New chairman takes helm at Climate Change Panel
NASA Astrophysics Data System (ADS)
Showstack, Randy
An Indian industrial engineer and economist who supports the Kyoto Protocol, and who has sharply criticized the administration of George W. Bush on the climate change issue for not doing enough to curb greenhouse gas emissions, won the first-ever contested election for chairman of the Intergovernmental Panel on Climate Change (IPCC) during a meeting on 19 April.Rajendra Pachauri is the first representative from a developing country to chair the IPCC, a panel of about 2,500 experts on a wide range of areas related to climate change. The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. In total, the IPCC currently includes 192 member states. Although the bulk of the IPCC's work is conducted by three technical working groups, the chairman plays a key role in facilitating the overall process of the IPCC, organizing the scientific debate within the IPCC, and serving as chief spokesman.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... Reviewers to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) ACTION... Intergovernmental Panel on Climate Change (IPCC). SUMMARY: The U.S. Department of State invites recommendations for... Intergovernmental Panel on Climate Change (IPCC), which will be developed and finalized over the coming four years...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...
IPCC Report Calls Climate Changes Unprecedented
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
Warming of the Earth's climate "is unequivocal and since the 1950s many of the observed changes are unprecedented over decades to millennia," according to a new assessment report by the Intergovernmental Panel on Climate Change (IPCC). The 27 September summary for policy makers of IPCC's report "Climate Change 2013: The Physical Science Basis" also states that "it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."
Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)
NASA Astrophysics Data System (ADS)
Manning, M. R.; Swart, R.
2009-12-01
Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that assessment [IPCC, 2005]. This paper extends a review of the treatment of uncertainty in the IPCC assessments by Swart et al [2009]. It is shown that progress towards consistency has been made but that there also appears to be a need for continued use of several complementary approaches in order to cover the wide range of circumstances across different disciplines involved in climate change. While this reflects the situation in the science community, it also raises the level of complexity for policymakers and other users of the assessments who would prefer one common consensus approach. References IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties, IPCC, Geneva. Manning, M., et al. (2004), IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. IPCC Moss, R., and S. Schneider (2000), Uncertainties, in Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC, edited by R. Pachauri, et al., Intergovernmental Panel on Climate Change (IPCC), Geneva. Swart, R., et al. (2009), Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC Climatic Change, 92(1-2), 1 - 29.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Climate Change (IPCC), Climate Change 2013: The Physical Science Basis Summary: The United States Global... Panel on Climate Change (IPCC) Climate Change 2013: The Physical Science Basis. The United Nations..., and socio-economic information for understanding the scientific basis of climate change, potential...
Fifth IPCC Assessment Report Now Out
NASA Astrophysics Data System (ADS)
Kundzewicz, Zbigniew W.
2014-01-01
The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is now available. It provides policymakers with an assessment of information on climate change, its impacts and possible response options (adaptation and mitigation). Summaries for policymakers of three reports of IPCC working groups and of the Synthesis Report have now been approved by IPCC plenaries. This present paper reports on the most essential findings in AR5. It briefly informs on the contents of reports of all IPCC working groups. It discusses the physical science findings, therein observed changes (ubiquitous warming, shrinking cryosphere, sea level rise, changes in precipitation and extremes, and biogeochemical cycles). It deals with the drivers of climate change, progress in climate system understanding (evaluation of climate models, quantification of climate system responses), and projections for the future. It reviews impacts, adaptation and vulnerability, including observed changes, key risks, key reasons for concern, sectors and systems, and managing risks and building resilience. Finally, mitigation of climate change is discussed, including greenhouse gas emissions in the past, present and future, and mitigation in sectors. It is hoped that the present article will encourage the readership of this journal to dive into the AR5 report that provides a wealth of useful information.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... Climate Change (IPCC), Impacts, Adaptation & Vulnerability. SUMMARY: The United States Global Change... on Climate Change (IPCC), Impacts, Adaptation & Vulnerability. The United Nations Environment... socio-economic information for understanding the scientific basis of climate change, potential impacts...
Asayama, Shinichiro; Ishii, Atsushi
2014-02-01
The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.
NASA Astrophysics Data System (ADS)
Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.
1998-03-01
There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized
IPCC reasons for concern regarding climate change risks
NASA Astrophysics Data System (ADS)
O'Neill, Brian C.; Oppenheimer, Michael; Warren, Rachel; Hallegatte, Stephane; Kopp, Robert E.; Pörtner, Hans O.; Scholes, Robert; Birkmann, Joern; Foden, Wendy; Licker, Rachel; Mach, Katharine J.; Marbaix, Phillippe; Mastrandrea, Michael D.; Price, Jeff; Takahashi, Kiyoshi; van Ypersele, Jean-Pascal; Yohe, Gary
2017-01-01
The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions.
[The climate debate: the facts].
van den Broeke, Michiel R
2009-01-01
The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.
Southern United States climate, land use, and forest conditions
David N. Wear; Thomas L. Mote; J. Marshall Shepherd; K. C. Benita; Christopher W. Strother
2014-01-01
The Intergovernmental Panel on Climate Change (IPCC) has concluded, with 90% certainty, that human or "anthropogenic" activities (emissions of greenhouse gases, aerosols and pollution, landuse/land-cover change) have altered global temperature patterns over the past 100-150 years (IPCC 2007a). Such temperature changes have a set of cascading, and sometimes...
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.
2012-04-01
In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Intergovernmental Panel on Climate Change. First Assessment Report Overview.
ERIC Educational Resources Information Center
International Environmental Affairs, 1991
1991-01-01
Presented are policymakers' summaries of the three working groups of the Intergovernmental Panel on Climate Change (IPCC)--science, impacts, and response strategies, the report of the IPCC Special Committee on the Participation of Developing Countries, and a discussion of international cooperation and future work. (CW)
IPCC Methodologies for the Waste Sector: Past, Present, and Future
USDA-ARS?s Scientific Manuscript database
The reporting of national greenhouse gas (GHG) emissions began more than a decade ago by the signatory countries of the United Nations Framework Convention on Climate Change (UNFCCC). National GHG inventories rely on the evolving Intergovernmental Panel on Climate Change (IPCC) national GHG inventor...
Unleashing Expert Judgment in the IPCC's Fifth Assessment Report
NASA Astrophysics Data System (ADS)
Freeman, P. T.; Mach, K. J.; Mastrandrea, M.; Field, C. B.
2016-12-01
IPCC assessments are critical vehicles for evaluating and synthesizing existing knowledge about climate change, its impacts, and potential options for adaptation and mitigation. In these assessments, rigorous expert judgment is essential for characterizing current scientific understanding including persistent and complex uncertainties related to climate change. Over its history the IPCC has iteratively developed frameworks for evaluating and communicating what is known and what is not known about climate change science. In this presentation, we explore advances and challenges in approaches to evaluating and communicating expert judgment in the Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5). We present an analysis of the frequency of the use of calibrated degree-of-certainty terms in the policymaker summaries from the IPCC's AR5 and Fourth Assessment Report (AR4). We find that revised guidance for IPCC author teams in the AR5 improved the development of balanced judgments on scientific evidence across disciplines. Overall, degree-of-certainty terms are more abundant in the AR5 policymaker summaries compared to those of the AR4, demonstrating an increased commitment to extensively and transparently characterizing expert judgments underpinning report conclusions. This analysis also shows that while working groups still favor different degree-of-certainty scales in the AR5, authors employed a wider array of degree-of-certainty scales to communicate expert judgment supporting report findings compared to the policymaker summaries of the AR4. Finally, our analysis reveals greater inclusion of lower-certainty findings in the AR5 as compared to the AR4, critical for communicating a fuller range of possible climate change impacts and response options. Building on our findings we propose a simpler, more transparent, and more rigorous framework for developing and communicating expert judgments in future climate and environmental assessments.
The Co-evolution of Climate Models and the Intergovernmental Panel on Climate Change
NASA Astrophysics Data System (ADS)
Somerville, R. C.
2010-12-01
As recently as the 1950s, global climate models, or GCMs, did not exist, and the notion that man-made carbon dioxide might lead to significant climate change was not regarded as a serious possibility by most experts. Today, of course, the prospect or threat of exactly this type of climate change dominates the science and ranks among the most pressing issues confronting all mankind. Indeed, the prevailing scientific view throughout the first half of the twentieth century was that adding carbon dioxide to the atmosphere would have only a negligible effect on climate. The science of climate change caused by atmospheric carbon dioxide changes has thus undergone a genuine revolution. An extraordinarily rapid development of global climate models has also characterized this period, especially in the three decades since about 1980. In these three decades, the number of GCMs has greatly increased, and their physical and computational aspects have both markedly improved. Modeling progress has been enabled by many scientific advances, of course, but especially by a massive increase in available computer power, with supercomputer speeds increasing by roughly a factor of a million in the three decades from about 1980 to 2010. This technological advance has permitted a rapid increase in the physical comprehensiveness of GCMs as well as in spatial computational resolution. In short, GCMs have dramatically evolved over time, in exactly the same recent period as popular interest and scientific concern about anthropogenic climate change have markedly increased. In parallel, a unique international organization, the Intergovernmental Panel on Climate Change, or IPCC, has also recently come into being and also evolved rapidly. Today, the IPCC has become widely respected and globally influential. The IPCC was founded in 1988, and its history is thus even shorter than that of GCMs. Yet, its stature today is such that a series of IPCC reports assessing climate change science has already been endorsed by many leading scientific professional societies and academies of science worldwide. These reports are considered as definitive summaries of the state of the science. In 2007, in recognition of its exceptional accomplishments, the IPCC shared the Nobel Peace Prize equally with Al Gore. The present era is characterized not only by the reality and seriousness of human-caused climate change, but also by a young yet powerful science that enables us to understand much about the climate change that has occurred already and that awaits in the future. The development of GCMs is a critical part of the scientific story, and the development of the IPCC is a key factor in connecting the science to the perceptions and priorities of the global public and policymakers. GCMs and the IPCC have co-evolved and strongly influenced one another, as both scientists and the world at large have worked to confront the challenge of climate change.
Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations
NASA Astrophysics Data System (ADS)
Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2011-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.
NASA Technical Reports Server (NTRS)
Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew
2013-01-01
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.
Towards the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
NASA Astrophysics Data System (ADS)
Fuglestvedt, J. S.; Masson-Delmotte, V.; Zhai, P.; Pirani, A.
2016-12-01
The IPCC, set up in 1988 by WMO and UNEP, is the international body for assessing the science related to climate change. The reports of the IPCC include Assessments, Synthesis and Special Reports (and their Summaries for Policymakers), as well as Methodological Reports, providing policymakers with regular assessments of the scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation. These assessments are policy-relevant, but not policy-prescriptive, and based on the assessment of the published literature. The assessments of the IPCC follow precise procedures to ensure that they provide a rigorous and balanced scientific information. Particularly critical is the volunteer involvment of tens of scientists involved in the scoping of each report, as well as the work of hundreds of Coordinating Lead Authors and Lead Authors of reports, with the complementary expertise of hundreds of sollicited Contributing Authors. The review process plays a key role in the open and transparent process underlying the IPCC reports. It is organized in multiple rounds and mobilizes thousands of other experts, a process monitored by Review Editors. The author teams develop rigorous methodologies to report the degree of confidence associated with each finding and report information with uncertainty. As a result, successive IPCC reports provide regular steps to determine matured climate science, through robust findings, but also emerging research pathways, and facilitate science maturation through analyses of multiple perspectives provided by the scientific literature in a comprehensive approach. While the IPCC does not conduct its own scientific research, the timeline of the IPCC reports acts as a stimulation for the research community, especially for internationally coordinated research programmes associated with global climate projections. These aspects will be developed in this presentation, with a focus on Working Group I (the physical science basis), and the 6th Assessment Report (AR6). For more information, see : www.ipcc.ch For new special reports planned in 2018-2019 : http://www.ipcc.ch/activities/activities.shtml For the strategic planning schedule for the AR6 : http://www.ipcc.ch/activities/pdf/ar6_WSPSchedule_07072016.pdf
NASA Astrophysics Data System (ADS)
Barrett, K.
2017-12-01
Scientific integrity is the hallmark of any assessment and is a paramount consideration in the Intergovernmental Panel on Climate Change (IPCC) assessment process. Procedures are in place for rigorous scientific review and to quantify confidence levels and uncertainty in the communication of key findings. However, the IPCC is unique in that its reports are formally accepted by governments through consensus agreement. This presentation will present the unique requirements of the IPCC intergovernmental assessment and discuss the advantages and challenges of its approach.
An evaluation of the treatment of risk and uncertainties in the IPCC reports on climate change.
Aven, Terje; Renn, Ortwin
2015-04-01
Few global threats rival global climate change in scale and potential consequence. The principal international authority assessing climate risk is the Intergovernmental Panel on Climate Change (IPCC). Through repeated assessments the IPCC has devoted considerable effort and interdisciplinary competence to articulating a common characterization of climate risk and uncertainties. We have reviewed the assessment and its foundation for the Fifth Assessment Reports published in 2013 and 2014, in particular the guidance note for lead authors of the fifth IPCC assessment report on consistent treatment of uncertainties. Our analysis shows that the work carried out by the ICPP is short of providing a theoretically and conceptually convincing foundation on the treatment of risk and uncertainties. The main reasons for our assessment are: (i) the concept of risk is given a too narrow definition (a function of consequences and probability/likelihood); and (ii) the reports lack precision in delineating their concepts and methods. The goal of this article is to contribute to improving the handling of uncertainty and risk in future IPCC studies, thereby obtaining a more theoretically substantiated characterization as well as enhanced scientific quality for risk analysis in this area. Several suggestions for how to improve the risk and uncertainty treatment are provided. © 2014 Society for Risk Analysis.
Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models
Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita
2010-01-01
Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720
Framing the future in the Southern United States climate, land use, and forest conditions
David N. Wear; Thomas L. Mote; J. Marshall Shepherd; K.C. Binita; Christopher W. Strother
2014-01-01
The Intergovernmental Panel on Climate Change (IPCC) has concluded, with 90% certainty, that human or âanthropogenicâ activities (emissions of greenhouse gases, aerosols and pollution, landuse/ land-cover change) have altered global temperature patterns over the past 100-150 years (IPCC 2007a). Such temperature changes have a set of cascading, and sometimes amplifying...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolin, B.
2007-11-15
In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less
Gay-Antaki, Miriam; Liverman, Diana
2018-02-27
The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women's views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. Copyright © 2018 the Author(s). Published by PNAS.
Gay-Antaki, Miriam; Liverman, Diana
2018-01-01
The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women’s views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. PMID:29440422
NASA Astrophysics Data System (ADS)
Leuliette, E.; Nerem, S.; Jakub, T.
2006-07-01
Recen tly, multiple ensemble climate simulations h ave been produced for th e forthco ming Fourth A ssessment Report of the Intergovernmental Panel on Climate Change (IPCC). N early two dozen coupled ocean- atmo sphere models have contr ibuted output for a variety of climate scen arios. One scenar io, the climate of the 20th century exper imen t (20C3 M), produces model output that can be comp ared to th e long record of sea level provided by altimetry . Generally , the output from the 20C3M runs is used to initialize simulations of future climate scenar ios. Hence, v alidation of the 20 C3 M experiment resu lts is crucial to the goals of th e IPCC. We present compar isons of global mean sea level (G MSL) , global mean steric sea level change, and regional patterns of sea lev el chang e from these models to r esults from altimetry, tide gauge measurements, and reconstructions.
Measuring Engagement with the Potential Consequences of Climate Change
NASA Astrophysics Data System (ADS)
Young, N.; Danielson, R. W.; Lombardi, D.
2015-12-01
Across three studies, we investigated engagement with the consequences of climate change. We drew from the conceptual change and risk analysis literatures to find the factors that determine how much people will care about future risks. Questions derived from these factors were then asked about many hypothesized consequences of climate change. These consequences were drawn from an Intergovernmental Panel on Climate Change special report (IPCC, 2012) and, in the third study, additionally from the IPCC AR5 (IPCC, 2014). The first two studies, using undergraduate students, demonstrated that some consequences were indeed considerably more engaging than others. The third study used a more representative sample of American adults, drawn from Amazon Mechanical Turk and used the Global Warming's Six Americas Screening Tool (Maibach, Leiserowitz, Roser-Renouf, Mertz, & Akerlof, 2011) in a large screening survey to find 20 participants in each of the six audiences defined by this tool. These participants were then asked about the potential consequences of climate change. Results again showed that some consequences are considered more engaging than others, and also showed the ways in which members of these six audiences perceive the consequences of climate change differently.
Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte
2014-01-01
In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report. PMID:24718388
Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte
2014-01-01
In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.
Finding the CO[subscript 2] Culprit
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2015-01-01
In 2013, the Intergovernmental Panel on Climate Change (IPCC) released its fifth report, attributing 95% of "all" climate warming--from the 1950s through today--to humans. Not only did the report--like previous IPCC reports dating back to 1990--accredit global warming to anthropogenic carbon dioxide emissions, but over time the vast…
NASA Astrophysics Data System (ADS)
Cook, B. R.; Overpeck, J. T.
2014-12-01
Scientific knowledge production is based on recognizing and filling knowledge deficits or 'gaps' in understanding, but for climate adaptation and mitigation, the applicability of this approach is questionable. The Intergovernmental Panel on Climate Change (IPCC) mandate is an example of this type of 'gap filling,' in which the elimination of uncertainties is presumed to enable rational decision making for individuals and rational governance for societies. Presumed knowledge deficits, though, are unsuited to controversial problems with social, cultural, and economic dimensions; likewise, communication to educate is an ineffective means of inciting behavioural change. An alternative is needed, particularly given the economic, social, and political scale that action on climate change requires. We review the 'deficit-education framing' and show how it maintains a wedge between those affected and those whose knowledge is required. We then review co-production to show how natural and social scientists, as well as the IPCC, might more effectively proceed.
D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence
2011-01-01
Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...
76 FR 6651 - Intergovernmental Panel on Climate Change Special Report Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... time that they accept the overall report. Principles and procedures for the IPCC and its preparation of..._documents/ipcc-principles-appendix-a.pdf (pdf) http://ipcc.ch/organization/organization_procedures.shtml In.... The following section of the report discusses risk management at the local, national and international...
Fischer, Helen; Schütte, Stefanie; Depoux, Anneliese; Amelung, Dorothee; Sauerborn, Rainer
2018-04-27
Graphs are prevalent in the reports of the Intergovernmental Panel on Climate Change (IPCC), often depicting key points and major results. However, the popularity of graphs in the IPCC reports contrasts with a neglect of empirical tests of their understandability. Here we put the understandability of three graphs taken from the Health chapter of the Fifth Assessment Report to an empirical test. We present a pilot study where we evaluate objective understanding (mean accuracy in multiple-choice questions) and subjective understanding (self-assessed confidence in accuracy) in a sample of attendees of the United Nations Climate Change Conference in Marrakesh, 2016 (COP22), and a student sample. Results show a mean objective understanding of M = 0.33 for the COP sample, and M = 0.38 for the student sample. Subjective and objective understanding were unrelated for the COP22 sample, but associated for the student sample. These results suggest that (i) understandability of the IPCC health chapter graphs is insufficient, and that (ii) particularly COP22 attendees lacked insight into which graphs they did, and which they did not understand. Implications for the construction of graphs to communicate health impacts of climate change to decision-makers are discussed.
Environmental health risk assessment and management for global climate change
NASA Astrophysics Data System (ADS)
Carter, P.
2014-12-01
This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline from 2015 (CAN International 2014), and if policy makers are limited to the IPCC AR5 we recommend RCP2.6, with emissions declining by 2020.
GLOBAL CHANGE RESEARCH NEWS #3: IPCC SPECIAL REPORT ON "LAND USE, LAND USE CHANGE, AND FORESTRY"
ORD is participating in the development of an Intergovernmental Panel on Climate Change (IPCC) Special Report on "Land Use, Land Use Change and Forestry." Preparation of the Special Report was requested by the Conference of the Parties(COP) to the United Nations Framework Conve...
Summary for Policymakers IPCC Fourth Assessment Report, WorkingGroup III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Terry; Bashmakov, Igor; Bernstein, Lenny
2007-04-30
A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change,more » - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.« less
NASA Astrophysics Data System (ADS)
Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.
2016-04-01
Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of depletion curves for different future years are highest under A1B and lowest under IPCC commitment. A2 and B1 values are in-between A1B and IPCC commitment.
Global Mean Temperature Timeseries Projections from GCMs: The Implications of Rebasing
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2017-12-01
Global climate models are assessed by comparison with observations through several benchmarks. One highlighted by the InterGovernmental Panel on Climate Change (IPCC) is their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. These aspects of annual mean global mean temperature (GMT) change are presented as one feature demonstrating the relevance of these models for climate projections. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies. The models have absolute temperatures which range over about 3K so this means their timeseries (and the observations) are rebased. We show that rebasing in combination with general agreement, implies a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. It also implies a degree of linearity in the GMT slow timescale response. For each individual model these implications only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a wider range of GMTs. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.
Ronald Raunikar; Joseph Buongiorno; James A. Turner; Shushuai Zhu
2010-01-01
The Global Forest Products Model (GFPM) was modified to link the forest sector to two scenarios of the Intergovernmental Panel on Climate Change (IPCC), and to represent the utilization of fuelwood and industrial roundwood to produce biofuels. The scenarios examined were a subset of the âstory linesâ prepared by the IPCC. Each scenario has projections of population and...
Regional Climate Change Hotspots over Africa
NASA Astrophysics Data System (ADS)
Anber, U.
2009-04-01
Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)
U.S. ozone air quality under changing climate and anthropogenic emissions.
Racherla, Pavan N; Adams, Peter J
2009-02-01
We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.
Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal
2009-03-17
Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."
Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal
2009-01-01
Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate ...
Climate change and the biosphere
F. Stuart Chapin
2008-01-01
Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...
Managing fish and wildlife habitat in the face of climate change: USDA Forest Service perspective
Gregory D. Hayward; Curtis H. Flather; Erin Uloth; Hugh D. Safford; David A. Cleaves
2009-01-01
The spatial and temporal scope of environmental change anticipated during the next century as a result of climate change presents unprecedented challenges for fish and wildlife management. The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC 2007) suggested impacts from climate change on natural systems will be more grave than earlier...
Dissemination of Climate Model Output to the Public and Commercial Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Stockwell, PhD
2010-09-23
Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature andmore » precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, C.B.; Barros, V.; Stocker, T.F.
2012-07-01
This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decision making under uncertainty, analyzing response in the context of risk management.more » The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies. (LN)« less
The effects of climate-change-induced drought and freshwater wetlands
Middleton, B.A.; Kleinebecker, Till; Middleton, B.A.
2012-01-01
Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.
The origin of climate changes.
Delecluse, P
2008-08-01
Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.
Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC
NASA Astrophysics Data System (ADS)
Drouet, L.; Bosetti, V.; Tavoni, M.
2015-10-01
Strategies for dealing with climate change must incorporate and quantify all the relevant uncertainties, and be designed to manage the resulting risks. Here we employ the best available knowledge so far, summarized by the three working groups of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5; refs , , ), to quantify the uncertainty of mitigation costs, climate change dynamics, and economic damage for alternative carbon budgets. We rank climate policies according to different decision-making criteria concerning uncertainty, risk aversion and intertemporal preferences. Our findings show that preferences over uncertainties are as important as the choice of the widely discussed time discount factor. Climate policies consistent with limiting warming to 2 °C above preindustrial levels are compatible with a subset of decision-making criteria and some model parametrizations, but not with the commonly adopted expected utility framework.
Climate change impacts on yields and soil carbon in dryland agriculture
USDA-ARS?s Scientific Manuscript database
Dryland agroecosystems could be a sizable sink for atmospheric carbon (C) due to their spatial extent and level of degradation, providing climate change mitigation. We examined productivity and soil C dynamics under two IPCC climate change scenarios (RCP 4.5; RCP 8.5), utilizing long-term experiment...
75 FR 12232 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... recommended by the Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory... of Atmospheric Programs, Climate Change Division, (202) 343-9432, [email protected
78 FR 12310 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
76 FR 10026 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion
S. E. Litschert; D. M. Theobald; T. C. Brown
2014-01-01
Forests in the Southern Rockies Ecoregion surround the headwaters of several major rivers in the western and central US. Future climatic changes will increase the incidence of wildfire in those forests, and will likely lead to changes in downstream water quality, including sediment loads.We estimated soil loss under the historic climate and two IPCC climate change...
ERIC Educational Resources Information Center
Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
2017-01-01
Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... climate change and provides several references about the effects of climate change in general to support this claim. The petition explains that human-induced climate change is causing global increases of...; Fagre 2005, p. 1; Hall and Fagre 2003, p. 139; Intergovernmental Panel on Climate Change (IPCC) 2007a, p...
Severe Weather in United States Under a Changing Climate
NASA Astrophysics Data System (ADS)
Wuebbles, Donald J.; Kunkel, Kenneth; Wehner, Michael; Zobel, Zachary
2014-05-01
The science has become clear and convincing that the Earth's climate is rapidly changing [e.g., Intergovernmental Panel on Climate Change (IPCC), 2014]. Along with the overall changes in climate, there is strong evidence of an increasing trend over recent decades in the frequency, intensity, and duration of some types of extreme weather events, with resulting effects on U.S. society.
A Simple Climate Model Program for High School Education
NASA Astrophysics Data System (ADS)
Dommenget, D.
2012-04-01
The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!
Chapter 3: Climate change and the relevance of historical forest conditions
H.D. Safford; M. North; M.D. Meyer
2012-01-01
Increasing human emissions of greenhouse gases are modifying the Earth's climate. According to the Intergovernmental Panel on Climate Change (IPCC), "Warming of the climate system is unequivocal, as is now evident from observation of increases in average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea...
Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models
USDA-ARS?s Scientific Manuscript database
Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...
Crop response to climate: ecophysical models
USDA-ARS?s Scientific Manuscript database
Ecophysiological models were the dominant tools used to estimate the potential impact of climate change in agroecosystems in the Third and Fourth Assessment Reports of the IPCC and are widely used elsewhere in climate change research. These models, also known as “crop models” or “simulation models”,...
