architecture of Intrusion Detection System (IDS) for VoIP using a protocol specification-based detection method to monitor the network traffics and alert administrator for further analysis of and response to suspicious activities. The protocol behaviors and their interactions are described by state machines. Traffic that behaves differently from the standard specifications are considered to be suspicious. The IDS has been implemented and simulated using OPNET Modeler, and verified to detect attacks. It was found that our system can detect typical attacks within a reasonable amount of delay time.
Digital security technology simplified.
Scaglione, Bernard J
2007-01-01
Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.
Transmission in Optically Transparent Core Networks
NASA Astrophysics Data System (ADS)
Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav
2007-03-01
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhong, Guoxin
2018-03-01
Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.
T-SDN architecture for space and ground integrated optical transport network
NASA Astrophysics Data System (ADS)
Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu
2015-11-01
Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
ERIC Educational Resources Information Center
Howden, Norman
This manual offers guidance for librarians on every aspect of local area networking from start-up through maintenance and trouble shooting. This second edition has been revised to include information on: definition and explication of TCP/IP; Novell 4.0; Internet connection gear; equipment capable of handling Web access; Windows NT and Windows for…
Single Sided Messaging v. 0.6.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Matthew Leon; Farmer, Matthew Shane; Hassani, Amin
Single-Sided Messaging (SSM) is a portable, multitransport networking library that enables applications to leverage potential one-sided capabilities of underlying network transports. It also provides desirable semantics that services for highperformance, massively parallel computers can leverage, such as an explicit cancel operation for pending transmissions, as well as enhanced matching semantics favoring large numbers of buffers attached to a single match entry. This release supports TCP/IP, shared memory, and Infiniband.
New Abstractions for Mobile Connectivity and Resource Management
2016-05-01
networked systems, con- sisting of replicated backend services and mobile , multi-homed clients. We derive a state machine for ECCP supporting migration...makes ECCP useful not only for mobility of client devices, but also for backend services which are increasingly run in VMs or containers on platforms...layers of the network stack, instead of the traditional IP/port, improve mobility for clients and backend services and reduce unnecessary coupling of
Session Initiation Protocol Network Encryption Device Plain Text Domain Discovery Service
2007-12-07
MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a...such as the TACLANE, have developed unique discovery methods to establish Plain Text Domain (PTD) Security Associations (SA). All of these techniques...can include network and host Internet Protocol (IP) addresses, Information System Security Office (ISSO) point of contact information and PTD status
Performance Assessment of Network Intrusion-Alert Prediction
2012-09-01
the threats. In this thesis, we use Snort to generate the intrusion detection alerts. 2. SNORT Snort is an open source network intrusion...standard for IPS. (Snort, 2012) We choose Snort because it is an open source product that is free to download and can be deployed cross-platform...Learning & prediction in relational time series: A survey. 21st Behavior Representation in Modeling & Simulation ( BRIMS ) Conference 2012, 93–100. Tan
Traffic protection in MPLS networks using an off-line flow optimization model
NASA Astrophysics Data System (ADS)
Krzesinski, Anthony E.; Muller, Karen E.
2002-07-01
MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. Two MPLS-based recovery models have been proposed: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 100 ms time scale. We present a model of protection switching in MPLS networks. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. The traffic is routed over a set of working LSPs. Global repair is implemented by reserving a set of pre-established recovery LSPs. An analytic model is used to evaluate the MPLS-based recovery mechanisms in response to bi-directional link failures. A simulation model is used to evaluate the MPLS recovery cycle in terms of the time needed to restore the traffic after a uni-directional link failure. The models are applied to evaluate the effectiveness of protection switching in networks consisting of between 20 and 100 nodes.
2005-07-09
This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased
Driving Innovation in Optical Networking
NASA Astrophysics Data System (ADS)
Colizzi, Ernesto
Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.
Optical network security using unipolar Walsh code
NASA Astrophysics Data System (ADS)
Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila
2018-04-01
Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).
NASA Astrophysics Data System (ADS)
Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi
2017-11-01
With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.
An information model for a virtual private optical network (OVPN) using virtual routers (VRs)
NASA Astrophysics Data System (ADS)
Vo, Viet Minh Nhat
2002-05-01
This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.