Investigation of the climate change within Moscow metropolitan area
NASA Astrophysics Data System (ADS)
Varentsov, Mikhail; Trusilova, Kristina; Konstantinov, Pavel; Samsonov, Timofey
2014-05-01
As the urbanization continues worldwide more than half of the Earth's population live in the cities (U.N., 2010). Therefore the vulnerability of the urban environment - the living space for millions of people - to the climate change has to be investigated. It is well known that urban features strongly influence the atmospheric boundary layer and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available temperature observations in cities are, however, influenced by the natural climate variations, human-induced climate warming (IPCC, 2007) and in the same time by the growth and structural modification of the urban areas. The relationship between these three factors and their roles in climate changes in the cities are very important for the climatic forecast and requires better understanding. In this study, we made analysis of the air temperature change and urban heat island evolution within Moscow urban area during decades 1970-2010, while this urban area had undergone intensive growth and building modification allowing the population of Moscow to increase from 7 to 12 million people. Analysis was based on the data from several meteorological stations in Moscow region and Moscow city, including meteorological observatory of Lomonosov Moscow State University. Differences in climate change between urban and rural stations, changes of the power and shape of urban heat island and their relationships with changes of building height and density were investigated. Collected data and obtained results are currently to be used for the validation of the regional climate model COSMO-CLM with the purpose to use this model for further more detailed climate research and forecasts for Moscow metropolitan area. References: 1. U.N. (2010), World Urbanization Prospects. The 2009 Revision.Rep., 1-47 pp, United Nations. Department of Economic and Social Affairs. Population Division., New York. 2. IPCC (2007), IPCC Fourth Assessment Report: Climate Change 2007 (AR4) Rep.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
The climate crisis: An introductory guide to climate change
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2011-06-01
Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.
Climate change and future land use in the United States: an economic approach
David Haim; Ralph J. Alig; Andrew J. Plantinga; Brent Sohngen
2011-01-01
An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and...
O'Reilly, Jessica; Oreskes, Naomi; Oppenheimer, Michael
2012-10-01
How and why did the scientific consensus about sea level rise due to the disintegration of the West Antarctic Ice Sheet (WAIS), expressed in the third Intergovernmental Panel on Climate Change (IPCC) assessment, disintegrate on the road to the fourth? Using ethnographic interviews and analysis of IPCC documents, we trace the abrupt disintegration of the WAIS consensus. First, we provide a brief historical overview of scientific assessments of the WAIS. Second, we provide a detailed case study of the decision not to provide a WAIS prediction in the Fourth Assessment Report. Third, we discuss the implications of this outcome for the general issue of scientists and policymakers working in assessment organizations to make projections. IPCC authors were less certain about potential WAIS futures than in previous assessment reports in part because of new information, but also because of the outcome of cultural processes within the IPCC, including how people were selected for and worked together within their writing groups. It became too difficult for IPCC assessors to project the range of possible futures for WAIS due to shifts in scientific knowledge as well as in the institutions that facilitated the interpretations of this knowledge.
Can climate models be tuned to simulate the global mean absolute temperature correctly?
NASA Astrophysics Data System (ADS)
Duan, Q.; Shi, Y.; Gong, W.
2016-12-01
The Inter-government Panel on Climate Change (IPCC) has already issued five assessment reports (ARs), which include the simulation of the past climate and the projection of the future climate under various scenarios. The participating models can simulate reasonably well the trend in global mean temperature change, especially of the last 150 years. However, there is a large, constant discrepancy in terms of global mean absolute temperature simulations over this period. This discrepancy remained in the same range between IPCC-AR4 and IPCC-AR5, which amounts to about 3oC between the coldest model and the warmest model. This discrepancy has great implications to the land processes, particularly the processes related to the cryosphere, and casts doubts over if land-atmosphere-ocean interactions are correctly considered in those models. This presentation aims to explore if this discrepancy can be reduced through model tuning. We present an automatic model calibration strategy to tune the parameters of a climate model so the simulated global mean absolute temperature would match the observed data over the last 150 years. An intermediate complexity model known as LOVECLIM is used in the study. This presentation will show the preliminary results.
Assessment of simulated and projected climate change in Pakistan using IPCC AR4-based AOGCMs
NASA Astrophysics Data System (ADS)
Saeed, F.; Athar, H.
2017-11-01
A detailed spatio-temporal assessment of two basic climatic parameters (temperature and precipitation) is carried out using 22 Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)-based atmospheric oceanic general circulation models (AOGCMs) over data-sparse and climatically vulnerable region of Pakistan (20°-37° N and 60°-78° E), for the first time, for the baseline period (1975-1999), as well as for the three projected periods during the twenty-first century centered at 2025-2049, 2050-2074, and 2075-2099, respectively, both on seasonal and on annual bases, under three Special Report on Emission Scenarios (SRES): A2, A1B, and B1. An ensemble-based approach consisting of the IPCC AR4-based AOGCMs indicates that during the winter season (from December to March), 66% of the models display robust projected increase of winter precipitation by about 10% relative to the baseline period, irrespective of emission scenario and projection period, in the upper northern subregion of Pakistan (latitude > 35° N). The projected robust changes in the temperature by the end of twenty-first century are in the range of 3 to 4 ° C during the winter season and on an annual basis, in the central and western regions of Punjab province, especially in A2 and A1B emission scenarios. In particular, the IPCC AR4 models project a progressive increase in temperature throughout Pakistan, in contrast to spatial distribution of precipitation, where spatially less uniform and robust results for projected periods are obtained on sign of change. In general, changes in both precipitation and temperature are larger in the summer season (JAS) as compared to the winter season in the coming decades, relative to the baseline period. This may require comprehensive long-term strategic policies to adapt and mitigate climate change in Pakistan, in comparison to what is currently envisaged.
Climate Forcing Growth Rates: Doubling Down on Our Faustian Bargain
NASA Technical Reports Server (NTRS)
Hansen, James; Kharecha, Pushker; Sato, Makiko
2013-01-01
Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3/yr, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40 of fossil fuel CO2 emissions.
Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...
Regional Climate Change across North America in 2030 Projected from RCP6.0
NASA Astrophysics Data System (ADS)
Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.
Climate sensitivity uncertainty: when is good news bad?
Freeman, Mark C; Wagner, Gernot; Zeckhauser, Richard J
2015-11-28
Climate change is real and dangerous. Exactly how bad it will get, however, is uncertain. Uncertainty is particularly relevant for estimates of one of the key parameters: equilibrium climate sensitivity--how eventual temperatures will react as atmospheric carbon dioxide concentrations double. Despite significant advances in climate science and increased confidence in the accuracy of the range itself, the 'likely' range has been 1.5-4.5°C for over three decades. In 2007, the Intergovernmental Panel on Climate Change (IPCC) narrowed it to 2-4.5°C, only to reverse its decision in 2013, reinstating the prior range. In addition, the 2013 IPCC report removed prior mention of 3°C as the 'best estimate'. We interpret the implications of the 2013 IPCC decision to lower the bottom of the range and excise a best estimate. Intuitively, it might seem that a lower bottom would be good news. Here we ask: when might apparently good news about climate sensitivity in fact be bad news in the sense that it lowers societal well-being? The lowered bottom value also implies higher uncertainty about the temperature increase, definitely bad news. Under reasonable assumptions, both the lowering of the lower bound and the removal of the 'best estimate' may well be bad news. © 2015 The Author(s).
Louis R. Iverson; Matthew P. Peters; Stephen Matthews; Anantha Prasad
2013-01-01
The climate has always been changing, but the rapid rate of climate change, as projected by the IPCC (2007) will likely place unique stresses on plant communities. In addition, anthropogenic barriers (e.g., fragmented land use) present a significant modern constraint that will limit the ability of species migration in responses to a changing climate. As such, managers...
Global Climate Change - U.S. Economic and National Security Opportunity
2009-03-20
The most recent findings of the Intergovernmental Panel on Climate Change (IPCC) state that the current trajectory of greenhouse gas (GHG) emissions...challenges and opportunities for the United States as they balance national security and economic interests. The effects of climate change could act as a...are various opportunities associated with climate change including opening arctic navigational channels and the vast oil and natural gas resources
Understanding the science of climate change: Talking points - Impacts to the Great Lakes
Amanda Schramm; Rachel Loehman
2010-01-01
Climate change presents significant risks to our nationâs natural and cultural resources. Although climate change was once believed to be a future problem, there is now unequivocal scientific evidence that our planetâs climate system is warming (IPCC 2007a). While many people understand that human emissions of greenhouse gases have significantly contributed to recent...
Global Warming - Myth or Reality?, The Erring Ways of Climatology
NASA Astrophysics Data System (ADS)
Leroux, Marcel
In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.
Temporal Considerations of Carbon Sequestration in LCA
James Salazar; Richard Bergman
2013-01-01
Accounting for carbon sequestration in LCA illustrates the limitations of a single global warming characterization factor. Typical cradle-to-grave LCA models all emissions from end-of-life processes and then characterizes these flows by IPCC GWP (100-yr) factors. A novel method estimates climate change impact by characterizing annual emissions with the IPCC GHG forcing...
Douglas J. Arent - Deputy Associate Lab Director, Scientific Computing
Coordinating Lead Author for the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC of Sciences Panel on Limiting the Magnitude of Future Climate Change, and also served on the
Global projections and climate stabilisation targets
NASA Astrophysics Data System (ADS)
Friedlingstein, Pierre
2014-05-01
The Summary for policy makers of the 5th Assessment Report of the Working Group 1 of IPCC has a figure that has no equivalent in previous IPCC assessment reports. This new figure shows the change in global average surface temperature as a function of cumulative anthropogenic emissions of CO2. In this talk I will describe how the concept of transient climate response to cumulative emissions (TCRE) that supports that figure emerged from the literature over the recent years and what are the fundamental physical and biogeochemical processes that explain this relationship and its linearity. I will also explore the implication of TCRE for long-term climate change and mitigation strategies as well as the limitations of the concept of TCRE.
Climate Change: Issues in the Science and Its Use
2009-07-01
7 3. The State of the Climate : Changes since the IPCC AR4...together with a review of the current state of the climate itself that establishes the importance of advancing our understanding. In the interests...common data stewardship and sharing standards. 3. The State of the Climate : Changes since the IPCC AR4 We assess the state of the climate against the
Heat stress-induced effects of photosystem I: an overview of structural and functional responses.
Ivanov, Alexander G; Velitchkova, Maya Y; Allakhverdiev, Suleyman I; Huner, Norman P A
2017-09-01
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
CMIP6 Citation Services and the Data Services of the IPCC Data Distribution Centre for AR6
NASA Astrophysics Data System (ADS)
Stockhause, Martina; Lautenschlager, Michael
2017-04-01
As a result of the experiences from CMIP5 the two services contributed by DKRZ to the CMIP research infrastructure have been improved for CMIP6: the Citation Services and the Services of the IPCC Data Distribution Centre (DDC, http://ipcc-data.org). 1. Data Citation Services: Within CMIP5 it took a couple of years before the data was citable with their DataCite DOIs. The DataCite DOI registration by the WDC Climate at DKRZ (World Data Center Climate at the Climate Computing Center) requires data transfer and long-term archival at DKRZ according to DDC's quality standards. Based on a request from WGCM (Working Group on Climate Models) an additional early citation possibility for the evolving CMIP6 data was added to the citation service (http://cmip6cite.wdc-climate.de). 2. IPCC DDC Services: WDC Climate has been hosting the IPCC DDC's Reference Data Archive for the climate model output underlying the IPCC Assessment Reports (ARs) since the Second Assessment Report in 1995. One task of the DDC is the support of the IPCC Working Groups (WGs) and their authors. The WG support was not sufficient for AR5 resulting in WG I setting up and maintaining their own CMIP5 data repository hosting a data subset. The DDC will open DKRZ's CMIP data pool as an additional DDC service for the IPCC authors using a synergy with the interests of the national climate community. Within the PICO the Citation and the IPCC DDC services will be presented from a user's perspective. The connections to and integration into the infrastructure for CMIP6 (see https://www.earthsystemcog.org/projects/wip/) will be explained.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... review. Climate Change Information Provided in the Petition The petitioner states that the western United States will likely suffer a decrease in water resources due to climate change, which will affect montane... conclusions from the Intergovernmental Panel on Climate Change (IPCC) (2007, p. 52) and RMNP (2007a, p. 6...
The implications of rebasing global mean temperature timeseries for GCM based climate projections
NASA Astrophysics Data System (ADS)
Stainforth, David; Chapman, Sandra; Watkins, Nicholas
2017-04-01
Global climate and earth system models are assessed by comparison with observations through a number of metrics. The InterGovernmental Panel on Climate Change (IPCC) highlights in particular their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. This focus on annual mean global mean temperature (hereafter GMT) change is presented as an important element in demonstrating the relevance of these models for climate projections. Any new model or new model version whose historic simulations fail to reproduce the "general features " and 20th century trends is likely therefore to undergo further tuning. Thus this focus could have implications for model development. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies i.e. changes with respect to some period. Since the models have absolute temperatures which range over about 3K (roughly observed GMT +/- 1.5K) this means their timeseries (and the observations) are rebased. We present timeseries of the slow timescale response of the CMIP5 models rebased to late-20th century temperatures and to mid-19th century temperatures. We provide a mathematical interpretation of this approach to model assessment and discuss two consequences. First is a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. Second, is an implication of linearity in the GMT response (to the extent that the slow-timescale response of the historic simulations is consistent with observations, and given their uncertainties). For each individual model these consequences only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a much wider range of GMTs. The analysis suggests that this aspect of model evaluation risks providing a model development pressure which acts against a wide exploration of physically plausible responses; in particular against an exploration of potentially globally significant nonlinear responses and feedbacks. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.
Methodologies for simulating impacts of climate change on crop production
USDA-ARS?s Scientific Manuscript database
Ecophysiological models of crop growth have seen wide use in IPCC and related assessments. However, the diversity of modeling approaches constrains cross-study syntheses and increases potential for bias. We reviewed 139 peer-reviewed papers dealing with climate change and agriculture, considering si...
Ford, James D; Vanderbilt, Will; Berrang-Ford, Lea
This essay examines the extent to which we can expect Indigenous Knowledge, understanding, and voices on climate change ('Indigenous content') to be captured in WGII of the IPCC Fifth Assessment Report (AR5), based on an analysis of chapter authorship. Reviewing the publishing history of 309 chapter authors (CAs) to WGII, we document 9 (2.9%) to have published on climate change and Indigenous populations and involved as authors in 6/30 chapters. Drawing upon recent scholarship highlighting how authorship affect structure and content of assessment reports, we argue that, unaddressed, this will affect the extent to which Indigenous content is examined and assessed. While it is too late to alter the structure of AR5, there are opportunities to prioritize the recruitment of contributing authors and reviewers with expertise on Indigenous issues, raise awareness among CAs on the characteristics of impacts, adaptation, and vulnerability faced by Indigenous peoples, and highlight how Indigenous perspectives can help broaden our understanding of climate change and policy interventions.
Linguistic analysis of IPCC summaries for policymakers and associated coverage
NASA Astrophysics Data System (ADS)
Barkemeyer, Ralf; Dessai, Suraje; Monge-Sanz, Beatriz; Renzi, Barbara Gabriella; Napolitano, Giulio
2016-03-01
The Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers (SPM) is the most widely read section of IPCC reports and the main springboard for the communication of its assessment reports. Previous studies have shown that communicating IPCC findings to a variety of scientific and non-scientific audiences presents significant challenges to both the IPCC and the mass media. Here, we employ widely established sentiment analysis tools and readability metrics to explore the extent to which information published by the IPCC differs from the presentation of respective findings in the popular and scientific media between 1990 and 2014. IPCC SPMs clearly stand out in terms of low readability, which has remained relatively constant despite the IPCC’s efforts to consolidate and readjust its communications policy. In contrast, scientific and quality newspaper coverage has become increasingly readable and emotive. Our findings reveal easy gains that could be achieved in making SPMs more accessible for non-scientific audiences.
J. Brown; V.E. Romanovsky
2008-01-01
Recent assessments have considered present-day and future responses of permafrost terrain to climate change; included are the Intergovernmental Panel on Climate Change (IPCC) , Arctic Climate Impact Assessment (ACIA) and United Nations Environment Programme assessments (Romanovsky et al., 2007), the on-going National Oceanic and Atmospheric Administration (NOAA) annual...
Beggs, Paul John
2014-01-01
Anthropogenic climate change is inherently a biometeorological issue. As such, it would be reasonably expected that the International Society of Biometeorology (ISB) and its journal, International Journal of Biometeorology (IJB), would have had climate change feature prominently in their activities, articles etc., and to therefore have made a substantial and valuable contribution to the science of the issue. This article presents an analysis of climate change science in ISB and IJB. The analysis focusses on climate-change-related publications by ISB Presidents found through searches of Thomson Reuters Web of Science; contributions to the Intergovernmental Panel on Climate Change's (IPCC's) Working Group II (WGII) by ISB Presidents; and climate change-related publications in IJB found through searches of Thomson Reuters Web of Science. The results demonstrate that the ISB, as represented by its recent, current, and future Presidents, is actively engaged in climate change research and the production of scholarly climate change publications. For example, ISB Presidents have contributed as authors to all four IPCC WGII Assessment Reports, with some Presidents having contributed to more than one Assessment Report or several chapters of the one report. Similarly, it is evident that the IJB is increasingly attracting and publishing climate-change-related articles, with such articles generally having greater impact (as indicated by citations) than other IJB articles. Opportunities for the ISB to provide an internal framework for, and showcase, its climate change work are described. Such opportunities, if enacted, would complement the recent creation of two IJB climate change Field Editor positions.
NASA Astrophysics Data System (ADS)
Beggs, Paul John
2014-01-01
Anthropogenic climate change is inherently a biometeorological issue. As such, it would be reasonably expected that the International Society of Biometeorology (ISB) and its journal, International Journal of Biometeorology ( IJB), would have had climate change feature prominently in their activities, articles etc., and to therefore have made a substantial and valuable contribution to the science of the issue. This article presents an analysis of climate change science in ISB and IJB. The analysis focusses on climate-change-related publications by ISB Presidents found through searches of Thomson Reuters Web of Science; contributions to the Intergovernmental Panel on Climate Change's (IPCC's) Working Group II (WGII) by ISB Presidents; and climate change-related publications in IJB found through searches of Thomson Reuters Web of Science. The results demonstrate that the ISB, as represented by its recent, current, and future Presidents, is actively engaged in climate change research and the production of scholarly climate change publications. For example, ISB Presidents have contributed as authors to all four IPCC WGII Assessment Reports, with some Presidents having contributed to more than one Assessment Report or several chapters of the one report. Similarly, it is evident that the IJB is increasingly attracting and publishing climate-change-related articles, with such articles generally having greater impact (as indicated by citations) than other IJB articles. Opportunities for the ISB to provide an internal framework for, and showcase, its climate change work are described. Such opportunities, if enacted, would complement the recent creation of two IJB climate change Field Editor positions.
Potential Adverse Environmental Impacts of Greenhouse Gas Mitigation Strategies
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The Fourth Assessment Report released by the Intergovernmental Panel on Cli-mate Change (IPCC) in 2007 was unequivocal in its message that warming of the global climate system is now occurring, and found...
Weighting climate model projections using observational constraints.
Gillett, Nathan P
2015-11-13
Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.
75 FR 35121 - Intergovernmental Panel on Climate Change Special Report Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...--bio-energy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy--which... expert review of the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) of..._procedures.htm ). In April 2008, the IPCC approved the development of a Special Report on Renewable Energy...
Beyond naturalness: Adapting wilderness stewardship to an era of rapid global change
David N. Cole
2012-01-01
Climate change and its effects are writ large across wilderness landscapes. They always have been and always will be (see Figure 1). But contemporary change is different. For the first time, the pace and direction of climate change appear to be driven significantly by human activities (IPCC 2007), and this change is playing out across landscapes already affected by...
Megan M. Friggens; Rachel Loehman; Lisa Holsinger; Deborah Finch
2014-01-01
Climate change is expected to have multiple direct and indirect impacts on ecosystems in the interior western U.S. (Christensen et al., 2007; IPCC 2013). Global climate predictions for the Southwest include higher temperatures, more variable rainfall, and more drought periods, which will likely exacerbate the ongoing issues relating to wildfire and water allocation in...
Kurz, Tim; Augoustinos, Martha; Crabb, Shona
2010-09-01
The release of the fourth United Nations Intergovernmental Panel on Climate Change (IPCC) report in February 2007 prompted a flood of responses from political leaders around the globe. Perhaps nowhere was this more apparent than in Australia, where its release coincided with the first sitting week of the Australian Parliament, in an election year. The current study involves a discursive analysis of climate change rhetoric produced by politicians from the major Australian political parties in the period following the release of the IPCC leading up to the national election. Data include both transcripts of parliamentary debate and statements directly broadcast in the media. The analysis focuses on the various ways in which the issue of climate change was invoked and rhetorically managed by each of the two parties in the lead up to the election. In particular, it focuses on the ways in which appeals to the 'national interest' and 'lifestyle maintenance', both regular features of political rhetoric, were mobilized by both parties to discursively manage their positions on the climate change issue. Implications of the ways in which such appeals were constructed are discussed in relation to the discursive limits of the ways in which the issue of climate change is constructed in public debate.
Kim, Jinsoo; Choi, Jisun; Choi, Chuluong; Park, Soyoung
2013-05-01
This study examined the separate and combined impacts of future changes in climate and land use/land cover (LULC) on streamflow in the Hoeya River Basin, South Korea, using the representative concentration pathway (RCP) 4.5 and 8.5 scenarios of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). First, a LULC change model was developed using RCP 4.5 and RCP 8.5 storylines and logistic regression. Three scenarios (climate change only, LULC change only, and climate and LULC change combined) were established, and the streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool (SWAT) model. Each scenario showed distinct seasonal variations in streamflow. Under climate change only, streamflow increased in spring and winter but decreased in summer and autumn, whereas LULC change increased high flow during wet periods but decreased low flow in dry periods. Although the LULC change had less effect than climate change on the changes in streamflow, the effect of LULC change on streamflow was significant. The result for the combined scenario was similar to that of the climate change only scenario, but with larger seasonal changes in streamflow. Although the effects of LULC change were smaller than those caused by climate change, LULC changes may heighten the problems of increased seasonal variability in streamflow caused by climate change. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area. Copyright © 2013 Elsevier B.V. All rights reserved.
Land Use and Climate Variability Amplify Contaminant Pulses
Converting land to human-dominated uses has increased contaminant loads in streams and rivers and vastly transformed hydrological cycles (Vitousek et al. 1997). More recently, climate change has further altered hydrologic cycles and variability of precipitation (IPCC 2007). Toge...
NASA Astrophysics Data System (ADS)
Otto, F. E. L.
2015-12-01
The science of attribution of meteorological events to anthropogenic causes has for the first time been included in the latest assessment of the Physical Science Basis of the Climate, (WGI), of the Fifth IPCC Assessment Report AR5 (Stocker et al., 2013). At the same time there is a very rapidly growing body of literature on climate change and its impact on economy, society and environment but apart from very few exemptions no link is made to the causes of these changes. Observed changes in hydrological variables, agriculture, biodiversity and the built environment have been attributed to a changing climate, whether these changes are the result of natural variability or external forcings (Cramer et al., 2014). While the research community represented in WGI assesses whether, and to what extent, recent extreme weather events can be attributed to anthropogenic emissions of greenhouse gases and aerosols, the research community of impact specialists asks how climatic changes lead to different impacts largely independent of the causes of such changes. This distinction becomes potentially very relevant with respect to the 2013 established the Warsaw International Mechanism (WIM) to address loss and damage from the impacts of climate change in developing countries under the UNFCCC climate change negotiations. Currently there is no discussion what consists of loss and damage and the reasons for this inexistence of a definition are not primarily scientific but political however, the absence of a definition could potentially lead to absurd consequences if funds in the context of loss and damage would be redistributed, as e.g. suggested, for all low risk high impact events. Here we present the implications of discussed definitions of loss and damage (Huggel et al. 2015) and how scientific evidence could be included. Cramer et al. (2014) Detection and Attribution of Observed Impacts. In: Climate Change 2014: Impacts, Adaptation and Vulnerability Contribution of WG 2 to AR5 of the IPCC. Huggel, C., Stone, D., Eicken, H., & Hansen, G. (2015). Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies. Clim. Change, doi: 10.1007/s10584-015-1441-z. Stocker et al. (eds.) (2013) The IPCC Fifth Assessment Report: The Physical Science Basis. Cambridge University Press.
ERIC Educational Resources Information Center
Harris, Adam J. L.; Corner, Adam
2011-01-01
Verbal probability expressions are frequently used to communicate risk and uncertainty. The Intergovernmental Panel on Climate Change (IPCC), for example, uses them to convey risks associated with climate change. Given the potential for human action to mitigate future environmental risks, it is important to understand how people respond to these…
Sequestration of carbon in harvested wood products for the United States
Kenneth E. Skog
2008-01-01
The Intergovernmental Panel on Climate Change (IPCC) provides guidelines for countries to report greenhouse gas removals by sinks and emissions from sources. These guidelines allow use of several accounting approaches when reporting the contribution of harvested wood products (HWP) under the United Nations Framework Convention on Climate Change. Using extensions of...
The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa
NASA Astrophysics Data System (ADS)
Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew
2013-04-01
CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach is currently being applied to selected African case studies: Addis Ababa - Ethiopia; Dar es Salaam - Tanzania, Douala - Cameroun; Ouagadougou - Burkina Faso, St. Louis - Senegal. The poster will illustrate the CLUVA's framework to assess climate-change-related risks at an urban scale in Africa, and will report on the progresses of selected case studies to demonstrate feasibility of a multi-scale and multi-risk quantitative approach for risk management.
Rescuing Data from International Scientific Assessments: A Case Study
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.; Xing, X.
2016-12-01
International scientific assessments such as the Millennium Ecosystem Assessment (MA) and the Intergovernmental Panel on Climate Change (IPCC) assessments represent significant efforts by the global scientific community to review, synthesize, and communicate diverse scientific knowledge, data, and information to support societal decision making on pressing problems such as resource management and climate change. To support the transparency, integrity, and usability of these assessments, it is vital that the underlying data used in these assessments be made openly available and usable by diverse stakeholders. Unfortunately, due to the many geographically dispersed contributors to assessments of this kind, as well as the severe time pressures and limited resources when assessments are conducted, appropriate management and preservation of these data are not always a priority. This can lead to the need to "rescue" key data to ensure their long-term preservation, integrity, accessibility, and appropriate reuse, especially in subsequent assessments. We describe here efforts over two decades to rescue selected data from the MA and IPCC assessments, to work with assessment authors and other contributors to validate and document assessment data, and to develop appropriate levels of data stewardship in light of potential user needs and constrained resources. The IPCC efforts are supported by the IPCC Data Distribution Center (DDC), which is operated collaboratively by the Center for Environmental Data Analysis in the United Kingdom, the World Data Center-Climate in Germany, and the NASA Socioeconomic Data and Applications Center (SEDAC) in the U.S. With the sixth IPCC assessment cycle now starting, a key challenge is to help the assessment community improve data management during the assessment process to reduce the risks of data loss, inadequate documentation, incomplete provenance, unnecessary data restrictions, and other problems.
Remote Sensing for Climate and Environmental Change
NASA Technical Reports Server (NTRS)
Evans, Diane
2011-01-01
Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2012-01-01
Dr. Nancy Maynard was invited by the Alaska Forum on the Environment to participate in a Panel Discussion to discuss (1) background about what the US NCA and International IPCC assessments are, (2) the impact the assessments have on policy-making, (3) the process for participation in both assessments, (4) how we can increase participation by Indigenous Peoples such as Native Americans and Alaska Natives, (5) How we can increase historical and current impacts input from Native communities through stories, oral history, "grey" literature, etc. The session will be chaired by Dr. Bull Bennett, a cochair of the US NCA's chapter on "Native and Tribal Lands and Resources" and Dr. Maynard is the other co-chair of that chapter and they will discuss the latest activities under the NCA process relevant to Native Americans and Alaska Natives. Dr. Maynard is also a Lead Author of the "Polar Regions" chapter of the IPCC WG2 (5th Assessment) and she will describes some of the latest approaches by the IPCC to entrain more Indigenous peoples into the IPCC process.
Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
IPCC Working Group II: Impacts and Adaptation Part I
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2007-12-01
The IPCC (as opposed to the UN Framework Convention) defines climate change as" any change in climate over time, whether due to natural variability or as a result of human activity". The IPCC Working Group II (Impacts, Adaptation, Vulnerability) was charged with assessing the scientific, technical, environmental, economic, and social aspects of vulnerability to climate change, and, the negative and positive consequences for ecological systems, socio-economic sectors, and human health. The Working Group II report focused on the following issues for different sectors and regions (e.g. water, agriculture, biodiversity) and communities (coastal, island, etc.): · The role of adaptation in reducing vulnerability and impacts, · Assessment of adaptation capacity, options and constraints, and · Enhancing adaptation practice and operations. This presentation will address the following questions in the context of the results of the IPCC Fourth Assessment Report WG II: · What are the barriers, knowledge gaps, and opportunities for impacts assessments? · How are decisions about adaptation being made, and what types of adaptation strategies are being undertaken? · What are good adaptation practices and how are they learned over time? Examples will be drawn from the freshwater resources, small islands and adaptation chapters to which the presenter contributed. Many lessons have been identified but few have been implemented or evaluated over time. Adaptation occurs in the context of multiple stresses. Adaptation will be important in coping with early impacts in the near-term and continue to be important as our climate changes, regardless of how that change is derived. It is important to note that unmitigated climate change could, in the long term, exceed the capacity of different natural, managed and human systems to adapt. The assessment leads to the following conclusions: · Adaptation to climate change is already taking place, but on a limited basis · Adaptation measures are seldom undertaken in response to climate change alone · Many adaptations can be implemented at low cost, but comprehensive estimates of adaptation costs and benefits are currently lacking · Adaptive capacity is uneven across and within societies Adaptive capacity to manage as climate changes can be increased by introducing adaptation measures into development planning and operations (sometimes termed 'mainstreaming'). This can be achieved by including adaptation measures in land-use planning and infrastructure design, or by including measures to reduce vulnerability in existing disaster preparedness programs (such as introducing drought warning systems based on actual management needs). The major barriers to implementing adaptive management measures are that adaptation to climate change is not as yet a high priority, and the validity of local manifestations of global climate change remains in question. Coping with the uncertainties associated with estimates of future climate change and the impacts on economic and environmental resources means management measures must be robust enough to apply to a range of potential scenarios, some as yet undefined Greenhouse gas mitigation is not enough to reduce climatic risks, nor does identifying the need for adaptations translate into actions that reduce vulnerability. By implementing mainstreaming initiatives, adaptation to climate change will become part of, or will be consistent with, other well- established programs to increase societal resilience, particularly environmental impacts assessments, adaptive management
Cronin, Thomas M.
2016-01-01
Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.
Coastal wetlands and global change: overview
Guntenspergen, G.R.; Vairin, B.; Burkett, V.R.
1997-01-01
The potential impacts of climate change are of great practical concern to those interested in coastal wetland resources. Among the areas of greatest risk in the United States are low-lying coastal habitats with easily eroded substrates which occur along the northern Gulf of Mexico and southeast Atlantic coasts. The Intergovernmental Panel on Climate Change (IPCC) and the World Meteorological Organization (WMO) have identified coastal wetlands as ecosystems most vulnerable to direct, large-scale impacts of climate change, primarily because of their sensitivity to increases in sea-level rise.
Myers, J; Young, T; Galloway, M; Manyike, P; Tucker, T
2011-11-01
Anthropogenic climate change and anticipated adverse impacts on human health as outlined by the Intergovernmental Panel on Climate Change (IPCC) are taken as given. A conceptual model for thinking about the spectrum of climate-related health risks ranging from distal and infrastructural to proximal and behavioural and their relation to the burden of disease pattern typical of sub-Saharan Africa is provided. The model provides a tool for identifying modifiable risk factors with a view to future research, specifically into the performance of interventions to reduce the impact of climate change.
Climate change and natural disasters: integrating science and practice to protect health.
Sauerborn, Rainer; Ebi, Kristie
2012-12-17
Hydro-meteorological disasters are the focus of this paper. The authors examine, to which extent climate change increases their frequency and intensity. Review of IPCC-projections of climate-change related extreme weather events and related literature on health effects. Projections show that climate change is likely to increase the frequency, intensity, duration, and spatial distribution of a range of extreme weather events over coming decades. There is a need for strengthened collaboration between climate scientists, the health researchers and policy-makers as well as the disaster community to jointly develop adaptation strategies to protect human.
Adapting to climate change in United States national forests
G. M. Blate; L. A. Joyce; J. S. Littell; S. G. McNulty; C. I. Millar; S. C. Moser; R. P. Neilson; K. O’Halloran; D. L. Peterson
2009-01-01
Climate change is already affecting forests and other ecosystems, and additional, potentially more severe impacts are expected (IPCC, 2007; CCSP, 2008a, 2008b). As a result, forest managers are seeking practical guidance on how to adapt their current practices and, if necessary, their goals. Adaptations of forest ecosystems, which in this context refer to adjustments...
A clarion call for aeolian research to engage with global land degradation and climate change
NASA Astrophysics Data System (ADS)
Chappell, Adrian; Lee, Jeffrey A.; Baddock, Matthew; Gill, Thomas E.; Herrick, Jeffrey E.; Leys, John F.; Marticorena, Beatrice; Petherick, Lynda; Schepanski, Kerstin; Tatarko, John; Telfer, Matt; Webb, Nicholas P.
2018-06-01
This editorial represents a clarion call for the aeolian research community to provide increased scientific input to the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Convention to Combat Desertification (UNCCD) and an invitation to apply for ISAR funding to organize a working group to support this engagement.
Kevin E. Trenberth Receives 2013 Climate Communication Prize: Response
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2014-01-01
I am delighted to be recognized with this prize. I want to first thank AGU and the prize committee and, especially, Nature's Own for establishing this prize in a field that has become contentious and highly political. It did not used to be this way. Following the media frenzy with the 2007 Intergovernmental Panel on Climate Change (IPCC) report, there was hope at the 2009 Conference of Parties meeting in Copenhagen that an international framework agreement on climate change might be achieved. It was not to be. Planned actions to address issues of climate change were undermined by huge funding of misinformation by vested interests. It was not helped by so-called "climategate" in which many emails illegally hacked from a computer server at the University of East Anglia in the United Kingdom were released, cherry picked, distorted, and misused by climate change deniers. Minor errors in the IPCC report were blown out of all proportion and ineffectively addressed. I was caught up in all this, and one of my many emails went viral: the "travesty" quote in which I bemoaned the inability to close the global energy balance associated with short-term climate variability but which was misinterpreted as saying there was no global warming. These examples highlight failures of communication.
Signal Trees: Communicating Attribution of Climate Change Impacts Through Causal Chain Illustrations
NASA Astrophysics Data System (ADS)
Cutting, H.
2016-12-01
Communicating the attribution of current climate change impacts is a key task for engagment with the general public, news media and policy makers, particularly as climate events unfold in real time. The IPCC WGII in AR5 validated the use of causal chain illustrations to depict attribution of individual climate change impacts. Climate Signals, an online digital platform for mapping and cataloging climate change impacts (launched in May of 2016), explores the use of such illustrations for communicating attribution. The Climate Signals project has developed semi-automated graphing software to produce custom attribution trees for numerous climate change events. This effort offers lessons for engagement of the general public and policy makers in the attribution of climate change impacts.
Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4
NASA Technical Reports Server (NTRS)
Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.
2007-01-01
This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.
Climate change studies and the human sciences
NASA Astrophysics Data System (ADS)
Holm, Poul; Winiwarter, Verena
2017-09-01
Policy makers have made repeated calls for integration of human and natural sciences in the field of climate change. Serious multidisciplinary attempts began already in the 1950s. Progress has certainly been made in understanding the role of humans in the planetary system. New perspectives have clarified policy advice, and three insights are singled out in the paper: the critique of historicism, the distinction between benign and wicked problems, and the cultural critique of the 'myths of nature'. Nevertheless, analysis of the IPCC Assessment Reports indicates that integration is skewed towards a particular dimension of human sciences (economics) and major insights from cultural theory and historical analysis have not made it into climate science. A number of relevant disciplines are almost absent in the composition of authorship. Nevertheless, selective assumptions and arguments are made about e.g. historical findings in key documents. In conclusion, we suggest to seek remedies for the lack of historical scholarship in the IPCC reports. More effort at science-policy exchange is needed, and an Integrated Platform to channel humanities and social science expertise for climate change research might be one promising way.
Grant M. Domke; Christopher W. Woodall; Brian F. Walters; Ronald E. McRoberts; Mark A. Hatfield
2014-01-01
Forest ecosystem carbon (C) stocks and stock change in the United States (US) have been documented using Intergovernmental Panel on Climate Change (IPCC) procedures and guidance with 1990 as a baseline reference for all United Nations Framework Convention on Climate Change reports. In the US, estimates of forest C stocks and stock change are obtained from data...
Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover
NASA Astrophysics Data System (ADS)
Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.
2010-12-01
Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).
Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky
2000-01-01
Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...
NASA Astrophysics Data System (ADS)
Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie
2010-05-01
The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of the dispersion, though for a given SST pattern, ARPEGE does not necessarily reproduce the anomaly produced originally by the IPCC model which produced the SST anomaly. Many factors can contribute to this discrepancy, but the most prominent seems to be the absence of coupling between the forced atmospheric ARPEGE simulation and the underlying ocean. When the atmospheric model is forced by prescribed SST anomalies some retroactions between cyclogenesis and ocean are missing. There are however areas over the globe were models agree about the CYGP or GPI anomalies induced by global warming, such as the Indian Ocean that shows a better coherency in the coupled and forced responses. This could be an indication that interaction between ocean and atmosphere is not as strong there as in the other basins. Details of the results for all the other ocean basins will be presented. References: Chauvin F. and J.-F. Royer and M. Déqué , 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dynamics 27(4), 377-399. IPCC [Intergovernmental Panel for Climate Change], Climate change 2007: The physical science basis, in: S. Solomon et al. (eds.), Cambridge University Press. Royer JF, F Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. "Hurricanes and Climate Change", J. B. Elsner and T. H. Jagger (Eds.), Springer, ISBN: 978-0-387-09409-0, pp 213-234.
Santidrián Tomillo, Pilar; Saba, Vincent S; Blanco, Gabriela S; Stock, Charles A; Paladino, Frank V; Spotila, James R
2012-01-01
Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.
Climate Change Draws World Attention: The 2007 Nobel Peace Award Goes to Gore and IPCC
ERIC Educational Resources Information Center
Bisland, Beverly Milner; Ahmad, Iftikhar
2008-01-01
In the fall of 2007, the Nobel Committee awarded their Peace Prize to the Intergovernmental Panel on Climate Change (a scientific intergovernmental body set up by the World Meteorological Organization and by the United Nations Environment Program) and to former Vice-President Al Gore, Jr. The committee praised the United Nations panel for creating…
Towards the IPCC Special Report on Global Warming of 1.5°C
NASA Astrophysics Data System (ADS)
Masson-Delmotte, Valérie
2017-04-01
The Intergovernemental Panel on Climate Change (IPCC) has accepted the invitation from the Paris Agreement to prepare a special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. This special report is prepared under the scientific leadership of the co-chairs of the IPCC Working Groups I, II and III, and with operational support from the Technical Support Unit of Working Group I. It will consist of 5 chapters, providing (i) framing and context, (ii) exploring mitigation pathways compatible with 1.5°C in the context of sustainable development, (iii) assessing impacts of 1.5°C global warming on natural and human systems, and (iv) options for strengthening and implementing the global response to the threat of climate change, with a final chapter on sustainable development, poverty eradication and reducing inequalities. The timeline of preparation of the report is extremely short, with four lead author meetings taking place from March 2017 to April 2018, and an approval session scheduled in September 2018. It is crucial that new knowledge is being produced and submitted / published in the literature in time for contributing new material to be assessed by the authors of the report (with deadlines in late fall 2017 and spring 2018). With respect to the additional impacts expected for 1.5°C warming compared to present-day, and impacts avoided with respect to larger warming, new research is expected to build on existing CMIP5 projections, including new information on regional change, methods to provide knowledge for the most vulnerable ecosystems and regions, but also information from ongoing projects aiming to produce large ensembles of simulations, and new simulations driven by low carbon pathways. This is important for identifying climate change signals from climate variability (e.g. changes in water cycle, extremes...), for assessing strengths and limitations of methodologies using high end climate scenarios versus true stabilisation pathways, and for exploring long term risks beyond transient response, with consideration for overshoots and the full timescale of Earth system feedbacks. Lessons learnt from past warm climatic phases may also provide insights complementary to projections, albeit without the perspective of rates of changes that is specific to the issue of 1.5°C global warming. This special report is also designed to be complementary from the other reports in preparation for the IPCC Sixth Assessment cycle (AR6), including the special reports on the ocean and the cryosphere, on land use issues, both scheduled for 2019, and the Working Group main assessment reports, scheduled for 2021-2022.
Climate of the past 2000 years in IPCC AR5 (Invited)
NASA Astrophysics Data System (ADS)
Masson-Delmotte, V.
2013-12-01
Different aspects of the climate of the past 2000 years are covered in several chapters of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, including information from paleoclimate archives, changes in the carbon and biogeochemical cycles, changes in sea level, climate model evaluation and detection and attribution. This presentation will summarize the main findings regarding pre-industrial changes in radiative forcings, reconstructed and simulated temperature variations at the hemispheric and regional scales, as well as global sea level for the past 2000 years, in the perspective of the current and earlier interglacial periods.
Harmonisation of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtt, George; Chini, Louise Parsons; Frolking, Steve
2009-06-01
In preparation for the fifth Intergovernmental Panel on Climate Change climate change assessment (IPCC-AR5), the international community is developing new advanced computer models (CMs) to address the combined effects of human activities (e.g. land-use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005-2100) are being developed by four Integrated Assessment Modeling teams (IAMs) to be used as input to the CMs for future climate projections. The diversity of requirements and approaches among CMs and IAMs for tracking land-use changes (past, present, and future), presents major challenges for treating land-usemore » comprehensively and consistently between these communities. As part of an international working group, we have been working to meet these challenges by developing a "harmonized" set of land-use change scenarios that smoothly connects gridded historical reconstructions of land-use with future projections, in a format required by CMs. This approach to harmonizing the treatment of land-use between two key modeling communities, CMs and IAMs, represents a major advance that will facilitate more consistent and fuller treatments of land-use/land-use change effects including both CO2 emissions and corresponding land-surface changes.« less
Climate change and natural disasters – integrating science and practice to protect health
Sauerborn, Rainer; Ebi, Kristie
2012-01-01
Background Hydro-meteorological disasters are the focus of this paper. The authors examine, to which extent climate change increases their frequency and intensity. Methods Review of IPCC-projections of climate-change related extreme weather events and related literature on health effects. Results Projections show that climate change is likely to increase the frequency, intensity, duration, and spatial distribution of a range of extreme weather events over coming decades. Conclusions There is a need for strengthened collaboration between climate scientists, the health researchers and policy-makers as well as the disaster community to jointly develop adaptation strategies to protect human. PMID:23273248
The socio-economic dimension of flood risk assessment: insights of KULTURisk framework
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Gain, Animesh; Mojtahed, Vahid; Balbi, Stefano
2013-04-01
The approaches for vulnerability and risk assessment have found different and often contrasting solutions by various schools of thought. The two most prominent communities in this field are: climate change adaptation (CCA), and disaster risk reduction (DRR). Although those communities have usually in common the aim of reducing socio-economic vulnerability and risk to natural hazards, they have usually referred to different definitions and conceptualizations. For example, the DRR community has always driven more emphasis on the concept of risk and vulnerability is considered as a physical/environmental input for the quantification of risk, while the CCA research stream, mainly under the auspices of the Intergovernmental Panel on Climate Change (IPCC), considered vulnerability as an output deriving from social conditions and processes such as adaptation or maladaptation. Recently, with the publication of the IPCC Special Report on extreme events and disasters (IPCC-SREX), the notions of vulnerability and risk are somehow integrated in order to jointly consider both climate change adaptation and disaster risk management. The IPCC-SREX indeed is expected to significantly contribute to find common language and methodological approaches across disciplines and, therefore, the opportunity emerges for proposing new operational solutions, consistent with the most recent evolution of concepts and terminology. Based on the development of the IPCC Report, the KULTURisk project developed an operational framework to support integrated assessment and decision support through the combination of contributions from diverse disciplinary knowledge, with emphasis on the social and economic dimensions. KIRAF (KULTURisk Integrated Risk Assessment Framework) is specifically aimed at comprehensively evaluate the benefits of risk mitigation measures with consideration of the dynamic context deriving from the consideration of climatic changes and their effects on natural disasters, within the policy framework of climate change adaptation (CCA). Three main innovations are proposed with respect to the current state of the art: (1) to include the social capacities of reducing risk, (2) to go beyond the estimation direct tangible costs, and (3) to provide an operational solution for decision support to assess risks, impacts and the benefits of plausible risk reduction measures, compatible with both the DRR and the CCA literatures. As stated above, the proposed framework is the inclusion of social capacities (adaptive and coping capacities) in the process of translating risk into a comprehensive cost matrix considering not only direct tangible costs (damages), but also the three other components deriving from the combination of tangible/intangible and direct/indirect costs. The proposed KIRAF approach is thus expected to provide: 1) an operational basis for multidisciplinary integration; 2) a flexible reference to deal with heterogeneous case studies and potentially various types of hazards; and 3) a means to support the assessment of alternative risk prevention measures including consideration of social and cultural dimensions.
Climate change, land use and socioeconomic developments are principal variables that define the need and scope of adaptive engineering and management to sustain water resource and infrastructure development. As described in IPCC (2007), hydroclimatic changes in the next 30-50 ye...
NASA Astrophysics Data System (ADS)
Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.
2013-12-01
The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes, and the emergence of risks that are place-based vs. systemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
An interactive web application for visualizing climate data
Alder, J.; Hostetler, S.; Williams, D.
2013-01-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
An Interactive Web Application for Visualizing Climate Data
NASA Astrophysics Data System (ADS)
Alder, J.; Hostetler, S.; Williams, D.
2013-05-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
Impacts of past and future climate change on wind energy resources in the United States
NASA Astrophysics Data System (ADS)
McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.
2009-12-01
The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.
Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar
2008-05-01
This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.
Climate Change, National Security, and the Quadrennial Defense Review. Avoiding the Perfect Storm
2008-01-01
consequently, higher ocean water temperatures are increasing the occurrence of coral bleaching and coral reef die-offs.57 The IPCC concludes that...unprecedented combination of climate change, associated disturbances (e.g., flooding, drought, wildfire, in- sects, ocean acidification ), and other global...instance, the disintegration of saltwater fishing indus- tries due to ocean acidification could spark inter- and intrastate conflict as numerous
IPCC Reasons for Concern Regarding Climate Change Risks: Implications for 1.5 and 2 C Targets
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Oppenheimer, M.
2016-12-01
The Reasons for Concern (RFC) framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, which has been a cornerstone of the Intergovernmental Panel on Climate Change (IPCC) assessments since the Third Assessment Report, aggregates global risks into five categories as a function of global mean temperature change (GMT). The RFC framework was developed to inform discussions relevant to implementation of Article 2 of the UN Framework Convention on Climate Change (UNFCCC). Article 2 presents the Convention's long-term objective of avoiding "dangerous anthropogenic interference with the climate system." The RFC framework and the associated "Burning Embers" diagram illustrating authors' risk judgments have since been widely discussed and used to inform policy decisions. For example, they informed a recent dialog between Parties to the UNFCCC and experts on the adequacy of the long-term goal of avoiding a warming of 2°C relative to pre-industrial, contributing to a strengthening of that goal in the recent Paris Agreement. We draw on a new review and update of the RFC's conceptual basis and the risk judgments made in the most recent IPCC report to discuss their implications for risks associated with GMT targets of 1.5 C and 2 C adopted in the Paris Agreement. In general, the RFCs imply that continued high emissions of greenhouse gases (GHGs) would lead to high or very high risk of severe, widespread, and in some cases irreversible climate change impacts within this century. At 2°C above preindustrial, High risks are based on increasing risks to Arctic and coral reef systems, as well as increasing species extinction risks that undermine ecosystems (RFC 1), and projected increasing magnitude and likelihood of extreme weather events (RFC 2). Moderate-to-High risks are based on projections of increasing risks to crop production and water resources (RFC 3), and to the risks associated with ice sheet disintegration and very large sea level rise (RFC5). Limiting warming to 1.5°C would reduce the risks for RFCs 1 and 2 from High to the Moderate-to-High transition.
Regional Climate and Streamflow Projections in North America Under IPCC CMIP5 Scenarios
NASA Astrophysics Data System (ADS)
Chang, H. I.; Castro, C. L.; Troch, P. A. A.; Mukherjee, R.
2014-12-01
The Colorado River system is the predominant source of water supply for the Southwest U.S. and is already fully allocated, making the region's environmental and economic health particularly sensitive to annual and multi-year streamflow variability. Observed streamflow declines in the Colorado Basin in recent years are likely due to synergistic combination of anthropogenic global warming and natural climate variability, which are creating an overall warmer and more extreme climate. IPCC assessment reports have projected warmer and drier conditions in arid to semi-arid regions (e.g. Solomon et al. 2007). The NAM-related precipitation contributes to substantial Colorado streamflows. Recent climate change studies for the Southwest U.S. region project a dire future, with chronic drought, and substantially reduced Colorado River flows. These regional effects reflect the general observation that climate is being more extreme globally, with areas climatologically favored to be wet getting wetter and areas favored to be dry getting drier (Wang et al. 2012). Multi-scale downscaling modeling experiments are designed using recent IPCC AR5 global climate projections, which incorporate regional climate and hydrologic modeling components. The Weather Research and Forecasting model (WRF) has been selected as the main regional modeling tool; the Variable Infiltration Capacity model (VIC) will be used to generate streamflow projections for the Colorado River Basin. The WRF domain is set up to follow the CORDEX-North America guideline with 25km grid spacing, and VIC model is individually calibrated for upper and lower Colorado River basins in 1/8° resolution. The multi-scale climate and hydrology study aims to characterize how the combination of climate change and natural climate variability is changing cool and warm season precipitation. Further, to preserve the downscaled RCM sensitivity and maintain a reasonable climatology mean based on observed record, a new bias correction technique is applied when using the RCM climatology to the streamflow model. Of specific interest is how major droughts associated with La Niña-like conditions may worsen in the future, as these are the times when the Colorado River system is most critically stressed and would define the "worst case" scenario for water resource planning.
Olson, Deanna H.; Blaustein, Andrew R.
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565
NASA Technical Reports Server (NTRS)
Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.;
2006-01-01
The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.
Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Lorenzo, Emanuele
This research aimed at understanding the dynamics controlling decadal variability in the Pacific Ocean and its interactions with global-scale climate change. The first goal was to assess how the dynamics and statistics of the El Niño Southern Oscillation and the modes of Pacific decadal variability are represented in global climate models used in the IPCC. The second goal was to quantify how decadal dynamics are projected to change under continued greenhouse forcing, and determine their significance in the context of paleo-proxy reconstruction of long-term climate.
Climate Change and Tropical Total Lightning
NASA Technical Reports Server (NTRS)
Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.
2009-01-01
While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.
Misrepresentation of the IPCC CO2 emission scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Martin; Edmonds, James A.; Emori, S.
2010-06-01
Estimates of recent fossil fuel CO2 emissions have been compared with the IPCC SRES (Special Report on Emission Scenarios) emission scenarios that had been developed for analysis of future climate change, impacts and mitigation. In some cases this comparison uses averages across subgroups of SRES scenarios and for one category of greenhouse gases (industrial sources of CO2). That approach can be misleading and cause confusion as it is inconsistent with many of the papers on future climate change projections that are based on a specific subset of closely scrutinized SRES scenarios, known as illustrative marker scenarios. Here, we show thatmore » comparison between recent estimates of fossil fuel emissions trends and the SRES illustrative marker scenarios leads to the conclusion that recent trends are not outside the SRES range. Furthermore, the recent economic downturn appears to have brought actual emission back toward the middle of the SRES illustrative marker scenarios. We also note that SRES emission scenarios are designed to reflect potential alternative long-term trends in a world without climate policy intervention and the trend in the resulting climate change is not sensitive to short-term fluctuations.« less
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Averyt, K. B.; Deheza, V.; Udall, B.
2008-12-01
In 2007 Colorado's Governor Ritter issued a Colorado Climate Action Plan, in response to the risks associated with climate change and sets a goal to adapt to those climate changes "that cannot be avoided." The Western Water Assessment, a NOAA funded RISA program, was commissioned to do a synthesis of the science on climate change aimed at planners, decisionmakers, and policymakers in water in Colorado. Changes in Colorado's climate and implications for water resources are occurring in a global context. The objective of the report is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources, and to support state efforts to develop a water adaptation plan. However, the identification of specific climate change impacts on water resources is beyond the scope of this report. Water managers have a long history of adapting to changing circumstances, including changes in economies and land use, environmental concerns, and population growth. Climate change will further affect the decisions made about use of water. However, current water management practices may not be robust enough to cope with this climate change. This presentation reports on the process of developing the report and challenges we faced. We developed the report based on ongoing interactions with the water management community and discussions with them about their decision processes and needs. A second presentation (see Barsugli et al) presents the synthesis findings from the report. We followed the IPCC WG1 model of observations, attribution, and projections. However, many published studies and datasets include information about Colorado, there are few climate studies that focus only on the state. Consequently, many important scientific analyses for Colorado have not been done, and Colorado- specific information is often imbedded in or averaged with studies of the larger Western U.S. We used findings from peer-reviewed regional studies, and conducted new analyses derived from existing datasets and model projections, and took advantage of new regional analyses. In addition to the IPCC Fourth Assessment, we also took advantage of very new Climate Change Science Program Assessments. Many water managers, although often technically savvy engineers, hydrologists and other professionals, but are not trained as climate or atmospheric scientists, and seeks to complexity by using Fahrenheit units, minimizing use of or defining jargon terms, and re-plotting published figures/data for simplicity. The report is written at a less technical level than the IPCC reports, and some features are intended to raise the level of climate literacy of our audience about climate and how climate science is done. For example, the report includes a primer on climate models and theory that situates Colorado in the context of global climate change and describes how the unique features of the state -- such as the complex topography -- relate to interpreting and using climate change projections. This report responds to Colorado state agencies' and water management community needs to understanding of climate change and is an initial step in establishing Colorado's water-related adaptation needs. Another impact of this report is as an experiment in climate services for climate change information and exploring the challenges of communicating the information to diverse decisionmakers.
Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo
2012-01-01
Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.
NASA Technical Reports Server (NTRS)
Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica
2016-01-01
Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.
The Risks of Missing the 2°C Target and the Risks of Framing the Target As 2°C
NASA Astrophysics Data System (ADS)
Nichols, L. H.
2014-12-01
The publication of IPCC AR5 has made it very clear that we are at risk of missing the 2°C target. It has also made it clear that the risks of missing this target would be very dire. But when read through a precautionary lens, it also illustrates potential risks of framing an appropriate climate target as 2°C. We ought to be doing all we can to limit the extent of climate change as much as possible, and framing our target as limiting warming to 2°C may mask the demandingness and urgency of addressing climate change aggressively and holistically. In this session I will summarize my work on what precaution demands in the face of climate change and discuss how it applies to AR5. I argue for a Catastrophic Precautionary Principle that gives us strong moral reasons to take precautionary measures against threats of catastrophe, such as those posed by climate change. I will explain how the IPCC's discussion of the five reasons for concern about climate change support a strong moral argument that we ought to be taking a much more precautionary approach to climate policy than is currently evidenced by UNFCCC agreements and domestic policies around the world. While AR5 supports the conclusion that we should not risk missing the 2°C target, it also supports reevaluating what our target - and more generally what our comprehensive approach to climate policy - should be. In this way, I will discuss the complex science-ethics-policy nexus and the role of climate science in guiding precautionary global climate policies.
Section summary: Remote sensing
Belinda Arunarwati Margono
2013-01-01
Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...
NASA Astrophysics Data System (ADS)
Harris, Adam
2014-05-01
The Intergovernmental Panel on Climate Change (IPCC) prescribes that the communication of risk and uncertainty information pertaining to scientific reports, model predictions etc. be communicated with a set of 7 likelihood expressions. These range from "Extremely likely" (intended to communicate a likelihood of greater than 99%) through "As likely as not" (33-66%) to "Extremely unlikely" (less than 1%). Psychological research has investigated the degree to which these expressions are interpreted as intended by the IPCC, both within and across cultures. I will present a selection of this research and demonstrate some problems associated with communicating likelihoods in this way, as well as suggesting some potential improvements.
The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models
NASA Astrophysics Data System (ADS)
Jenney, A.; Randall, D. A.
2014-12-01
Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
The impact of climate change on the drought variability over Australia
NASA Astrophysics Data System (ADS)
Kirono, D. G. C.; Hennessy, K.; Mpelasoka, F.; Bathols, J.; Kent, D.
2009-04-01
Drought has significant environmental and socio-economic impacts in Australia. Government assistance for drought events is guided by the current National Drought Policy (NDP). The Commonwealth Government provides support to farmers and rural communities under the Exceptional Circumstances (EC) arrangements and other drought programs, while state and territory governments also participate in the NDP and provide support measures of their own. To be classified as an EC event, the event must be rare, that is must not have occurred more than once on average in every 20-25 years. Given the likely increase in the area of the world affected by droughts in future due to climate change (IPCC, 2007), this paper presents assessments on how climate change may affect the concept of a one in 20-25 year event into the future for Australia. As droughts can be experienced and defined in different ways, many drought indices are available to monitor and to assess drought conditions. Commonly, these indices are categorised into four types: meteorological, hydrological, agricultural, and socio-economic. The meteorological drought indices are more widely used because they require data that are readily available and that they are relatively easy to calculate. However, meteorological drought indices based on rainfall alone fail to include the important contribution of evaporation. Here, the assessment is made using outputs of 13 global climate models (GCMs) and a meteorological drought index called the Reconnaissance Drought Index (RDI). It incorporates the aggregated deficits between the rainfall and the evaporative demand of the atmosphere. If the RDI were the sole trigger for EC declarations, then the mean projections indicate that more declarations would be likely in the future. As a comparison, results from an assessment based on other measures (temperature, rainfall, and soil wetness) will also be presented. IPCC, 2007: Climate Change 2007 - The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, www.ipcc.ch
Uncertainty quantification of US Southwest climate from IPCC projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark Bruce Elrick
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2008-01-01
Intergovernmental Panel on Climate Change (IPCC). RESULTS Temporal and Spatial Variations of Sea Surface Temperature and Chlorophyll a in Coastal Waters of...Duck, North Carolina [4] Climate change has affected the North Carolina coastal environments and coastal hazards have already taken place in the area...from geological materials (sands, dead and/or bleached corals ...etc) shifted by waves, tides, and currents moving sediments and eroding shorelines
Climate Change and Water Resources Management: A Federal Perspective
Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.
2009-01-01
Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.
NASA Astrophysics Data System (ADS)
de Noblet, N.; Pitman, A.; Participants, Lucid
2009-04-01
The project "Land-Use and Climate, IDentification of robust impacts" (LUCID) was conceived under the auspices of IGBP-iLEAPS and GEWEX-GLASS, to address the robustness of 'local' and possible remote impacts of land-use induced land-cover changes (LCC). LUCID explores, using methodologies that major climate modelling groups recognise, those impacts of LCC that are robust - that is, above the noise generated by model variability and consistent across a suite of climate models. To start with, seven climate models were run, in ensemble mode (5 realisations per 31-years long experiment), with prescribed observed sea-surface temperatures (SSTs) and sea ice extent (SIc). Pre-industrial and present-day simulations were used to explore the impacts of biogeophysical impacts of human-induced land cover change. The imposed LCC perturbation led to statistically significant changes in latent heat flux and near-surface temperature over the regions of land cover change, but few significant changes in precipitation. Our results show no common remote impacts of land cover change. They also highlight a dilemma for both historical hind-casts and future projections; land cover change is regionally important, but it is not feasible within the time frame of the next IPCC (AR5) assessment to implement this change commonly across multiple models. Further analysis are in progress and will be presented to identify the continental regions where changes in LCC may have been more important than the combined changes in SSTs, SIc and CO2 between the pre-industrial times and nowadays.
NASA Astrophysics Data System (ADS)
Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey
2018-01-01
Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.
Productivity of Rice Grown on Arsenic Contaminated Soil under a Changing Climate
NASA Astrophysics Data System (ADS)
Wang, T.; Plaganas, M.; Muehe, E. M.; Fendorf, S. E.
2016-12-01
Rice is the staple food for more than 50% of the global population. In South and Southeast Asia, native soil arsenic coupled with arsenic-laden irrigation water result in paddy soils having arsenic levels that decrease the quality and productivity of rice and thus compromise food security worldwide. However, it remains unknown how climate change will affect the accumulation of arsenic in rice plants, specifically grain, grown in arsenic-bearing paddy soils. We hypothesize that the bioavailability of arsenic in the paddy soil will increase with climate change leading to an even sharper decrease of rice productivity and quality than presently estimated. In order to shed light on this question, we performed greenhouse studies to simulate today's climate condition in Asian paddy soils and compare it to the conditions projected for the year 2100. We investigated climate conditions estimated in the 5th assessment report of the IPCC1, indicating up to a 5°C increase in temperature and doubled atmospheric CO2 concentrations. Under these current and future climate conditions, we examined rice physiology including plant height and biomass, leaf chlorophyll content, grain number and weight as well as contents of accumulated arsenic, and its species in the different rice tissues. We further correlate different geochemical parameters of the soil, including arsenic and other relevant metal dynamics in the soil, to plant response. In sum, our analyses will allow us to better predict the productivity of rice and its grain quality in a future climate condition, and may help to take precautions to avoid a global food crisis, particularly for South and Southeast Asia where rice is a daily staple. 1IPCC - Intergovernmental Panel on Climate Change, Climate Change 2013, The Physical Science Basis.
NASA Astrophysics Data System (ADS)
Lackner, Bettina C.; Kirchengast, Gottfried
2015-04-01
Besides written and spoken language, graphical displays play an important role in communicating scientific findings or explaining scientific methods, both within one and between various disciplines. Uncertainties and probabilities are generally difficult to communicate, especially via graphics. Graphics including uncertainty sometimes need detailed written or oral descriptions to be understood. "Good" graphics should ease scientific communication, especially amongst different disciplines. One key objective of the Doctoral Programme "Climate Change: Uncertainties, Thresholds and Coping Strategies" (http://dk-climate-change.uni-graz.at/en/), located at the University of Graz, is to reach a better understanding of climate change uncertainties by bridging research in multiple disciplines, including physical climate sciences, geosciences, systems and sustainability sciences, environmental economics, and climate ethics. This asks for efforts into the formulation of a "common language", not only as to words, but also as to graphics. The focus of this work is on two topics: (1) What different kinds of uncertainties (e.g., data uncertainty, model uncertainty) are included in the graphics of the recent IPCC reports of all three working groups (WGs) and in what ways do uncertainties get illustrated? (2) How are these graphically displayed uncertainties perceived by researchers of a similar research discipline and from researchers of different disciplines than the authors of the graphics? To answer the first question, the IPCC graphics including uncertainties are grouped and analyzed with respect to different kinds of uncertainties to filter out most of the commonly used types of displays. The graphics will also be analyzed with respect to their WG origin, as we assume that graphics from researchers rooted in, e.g., physical climate sciences and geosciences (mainly IPCC WG 1) differ from those of researchers rooted in, e.g., economics or system sciences (mainly WG 3). In a subsequent analysis, some basic types of graphics displaying uncertainty are selected to serve as input for the construction of "makeshift graphics" (displaying only the main features but including no detailed title or caption). These makeshift graphics are then used to assess how the displayed features are perceived and understood by researchers of various disciplines. In this initial study, this analysis will be based on results of a workshop including the wide diversity of researchers within the FWF-DK Climate Change. We will present first results of this work.
Report on Climate Change E-mails Exonerates Scientists
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-07-01
A new report commissioned by the University of East Anglia (UEA) has largely exonerated climate scientists from the university's Climatic Research Unit (CRU) who wrote a number of controversial e-mail messages that were made public without authorization in November 2009. Critics have argued that the e-mails indicate that scientists had tampered with scientific data—including data related to land station temperatures and temperature reconstructions from tree ring analysis—subverted the peer review process, misused the Intergovernmental Panel on Climate Change (IPCC) process, and withheld data from critics. At a 7 July news conference to release the “Independent climate change e-mails review,” report chair Muir Russell said, “Climate science is a matter of such global importance that the highest standards of honesty, rigor, and openness are needed in its conduct. On the specific allegations made against the behavior of CRU scientists, we find that their rigor and honesty as scientists are not in doubt.” He continued, “In addition, we do not find that their behavior has prejudiced the balance of advice given to policy makers. In particular, we did not find any evidence of behavior that might undermine the conclusions of the IPCC assessments.” Russell is chair of the Judicial Appointments Board for Scotland and formerly was principal and vice-chancellor of the University of Glasgow, in Scotland.
NASA Astrophysics Data System (ADS)
Field, C. B.; Stocker, T. F.; Barros, V. R.; Qin, D.; Ebi, K. L.; Midgley, P. M.
2011-12-01
The Summary for Policy Makers of the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation will be approved by the world governments in November 2011. The focus of the Special Report is on climate change and its role in altering the frequency, severity, and impact of extreme events or disasters, and on the costs of both impacts and the actions taken to prepare for, respond to, and recover from extreme events and disasters. The emphasis is on understanding the factors that make people and infrastructure vulnerable to extreme events, on recent and future changes in the relationship between climate change and extremes, and on managing the risks of disasters over a wide range of spatial and temporal scales. The assessment considers a broad suite of adaptations and explores the limits to adaptation. The assessment was designed to build durable links and foundations for partnerships between the stakeholder communities focused on climate change and those focused on disaster risk reduction. The Special Report begins with material that frames the issues, followed by an assessment of the reasons that communities are vulnerable. Two chapters assess the role of past and future climate change in altering extremes and the impact of these on the physical environment and human systems. Three chapters assess available knowledge on impacts and adaptation, with separate chapters considering the literature, stakeholder relationships, and potential policy tools relevant to the local, national, and international scales. Longer-term components of adaptation to weather and climate extremes and disasters are assessed in the context of moving toward sustainability. The final chapter provides case studies that integrate themes across several chapters or are so unique that they need to be considered separately.
Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios
NASA Astrophysics Data System (ADS)
Lee, D. K.; Park, J. H.; Park, C.; Kim, S.
2017-12-01
Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused by ozone was about 5.0-5.6% in the SSP2 scenario and 3.8-4.2% in the RCP scenario.
Climate change unlikely to increase malaria burden in West Africa
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.
2016-11-01
The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.
NASA Astrophysics Data System (ADS)
Rosenzweig, C.; Ali Ibrahim, S.
2015-12-01
The objective of this session is to foster a dialogue between experts working on global-scale, climate change and cities assessments in order to simultaneously present state-of-the-art knowledge on how cities are responding to climate change and to define emerging opportunities and challenges to the effective placement of this knowledge in the hands of local stakeholders and decision-makers. We will present the UCCRN and the Second UCCRN Assessment Report on Climate Change and Cities (ARC3-2), the second in an ongoing series of global, interdisciplinary, cross-regional, science-based assessments to address climate risks, adaptation, mitigation, and policy mechanisms relevant to cities. This is an especially important time to examine these issues. Cities continue to act as world leaders in climate action. Several major climate change assessment efforts are in full swing, at a crucial stage where significant opportunities for the co-production of knowledge between researchers and stakeholders exist. The IPCC AR5 Working Group II and III Reports have placed unprecedented attention on cities and urbanization and their connection to the issue of climate change. Concurrently several major, explicitly city-focused efforts have emerged from the Urban Climate Change Research Network (UCCRN), ICLEI, the Durban Adaptation Charter (DAC), C40, Future Earth, and the Urbanization and Global Environmental Change (UGEC) Project, among others. The underlying rationale for the discussion will be to identify methods and approaches to further foster the development and dissemination of new climate change knowledge and information that will be useful for cities, especially in small and medium-sized cities and in the developing country context where the demand is particularly acute. Participants will leave this session with: · The latest scientific data and state-of-the-knowledge on how cities are responding to climate change · Emerging opportunities and challenges to the effective placement of this knowledge in the hands of local stakeholders and decision-makers and for urban resilience and adaptation action · How practitioner-scientist interactions can work best · Synergies between the IPCC, ARC3, and other climate and cities assessments
;Agreement; in the IPCC Confidence measure
NASA Astrophysics Data System (ADS)
Rehg, William; Staley, Kent
2017-02-01
The Intergovernmental Panel on Climate Change (IPCC) has, in its most recent Assessment Report (AR5), articulated guidelines for evaluating and communicating uncertainty that include a qualitative scale of confidence. We examine one factor included in that scale: the "degree of agreement." Some discussions of the degree of agreement in AR5 suggest that the IPCC is employing a consensus-oriented social epistemology. We consider the application of the degree of agreement factor in practice in AR5. Our findings, though based on a limited examination, suggest that agreement attributions do not so much track the overall consensus among investigators as the degree to which relevant research findings substantively converge in offering support for IPCC claims. We articulate a principle guiding confidence attributions in AR5 that centers not on consensus but on the notion of support. In concluding, we tentatively suggest a pluralist approach to the notion of support.
Linda A. Joyce; David T. Price; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence; David P. Coulson
2011-01-01
Projections of future climate were selected for four well-established general circulation models (GCM) forced by each of three greenhouse gas (GHG) emissions scenarios, namely A2, A1B, and B1 from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). Monthly data for the period 1961-2100 were downloaded mainly from the web...
Climate Products and Services to Meet the Challenges of Extreme Events
NASA Astrophysics Data System (ADS)
McCalla, M. R.
2008-12-01
The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf
NASA Astrophysics Data System (ADS)
Hovenga, P. A.; Wang, D.; Medeiros, S. C.; Hagen, S. C.
2015-12-01
Located in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay within the Northern Gulf of Mexico, resulting in a direct influence on the ecology of the region, in particular seagrass and oyster production. This study examines the seasonal response of overland flow and sediment loading in the Apalachicola River under projected climate change scenarios and land use land cover (LULC) change. A hydrologic model using the Soil Water Assessment Tool (SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment load under present (circa 2000) and future conditions (circa 2100) to understand how parameters respond over a seasonal time frame to changes in climate only, LULC only, and coupled climate / LULC. These physically-based models incorporate digital elevation model (DEM), LULC, soil maps, climate data, and management controls. Long Ashton Research Station-Weather Generator (LARS-WG) was used to create stochastic temperature and precipitation inputs from four Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change (IPCC) carbon emission scenarios for A1B, A2, and B1. These scenarios represent potential future emissions resulting from a range driving forces, e.g. social, economic, environmental, and technologic. Projected 2100 LULC data provided by the United States Geological Survey (USGS) EROS Center was incorporated for each corresponding IPCC scenario. Results from this study can be used to further understand climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar fluvial estuaries while providing tools to better guide management and mitigation practices.
Climate change in the Seychelles: implications for water and coral reefs.
Payet, Rolph; Agricole, Wills
2006-06-01
The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCM3 model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.
Valerie Esposito; Spencer Phillips; Roelof Boumans; Azur Moulaert; Jennifer Boggs
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) (2007) reports a likely 2 °C to 4.5 °C temperature rise in the upcoming decades. This warming is likely to affect ecosystems and their ability to provide services that benefit human well-being. Ecosystem services valuation (ESV), meanwhile, has emerged as a way to recognize the economic value embodied in these...
Making Sense of Palaeoclimate Sensitivity
NASA Technical Reports Server (NTRS)
Rohling, E. J.; Sluijs, A.; DeConto, R.; Drijfhout, S. S.; Fedorov, A.; Foster, G. L.; Ganopolski, A.; Hansen, J.; Honisch, B.; Hooghiemstra, H.;
2012-01-01
Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W-1 m2) of 0.3-1.9 or 0.6-1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2-4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.
NASA Technical Reports Server (NTRS)
Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick
1991-01-01
An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.
Uncertainty of tipping elements on risk analysis in hydrology under climate change
NASA Astrophysics Data System (ADS)
Kiguchi, M.; Iseri, Y.; Tawatari, R.; Kanae, S.; Oki, T.
2015-12-01
Risk analysis in this study characterizes the events that could be caused by climate change and estimates their effects on society. In order to characterize climate change risks, events that might be caused by climate change will be investigated focusing on critical geophysical phenomena such as changes in thermohaline circulation (THC) in oceans and the large-scale melting of the Greenland and other ice sheets. The results of numerical experiments with climate models and paleoclimate studies will be referenced in listing up these phenomena. The trigger mechanisms, tendency to occur and relationship of these phenomena to global climate will be clarified. To clarify that relationship between the RCP scenarios and tipping elements, we identified which year tipping elements in case of "Arctic summer sea ice" and "Greenland ice sheet" are appeared using the increase of global average temperature in 5 GCMs under RCP (2.6, 4.5, 6.0, and 8.5) from Zickfeld et al. (2013) and IPCC (2013), and tipping point of each tipping elements from IPCC (2013). In case of "Greenland ice sheet" (Tipping point takes a value within the range of 1.0oC and 4.0oC), we found that "Greenland ice sheet" may melt down when the tipping point is 1.0oC as lowest value. On the other hand, when tipping point sets as 4.0oC, it may not melt down except for RCP 8.5. As above, we show the uncertainty of tipping point itself. In future, it is necessary how to reflect such uncertainty in risk analysis in hydrology.
The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Riley, William J.; Randerson, James T.
2016-06-01
The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).
Accuracy requirements. [for monitoring of climate changes
NASA Technical Reports Server (NTRS)
Delgenio, Anthony
1993-01-01
Satellite and surface measurements, if they are to serve as a climate monitoring system, must be accurate enough to permit detection of changes of climate parameters on decadal time scales. The accuracy requirements are difficult to define a priori since they depend on unknown future changes of climate forcings and feedbacks. As a framework for evaluation of candidate Climsat instruments and orbits, we estimate the accuracies that would be needed to measure changes expected over two decades based on theoretical considerations including GCM simulations and on observational evidence in cases where data are available for rates of change. One major climate forcing known with reasonable accuracy is that caused by the anthropogenic homogeneously mixed greenhouse gases (CO2, CFC's, CH4 and N2O). Their net forcing since the industrial revolution began is about 2 W/sq m and it is presently increasing at a rate of about 1 W/sq m per 20 years. Thus for a competing forcing or feedback to be important, it needs to be of the order of 0.25 W/sq m or larger on this time scale. The significance of most climate feedbacks depends on their sensitivity to temperature change. Therefore we begin with an estimate of decadal temperature change. Presented are the transient temperature trends simulated by the GISS GCM when subjected to various scenarios of trace gas concentration increases. Scenario B, which represents the most plausible near-term emission rates and includes intermittent forcing by volcanic aerosols, yields a global mean surface air temperature increase Delta Ts = 0.7 degrees C over the time period 1995-2015. This is consistent with the IPCC projection of about 0.3 degrees C/decade global warming (IPCC, 1990). Several of our estimates below are based on this assumed rate of warming.
Fixing Climate: What Past Climate Changes Reveal About the Current Threat-And How to Counter It
NASA Astrophysics Data System (ADS)
McKinley, Galen A.
2008-10-01
The Earth's climate is changing due to human activities. Recent polls suggest that the U.S. public generally recognizes this fact, and the efforts that led the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore to win the 2007 Nobel Peace Prize have played no small role in bringing most of the public to realize what scientists have been discussing for years. Yet aside from distorted Hollywood movie accounts such as The Day After Tomorrow, the public knows little about the potential for abrupt change in the climate system. With support from climate science philanthropist Gary Comer, climate scientist Wally Broecker has teamed with science writer Robert Kunzig in this book to bring abrupt climate change into public view. They do this elegantly and convincingly, making the first 12 chapters quite enjoyable.
Treatment of uncertainties in the IPCC: a philosophical analysis
NASA Astrophysics Data System (ADS)
Jebeile, J.; Drouet, I.
2014-12-01
The IPCC produces scientific reports out of findings on climate and climate change. Because the findings are uncertain in many respects, the production of reports requires aggregating assessments of uncertainties of different kinds. This difficult task is currently regulated by the Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. The note recommends that two metrics—i.e. confidence and likelihood— be used for communicating the degree of certainty in findings. Confidence is expressed qualitatively "based on the type, amount, quality, and consistency of evidence […] and the degree of agreement", while likelihood is expressed probabilistically "based on statistical analysis of observations or model results, or expert judgment". Therefore, depending on the evidence evaluated, authors have the choice to present either an assigned level of confidence or a quantified measure of likelihood. But aggregating assessments of uncertainties of these two different kinds express distinct and conflicting methodologies. So the question arises whether the treatment of uncertainties in the IPCC is rationally justified. In order to answer the question, it is worth comparing the IPCC procedures with the formal normative theories of epistemic rationality which have been developed by philosophers. These theories—which include contributions to the philosophy of probability and to bayesian probabilistic confirmation theory—are relevant for our purpose because they are commonly used to assess the rationality of common collective jugement formation based on uncertain knowledge. In this paper we make the comparison and pursue the following objectives: i/we determine whether the IPCC confidence and likelihood can be compared with the notions of uncertainty targeted by or underlying the formal normative theories of epistemic rationality; ii/we investigate whether the formal normative theories of epistemic rationality justify treating uncertainty along those two dimensions, and indicate how this can be avoided.
NASA Astrophysics Data System (ADS)
Spencer, S.; Ogle, S. M.; Wirth, T. C.; Sivakami, G.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) provides methods and guidance for estimating anthropogenic greenhouse gas emissions for reporting to the United Nations Framework Convention on Climate Change. The methods are comprehensive and require extensive data compilation, management, aggregation, documentation and calculations of source and sink categories to achieve robust emissions estimates. IPCC Guidelines describe three estimation tiers that require increasing levels of country-specific data and method complexity. Use of higher tiers should improve overall accuracy and reduce uncertainty in estimates. The AFOLU sector represents a complex set of methods for estimating greenhouse gas emissions and carbon sinks. Major AFOLU emissions and sinks include carbon dioxide (CO2) from carbon stock change in biomass, dead organic matter and soils, urea or lime application to soils, and oxidation of carbon in drained organic soils; nitrous oxide (N2O) and methane (CH4) emissions from livestock management and biomass burning; N2O from organic amendments and fertilizer application to soils, and CH4 emissions from rice cultivation. To assist inventory compilers with calculating AFOLU-sector estimates, the Agriculture and Land Use Greenhouse Gas Inventory Tool (ALU) was designed to implement Tier 1 and 2 methods using IPCC Good Practice Guidance. It guides the compiler through activity data entry, emission factor assignment, and emissions calculations while carefully maintaining data integrity. ALU also provides IPCC defaults and can estimate uncertainty. ALU was designed to simplify the AFOLU inventory compilation process at regional or national scales, disaggregating the process into a series of steps reduces the potential for errors in the compilation process. An example application has been developed using ALU to estimate methane emissions from rice production in the United States.
The United Nations and Climate Change: Legal and Policy Developments
NASA Astrophysics Data System (ADS)
Bunn, Isabella D.
2009-07-01
The Secretary-General of the United Nations, Ban Ki-moon, has declared that climate change is "the defining challenge of our times." Climate change trends indicate increasingly severe negative impacts on the majority of countries, with disproportionate effects on poor and vulnerable populations. The scientific reports of the Intergovernmental Panel on Climate Change (IPCC), as well as the negotiations under the UN Framework Convention on Climate Change (UNFCCC), have placed the issue on the forefront of the international agenda. This article examines how climate change is shaping legal and policy developments in five key areas of UN responsibility: international law, humanitarian affairs, human rights, development, and peace and security. It concludes with some observations about high-level efforts to coordinate the response of multilateral institutions, the changing stance of the US government, and the role of environmental protection in addressing the current global economic crisis.
Developing perturbations for Climate Change Impact Assessments
NASA Astrophysics Data System (ADS)
Hewitson, Bruce
Following the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report [TAR; IPCC, 2001], and the paucity of climate change impact assessments from developing nations, there has been a significant growth in activities to redress this shortcoming. However, undertaking impact assessments (in relation to malaria, crop stress, regional water supply, etc.) is contingent on available climate-scale scenarios at time and space scales of relevance to the regional issues of importance. These scales are commonly far finer than even the native resolution of the Global Climate Models (GCMs) (the principal tools for climate change research), let alone the skillful resolution (scales of aggregation at which GCM observational error is acceptable for a given application) of GCMs.Consequently, there is a growing demand for regional-scale scenarios, which in turn are reliant on techniques to downscale from GCMs, such as empirical downscaling or nested Regional Climate Models (RCMs). These methods require significant skill, experiential knowledge, and computational infrastructure in order to derive credible regional-scale scenarios. In contrast, it is often the case that impact assessment researchers in developing nations have inadequate resources with limited access to scientists in the broader international scientific community who have the time and expertise to assist. However, where developing effective downscaled scenarios is problematic, it is possible that much useful information can still be obtained for impact assessments by examining the system sensitivity to largerscale climate perturbations. Consequently, one may argue that the early phase of assessing sensitivity and vulnerability should first be characterized by evaluation of the first-order impacts, rather than immediately addressing the finer, secondary factors that are dependant on scenarios derived through downscaling.