NASA Astrophysics Data System (ADS)
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
O'Callaghan, Dermott W; Hasdemir, Burcu; Leighton, Mark; Burgoyne, Robert D
2003-12-01
KChIPs (K+ channel interacting proteins) regulate the function of A-type Kv4 potassium channels by modifying channel properties and by increasing their cell surface expression. We have explored factors affecting the localisation of Kv4.2 and the targeting of KChIP1 and other NCS proteins by using GFP-variant fusion proteins expressed in HeLa cells. ECFP-Kv4.2 expressed alone was not retained in the ER but reached the Golgi complex. In cells co-expressing ECFP-Kv4.2 and KChIP1-EYFP, the two proteins were co-localised and were mainly present on the plasma membrane. When KChIP1-EYFP was expressed alone it was instead targeted to punctate structures. This was distinct from the localisation of the NCS proteins NCS-1 and hippocalcin, which were targeted to the trans-Golgi network (TGN) and plasma membrane. The membrane localisation of each NCS protein required myristoylation and minimal myristoylation motifs of hippocalcin or KChIP1 were sufficient to target fusion proteins to either TGN/plasma membrane or to punctate structures. The existence of targeting information within the N-terminal motifs was confirmed by mutagenesis of residues corresponding to three conserved basic amino acids in hippocalcin and NCS-1 at positions 3, 7 and 9. Residues at these positions determined intracellular targeting to the different organelles. Myristoylation and correct targeting of KChIP1 was required for the efficient traffic of ECFP-Kv4.2 to the plasma membrane. Expression of KChIP1(1-11)-EYFP resulted in the formation of enlarged structures that were positive for ERGIC-53 and beta-COP. ECFP-Kv4.2 was also accumulated in these structures suggesting that KChIP1(1-11)-EYFP inhibited traffic out of the ERGIC. We suggest that KChIP1 is targeted by its myristoylation motif to post-ER transport vesicles where it could interact with and regulate the traffic of Kv4 channels to the plasma membrane under the influence of localised Ca2+ signals.
NASA Astrophysics Data System (ADS)
Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng
2004-04-01
As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.
Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study
NASA Astrophysics Data System (ADS)
Goswami, Sohini; Saha, Sushmita; Yadav, R. K.
2015-11-01
An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in the experiments.
An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS
NASA Astrophysics Data System (ADS)
Segarra, Josep; Sales, Vicent; Prat, Josep
2007-04-01
A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.
NASA Astrophysics Data System (ADS)
Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan
2018-02-01
Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.
BitPredator: A Discovery Algorithm for BitTorrent Initial Seeders and Peers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Raymond; Patton, Robert M; Kettani, Houssain
2011-01-01
There is a large amount of illegal content being replicated through peer-to-peer (P2P) networks where BitTorrent is dominant; therefore, a framework to profile and police it is needed. The goal of this work is to explore the behavior of initial seeds and highly active peers to develop techniques to correctly identify them. We intend to establish a new methodology and software framework for profiling BitTorrent peers. This involves three steps: crawling torrent indexers for keywords in recently added torrents using Really Simple Syndication protocol (RSS), querying torrent trackers for peer list data and verifying Internet Protocol (IP) addresses from peermore » lists. We verify IPs using active monitoring methods. Peer behavior is evaluated and modeled using bitfield message responses. We also design a tool to profile worldwide file distribution by mapping IP-to-geolocation and linking to WHOIS server information in Google Earth.« less
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun
2008-05-01
This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.
NASA Astrophysics Data System (ADS)
Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo
2017-12-01
Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.
3 x 3 free-space optical router based on crossbar network and its control algorithm
NASA Astrophysics Data System (ADS)
Hou, Peipei; Sun, Jianfeng; Yu, Zhou; Lu, Wei; Wang, Lijuan; Liu, Liren
2015-08-01
A 3 × 3 free-space optical router, which comprises optical switches and polarizing beam splitter (PBS) and based on crossbar network, is proposed in this paper. A control algorithm for the 3 × 3 free-space optical router is also developed to achieve rapid control without rearrangement. In order to test the performance of the network based on 3 × 3 free-space optical router and that of the algorithm developed for the optical router, experiments are designed. The experiment results show that the interconnection network based on the 3 × 3 free-space optical router has low cross talk, fast connection speed. Under the control of the algorithm developed, a non-block and real free interconnection network is obtained based on the 3 × 3 free-space optical router we proposed.
Optical fiber cable and wiring techniques for fiber to the home (FTTH)
NASA Astrophysics Data System (ADS)
Takai, Hirofumi; Yamauchi, Osamu
2009-08-01
NTT group's new medium-term management strategy calls for 20 million optical subscribers by 2010, and NTT Laboratories is pushing forward to meet this goal. Before that date, an efficient optical access network must be constructed, and afterwards, when the era of mass optical communications finally arrives, the facilities and equipment supporting the network will have to be effectively operated and maintained. At NTT Access Network Service Systems Laboratories, we are developing various technologies to correspond to the massive deployment of optical broadband services. We are also developing various new technologies for efficiently operating optical access network systems that will continue to expand in the future, and to supply our customers with good services. This paper provides an overview of the new optical access network system technologies that are being developed at NTT Access Network Service Systems Laboratories to address these issues.
Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver
NASA Astrophysics Data System (ADS)
Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra
2018-05-01
We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.
The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.
Gomes, Antonio L C; Wang, Harris H
2016-04-01
ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.