NASA Astrophysics Data System (ADS)
Panthi, J., Sr.
2014-12-01
Climate change vulnerability depends upon various factors and differs between places, sectors and communities. People in developing countries whose subsistence livelihood depends upon agriculture and livestock are identified as particularly vulnerable. Nepal, where the majority of people are in a mixed agro-livestock system, is identified as the world's fourth most vulnerable country to climate change. However, there are few studies on how vulnerable mixed agro-livestock smallholders are and how their vulnerability differs across different ecological regions. This study aims to test two vulnerability assessment indices, livelihood vulnerability index (LVI) and IPCC vulnerability index (VI-IPCC), around the Gandaki river basin of Nepal. A total of 543 households practicing mixed agro-livestock were surveyed from three districts (Dhading, Syangja and Kapilvastu) representing the mountain, mid-hill and lowland altitudinal belts respectively. Data on socio-demographics, livelihoods, social networks, health, food and water security, natural disasters and climate variability were collected. Both indices differed across the three districts, with mixed agro-livestock smallholders of Dhading district found to be the most vulnerable and that of Syangja least vulnerable. This vulnerability index approach may be used to monitor rural vulnerability and/or evaluate potential program/policy effectiveness in poor countries like Nepal. The present findings are intended to help in designing intervention strategies to reduce vulnerability of mixed agro-livestock smallholders and other rural people in developing countries to climate change.
An Emerging Ethic of Responsibility: A Case Study for Engaging the Public
NASA Astrophysics Data System (ADS)
Mandia, S. A.; Abraham, J. A.
2010-12-01
Recent trends in the public’s understanding of climate change have diverged from the broad, and well-documented consensus held by scientists. While the level of consensus regarding climate change among scientists is very high, the public remains deeply divided. Furthermore, a large percentage of the general public perceives that a serious debate exists within the science community on the basic theory of anthropogenic climate change. This disconnect between the scientific community and the general public should motivate scientists to take a more active role in public outreach. Recent stories in the media have increased the public’s resistance to climate change. Included here are Climategate, mistakes in the IPCC regarding Himalayan glacial melt, and other reports (inaccurately reported) about IPCC errors related to the sensitivity of the Amazon rainforest to a changing climate. Along with these stories, there has been a well-documented increase in activism by “skeptical scientists” and by “skeptical non-scientists” to engage the public with a goal of promoting the perception of a serious debate within the science community. Also during the past few years, a number of scientists who have taken an active role in educating the general public have come under political, scientific, and personal pressure. The resistance exerted on scientists who become public educators has caused many scientists to avoid outreach efforts. Here, the authors present a case study for a successful effort to engage the public on the issue of climate change. We utilized a number of media methods to cause a significant impact on the public discussion of global warming. In addition, the effort has begun to affect legislative processes within the United States and abroad. The authors present this case study to provide a roadmap to colleagues who wish to participate in public outreach.
Estimation of CO2 emissions from waste incinerators: Comparison of three methods.
Lee, Hyeyoung; Yi, Seung-Muk; Holsen, Thomas M; Seo, Yong-Seok; Choi, Eunhwa
2018-03-01
Climate-relevant CO 2 emissions from waste incineration were compared using three methods: making use of CO 2 concentration data, converting O 2 concentration and waste characteristic data, and using a mass balance method following Intergovernmental Panel on Climate Change (IPCC) guidelines. For the first two methods, CO 2 and O 2 concentrations were measured continuously from 24 to 86 days. The O 2 conversion method in comparison to the direct CO 2 measurement method had a 4.8% mean difference in daily CO 2 emissions for four incinerators where analyzed waste composition data were available. However, the IPCC method had a higher difference of 13% relative to the direct CO 2 measurement method. For three incinerators using designed values for waste composition, the O 2 conversion and IPCC methods in comparison to the direct CO 2 measurement method had mean differences of 7.5% and 89%, respectively. Therefore, the use of O 2 concentration data measured for monitoring air pollutant emissions is an effective method for estimating CO 2 emissions resulting from waste incineration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.
2015-09-29
A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability components. To maintain consistency with the IPCC definition of vulnerability, DOI may want to focus initial climate adaptation planning only on the outcomes of studies that comprehensively address vulnerability as inclusive of exposure, sensitivity, and adaptive capacity. Although the present study results are preliminary and used an unstructured survey design, they illustrate the importance of a comprehensive and consistent vulnerability definition and of using information on vulnerability components in DOI surveys to ensure relevant data are used to identify adaptation options.
Impact of Urban Surfaces on Precipitation Processes
NASA Technical Reports Server (NTRS)
Shepherd, J. M.
2004-01-01
The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.
Kim, John B.; Monier, Erwan; Sohngen, Brent; ...
2017-03-28
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
NASA Astrophysics Data System (ADS)
Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson
2017-04-01
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, John B.; Monier, Erwan; Sohngen, Brent
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
Climate-change-driven accelerated sea-level rise detected in the altimeter era.
Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T
2018-02-27
Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.
Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2008-12-01
Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand management (e.g. through metering and pricing), and institutional changes that improve the tradability of water rights. The co-evolution of climate history and adaptation did not start with the release of IPCC scenarios. The development of the Colorado River Basin was itself influenced by water resources planners from around the world (including the Middle East) in the late 1800s. As such lessons identified, but not always learned, abound. These hold considerable promise for water savings and the reallocation of water to highly valued uses. Supply-side strategies generally involve increases in storage capacity, abstraction from watercourses, and water transfers. Integrated water resources management provides an important governance framework to achieve adaptation measures across socio-economic, environmental and administrative systems. However, several paradoxes in water management and governance mitigate against the effectiveness of scientific information for meeting short term needs in the context of reducing longer-term vulnerabilities and for providing water to meet environmental needs. Consequently a complete analysis of the effects of climate change on human water uses would consider cross-sector interactions, including the impacts of changes in water use efficiency and intentional transfers of the use of water from one sector to another.
Cost analysis of impacts of climate change on regional air quality.
Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun
2010-02-01
Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-07-07
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-01-01
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. PMID:22378808
NASA Astrophysics Data System (ADS)
Ritchie, Justin; Dowlatabadi, Hadi
2018-02-01
Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.
Are the impacts of land use on warming underestimated in climate policy?
NASA Astrophysics Data System (ADS)
Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.
2017-09-01
While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.
Representing Extremes in Agricultural Models
NASA Technical Reports Server (NTRS)
Ruane, Alex
2015-01-01
AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.
Human health risk assessment due to global warming--a case study of the Gulf countries.
Husain, Tahir; Chaudhary, Junaid Rafi
2008-12-01
Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates increased mortality rates due to cardiovascular and respiratory illnesses, thermal stress, and increased frequency of infectious vector borne diseases in the region between 2070 and 2099.
NASA Astrophysics Data System (ADS)
Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P.
2016-12-01
New calculations of the radiative forcing (RF) are presented for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane's RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750-2011 RF is about 25% higher (increasing from 0.48 W m-2 to 0.61 W m-2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750-2011 CO2 RF is within 1% of IPCC's value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.
Anthropogenic Climate Change in Asia: Key Challenges
NASA Astrophysics Data System (ADS)
Ramaswamy, V.
2009-12-01
The energy, agricultural, and water sectors in Asia, a vast continent that comprises more than half of the world's population, are crucially vulnerable to shifts in climate. The acceleration of economic development in Asia over the past few decades, the dependence of its huge agricultural economy on rainfall, and its growing energy demands have thrust climate change and its impacts squarely into important sectors of the Asian society. Further, it is likely that there has been significant anthropogenic warming over the past 50 years averaged over the Asian continent (Intergovernmental Panel on Climate Change (IPCC) [2007]; see Figure 1a). Asian megacities are already witnessing stresses in food, water, transportation, health, and air quality. The situation could become even worse with projected changes in temperature and rainfall in the 21st century, coupled with the likelihood that climate change will exacerbate extremes.
NASA Technical Reports Server (NTRS)
Horton, Radley M.; Bader, Daniel A.; Rosenzweig, Cynthia; DeGaetano, Arthur T.; Solecki, William
2014-01-01
In its 2013-2014 Fifth Assessment Report (AR5), the Intergovernmental Panel on Climate Change (IPCC) states that there is a greater than 95 percent chance that rising global average temperatures, observed since the mid-20th century, are primarily due to human activities. As had been predicted in the 1800s, the principal driver of climate change over the past century has been increasing levels of atmospheric greenhouse gases associated with fossil-fuel combustion, changing land-use practices, and other human activities. Atmospheric concentrations of the greenhouse gas carbon dioxide are now approximately 40 percent higher than in preindustrial times. Concentrations of other important greenhouse gases, including methane and nitrous oxide, have increased rapidly as well.
Sensitivity of U.S. surface ozone to future emissions and climate changes
NASA Astrophysics Data System (ADS)
Tao, Zhining; Williams, Allen; Huang, Ho-Chun; Caughey, Michael; Liang, Xin-Zhong
2007-04-01
The relative contributions of projected future emissions and climate changes to U.S. surface ozone concentrations are investigated focusing on California, the Midwest, the Northeast, and Texas. By 2050 regional average ozone concentrations increase by 2-15% under the IPCC SRES A1Fi (``dirty'') scenario, and decrease by 4-12% under the B1 (relatively ``clean'') scenario. However, the magnitudes of ozone changes differ significantly between major metropolitan and rural areas. These ozone changes are dominated by the emissions changes in 61% area of the contiguous U.S. under the B1 scenario, but are largely determined by the projected climate changes in 46% area under the A1Fi scenario. In the ozone responses to climate changes, the biogenic emissions changes contribute strongly over the Northeast, moderately in the Midwest, and negligibly in other regions.
Atmospheric Aerosol Properties and Climate Impacts
NASA Technical Reports Server (NTRS)
Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip;
2009-01-01
This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.
Climate Change: The Physical Basis and Latest Results
Stocker, Thomas
2018-05-18
The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.
Climate Change: Vulnerability Assessment for Water Resources Management in South Florida
NASA Astrophysics Data System (ADS)
Obeysekera, J.
2008-12-01
South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of projected climate change on water supply for all water sectors including the environment, and the potential impact of sea level rise on coastal regions. Questions on the potential impacts of climate change including sea level rise need to be investigated along with the uncertainties of projections to provide critical information for decision making on the planned infrastructure and operational changes in south Florida.
Landscape fire and wildlife habitat [chapter 9
Samuel A. Cushman; Tzeidle N. Wasserman; Kevin McGarigal
2011-01-01
Global climate is expected to change rapidly over the next century (Thompson et al. 1998; Houghton et al. 2001; IPCC 2008). This will affect forest ecosystems both directly by altering biophysical conditions (Neilson 1995; Neilson and Drapek 1998; Bachelet et al. 2001) and indirectly through changing disturbance regimes (Baker 1995; McKenzie et al. 1996; Keane et al....
Emergent constraint on equilibrium climate sensitivity from global temperature variability.
Cox, Peter M; Huntingford, Chris; Williamson, Mark S
2018-01-17
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
Emergent constraint on equilibrium climate sensitivity from global temperature variability
NASA Astrophysics Data System (ADS)
Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.
2018-01-01
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland
NASA Astrophysics Data System (ADS)
Carter, T. R.
2013-12-01
In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide a firm basis for future climate change impact, adaptation and vulnerability assessments, offering RCP/SSP-based scenarios that are not only related to the global New Scenarios Framework, but are also recognised by national policy makers and key stakeholders, via the revised national climate change adaptation strategy. References IPCC (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. [Nakićenović, N. et al. (eds.)]. Cambridge University Press, 600 pp. Kriegler E et al. (2012) The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob. Envir. Change 22:807-822. Marttila V et al. (2005) Finland's National Strategy for Adaptation to Climate Change, MMM publications 1a/2005, Ministry of Agriculture and Forestry, Helsinki, Finland, 280 pp. Moss RH et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747-756. Taylor KE et al. (2012) A summary of the CMIP5 experiment design. BAMS 93:485-498. van Vuuren DP et al. (2011) The representative concentration pathways: an overview. Clim. Change 109:5-31. Vautard R et al. (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. doi:10.1007/s00382-013-1714-z
Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong
2012-01-01
Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.
Health in climate change research from 1990 to 2014: positive trend, but still underperforming.
Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer
2016-01-01
Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest in this research area in young scientists remains a challenge and should lead to innovative courses for large audiences, such as Massive Open Online Courses.
Health in climate change research from 1990 to 2014: positive trend, but still underperforming
Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer
2016-01-01
Background Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. Design We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. Results The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. Conclusions There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest in this research area in young scientists remains a challenge and should lead to innovative courses for large audiences, such as Massive Open Online Courses. PMID:27339855
Climate Change and Future World
2013-03-01
the distribution of fish 8 species.37 Increasing ocean acidification is threatening coral reefs that play an important role in mitigating the...into space the power that has not been used. This enormous thermal machine, that is the climate system, is constituted by the atmosphere, oceans ...and extension of the Arctic ice and mountain glaciers in the northern hemisphere are reducing. According to the IPCC, the 5 Arctic Ocean could be
Measuring resilience to climate change: The benefits of forest conservation in the floodplain
Carolyn Kousky; Margaret Walls; Ziyan Chu
2014-01-01
The economic costs of flooding have increased in the United States over the last several decades, largely as a result of more people and property, and more valuable property, located in harmâs way (Pielke and Downton 2000). In addition, climate models predict increases in the intensity of precipitation events in many locations (Wuebbles and Hayhoe 2004; IPCC 2012). How...
Demographic aspects of climate change mitigation and adaptation.
Lutz, Wolfgang; Striessnig, Erich
2015-01-01
This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.
Rödder, Dennis; Kielgast, Jos; Lötters, Stefan
2010-11-01
Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.
Lamon, Lara; MacLeod, Matthew; Marcomini, Antonio; Hungerbühler, Konrad
2012-05-01
Climate forcing is forecasted to influence the Adriatic Sea region in a variety of ways, including increasing temperature, and affecting wind speeds, marine currents, precipitation and water salinity. The Adriatic Sea is intensively developed with agriculture, industry, and port activities that introduce pollutants to the environment. Here, we developed and applied a Level III fugacity model for the Adriatic Sea to estimate the current mass balance of polychlorinated biphenyls in the Sea, and to examine the effects of a climate change scenario on the distribution of these pollutants. The model's performance was evaluated for three PCB congeners against measured concentrations in the region using environmental parameters estimated from the 20th century climate scenario described in the Special Report on Emission Scenarios (SRES) by the IPCC, and using Monte Carlo uncertainty analysis. We find that modeled fugacities of PCBs in air, water and sediment of the Adriatic are in good agreement with observations. The model indicates that PCBs in the Adriatic Sea are closely coupled with the atmosphere, which acts as a net source to the water column. We used model experiments to assess the influence of changes in temperature, wind speed, precipitation, marine currents, particulate organic carbon and air inflow concentrations forecast in the IPCC A1B climate change scenario on the mass balance of PCBs in the Sea. Assuming an identical PCBs' emission profile (e.g. use pattern, treatment/disposal of stockpiles, mode of entry), modeled fugacities of PCBs in the Adriatic Sea under the A1B climate scenario are higher because higher temperatures reduce the fugacity capacity of air, water and sediments, and because diffusive sources to the air are stronger. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of global climate change on maize volatile production
USDA-ARS?s Scientific Manuscript database
Increasing atmospheric CO2 concentrations [CO2] are projected to have critical impacts on precipitation patterns, potentially leading to a dramatic increase in the frequency and duration of drought across the North American Corn Belt and other agriculturally relevant areas around the world (IPCC2007...
General circulation model response to production-limited fossil fuel emission estimates.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Rutledge, D.; Miller, C.
2008-12-01
The differences in emissions scenarios used to drive IPCC climate projections are the largest sources of uncertainty in future temperature predictions. These estimates are critically dependent on oil, gas, and coal production where the extremal variations in fossil fuel production used in these scenarios is roughly 10:1 after 2100. The development of emission scenarios based on production-limited fossil fuel estimates, i.e., total fossil fuel reserves can be reliably predicted from cumulative production, offers the opportunity to significantly reduce this uncertainty. We present preliminary results of the response of the NASA GISS atmospheric general circulation model to input forcings constrained by production-limited cumulative future fossil-fuel CO2 emissions estimates that reach roughly 500 GtC by 2100, which is significantly lower than any of the IPCC emission scenarios. For climate projections performed from 1958 through 2400 and a climate sensitivity of 5C/2xCO2, the change in globally averaged annual mean temperature relative to fixed CO2 does not exceed 3C with most changes occurring at high latitudes. We find that from 2100-2400 other input forcings such as increased in N2O play an important role in maintaining increase surface temperatures.
Methane hydrates and contemporary climate change
Ruppel, Carolyn D.
2011-01-01
As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.
NASA Astrophysics Data System (ADS)
Llasat, Maria-Carmen; Queralt, Arnau
2013-04-01
The evidence of the impact of the anthropogenic activity over the climate change, as well as the consequent impacts in temperature, snow cover and sea level has been widely demonstrated (IPCC, 2007). However, the impact of climate change on natural risks is still not clear, and the degree of uncertainty is high. The main problem lays in the complexity of the factors involved in the production of natural disasters, mainly those related with the vulnerability (in the more holistic sense of the expression), that is continuously being modified. In terms of the impact of climate change on hazards, the analysis is still complicated, and this difficulty increases when meteorological hazards that combine meteorological factors with other ones (human and/or natural) are considered (i.e. floods, wet landslides, forest fires, etc.). The Advisory Council for the Sustainable Development of Catalonia (CADS) is an advisory body which gives strategic advice to the Catalan Government in the field of sustainable development. This contribution shows the main results of a recent report elaborated by the CADS that analyses the present and potential evolution of natural risks in Catalonia (NE of Iberian Peninsula) and the influence of climate change in it. The analysis is made from the point of view of sustainable development, having in mind the international approach (IPCC, 2007, 2011; UNISDR, 2009; Molin, 2009; Brauch, 2010) and with special incidence in potential problems related with security and civil protection. Conclusions identify as main problems those that will affect health (as a consequence of the increase of heat waves and temperature extremes) and water scarcity.
The future of scenarios: issues in developing new climate change scenarios
NASA Astrophysics Data System (ADS)
Pitcher, Hugh M.
2009-04-01
In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.
PERSPECTIVE: Keeping a closer eye on fossil fuel CO2
NASA Astrophysics Data System (ADS)
Nelson, Peter F.
2009-12-01
Peter F Nelson The world is watching expectantly as the clock winds down towards the United Nations Climate Change Conference (COP15; http://en.cop15.dk/) to be held 7-18 December 2009 in Copenhagen. While most are now convinced of the need for a strong and concerted response to the climate challenge, the exact nature and extent of that response remains uncertain. There is evidence (Barnett 2009) that current estimates of emissions now exceed all but the most extreme emission scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). If that increase in emissions persists then temperature increases of 4 °C by 2060 have been predicted (Barnett 2009). An inevitable result of the potential for such extreme climate change is to advance the need for multiple adaptation strategies to decision making about, for example, infrastructure, urban planning and forest management. These strategies need to do more than incremental adaptation (Barnett 2009); instead transformative approaches may be required to adapt. The timing of the response is also proving to be a critical determining factor in the effectiveness of global actions. Using a simple conceptual model of emissions, Vaughan and co-workers (Vaughan et al 2009) show that avoiding dangerous climate change is more effective if such action begins early. Early action is also more effective than acting more aggressively later (Vaughan et al 2009). Uncertainties, although reduced, are still significant in the science of climate change. The interactions between control of particulate air pollutants and climate change are particularly challenging (Arneth et al 2009, Shindell et al 2009) but many other uncertainties require continuing research. The scientific uncertainties are only one aspect of an intense interdisciplinary, political, economic and cultural dialogue. It is clear that political will, economic interest, target setting for emissions reductions, adaptation, technology and financing (Pan 2009) will all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is important for a range of reasons. It allows comparison with the scenarios developed by the IPCC; uncertainties in emission scenarios are one of the major sources of uncertainties in temperature projections, particularly at longer time scales, where temperature projections are increasingly dependent on specific emission scenarios (IPCC 2007). There have also been recent suggestions (Le Quere et al 2007) of a weakening of the oceanic sink for CO2, and earlier information on emission pathways will be important for testing this hypothesis. Some observers (Levi 2009) believe that the best outcome from COP15 may be an agreement on measurement, reporting and verification. While this may seem like a modest ambition, progress in this area is essential to a successful climate change measure and to compliance with any international agreement. As Levi (2009) points out, `such verification will help make it more politically feasible to undertake similar emissions-cutting actions elsewhere, including in the United States'. The approach of Myhre et al is a very useful tool in such independent verification. References Arneth A, Unger N, Kulmala M and Andreae M O 2009 Clean the air, heat the planet? Science 326 672-3 Barnett A 2009 No easy way out Nature Reports Climate Change 3 128-9 Canadell J G, Le Quere C, Raupach M R, Field C B, Buitenhuis, E T, Ciais P, Conway T J, Gillett N P, Houghton R A and Marland G 2007 Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks Proc. Natl Acad. Sci. USA 104 18866-70 Inman M 2009 The climate change game Nature Reports Climate Change 3 130-3 IPCC 2007 Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Report on Climate Change (Geneva: IPCC) 104pp Le Quere C, Rodenbeck C, Buitenhuis E T, Conway T J, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N and Heimann M 2007 Saturation of the Southern Ocean CO2 sink due to recent climate change Science 316 1735-8 Levi M A 2009 Copenhagen's inconvenient truth: how to salvage the climate conference Foreign Affairs 92-103 Myhre G, Alterskjaer K and Lowe D 2009 A fast method for updating global fossil fuel carbon dioxide emissions Environ. Res. Lett. 4 034012 Pan J 2009 China expects leadership from rich nations Nature 461 1055 Raupach M R, Marland G, Ciais P, Le Quere C, Canadell J G, Klepper G and Field C B 2007 Global and regional drivers of accelerating CO2 emissions Proc. Natl Acad. Sci. USA 104 10288-93 Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N and Bauer S E 2009 Improved attribution of climate forcing to emissions Science 326 716-8 Skodvin T and Andresen S 2009 An agenda for change in US climate policies? Presidential ambitions and congressional powers Int. Environ. Agreements: Politics Law Econ. 9 263-80 Vaughan N E, Lenton T M and Shepherd J G 2009 Climate change mitigation: trade-offs between delay and strength of action required Climatic Change 96 29-43
Christopher W. Woodall; Brian F. Walters; John Coulston; A.W. D’Amato; Grant M. Domke; M.B. Russell; Paul Sowers
2015-01-01
Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a regionâwide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories...
The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area
NASA Astrophysics Data System (ADS)
Yang, Ci-Jian; Lin, Jiun-Chuan
2017-04-01
It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5
Losing ground: past history and future fate of Arctic small mammals in a changing climate.
Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas
2013-06-01
According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the whole Arctic food web and ecosystem. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Stanfield, R. E.; Dong, X.; Xi, B.; Del Genio, A. D.; Minnis, P.; Doelling, D.; Loeb, N. G.
2011-12-01
To better advise policymakers, it is necessary for climate models to provide credible predictions of future climates. Meeting this goal requires climate models to successfully simulate the present and past climates. The past, current and future Earth climate has been simulated by the NASA GISS ModelE climate model and has been summarized by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4, 2007). New simulations from the updated AR5 version of the NASA GISS ModelE GCM have been released to the public community and will be included in the IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, however, they have yet to be extensively validated against observations. To evaluate the GISS AR5 simulated global clouds and TOA radiation budgets, we have collected and processed the NASA CERES and MODIS observations during the period 2000-2005. In detail, the 1ox1o resolution monthly averaged SYN1 product has been used with combined observations from both Terra and Aqua satellites, and degraded to a 2ox2.5o grid box to match the GCM spatial resolution. These observations are temporally interpolated and fit to data from geostationary satellites to provide time continuity. The GISS AR5 products were downloaded from the CMIP5 (Coupled Model Intercomparison Project Phase 5) for the IPCC-AR5. Preliminary comparisons between GISS AR5 simulations and CERES-MODIS observations have shown that although their annual and seasonal mean CFs agree within a few percent, there are significant differences in several climatic regions. For example, the modeled CFs have positive biases in the Arctic, Antarctic, Tropics, and Sahara Desert, but negative biases over the southern middle latitudes (30-65 oS). The OLR, albedo and NET radiation comparisons are similar to the CF comparison.
Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River
USDA-ARS?s Scientific Manuscript database
Bottom-up estimates of riverine nitrous oxide (N2O) emissions developed by the Intergovernmental Panel on Climate Change (IPCC) assume a constant emission factor (EF5r) that predicts N2O production from anthropogenic nitrogen inputs. This relation ignores any direct stream water biochemical charact...
Michael G. Ryan
2011-01-01
With global climate change, drought may become more common in the future (IPCC 2007). Several factors will promote more frequent droughts: earlier snowmelt, higher temperatures and higher variability in precipitation. For ecosystems where the water cycle is dominated by snowmelt, warmer temperatures bring earlier melt (Stewart et al. 2005) and longer, drier snow-free...
Technical fixes and Climate Change: Optimizing for Risks and Consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasch, Philip J.
2010-09-16
Scientists and society in general are becoming increasingly concerned about the risks of climate change from the emission of greenhouse gases [IPCC, 2007]. Yet emissions continue to increase [Raupach et al., 2007], and reductions soon enough to avoid large and undesirable impacts requires a near revolutionary global transformation of energy and transportation systems [Hoffert et al., 1998]. The size of the transformation and lack of an effective societal response has motivated some to explore other quite controversial strategies to mitigate some of the planetary consequences of these emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duane, Greg; Tsonis, Anastasios; Kocarev, Ljupco
This collaborative reserach has several components but the main idea is that when imperfect copies of a given nonlinear dynamical system are coupled, they may synchronize for some set of coupling parameters. This idea is to be tested for several IPCC-like models each one with its own formulation and representing an “imperfect” copy of the true climate system. By computing the coupling parameters, which will lead the models to a synchronized state, a consensus on climate change simulations may be achieved.
PERSPECTIVE: Climate change: seeking balance in media reports
NASA Astrophysics Data System (ADS)
Huntingford, Chris; Fowler, David
2008-06-01
Boykoff and Mansfield (2008), in a recent paper in this journal, provide a detailed analysis of the representation of climate change in the UK tabloid newspapers. They conclude that the representation of this issue in these papers 'diverged from the scientific consensus that humans contribute to climate change'. That is, portrayal of climate change in tabloid newspapers contradicts the conclusions of the fourth Intergovernmental Panel on Climate Change (IPCC) assessment (IPCC 2007). Is it healthy to have the scientific consensus challenged so frequently? But should we worry about systematic misrepresentation of scientific consensus? We believe the answer to both of these questions is yes. To present regular updates on climate change issues in the popular press is important because the changes in behaviour needed to achieve substantial reductions in greenhouse gas emissions require a broad understanding of the basic facts. However, if the majority of readers receive misleading information, it will be difficult to achieve the level of public understanding necessary to make such reductions needed to avoid dangerous climate change (Schellnhuber et al 2006 and references therein). Boykoff and Mansfield (2008) identify a gulf in presentation of the scientific facts and their interpretation on the subject of 'global warming' in tabloid newspapers, when compared to the scientific consensus. What is really sobering is the huge circulation of these papers (see table 1 of Boykoff and Mansfield—many millions per day); even the most important 'landmark' research papers very rarely achieve five hundred plus citations. We find it heartening, therefore, that the area of climate change research does at least have the umbrella of the IPCC. This provides an additional channel through which current research associated with the effects of burning fossil fuels can be presented, and in our personal experience at least, we have found the non-tabloid UK newspapers to report accurately any IPCC statements. As this perspective article is being written, the UK (and worldwide) is facing almost unprecedented increases in the cost of petrol and diesel, and with the transport sector lobbying hard for tax incentives/rebates to reduce fuel costs. In the middle of this, some government ministers are suggesting that from the climate change angle, lower dependence on fossil fuels (forced on the population by such higher prices) might be a good thing. But their voices are drowned by other ministers saying that such an approach is deeply unpopular with the electorate—to what extent, therefore, is the tabloid press responsible for the lack of urgency related to potential future damage to the planet? How else are people informed about the climate change debate? Aside from TV and radio, popular science books are usually a good source of information. However a viewing of the environmental sciences department in any bookshop at present will reveal how remarkably polarized the climate change debate is becoming. Some books have very alarming titles; for instance Pearce (2007) is titled 'The Last Generation: How Nature will take her Revenge for Climate Change'. Meanwhile other books are appearing with titles suggesting that the entire issue is given far too much emphasis, is used as a means for politicians to keep society fearful (and presumably, therefore, more controllable), or present a view that the IPCC system is scientifically deeply flawed. Examples of these include Spencer (2008) titled 'Climate Confusion: How Global Warming Hysteria Leads to Bad Science, Pandering Politicians and Misguided Policies that Hurt the Poor', Booker and North (2007) titled 'Scared to Death: From BSE to Global Warming: Why Scares are Costing us the Earth' and two books by Michaels—Michaels (2004) 'Meltdown: The Predictable Distortion of Global Warming by Scientists, Politicians, and the Media' and Michaels (2005) 'Shattered Consensus: The True state of Global Warming'. Both polarized views could be argued as detrimental to addressing possible dangerous climate change. The first argument (i.e. 'we are doomed') gives the impression that climate change is so serious, and possibly unstoppable in the immediate future, that this could lead readers to decide there is nothing that can be achieved on an individual basis—and yet any measure to stabilize atmospheric greenhouse concentrations will require changed behaviour regarding fossil fuel usage at the individual level. On the other hand, simply to ignore the effects of increasing levels of atmospheric greenhouse gas concentrations on the climate system could lead the planet in to a highly undesirable 'dangerous' state, and one that is potentially difficult or impossible to reverse in reasonable timescales. Fortunately there are some books on the subject of climate change that do present the science without bias, such as 'Global Warming' by Houghton (2004). One new book of particular interest is that of Nigel Lawson, former Chancellor, whose recent publication on climate change (Lawson 2008) is titled 'An Appeal to Reason: A Cool Look at Global Warming'. Lawson (2008) contains a range of very interesting and interlinked strands regarding the climate change debate. As with many books discussing technical matters, it is always of interest to first check the citations, and here it is comprehensive, up-to-date and certainly does not initially appear to be selective (this is also true of the two books by Michaels). This therefore creates what seems like a paradox. Given that so many of the key papers cited by Lawson (2008) form the backbone of current understanding of climate change, and many researchers quote these as reasons for concern regarding global warming, how is it that this book instead, concludes (see the dust cover) '… the conventional wisdom on the subject is suspect on a number of grounds; … global warming is not the devastating threat to the planet it is widely alleged to be'? What is the overall feeling after reading some of Lawson (2008)? Well first and foremost, we believe that although the use of literature is impressive, there appears to be a deliberate search for the remaining scientific uncertainty (i.e. issues freely acknowledged by climate change scientists as requiring refinement, but used in this book as a reason to doubt the entire scientific debate about global warming). On this basis, it is tempting therefore to just ignore this contribution to the debate, but a more positive approach is to re-address these uncertainties, and in the process generate more concise scientific understanding and presentation. Top of this list would be Lawson's key argument that global warming has stalled between the year 2001 and 2007—'there has been no further global warming since the turn of the century … which has occurred at a time when global CO2 emissions have been rising faster than ever'. Lawson then cites, correctly, Smith et al (2007) but who in fact point out that this is almost certainly due to internal variability and we may expect more warming from year 2009 onwards. Lawson concludes that such a 'resumption of warming' may or may not occur. In our view the climate modelling community should work hard to revisit and extend the work of Smith et al (2007), possibly applying their technique to multiple climate models. In parallel there is a desperate need for better explanation by researchers that, even against a background warming trend, natural variability will mean that on a year-to-year basis, warming will not necessarily be monotonic. Some of Lawson's other arguments can be more readily rebutted. Two issues he presents are that trends in global temperature could be a function of varying sunspot activity, and that the global warming measured during the second half of the 20th Century could be a consequence of urbanization around measurement stations (the 'heat island' effect). Sloan and Wolfendale (2008) and Parker (2006) provide highly detailed and convincing reasons why, respectively, these two arguments cannot explain the warming trend seen in measurements during the last fifty years—these two papers require more extensive circulation. Lawson attacks the IPCC panel as changing from a 'fact-finding and analytical exercise' in to 'something more like a politically correct alarmist pressure group'. This is particularly unfortunate and is not consistent with the facts. For example Stott et al (2000), using statistical 'detection and attribution' analyses, utilized the spatial patterns observable in the temperature record to tease apart natural oscillations from those caused by human adjustments to atmospheric composition. This underpinned in part the statement in the 3rd IPCC Assessment (IPCC 2001) that 'There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities'. It should be noted that all such analyses require disproving of the null hypthoesis (i.e. humans have no influence), and to a very high level of statistical confidence. In other words, the IPCC report depends heavily on research scientists whose starting point is actually that higher levels of greenhouse gas concentrations (most notably CO2) have had no effect on surface temperatures, unless there is significant evidence to the contrary. At some points, Lawson cannot be taken seriously. He points out (correctly) that CO2 is one of the greenhouse gases without which life would be unable to survive. However, this is then used to state that 'to describe the carbon dioxide in the atmosphere as pollution is as absurd as it would be to describe the clouds as pollution'. In fact most pollutants of the atmosphere are emitted from anthropogenic activity and through natural processes. The gases become pollutants by exceeding thresholds above which damage occurs—these basic principles are widely accepted in the scientific community. Hence there is still the requirement to explain in very general terms the role of near-stable (at century timescales) pre-industrial atmospheric CO2 concentrations in sustaining life (along with the other greenhouse gas concentrations), but how much higher values of CO2 could cause dangerous perturbation to the climate system. Boykoff and Mansfield (2008) provide a valuable insight in to how climate change is presented in the media. As the general consensus among climate research scientists is that to avoid 'dangerous' climate change there is a requirement to make very large reductions in emissions and soon, then this will be politically difficult to achieve against such a backdrop of such press reporting denying the IPCC message. We have also used this perspective article to consider how the debate over climate change (as induced through anthropogenic emissions) is presented through popular science books. In some ways this is equally worrying—how is it that such polarized views can be presented in books frequently citing the same research papers? With significant public funds placed in climate change research, it might be expected that the public deserve more definitive answers. So the main question here is whether (a) there remains massive uncertainty in how raised atmospheric greenhouse gas concentrations will manifest themselves through changes to future climates, or, (b) is there selective interpretation of key research papers (and indeed the IPCC report). If the answer is (b)—and that is consistent with the evidence—then each scientific issue raised by the sceptics should be addressed. There are important steps in this direction. For example the Royal Society has on its web site specific answers to several of the commonly used misleading arguments. See http://royalsociety.org/downloaddoc.asp?id=1630 a web page entitled 'Facts and fictions about climate change'. As governments struggle to balance issues of economic development, the ubiquitous use of fossil fuels, and the need for very large reductions in emissions to ultimately stabilise the climate at safe levels, then it is essential that those involved in climate change research keep a careful note of the portrayal of their research in the media. Boykoff and Mansfield (2008) (and citations therein) make an important contribution to this process. Ultimately, of course, (for predictions corresponding to different prescribed emissions scenarios) we are working with an issue embedded in fundamental science. If newspapers and books take a sceptical angle, and through this force further reductions in uncertainty bounds surrounding available scientific understanding, then such reporting will have played a useful role, even if ultimately shown to be incorrect. But such refinement has to happen quickly—if a global consensus emerges, unchallenged, that climate change issues are being vastly overplayed (or worse are almost some form of hoax) then we could be 'sleep walking' towards eventual climatic disaster as a consequence of a 'business as usual' attitude to emissions. We believe the current debate to be vital. But ultimately, society requires a balanced presentation of the facts. It is unreasonable to expect the tabloid media to avoid oversimplification and sensational comments, but it is reasonable and necessary in support of the political process to present a balanced view, and to avoid systematic misrepresentation of the science in either direction. We believe the IPCC goes a long way towards achieving this—but there is still much to do. References Booker B and North R 2007 Scared to Death. From BSE to Global Warming: Why Scares are Costing us the Earth (London: Continuum) Boykoff M T and Mansfield M 2008 Ye Olde Hot Aire: reporting on human contributions to climate change in the UK tabloid press Environ. Res. Lett. 3 024002 Houghton J 2004 Global Warming (Cambridge: Cambridge University Press) IPCC 2001 Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change ed J T Houghton, Y Ding, D J Griggs, M Noguer, P J van der Linden, X Dai, K Maskell and C A Johnson (Cambridge: Cambridge University Press) IPCC 2007 Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor, and H L Miller (Cambridge: Cambridge University Press) Lawson N 2008 An Appeal to Reason: a Cool Look at Global Warming (London: Duckworth Overlook) Michaels P J 2004 Meltdown: The Predictable Distortion of Global Warming by Scientists, Politicians, and the Media (Washington: CATO Institute) Michaels P J (ed) 2005 Shattered Consensus: The True State of Global Warming (Lanham: Rowman and Littlefield) Parker D E 2006 A demonstration that large-scale warming is not urban J. Climate 19 2882 95 Pearce F 2007 The Last Generation: How Nature Will Take Her Revenge for Climate Change (London: Eden Project Books) Schellnhuber H J, Cramer W, Nakicenovic N, Wigley T and Yohe G (ed) 2006 Avoiding Dangerous Climate Change (Cambridge: Cambridge University Press) Sloan T and Wolfendale A W 2008 Testing the proposed causal link between cosmic rays and cloud cover Environ. Res. Lett. 3 024001 Smith D M, Cusack S, Colman A W, Folland C K, Harris G R and Murphy J M 2007 Improved surface temperature prediction for the coming decade from a global climate model Science 317 796 9 Spencer C 2008 Climate Confusion: How Global Warming Hysteria Leads to Bad Science, Pandering Politicians and Misguided Policies that Hurt the Poor (New York: Encounter Books) Stott P A, Tett S F B, Jones G S, Allen M R, Mitchell J F B and Jenkins G J 2000 External control of twentieth century temperature variations by natural and anthropogenic forcings Science 290 2133 7 Photo of Chris Huntingford Dr Chris Huntingford has a degree in mathematics from Cambridge University, and a PhD in fluid dynamics from the University of Oxford. Since 1993 he has worked at the UK Centre for Ecology and Hydrology (formally the Institute of Hydrology), and has been mainly interested in the role of land atmosphere interactions within the global carbon cycle. Some of his activities involve collaboration with policymakers, and Chris is currently helping to understand what would happen in the world should potentially dangerous levels of climate change occur—and in particular how easy is it for the Earth System to return back to safe levels. Photo of David Fowler Professor David Fowler obtained a PhD in environmental physics from Nottingham University in 1976 and has worked for the Centre for Ecology and Hydrology (previously Institute of Terrestrial Ecology) at the Edinburgh laboratory since 1975. David's research career has included work on all the major gaseous atmospheric pollutants, including several greenhouse gases. He has also worked on the effects of pollutant gases on vegetation and soil and has been closely involved with the development of UK maps of the distribution of air pollutants. He chairs and sits on several international committees looking at air pollution within Europe. David has published over 300 scientific papers and book chapters. He was awarded an honorary professorship from the University of Nottingham in 1990 and elected a Fellow of the Royal Society of Edinburgh in 1999 and a Fellow of the Royal Society of London in 2002.
Duveneck, Matthew J; Scheller, Robert M
2015-09-01
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).
Estimating the economic impact of climate change on cardiovascular diseases--evidence from Taiwan.
Liao, Shu-Yi; Tseng, Wei-Chun; Chen, Pin-Yu; Chen, Chi-Chung; Wu, Wei-Min
2010-12-01
The main purpose of this study was to investigate how climate change affects blood vessel-related heart disease and hypertension and to estimate the associated economic damage. In this paper, both the panel data model and the contingent valuation method (CVM) approaches are applied. The empirical results indicate that the number of death from cardiovascular diseases would be increased by 0.226% as the variation in temperature increases by 1%. More importantly, the number of death from cardiovascular diseases would be increased by 1.2% to 4.1% under alternative IPCC climate change scenarios. The results from the CVM approach show that each person would be willing to pay US$51 to US$97 per year in order to avoid the increase in the mortality rate of cardiovascular diseases caused by climate change.
Estimating the Economic Impact of Climate Change on Cardiovascular Diseases—Evidence from Taiwan
Liao, Shu-Yi; Tseng, Wei-Chun; Chen, Pin-Yu; Chen, Chi-Chung; Wu, Wei-Min
2010-01-01
The main purpose of this study was to investigate how climate change affects blood vessel-related heart disease and hypertension and to estimate the associated economic damage. In this paper, both the panel data model and the contingent valuation method (CVM) approaches are applied. The empirical results indicate that the number of death from cardiovascular diseases would be increased by 0.226% as the variation in temperature increases by 1%. More importantly, the number of death from cardiovascular diseases would be increased by 1.2% to 4.1% under alternative IPCC climate change scenarios. The results from the CVM approach show that each person would be willing to pay US$51 to US$97 per year in order to avoid the increase in the mortality rate of cardiovascular diseases caused by climate change. PMID:21318006
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Global Air Quality and Climate
NASA Technical Reports Server (NTRS)
Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.;
2012-01-01
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.
2016-01-01
The Intergovernmental Panel on Climate Change (IPCC) has made it clear that anthropogenic greenhouse gasses are the main cause of observed global warming that leads to climate change. Climate change is now a global reality. In the South African political set-up, local municipalities are the structures that are in direct contact with communities and they draw up Integrated Development Plans (IDPs), which are reviewed and upgraded annually. The article seeks to investigate the extent to which climate change adaptation and mitigation strategies are embedded IDPs in seven vulnerable municipalities in the Limpopo Province. The article conducted an in-depth content analysis of the IDPs of the seven municipalities and the results have revealed that these municipalities have not included adaptation and mitigation strategies adequately in their IDPs despite being the most vulnerable municipalities in the province. The article concludes that these municipalities have not as yet institutionalised climate change in their daily operations, planning and decision making. To this end, the paper recommends that local municipalities should include climate change adaptation and mitigation strategies in their IDPs.
Population exposure to heat-related extremes: Demographic change vs climate change
NASA Astrophysics Data System (ADS)
Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.
2014-12-01
Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment
NASA Technical Reports Server (NTRS)
Bruning, Claus; Ko, Malcolm; Lee, David; Miake-Lye, Richard
2006-01-01
This report presents an overview of the latest scientific consensus understanding of the effect of aviation emissions on the atmosphere for both local air quality and climate change in order to provide a contextual framework for raising future questions to help assess the environmental benefits of technology goals. The questions may take the form of what are the environmental benefits that would result if goals are achieved, what are the consequences for other aviation pollutants, and whether tools exist to evaluate the trade-off. In addition to this documents, presentations will be made at the meeting to illustrate current developing views on these subjects. To facilitate studies on trade-offs among environmental impacts from aviation, one must start with scientific investigations that quantify the impacts. A second step is to select representative metrics with policy relevance so that diverse impacts can be put on the same common scale. The IPCC Special Report on Aviation (IPCC, 1999) serves as an excellent example of the first step. The report was produced by IPCC's Working Group 1, whose mandate is to provide the assessment of the scientific aspects of the climate system and climate change. An example of the second step is Witt et al. (2005), a study commissioned by the Environment DG of the European Commission. Within the context of CAEP, step 1 is aligned with the responsibilities of the Research Focal Points, while step 2 is more related to activities of FESG. These steps are likely to be iterative as proposed policy options will raise new science questions, and new science will expand or limit policy options. Past experiences show that clearly defined policy-related scientific needs will help focus the scientific community to marshal their intellects to provide the needed answers.
Future changes in the Mediterranean water budget projected by an ensemble of regional climate models
NASA Astrophysics Data System (ADS)
Sanchez-Gomez, E.; Somot, S.; Mariotti, A.
2009-11-01
The Mediterranean basin is a region characterized by its vulnerability to changes in the water cycle. Hence, the impact of global warming on the water resources in the Mediterranean zone is one of the major concerns for the scientific community. The future climate projections used to elaborate the IPCC report of 2007 show great alterations in the evaporation and precipitation over the Mediterranean Sea at the end of 21st century. In this work we investigate the changes in the Mediterranean Sea water budget by using SRES-A1B scenario experiments performed with high resolution (25 km) regional climate models (RCMs). The RCMs provide good estimates of the water budget components, in particular with a significant improvement of the runoff and Black Sea discharge terms compared to the coarser resolution general circulation models (GCMs) used in the last Intergovernmental Panel of Climate Change (IPCC) report. As for the case of GCMs, the RCMs show that the Mediterranean water budget is likely to be significantly altered at the end of 21st century. The response of the hydrological variables to global warming starts to be statistically significant from 2050, though some alterations are already observed before 2050. The RCMs predict an increase of evaporation, and a decrease of precipitation, and river and Black Sea discharge, yielding to a large increase of the Mediterranean fresh water deficit. The freshwater deficit for the period 2070-2099 related to 1950-1999 presents a mean increase of +40% for both RCMs and GCMs.
NASA Astrophysics Data System (ADS)
Tian, B.
2017-12-01
The Coupled Model Intercomparison Project (CMIP) has become a central element of national and international assessments of climate change. The CMIP Phase 6 (CMIP6) model experiments will be the foundation for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), scheduled for publication around 2021. To increase the fidelity of the IPCC AR6, the CMIP6 model experiments need rigorous evaluation. The "Observations for Model Intercomparison Projects" (Obs4MIPs) collects, organizes and publishes various well-established satellite data sets for CMIP model evaluation. The Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU), the NASA's temperature and humidity sounding system on the Aqua satellite, has provided over a decade-long high-quality tropospheric temperature and moisture sounding data. Under the current support of the NASA Data for Operation and Assessment (NDOA) program, we are generating and publishing the AIRS Obs4MIPs V2 data set including the monthly mean tropospheric air temperature, specific humidity, and relative humidity profiles from September 2002 to September 2016. This will provide the latest AIRS data in Obs4MIPs and assist the climate modeling community to better use the AIRS data for CMIP (including CMIP3, CMIP5, and CMIP6) model evaluation. In this presentation, we will discuss the AIRS Obs4MIPs V2 data set and their possible use for CMIP6 climate model evaluation.
Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter
2016-01-01
Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baek, H.; Park, E.; Kwon, W.
2009-12-01
Water balance calculations are becoming increasingly important for earth-system studies, because humans require water for their survival. Especially, the relationship between climate change and freshwater resources is of primary concern to human society and also has implications for all living species. The goal of this study is to assess the closure and annual variations of the water cycles based on the multi-model ensemble approach. In this study, the projection results of the previous works focusing on global and six sub-regions are updated using sixteen atmosphere-ocean general circulation model (AOGCM) simulations based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Before projecting future climate, model performances are evaluated on the simulation of the present-day climate. From the result, we construct and use mainly multi-model ensembles (MMEs), which is referred to as MME9, defined from nine selected AOGCMs of higher performance. Analyzed variables include annual and seasonal precipitation, evaporation, and runoff. The overall projection results from MME9 show that most regions will experience warmer and wetter climate at the end of 21st century. The evaporation shows a very similar trend to precipitation, but not in the runoff projection. The internal and inter-model variabilities are larger in the runoff than both precipitation and evaporation. Moreover, the runoff is notably reduced in Europe at the end of 21st century.
J. G. Isebrands; E. P. McDonald; E. Kruger; G. Hendrey; K. Percy; K. Pregitzer; J. Sober; D. F. Karnosky
2001-01-01
The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess...
Climate, Water and Energy in the Nordic Countries
NASA Astrophysics Data System (ADS)
Snorrason, A.; Jonsdottir, J. F.
2003-04-01
In light of the recent IPCC Climate Change Assessment and recent progress made in meteorological and hydrological modelling, the directors of the Nordic hydrological institutes (CHIN) initiated a research project "Climate, Water and Energy" (CWE) with funding from the Nordic Energy Research and the Nordic Council of Ministers focusing on climatic impact assessment in the energy sector. Climatic variability and change affect the hydrological systems, which in turn affect the energy sector, this will increase the risk associated with the development and use of water resources in the Nordic countries. Within the CWE project four thematic groups work on this issue of climatic change and how changes in precipitation and temperature will have direct influences on runoff. A primary aim of the CWE climate group is to derive a common scenario or a "best-guess" estimate of climate change in northern Europe and Greenland, based on recent regional climate change experiments and representing the change from 1990 to 2050 under the IPCC SRES B2 emission scenario. A data set, along with the most important information for using the scenario is available at the project web site. The glacier group has chosen 8 glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. The long time series group has reported on the status of time series analysis in the Nordic countries. The group will select and quality control time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. The hydrological modelling group has reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different hydrological models and discuss uncertainties in models and climate scenarios, while production of new results based on the composite scenario from the CWE-climate group depends on other projects. The product of the project will be an in-depth analysis of the present status of research and know-how in the sphere of climatic and hydrological research in the Nordic countries. It will be a synthesis and integration of present research with focus on the needs of the energy sector. It will also identify and prioritise key future research areas that are of benefit to the energy sector.
Biogeochemical responses of shallow coastal lagoons to Climate Change
NASA Astrophysics Data System (ADS)
Brito, A.; Newton, A.; Tett, P.; Fernandes, T.
2009-04-01
The importance of climate change and global warming in the near future is becoming consensual within the scientific community (e.g. Kerr et al., 2008; Lloret et al., 2008). The surface temperature and sea level have increased during the last few years in the northern hemisphere (IPCC, 2007). Predictions for future changes include an increase of surface temperature and sea level for Europe. Moreover, the global warming phenomenon will also change the hydrological cycle and increase precipitation in northern and central Europe (IPCC, 2007). Sea level rise already threatens to overwhelm some lagoons, such as Venice and Moroccan lagoons (Snoussi et al., 2008). Shallow coastal lagoons are some of the most vulnerable systems that will be impacted by these changes (Eisenreich, 2005). Environmental impacts on coastal lagoons include an increase of water turbidity and therefore light attenuation. If these effects are strong enough, the lighted bottoms of shallow lagoons may loose a significant part of the benthic algal community. These communities are highly productive and are essential to control nutrient dynamics of the system by uptaking large amounts of nutrients both from the water column and from the sediments. A decrease in benthic algal communities and photosynthetic oxygen production will also contribute to increasing the vulnerability of the lagoons to hypoxia and anoxia. The flux of nutrients such as phosphate from the sediments may increase dramatically, further disrupting the nutrient balance and condition and promoting cyanobacterial blooms. Microbial activity is temperature dependent, therefore, the increase of temperature will increase the concentrations of ammonium within sediments. The release of phosphate and silicate will also increase with temperature. Coastal lagoons are valuable ecosystems and may be severely impacted, both ecologically and economically, by global change. Shallow coastal lagoons should be considered as sentinel systems and should be carefully monitored so that appropriate responses can be timely to mitigate the impacts from global change. References: Eisenreich, S.J. (2005). Climate Change and the European Water Dimension - A report to the European Water Directors. Institute for Environment and Sustainability, European Comission-Joint Research Centre. Ispra, Italy. 253pp. Kerr, R. (2008). Global warming throws some curves in the Atlantic Ocean. Science, 322, 515. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 996pp. Lloret, J., Marín, A., Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403-412. Snoussi, M., Ouchani, T., Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77, 206-213.
European drought under climate change and an assessment of the uncertainties in projections
NASA Astrophysics Data System (ADS)
Yu, R. M. S.; Osborn, T.; Conway, D.; Warren, R.; Hankin, R.
2012-04-01
Extreme weather/climate events have significant environmental and societal impacts, and anthropogenic climate change has and will continue to alter their characteristics (IPCC, 2011). Drought is one of the most damaging natural hazards through its effects on agricultural, hydrological, ecological and socio-economic systems. Climate change is stimulating demand, from public and private sector decision-makers and also other stakeholders, for better understanding of potential future drought patterns which could facilitate disaster risk management. There remain considerable levels of uncertainty in climate change projections, particularly in relation to extreme events. Our incomplete understanding of the behaviour of the climate system has led to the development of various emission scenarios, carbon cycle models and global climate models (GCMs). Uncertainties arise also from the different types and definitions of drought. This study examines climate change-induced changes in European drought characteristics, and illustrates the robustness of these projections by quantifying the effects of using different emission scenarios, carbon cycle models and GCMs. This is achieved by using the multi-institutional modular "Community Integrated Assessment System (CIAS)" (Warren et al., 2008), a flexible integrated assessment system for modelling climate change. Simulations generated by the simple climate model MAGICC6.0 are assessed. These include ten C4MIP carbon cycle models and eighteen CMIP3 GCMs under five IPCC SRES emission scenarios, four Representative Concentration Pathway (RCP) scenarios, and three mitigation scenarios with CO2-equivalent levels stabilising at 550 ppm, 500 ppm and 450 ppm. Using an ensemble of 2160 future precipitation scenarios, we present an analysis on both short (3-month) and long (12-month) meteorological droughts based on the Standardised Precipitation Index (SPI) for the baseline period (1951-2000) and two future periods of 2001-2050 and 2051-2100. Results indicate, with the exception of high latitude regions, a marked increase in drought condition across Europe especially in the second half of 21st century. Patterns, however, vary substantially depending on the model, emission scenario, region and season. While the variance introduced by choice of carbon cycle model is of minor importance, contribution of emission scenario becomes more important in the second half of the century; nevertheless, GCM uncertainty remains the dominant source throughout the 21st century and across all regions.
NASA Astrophysics Data System (ADS)
Hokamp, Sascha; Khabbazan, Mohammad Mohammadi
2017-04-01
In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R. S. J. (2009), "The Impact of Climate Change on the Balanced Growth Equivalent: An Application to FUND", Environmental and Resource Economics, 43 (3), 351-367. Edenhofer, O., Bauer, N., and Kriegler, E. (2005), "The Impact of Technological Change on Climate Protection and Welfare: Insights from the Model MIND", Ecological Economics, 54, 277-292. Neubersch, D., Held, H., and Otto, A., (2014), "Operationalizing Climate Targets under Learning: An Application of Cost-Risk Analysis", Climatic Change, 126, 305-318. Nordhaus, W. D., and Sztorc, P., (2013), DICE2013R: Introduction and User's Manual Nordhaus, W. D. (2014), "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches", Journal of the Association of Environmental and Resource Economists, 1 (1/2, Spring/Summer, 2014), 273-312. IPCC (2016), Sixth Assessment Report (AR6) Products, IPCC-XLIII/INF.7. UNFCCC (2015), Adoption of the Paris Agreement van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M. , van Ruijven, B.J., and Koelbl, B. (2013): "The Role of Negative CO2 Emissions for Reaching 2 °C - Insights from Integrated Assessment Modelling", Climatic Change, 118, 15-27.
Avoiding dangerous climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic
2006-02-15
In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41more » papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.« less
IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned
NASA Astrophysics Data System (ADS)
Sokona, Youba
2014-05-01
The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.
Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph
Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less
Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; ...
2014-12-08
Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less
NASA Astrophysics Data System (ADS)
Debortoli, N. S.; Camarinha, P. I., Sr.; Marengo, J. A.; Rodrigues, R.
2015-12-01
There are some evidences that hydrological climate extremes events have become more frequent an intense in the last decades due to climatic change. In Brazil, flashfloods and landslides were responsible for 74% of the deaths related to natural disasters in 1991-2010 period. In this sense, climate change could be considered a threat which can further increase these numbers, if actions of adaptation and reducing vulnerability are not taken. To evaluate Brazil's vulnerability hotspots to these disasters, two vulnerability indexes were developed using three sets of variables: (1) climate, with IPCC climate extreme indexes; (2) environmental, including land use, drainage systems, relief map, slope, road density and hydrography variables; (3) socioeconomic, including Gini coefficient, HDI (Human Development Index), housing conditions and poverty-related index. The variables were normalized on a scale between 0 to 1 and related using Map Algebra technique (ArcGIS). As part of the effort to contribute to the elaboration of the Third National Communication to the United Nations Framework Convention on Climate Change (UNFCCC), and to contribute to the assessment of impacts on strategic country's issues, simulations at higher resolution were carried out using Eta-20km RCM (Regional Climate Model) nested with two global climate models: HadGEM ES and MIROC 5 (INPE Brazilian National Institute for Space Research). For the baseline period of 1961-1990, the vulnerability indexes were adjusted by an iterative process, which was validated by comparing it to the Brazilian National Disasters Data. The same indexes found at baseline were used to estimate the vulnerability until the end of the XXI century, using the 4.5 and 8.5 IPCC/AR5 RCP (Representative Concentration Pathways) scenarios. The results indicate a large increase in Brazil's vulnerability to landslides mainly in coastal zone, southern states, high lands of southeast states, and along the Amazon River due to climatic aspects only, not considering other factors such as increase in population size, etc. Flashfloods vulnerability, on the other hand, increases mostly in the south/southeast regions, the northeast coastal zone and parts of the Amazon basin. Funded by: Ministry of Science and Technology of Brazil and the United Nations Development Program in Brazil.
Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai
NASA Astrophysics Data System (ADS)
Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.
2017-12-01
The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011). An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30(9) Herren et al. (2013). The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat Sci Rev 69 IPCC; Climate Change (2013): The Physical Science Basis. IPCC Working Group I Contribution to AR5
A multistage crucible of revision and approval shapes IPCC policymaker summaries.
Mach, Katharine J; Freeman, Patrick T; Mastrandrea, Michael D; Field, Christopher B
2016-08-01
Intergovernmental Panel on Climate Change (IPCC) member governments approve each report's summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain.
When the Well Runs Dry: Climate Change, Water and Human Health
NASA Astrophysics Data System (ADS)
Balbus, J. M.
2014-12-01
Water is a critical pathway between changes in climate and impacts on human health. Increased intensity of the hydrologic cycle can impair water quality through both drought and runoff associated with extreme precipitation events. Local changes or extremes in hydrological cycles can also alter the life cycles of moquitoes, ticks, snails, and other carriers of human diseases. These impacts in turn can affect the transmission of malaria, schistosomiasis, and many other human diseases. Warmer freshwater and coastal waters, in combination with other factors like fertilizer runoff and salinity, are also associated with proliferation of a variety of human pathogens, including cyanobacteria and vibrio species. This presentation will highlight the many linkages between climate change, water and human health. It will review recent findings of the US National Climate Assessment and 5th Assessment Report of the IPCC with regards to water-related threats to health, and discuss approaches to modeling health outcomes of water-associated climate change impacts.
Climate change drives expansion of Antarctic ice-free habitat.
Lee, Jasmine R; Raymond, Ben; Bracegirdle, Thomas J; Chadès, Iadine; Fuller, Richard A; Shaw, Justine D; Terauds, Aleks
2017-07-06
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km 2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Climate change drives expansion of Antarctic ice-free habitat
NASA Astrophysics Data System (ADS)
Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks
2017-07-01
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Protected areas' role in climate-change mitigation.
Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P
2016-03-01
Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.
Renewable Energy and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H. L.
2012-01-01
The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less
Climate Change, Soils, and Human Health
NASA Astrophysics Data System (ADS)
Brevik, Eric C.
2013-04-01
According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
NASA Astrophysics Data System (ADS)
Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.
2011-12-01
The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over urban regions. We present comparisons of observed (EC) tower flux observations from the Florence (Ximeniano) site for 1-9 April, 2008 with results from two sets of high-resolution simulations: the first using dynamically-downscaled input/boundary conditions (Model-0) and the second using fully nested WRF-ACASA (Model-1). In each simulation the model physics are the same; only the WRF domain configuration differs. Preliminary results (Figure 1) indicate a degree of parity (and a slight statistical improvement), in the performances of Model-1 vs. that of Model-0 with respect to observed. Figure 1 (below) shows air temperature values from observed and both model estimates. Additional results indicate that care must be taken to configure the WRF domain, as performance appears to be sensitive to model configuration.
NASA Astrophysics Data System (ADS)
Li, Wenhong; Fu, Rong; Dickinson, Robert E.
2006-01-01
The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.
Effects of climate change on aerosol concentrations in Europe
NASA Astrophysics Data System (ADS)
Megaritis, Athanasios G.; Fountoukis, Christos; Pandis, Spyros N.
2013-04-01
High concentrations of particulate matter less than 2.5 μm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality - climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P., Charalampidis P. E., Pilinis C., Wiedensohler A., Dall'Osto M., O'Dowd C., and S. N. Pandis: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331-10347, 2011. Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report: Summary for Policymakers, 2007. Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed.; John Wiley and Sons, Hoboken, NJ, 2006.
Tropical Andean ecosystems and the need to keep warming limits below a +1.5°C threshold
NASA Astrophysics Data System (ADS)
Ruiz-Carrascal, D.; Herzog, S. K.; Guitierrez Lagoueyte, M. E.; Gonzalez-Duque, D.; Cuevas-Moreno, J.; del Valle, J. I.; Andreu-Hayles, L.; Herrera, D. A.; Martínez, R.
2017-12-01
Long-term climate change and rapid land-use change are synergistically threatening the integrity and functioning of tropical Andean ecosystems. The main goal of our research was to integrate climate change projections, biodiversity data and anthropogenically driven ecosystem disruption assessments to quantify the vulnerability of Andean ecosystems and species to global change at a local scale. We merged discernible trends in local quality-controlled weather station data with reanalysis data, as well as with historical and prospective simulation outputs of five well-known GCMs to assess a long-term context for the analysis of climate change exposure (temperature severity intervals). Individual, medium-term, multi-member GCM simulations included: altitude-corrected 2046-2065 (IPCC-AR4) climate change scenarios for the A1B emission scenario; and spatially-downscaled 2040-2069 (IPCC-AR5) projections for the RCP4.5. Previous studies reported mean annual temperature anomaly intervals that resulted in exceedingly high thresholds: the lowest severity interval (< +2.06°C) and the highest (> +2.71°C). The least severe interval extended up to the threshold widely recognized as `dangerous' climate change, thereby leading to an underestimation of the true vulnerability of Andean species. Our analyses suggest that temperature anomalies for the full extent of the tropical Andes will likely range from low (< +1.60°C) to high (> +2.61°C), exceeding the threshold of 'natural' climate variability (+1.78°C). Our results suggest that most species that were used as proxies of ecosystem vulnerabilities will likely experience overall low-to-medium-to-high temperature increases. Since many of them have potentially high sensitivity to such long-term changes, Andean species will likely experience greatly increases in vulnerability. The already-disrupted Andean ecosystems will suffer a further climatic stress, which will worsen the well-known detrimental synergies between climate and land-use changes. There is an imperative need to prioritize high-risk areas for the implementation of conservation and adaptation actions. Equally important, there is an urgent need to keep warming limits well below 2.0°C, ideally below +1.5°C, if we expect to preserve the integrity of our unique Andean environments.
NASA Astrophysics Data System (ADS)
Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.
2018-04-01
The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.
NASA Astrophysics Data System (ADS)
Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj
2015-04-01
Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc. Based on the projected climate changes an application is proposed of the ensemble seasonal forecasts for early preparation in case of upcoming unfavorable weather conditions. This paper was realized as a part of the projects "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) and "Assessment of climate change impacts on water resources in Serbia" (37005) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011-2015.
Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.
2013-01-01
The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.
Making LULUCF matrix of Korea by Approach 2&3
NASA Astrophysics Data System (ADS)
Hwang, J.; Jang, R.; Seong, M.; Yim, J.; Jeon, S. W.
2017-12-01
To establish and implement policies in response to climate change, it is very important to identify domestic greenhouse gas emission sources and sinks, and accurately calculate emissions and removals from each source and sink. The IPCC Guideline requires the establishment of six sectors of energy, industrial processes, solvents and other product use, agriculture, Land-Use Change and Forestry (LULUCF) and waste in estimating GHG inventories. LULUCF is divided into 6 categories according to land use, purpose, and type, and then it calculates greenhouse gas emission/absorption amount due to artificial activities according to each land use category and greenhouse gas emission/absorption amount according to land use change. The IPCC Guideline provides three approaches to how to create a LULUCF discipline matrix. According to the IPCC Guidelines, it is a principle to divide into the land use that is maintained and the land use area changed to other lands. However, Korea currently uses Approach 1, which is based on statistical data, it is difficult to detect changed area. Therefore, in this study, we are going to do a preliminary work for constructing the LULUCF matrix at Approach 2 & 3 level. NFI data, GIS, and RS data were used to build the matrix of Approach 2 method by Sampling method. For used for Approach 3, we analyzed the four thematic maps - Cadastral Map, Land Cover Map, Forest Type Map, and Biotope Map - representing land cover and utilization in terms of legal, property, quantitative and qualitative aspects. There is a difference between these maps because their purpose, resolution, timing and spatial range are different. Comparing these maps is important because it can help for decide map which is suitable for constructing the LULUCF matrix.Keywords: LULUCF, GIS/RS, IPCC Guideline, Approach 2&3, Thematic Maps
Why Hasn't Earth Warmed as Much as Expected?
NASA Technical Reports Server (NTRS)
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph A.; Ogren, John A.; Rodhe, Henning
2010-01-01
The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15 %. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.
COSP: Satellite simulation software for model assessment
Bodas-Salcedo, A.; Webb, M. J.; Bony, S.; ...
2011-08-01
Errors in the simulation of clouds in general circulation models (GCMs) remain a long-standing issue in climate projections, as discussed in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. This highlights the need for developing new analysis techniques to improve our knowledge of the physical processes at the root of these errors. The Cloud Feedback Model Intercomparison Project (CFMIP) pursues this objective, and under that framework the CFMIP Observation Simulator Package (COSP) has been developed. COSP is a flexible software tool that enables the simulation of several satellite-borne active and passive sensor observations from model variables. The flexibilitymore » of COSP and a common interface for all sensors facilitates its use in any type of numerical model, from high-resolution cloud-resolving models to the coarser-resolution GCMs assessed by the IPCC, and the scales in between used in weather forecast and regional models. The diversity of model parameterization techniques makes the comparison between model and observations difficult, as some parameterized variables (e.g., cloud fraction) do not have the same meaning in all models. The approach followed in COSP permits models to be evaluated against observations and compared against each other in a more consistent manner. This thus permits a more detailed diagnosis of the physical processes that govern the behavior of clouds and precipitation in numerical models. The World Climate Research Programme (WCRP) Working Group on Coupled Modelling has recommended the use of COSP in a subset of climate experiments that will be assessed by the next IPCC report. Here we describe COSP, present some results from its application to numerical models, and discuss future work that will expand its capabilities.« less
Climate change and children's health--a call for research on what works to protect children.
Xu, Zhiwei; Sheffield, Perry E; Hu, Wenbiao; Su, Hong; Yu, Weiwei; Qi, Xin; Tong, Shilu
2012-09-10
Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children's health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children's health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children's vulnerability to climate change; (3) projecting children's disease burden under climate change scenarios; (4) exploring children's disease burden related to climate change in low-income countries; and (5) identifying the most cost-effective mitigation and adaptation actions from a children's health perspective.
NASA Astrophysics Data System (ADS)
Sheng, Y.; Davis, J. R.; Paramygin, V. A.; LaRow, T.; Chassignet, E.; Stefanova, L. B.; Lu, J.; Xie, L.; Montalvo, S.; Liu, J.; Liu, B.
2012-12-01
75% of the world population lives within 100 km from the coastline. Coastal communities are subject to increasing coastal inundation risk due to the combined effects of hurricane-induced storm surge, tsunami, climate change, and sea level rise. This study is developing the next generation decision support systems (DSS) for storm surge and coastal inundation by incorporating the climate change impacts on hurricanes and sea level rise (SLR) along the Florida and North Carolina coast. Using a new methodology (instead of the "bath tub" approach) enhanced by the Institute for Sustainable Coastal Environment and Infrastructure (InSCEI) at University of Florida (UF), highly accurate and efficient coastal inundation maps (Base Flood Elevations and Surge Atlas) are being produced for current climate conditions. Atmospheric and climate scientists at Florida State University (FSU) and North Carolina State University (NCSU) are using global (FSU/COAPS) and regional (WRF) atmospheric models to estimate the range in hurricane activities during 2020-2040 and 2080-2100, using projected SSTs from the IPCC CMIP5 climate scenarios as lower boundary conditions. SLR experts at NCSU and FSU are analyzing historical sea level data and conducting numerical modeling to estimate the SLR at the coastal boundaries for the same IPCC scenarios. UF and NCSU are using the hurricane ensembles and the SLR scenarios provided by FSU and NCSU as input to storm surge and inundation models (CH3D-SSMS and CMAEPS, respectively) to produce high resolution inundation maps which include climate change effects. These future-climate coastal inundation maps will be much more accurate than the current ones and greatly improve the stakeholders' ability to mitigate coastal inundation risk throughout the U.S. and the world. These inundation maps for current and future climates will be communicated to a wide spectrum of stakeholders for feedback and further improvement. A national workshop will be held in January 2013 to engage stakeholders, researchers, and managers (federal, state, and local) of coastal inundation to develop strategies to improve communications among the various entities and to gather inputs on the development of the next -generation coastal inundation decision support system.
Communicating Uncertainty about Climate Change for Application to Security Risk Management
NASA Astrophysics Data System (ADS)
Gulledge, J. M.
2011-12-01
The science of climate change has convincingly demonstrated that human activities, including the release of greenhouse gases, land-surface changes, particle emissions, and redistribution of water, are changing global and regional climates. Consequently, key institutions are now concerned about the potential social impacts of climate change. For example, the 2010 Quadrennial Defense Review Report from the U.S. Department of Defense states that "climate change, energy security, and economic stability are inextricably linked." Meanwhile, insured losses from climate and weather-related natural disasters have risen dramatically over the past thirty years. Although these losses stem largely from socioeconomic trends, insurers are concerned that climate change could exacerbate this trend and render certain types of climate risk non-diversifiable. Meanwhile, the climate science community-broadly defined as physical, biological, and social scientists focused on some aspect of climate change-remains largely focused scholarly activities that are valued in the academy but not especially useful to decision makers. On the other hand, climate scientists who engage in policy discussions have generally permitted vested interests who support or oppose climate policies to frame the discussion of climate science within the policy arena. Such discussions focus on whether scientific uncertainties are sufficiently resolved to justify policy and the vested interests overstate or understate key uncertainties to support their own agendas. Consequently, the scientific community has become absorbed defending scientific findings to the near exclusion of developing novel tools to aid in risk-based decision-making. For example, the Intergovernmental Panel on Climate Change (IPCC), established expressly for the purpose of informing governments, has largely been engaged in attempts to reduce unavoidable uncertainties rather than helping the world's governments define a science-based risk-management framework for climate security. The IPCC's Fourth Assessment Report concluded that "Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk." In risk management, key uncertainties guide action aimed at reducing risk and cannot be ignored or used to justify inaction. Security policies such as arms control and counter-terrorism demonstrate that high-impact outcomes matter to decision makers even if they are likely to be rare events. In spite of this fact, the long tail on the probability distribution of climate sensitivity was largely ignored by the climate science community until recently and its implications for decision making are still not receiving adequate attention. Informing risk management requires scientists to shift from a singular aversion to type I statistical error (i.e. false positive) to a balanced presentation of both type I error and type II error (i.e. false negative) when the latter may have serious consequences. Examples from national security, extreme weather, and economics illustrate these concepts.
The importance of hydrological uncertainty assessment methods in climate change impact studies
NASA Astrophysics Data System (ADS)
Honti, M.; Scheidegger, A.; Stamm, C.
2014-08-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind predictive uncertainty for the same hydrological model and calibration data when considering different objective functions for calibration.
Challenges and opportunities for animal conservation from renewable energy development
T.A. Katzner; J.A. Johnson; D.M. Evans; T.W.J. Garner; M.E. Gompper; R. Altwegg; T.A. Branch; I.J. Gordon; N. Pettorelli
2013-01-01
Global climate change is among the greatest threats confronting both human and natural systems (IPCC, 2007). A substantial component of greenhouse gas (GHG) emissions is from energy production, generated via the burning of fossil fuels, especially coal, natural gas and refined petroleum. Given that reduction in global energy consumption is unlikely over the next...
Disturbance and Climate Change in the Interior West (Chapter 6)
Paulette L. Ford; Jeanne K. Chambers; Sharon J. Coe; Burton C. Pendleton
2012-01-01
Within the continental United States, average annual temperature increased during the Twentieth Century by approximately 0.65 ºC. The most extreme warming occurred throughout the northern and western United States (IPCC 2007a; Williams and others 2010). Disturbances such as fire, drought, grazing, urbanization, and energy development are predicted to have a heightened...
Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)
NASA Astrophysics Data System (ADS)
Asante, K. O.; Khimsara, P.; Chan, A.
2013-12-01
Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.
Hare, Jonathan A.; Wuenschel, Mark J.; Kimball, Matthew E.
2012-01-01
We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65%) to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species. PMID:23284974
Vulnerability to Climate Change in Rural Nicaragua
NASA Astrophysics Data System (ADS)
Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.
2013-12-01
While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.
Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.
2015-01-01
Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.
Coupled model simulations of climate changes in the 20th century and beyond
NASA Astrophysics Data System (ADS)
Yu, Yongqiang; Zhi, Hai; Wang, Bin; Wan, Hui; Li, Chao; Liu, Hailong; Li, Wei; Zheng, Weipeng; Zhou, Tianjun
2008-07-01
Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the “Climate of the 20th century experiment”, “CO2 1% increase per year to doubling experiment” and two separate IPCC greenhouse gases emission scenarios A1B and B1 experiments. To distinguish between the different impacts of natural variations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temperature increases about 0.5°C and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model’s ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6°C in the CO2 doubling experiment and 1.5°C and 2.4°C in the A1B and B1 scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.
Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change
NASA Astrophysics Data System (ADS)
Mu, J. E.; McCarl, B.
2011-12-01
Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation in the absence of GHG prices, but when those prices are introduced emissions are reduced by 6 millions tones CO2 equivalent. Similarly, under climate change, GHG prices stimulate a gain in carbon sequestration in the agricultural and forestry sectors. 4. Forest sector welfare and crop producer surplus is reduced under the adaption policy by a small amount, that is -0.02 and 0.14-0.2 billion dollars respectively. However, forest welfare, agricultural welfare, crop producer surplus and livestock producer surplus all increased, by 0.62, 0.67, 0.84 and 1.48 billion dollars, respectively when GHG prices are introduced. References Adams DM, Alig RJ, McCarl BA et al., 2005. FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/ 1212FASOMGHG_doc.pdf) IPCC (Intergovernmental Panel on Climate Change), 2007. Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK Mendelsohn R, Dinar A. 2009. Land Use and Climate Change Interactions. Annual Review of Resource Economics. 1: 309-332.
Scientists' Views about Attribution of Global Warming
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo
2015-04-01
What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This is related to what is sometimes referred to as "false balance" in media reporting and may partly explain the divergence between public and scientific opinion regarding climate change.
Ice2sea - Estimating the future contribution of continental ice to sea-level rise - project summary
NASA Astrophysics Data System (ADS)
Ford, Elaina; Vaughan, David
2013-04-01
Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major European-funded programme will inform the fifth IPCC report (due in September 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise. Understanding about the crucial ice-sheet effects was "too limited to assess their likelihood or provide a best estimate of an upper bound for sea-level rise". Ice2sea was created to address these issues - the project started in 2009 and is now drawing to a close, with our final symposium in May 2013, and final publicity activities around the IPCC report release in autumn 2013. Here we present a summary of the overall and key outputs of the ice2sea project.
Global air quality and climate.
Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang
2012-10-07
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Detection and Attribution of Anthropogenic Climate Change Impacts
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Neofotis, Peter
2013-01-01
Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.
Climate Change: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Chapman, David S.; Davis, Michael G.
2010-09-01
Questions about global warming concern climate scientists and the general public alike. Specifically, what are the reliable surface temperature reconstructions over the past few centuries? And what are the best predictions of global temperature change the Earth might expect for the next century? Recent publications [National Research Council (NRC), 2006; Intergovernmental Panel on Climate Change (IPCC), 2007] permit these questions to be answered in a single informative illustration by assembling temperature reconstructions of the past thousand years with predictions for the next century. The result, shown in Figure 1, illustrates present and future warming in the context of natural variations in the past [see also Oldfield and Alverson, 2003]. To quote a Chinese proverb, “A picture's meaning can express ten thousand words.” Because it succinctly captures past inferences and future projections of climate, the illustration should be of interest to scientists, educators, policy makers, and the public.
2017-03-24
between the capabilities of these two soil conditions will need to be taken into account when designing the facility. Problem Statement The IPCC claims...ability to plan foundation designs and mitigation techniques for changing soil characteristics. 9 II. Literature Review...AFB will be constructed on permafrost soils. Golder Associates (2016) states in their design report, If permafrost soils are encountered, two of the
NASA Astrophysics Data System (ADS)
Kurniawan, T.
2018-03-01
The IPCC in 2015 has recognized the critical role of local governments in scaling up the adaptation of communities to climate change. The role will be executed properly if the leaders have an awareness of climate change as a strategic agenda in his administration. In the context of Indonesia, the vision and mission of a regional head can be a clue as to how he supports efforts in tackling climate change. The five-year regional development plan is an elaboration of the development agendas offered by a regional head in his vision and mission. Therefore, this paper aims to analyze the future of climate change policy in some provincial governments based on the vision and mission of the elected governors. To achieve the goal, the author employs a qualitative approach to analyze the contents of the vision and mission and their preference to climate change. The results of the study indicate that the elected governors are still not very aware of climate change and did not specify it in their vision and mission. Therefore, in the preparation of five-year regional development plan, it is necessary for some stakeholders to address and specifically mention the issues of climate change.
A multistage crucible of revision and approval shapes IPCC policymaker summaries
Mach, Katharine J.; Freeman, Patrick T.; Mastrandrea, Michael D.; Field, Christopher B.
2016-01-01
Intergovernmental Panel on Climate Change (IPCC) member governments approve each report’s summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain. PMID:27532046
Translating Scientific Conclusions about Risk for Public Audiences
NASA Astrophysics Data System (ADS)
Bowman, T. E.
2009-12-01
Climate change has been aptly described as a problem of risk management, yet the scientific community has not been successful in helping the public engage in risk management effectively. Behavioral science studies demonstrate that, while the public generally accepts the reality of anthropogenic climate change today, the immanence of impacts and scale of risk and opportunities for effective mitigation are poorly understood. Helping the public overcome these misperceptions and engage in decision-making about climate risks is, perhaps, the climate communication community’s most urgent priority. Scientific writing and graphic conventions are poorly suited for communicating with non-scientists. Using examples from the IPCC 4th Assessment, this session will demonstrate how specific conventions in science writing and graph making have obscured critical information about climate risks. The session will further demonstrate how reformatting the graphical information can create an exceptionally clear picture of where humanity stands and the implications of various emissions pathways for the future. Attendees will appreciate how presentations of science results can be tailored to answer the public’s questions more effectively by highlighting useful information in accurate, yet accessible ways. Decision-makers and the public urgently need information about climate impact risks and the consequences of various emissions pathways. Yet written and graphic descriptions from the IPCC and other assessment agencies burden non-scientists with multiple temperature baselines (e.g., pre-Industrial, mid-20th century, late 20th century, today), two confusingly similar measures for the key human contribution to atmospheric composition (CO2 and CO2-eq), and multiple ways of describing probability and certainty. The public is further confounded by inconsistent graphic conventions in scientific figures, including inconsistent color-coding, labeling, axis orientation, and treatment of uncertainty. Scientific figures tend to either include too many different messages or over-generalize, and neither approach helps non-scientists identify useful metrics and apply them to decision-making. This session will briefly illustrate each of these problematic scientific conventions and present a more effective translation of key IPCC figures in a new graphic format that help non-scientists appreciate our situation and opportunities. This translation has received positive reviews from informal learning institutions and will be useful to the broader science communication community.
Climate change and animal diseases in South America.
Pinto, J; Bonacic, C; Hamilton-West, C; Romero, J; Lubroth, J
2008-08-01
Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming trends predicted in the 2007 Intergovernmental Panel on Climatic Change (IPCC) report for South America are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as bluetongue, West Nile fever, vesicular stomatitis and New World screwworm. Changes in distribution will be partially modulated by El Niño Southern Oscillation events, which will become more frequent and lead to a greater frequency of droughts and floods. Active disease surveillance for animal diseases in South America, particularly for vector-borne diseases, is very poor. Disease reporting is often lacking, which affects knowledge of disease distribution and impact, and preparedness for early response. Improved reporting for animal diseases that may be affected by climate change is needed for better prevention and intervention measures in susceptible livestock, wildlife and vectors in South America. This requires contributions from multidisciplinary experts, including meteorologists, epidemiologists, biologists and ecologists, and from local communities.
Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.
2013-01-01
In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID:24023925
Crossman, Jill; Futter, Martyn N; Whitehead, Paul G
2013-01-01
In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.
Projections of atmospheric mercury levels and their effect on air quality in the United States
NASA Astrophysics Data System (ADS)
Lei, H.; Wuebbles, D. J.; Liang, X.-Z.; Tao, Z.; Olsen, S.; Artz, R.; Ren, X.; Cohen, M.
2013-08-01
The individual and combined effects of global climate change and emissions changes from 2000 to 2050 on atmospheric mercury levels in the US are investigated by using the global climate-chemistry model, CAM-chem, coupled with a mercury chemistry-physics mechanism (CAM-Chem/Hg). Three future pathways from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) are considered, with the A1FI, A1B and B1 scenarios representing the upper, middle and lower bounds of potential climate warming, respectively. The anthropogenic and biomass burning emissions of mercury are projected from the energy use assumptions in the IPCC SRES report. Natural emissions from both land and ocean sources are projected using dynamic schemes. The zonal mean surface total gaseous mercury (TGM) concentrations in the tropics and mid-latitudes of the Southern Hemisphere are projected to increase by 0.5-1.2 ng m-3 in 2050. TGM concentration increases are greater in the low latitudes than they are in the high latitudes, indicative of a larger meridional gradient than in the present day. In the A1FI scenario, TGM concentrations in 2050 are projected to increase by 2.1-4.0 ng m-3 for the eastern US and 1.4-3.0 ng m-3 for the western US. This pattern corresponds to potential increases in wet deposition of 10-14 μg m-2 for the eastern US and 2-4 μg m-2 for the western US. The increase in Hg(II) emissions tends to enhance wet deposition and hence increase the risk of higher mercury entering the hydrological cycle and ecosystems. In the B1 scenario, mercury concentrations in 2050 are similar to present level concentrations; this indicates that the domestic reduction in mercury emissions is essentially counteracted by the effects of climate warming and emissions increases in other regions. The sensitivity analyses presented show that anthropogenic emissions changes contribute 32-53% of projected mercury air concentration changes, while the independent contribution by climate change accounts for 47-68%. In summary, global climate change could have a comparable effect on mercury pollution in the US to that caused by global emissions changes.
NASA Astrophysics Data System (ADS)
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Stanley J. Zarnoch; H. Ken Cordell; Carter J. Betz
2010-01-01
County-level population projections from 2010 to 2060 are developed under three national population growth scenarios for reporting in the 2010 Renewable Resources Planning Act (RPA) Assessment. These population growth scenarios are tied to global futures scenarios defined by the Intergovernmental Panel on Climate Change (IPCC), a program within the United Nations...
Patterns of authorship in the IPCC Working Group III report
NASA Astrophysics Data System (ADS)
Corbera, Esteve; Calvet-Mir, Laura; Hughes, Hannah; Paterson, Matthew
2016-01-01
The Intergovernmental Panel on Climate Change (IPCC) has completed its Fifth Assessment Report (AR5). Here, we explore the social scientific networks informing Working Group III (WGIII) assessment of mitigation for the AR5. Identifying authors’ institutional pathways, we highlight the persistence and extent of North-South inequalities in the authorship of the report, revealing the dominance of US and UK institutions as training sites for WGIII authors. Examining patterns of co-authorship between WGIII authors, we identify the unevenness in co-authoring relations, with a small number of authors co-writing regularly and indicative of an epistemic community’s influence over the IPCC’s definition of mitigation. These co-authoring networks follow regional patterns, with significant EU-BRICS collaboration and authors from the US relatively insular. From a disciplinary perspective, economists, engineers, physicists and natural scientists remain central to the process, with insignificant participation of scholars from the humanities. The shared training and career paths made apparent through our analysis suggest that the idea that broader geographic participation may lead to a wider range of viewpoints and cultural understandings of climate change mitigation may not be as sound as previously thought.
Assessing the present and future probability of Hurricane Harvey's rainfall
NASA Astrophysics Data System (ADS)
Emanuel, Kerry
2017-11-01
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.
2015-12-01
As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
NASA Astrophysics Data System (ADS)
Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent
2015-04-01
In this study, the projected changes for the periods of 2016 - 2035, 2046 - 2065, and 2081 - 2100 in the seasonal averages of air temperature and precipitation variables with respect to the reference period of 1981 - 2000 were examined for the Middle East and North Africa region. In this context, Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was run by using two different global climate models. MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology and HadGEM2 of the Met Office Hadley Centre were dynamically downscaled to 50 km for the CORDEX-MENA domain. The projections were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC (Intergovernmental Panel of Climate Change).
Assessing Climate Change Risks Using a Multi-Model Approach
NASA Astrophysics Data System (ADS)
Knorr, W.; Scholze, M.; Prentice, C.
2007-12-01
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from the IPCC AR4 data archive using 16 climate models and mapping the proportions of model runs showing exceedance of natural variability in wildfire frequency and freshwater supply or shifts in vegetation cover. Our analysis does not assign probabilities to scenarios. Instead, we consider the distribution of outcomes within three sets of model runs grouped according to the amount of global warming they simulate: < 2 degree C (including committed climate change simulations), 2-3 degree C, and >3 degree C. Here, we are contrasting two different methods for calculating the risks: first we use an equal weighting approach giving every model within one of the three sets the same weight, and second, we weight the models according to their ability to model ENSO. The differences are underpinning the need for the development of more robust performance metrics for global climate models.
NASA Astrophysics Data System (ADS)
Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.
2011-12-01
According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.
The Hockey Stick and the Climate Wars: Dispatches From The Front Lines
NASA Astrophysics Data System (ADS)
Mann, M. E.
2011-12-01
A central figure in the controversy over human-caused climate change has been The Hockey Stick, a simple, easy-to-understand graph my colleagues and I constructed to depict changes in Earth's temperature back to 1000 AD. The graph was featured in the high-profile Summary for Policy Makers of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), and it quickly became an icon in the debate over human-caused (anthropogenic) climate change. I will tell the story behind the Hockey Stick, using it as a vehicle for exploring broader issues regarding the role of skepticism in science, the uneasy relationship between science and politics, and the dangers that arise when special economic interests and those who do their bidding attempt to skew the discourse over policy-relevant areas of science. In short, I attempt to use the Hockey Stick to cut through the fog of disinformation that has been generated by the campaign to deny the reality of climate change. It is my intent, in so doing, to reveal the very real threat to our future that lies behind it.
NASA Astrophysics Data System (ADS)
Sauer, M.; Bergamaschi, B. A.; Smith, R. A.; Zhu, Z.; Shih, J.
2012-12-01
Flux of nutrients and sediments to the coastal zone varies in response to land-use modification, reservoir construction, management action and population change. It is anticipated that future changes in the flux of these components in response to climate and terrestrial processes will affect carbon (C) burial in the coastal ocean. Coastal oceans store appreciable amounts of C as a result of river inflows: coastal primary production is enhanced by inputs of terrestrially derived nutrients, and C burial is controlled by terrestrial sediment supply. Assessing the capacity and changes to coastal C preservation, therefore, requires estimation of (1) riverine nutrient and sediment delivery to the coastal ocean, and (2) the enhanced C production and sediment deposition in the coastal ocean. The United States Geological Survey (USGS) has embarked on a congressionally-mandated nationwide effort to assess the future effects of climate and land use and land cover change (LULC) on C storage. The USGS has developed alternative scenarios for changes in US LULC from 2006 to 2100 based on the Intergovernmental Panel on Climate Change (IPCC) climate, economic, and demographic scenarios (Sohl et al 2012). These spatially-detailed scenarios provide inputs to national-scale SPARROW watershed models of total nitrogen, total phosphorus, total organic C (TOC), and suspended sediment (Smith et al 1997; Schwarz et al, 2006). The watershed models, in turn, provide inputs of nutrients, TOC, and sediment to a coupled model of coastal transport, production, and sedimentation. This coastal modelling component includes particulate C sedimentation and burial estimated as functions of bathymetry and pycnocline depth (Armstrong, et al 2002; Dunne et al 2007). River borne fluxes of TOC to US Pacific coastal waters under baseline conditions (1992) were 1.59 TgC/yr. Projected future (2050) fluxes under a regionally-downscaled LULC scenario aligned with the IPCC A2 scenario were similar (1.61TgC/yr). C storage in coastal environments as influenced by terrestrial processes represents a significant sink for C in comparison to terrestrial biomass C sinks, and is significantly sensitive to changes in LULC and population. The estimated rate of storage in Pacific coastal waters was 2.0 TgC/yr under baseline conditions. Projection of land use and population changes through 2050 associated with the IPCC A2 scenario had a small effect on coastal C storage processes, reducing C storage by 4% over baseline conditions. Results of this modeling exercise indicate that the size of the C sink associated with terrestrial exports is substantial and sensitive to anthropogenic activity. Thus, future assessments of how terrestrial policy and management actions may alter C storage should include an evaluation of the effects prospective alterations in terrestrial processes have on coastal C storage.
Regional Climate Service in Northern Germany -The North German Climate Office
NASA Astrophysics Data System (ADS)
Meinke, I.; Von Storch, H.
2012-12-01
The North German Climate Office was established in 2006 at the Institute for Coastal Research at the Helmholtz-Zentrum Geesthacht, Germany as consequence of an increased public information need regarding coastal climate change and its impacts in Northern Germany. The service is characterized by an intensive dialogue between regional climate research and stakeholders in Northern Germany. About once a week scientists of the North German climate office are invited to contribute to public dialogue events. Also numerous direct inquiries are answered and expert interviews are conducted. From this dialogue process specific stakeholder information needs are localized and analysed to develop tailored information products. To provide easy and user specific access to research results interactive web tools are developed. One example is the North German climate atlas, an interactive web tool on possible future climate change in Northern Germany. Another interactive web tool is informing on present and future coastal protection needs in Northern Germany. Another aim of our information products is to assess and summarize the existing scientific knowledge on climate, climate change and impacts in Northern Germany. A mini IPCC-like regional assessment report has been published in 2010, which is summarizing, discussing and assessing the scientific knowledge on regional climate, climate change and impacts as well as possible adaptation strategies in the metropolitan region of Hamburg.
Technology for Climate Change Adaptation in Nepal Himalaya: Policy, Practices and Perspective
NASA Astrophysics Data System (ADS)
Gautam, K.; Panthi, J., Sr.
2016-12-01
The recent scientific findings and the periodic reports corroborated by IPCC has disclosed the climate change is unequivocal and the Himalayan region is one of the hardest hit by the change and variability in climatic system due to its sensitive ecosystem, low resilience capacity and geographical extremes. Nepal, which lies in the central Himalayan region, has developed its strategies to mitigate the impacts of climate change by developing national, regional and local plan of actions which are being implemented and some of them have already been proven. Nepal, as a party to the UNFCCC, has accomplished technology need assessment that identifies the need for new technology, equipment, knowledge and skills for reducing vulnerability to climate change. The plan has recommended an enabling framework for the diffusion of the prioritized technologies and the actions necessary to reduce or remove policy finance and technology related barriers. This paper aims to analyze the technological penetration in national level policy instruments such as NAPA, LAPA, Climate Change Policy and how those technologies have been used in actual field during the implementation of LAPA activities in western Nepal taking two administrative districts, one from low land and another from highland, as a pilot study.
The Impact of Climate Change on the United States Economy
NASA Astrophysics Data System (ADS)
Mendelsohn, Robert; Neumann, James E.
2004-08-01
Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.
Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete
2014-01-01
Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.
Landfalling Atmospheric Rivers in California—Historical and Future Impacts
NASA Astrophysics Data System (ADS)
Dettinger, M. D.; Ralph, F. M.
2014-12-01
During the past decade, a wide range of insights about the character and causes of extreme orographic precipitation in California has emerged, based on our growing understanding of the presence, mechanisms and impacts of "atmospheric rivers" (ARs) in the extratropical atmosphere. When an AR reaches and encounters the Coastal Ranges and Sierra Nevada of California, the resulting orographically driven storms are key players in many important weather, hydrologic and ecological processes in the State, including floods and floodplain inundations, droughts, groundwater recharge, and surface-water resources (see table). The intensities, storm totals, geographical distributions and impacts of AR storms in California are determined by many factors, including among the most straightforward: The numbers of ARs making landfall each year The amounts of vapor being transported by the ARs The direction of vapor transport by the AR relative to perpendiculars to the mountain ranges (for maximum uplift) The duration of AR passage overhead of a given location The temperature of an AR as a determinant of snowline altitudes The stability of the atmosphere within which the AR is embedded The closeness of the air in the AR to saturation (how much uplift is needed to drive intense precipitation) ARs are present in weather forecast models as well as in the long-range climate models used to project future climate changes in response to increasing greenhouse-gas concentrations in the atmosphere. Research into the future of ARs over California was first reported in the literature in 2011 (based on IPCC AR4 climate models) and is being extended now (to IPCC AR5 models) to assess projected changes in the full range of factors listed above with the aim of predicting how climate change will affect these important storms and their impacts in coming decades.
Verifying the UK agricultural N2O emission inventory with tall tower measurements
NASA Astrophysics Data System (ADS)
Carnell, E. J.; Meneguz, E.; Skiba, U. M.; Misselbrook, T. H.; Cardenas, L. M.; Arnold, T.; Manning, A.; Dragosits, U.
2016-12-01
Nitrous oxide (N2O) is a key greenhouse gas (GHG), with a global warming potential 300 times greater than that of CO2. N2O is emitted from a variety of sources, predominantly from agriculture. Annual UK emission estimates are reported, to comply with government commitments under the United Nations Framework Convention on Climate Change (UNFCCC). The UK N2O inventory follows internationally agreed protocols and emission estimates are derived by applying emission factors to estimates of (anthropogenic) emission sources. This approach is useful for comparing anthropogenic emissions from different countries, but does not capture regional differences and inter-annual variability associated with environmental factors (such as climate and soils) and agricultural management. In recent years, the UK inventory approach has been refined to include regional information into its emissions estimates, in an attempt to reduce uncertainty. This study attempts to assess the difference between current published inventory methodology (default IPCC methodology) and an alternative approach, which incorporates the latest thinking, using data from recent work. For 2013, emission estimates made using the alternative approach were 30 % lower than those made using default IPCC methodology, due to the use of lower emission factors suggested by recent projects (Defra projects: AC0116, AC0213 and MinNO). The 2013 emissions estimates were disaggregated on a monthly basis using agricultural management (e.g. sowing dates), climate data and soil properties. The temporally disaggregated emission maps were used as input to the Met Office atmospheric dispersion model NAME, for comparison with measured N2O concentrations, at three observation stations (Tacolneston, E. England; Ridge Hill, W. England; Mace Head, W. Ireland) in the UK DECC network (Deriving Emissions linked to Climate Change). The Mace Head site, situated on the west coast of Ireland, was used to establish baseline concentrations. The trends in the modelled data were found to correspond with the observational data trends, with concentration peaks coinciding with periods of land spreading of manures and fertiliser application. The model run using the default IPCC methodology was found to correspond with the observed data more closely than the alternative approach.
Development of municipal solid waste classification in Korea based on fossil carbon fraction.
Lee, Jeongwoo; Kang, Seongmin; Kim, Seungjin; Kim, Ki-Hyun; Jeon, Eui-Chan
2015-10-01
Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study. Fossil carbon fraction (FCF) differs depending on the characteristics of waste in each country; and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration.
[Energy policy rather than climate policy].
Kroonenberg, Salomon B
2009-01-01
Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
Transferring climate research results to stakeholder needs in Northern Germany
NASA Astrophysics Data System (ADS)
Meinke, Insa
2013-04-01
The North German Climate Office was established in 2006 at the Institute for Coastal Research at the Helmholtz-Zentrum Geesthacht, Germany as consequence of an increased public information need regarding coastal climate change and its impacts in Northern Germany. The service is characterized by an intensive dialogue between regional climate research and stakeholders in Northern Germany. About once a week scientists of the North German climate office are invited to contribute to public dialogue events. Also, numerous direct inquiries are answered and expert interviews are conducted. From this dialogue process specific stakeholder information needs are localized and analysed to develop tailored information products. To provide easy and user specific access to research results interactive web tools are developed. One example is the North German climate atlas, an interactive web tool on possible future climate change in Northern Germany. Another interactive web tool is informing on present and future coastal protection needs in Northern Germany. Another aim of our information products is to assess and summarize the existing scientific knowledge on climate, climate change and impacts in Northern Germany. A mini IPCC-like regional assessment report has been published in 2010, which is summarizing, discussing and assessing the scientific knowledge on regional climate, climate change and impacts as well as possible adaptation strategies in the metropolitan region of Hamburg.
A tool to evaluate local biophysical effects on temperature due to land cover change transitions
NASA Astrophysics Data System (ADS)
Perugini, Lucia; Caporaso, Luca; Duveiller, Gregory; Cescatti, Alessandro; Abad-Viñas, Raul; Grassi, Giacomo; Quesada, Benjamin
2017-04-01
Land Cover Changes (LCC) affect local, regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. Assessment of the full climate impacts of anthropogenic LCC are incomplete without considering biophysical effects, but the high level of uncertainties in quantifying their impacts to date have made it impractical to offer clear advice on which policy makers could act. To overcome this barrier, we provide a tool to evaluate the biophysical impact of a matrix of land cover transitions, following a tiered methodological approach similar to the one provided by the IPCC to estimate the biogeochemical effects, i.e. through three levels of methodological complexity, from Tier 1 (i.e. default method and factors) to Tier 3 (i.e. specific methods and factors). In particular, the tool provides guidance for quantitative assessment of changes in temperature following a land cover transition. The tool focuses on temperature for two main reasons (i) it is the main variable of interest for policy makers at local and regional level, and (ii) temperature is able to summarize the impact of radiative and non-radiative processes following LULCC. The potential changes in annual air temperature that can be expected from various land cover transitions are derived from a dedicated dataset constructed by the JRC in the framework of the LUC4C FP7 project. The inputs for the dataset are air temperature values derived from satellite Earth Observation data (MODIS) and land cover characterization from the ESA Climate Change Initiative product reclassified into their IPCC land use category equivalent. This data, originally at 0.05 degree of spatial resolution, is aggregated and analysed at regional level to provide guidance on the expected temperature impact following specific LCC transitions.
Global warming and the potential spread of vector-borne diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patz, J.
1996-12-31
Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectlymore » contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.« less
Orrego, R; Abarca-Del-Río, R; Ávila, A; Morales, L
2016-01-01
Climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962-1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070-2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°-40°S and 71°-74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns such as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.
Orrego, R.; Abarca-del-Rio, R.; Avila, A.; ...
2016-09-28
Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrego, R.; Abarca-del-Rio, R.; Avila, A.
Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
The impact of future climate on historic interiors.
Lankester, Paul; Brimblecombe, Peter
2012-02-15
The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.
How IPCC Science-Policy Interactions Shape Its Policymaker Summaries
NASA Astrophysics Data System (ADS)
Mach, K. J.; Freeman, P. T.; Mastrandrea, M.; Field, C. B.
2016-12-01
Government approval is a defining feature of the Intergovernmental Panel on Climate Change (IPCC) assessment process. In plenary sessions with scientist authors, IPCC member governments discuss and agree each sentence of every report's summary for policymakers (SPM). This consensus-based approval builds joint ownership of scientific knowledge by both scientists and governments. The approval process and its resulting SPM revisions have received extensive attention in published anecdotes and perspectives, but without comprehensive evaluation to date. We present the results of an in-depth analysis of IPCC SPM revisions, providing an evidence basis for understanding a complex science-policy interaction. Revisions resulting from governmental review and approval expand SPMs. SPM text lengthens by 17 to 53% in recent assessment summaries. Political sensitivities and associated failures of consensus have led to prominent exceptions resulting in SPM contractions. Contrasting recent assertions, we find IPCC SPMs to be as readable as other professionally edited assessment summaries, for multiple measures of reading ease. Across metrics, some SPMs, but not all, become more readable through the revision process. We additionally examine each revision in an SPM for which we have deep familiarity. Most of the SPM's revisions occur prior to the in-person government-approval session, and they emphasize different purposes compared to revisions made during the approval session. Revisions prior to the in-person session largely pertain to clarity, scientific rigor, and explanation, whereas the subsequent in-person government-approval revisions place more emphasis on policy relevance, comprehensiveness of examples, and nuances of expert judgment. The value added in the IPCC government-approval process emerges through multiple stages of revision and approval, as scientists and governments together navigate a complex science-policy interaction.
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
NASA Astrophysics Data System (ADS)
Jeelani, G.; Feddema, Johannes J.; van der Veen, Cornelis J.; Stearns, Leigh
2012-12-01
Snowmelt and icemelt are believed to be important regulators of seasonal discharge of Himalayan rivers. To analyze the long term contribution of snowmelt and glacier/icemelt to river hydrology we apply a water budget model to simulate hydrology of the Liddar watershed in the western Himalaya, India for the 20th century (1901-2010) and future IPCC A1B climate change scenario. Long term (1901-2010) temperature and precipitation data in this region show a warming trend (0.08°C yr-1) and an increase in precipitation (0.28 mm yr-1), with a significant variability in seasonal trends. In particular, winter months have undergone the most warming, along with a decrease in precipitation rates; precipitation has increased throughout the spring. These trends have accelerated the melting and rapid disappearance of snow, causing a seasonal redistribution in the availability of water. Our model results show that about 60% of the annual runoff of the Liddar watershed is contributed from the snowmelt, while only 2% is contributed from glacier ice. The climate trend observed from the 1901 to 2010 time period and its impact on the availability of water will become significantly worse under the IPCC climate change scenarios. Our results suggest that there is a significant shift in the timing and quantity of water runoff in this region of the Himalayas due to snow distribution and melt. With greatly increased spring runoff and its reductions in summer potentially leading to reduced water availability for irrigation agriculture in summer.
Hellberg, Rosalee S; Chu, Eric
2016-08-01
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Ongoing climatic extreme dynamics in Siberia
NASA Astrophysics Data System (ADS)
Gordov, E. P.; Shulgina, T. M.; Okladnikov, I. G.; Titov, A. G.
2013-12-01
Ongoing global climate changes accompanied by the restructuring of global processes in the atmosphere and biosphere are strongly pronounced in the Northern Eurasia regions, especially in Siberia. Recent investigations indicate not only large changes in averaged climatic characteristics (Kabanov and Lykosov, 2006, IPCC, 2007; Groisman and Gutman, 2012), but more frequent occurrence and stronger impacts of climatic extremes are reported as well (Bulygina et al., 2007; IPCC, 2012: Climate Extremes, 2012; Oldenborh et al., 2013). This paper provides the results of daily temperature and precipitation extreme dynamics in Siberia for the last three decades (1979 - 2012). Their seasonal dynamics is assessed using 10th and 90th percentile-based threshold indices that characterize frequency, intensity and duration of climatic extremes. To obtain the geographical pattern of these variations with high spatial resolution, the sub-daily temperature data from ECMWF ERA-Interim reanalysis and daily precipitation amounts from APHRODITE JMA dataset were used. All extreme indices and linear trend coefficients have been calculated using web-GIS information-computational platform Climate (http://climate.scert.ru/) developed to support collaborative multidisciplinary investigations of regional climatic changes and their impacts (Gordov et al., 2012). Obtained results show that seasonal dynamics of daily temperature extremes is asymmetric for tails of cold and warm temperature extreme distributions. Namely, the intensity of warming during cold nights is higher than during warm nights, especially at high latitudes of Siberia. The similar dynamics is observed for cold and warm day-time temperatures. Slight summer cooling was observed in the central part of Siberia. It is associated with decrease in warm temperature extremes. In the southern Siberia in winter, we also observe some cooling mostly due to strengthening of the cold temperature extremes. Changes in daily precipitation extremes are spatially inhomogeneous. The largest increase in frequency and intensity of heavy precipitation is observed in the north of East Siberia. Negative trends related to precipitation amount decrease are found in the central West Siberia and in the south of East Siberia. The authors acknowledge partial financial support for this research from the Russian Foundation for Basic Research projects (11-05-01190 and 13-05-12034), SB RAS Integration project 131 and project VIII.80.2.1., the Ministry of Education and Science of the Russian Federation contract 8345 and grant of the President of Russian Federation (decree 181).
Kong, Deguo; MacLeod, Matthew; Cousins, Ian T
2014-09-01
The effect of projected future changes in temperature, wind speed, precipitation and particulate organic carbon on concentrations of persistent organic chemicals in the Baltic Sea regional environment is evaluated using the POPCYCLING-Baltic multimedia chemical fate model. Steady-state concentrations of hypothetical perfectly persistent chemicals with property combinations that encompass the entire plausible range for non-ionizing organic substances are modelled under two alternative climate change scenarios (IPCC A2 and B2) and compared to a baseline climate scenario. The contributions of individual climate parameters are deduced in model experiments in which only one of the four parameters is changed from the baseline scenario. Of the four selected climate parameters, temperature is the most influential, and wind speed is least. Chemical concentrations in the Baltic region are projected to change by factors of up to 3.0 compared to the baseline climate scenario. For chemicals with property combinations similar to legacy persistent organic pollutants listed by the Stockholm Convention, modelled concentration ratios between two climate change scenarios and the baseline scenario range from factors of 0.5 to 2.0. This study is a first step toward quantitatively assessing climate change-induced changes in the environmental concentrations of persistent organic chemicals in the Baltic Sea region. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Defence of the AR4’s Bayesian Approach to Quantifying Uncertainty
NASA Astrophysics Data System (ADS)
Vezer, M. A.
2009-12-01
The field of climate change research is a kimberlite pipe filled with philosophic diamonds waiting to be mined and analyzed by philosophers. Within the scientific literature on climate change, there is much philosophical dialogue regarding the methods and implications of climate studies. To this date, however, discourse regarding the philosophy of climate science has been confined predominately to scientific - rather than philosophical - investigations. In this paper, I hope to bring one such issue to the surface for explicit philosophical analysis: The purpose of this paper is to address a philosophical debate pertaining to the expressions of uncertainty in the International Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), which, as will be noted, has received significant attention in scientific journals and books, as well as sporadic glances from the popular press. My thesis is that the AR4’s Bayesian method of uncertainty analysis and uncertainty expression is justifiable on pragmatic grounds: it overcomes problems associated with vagueness, thereby facilitating communication between scientists and policy makers such that the latter can formulate decision analyses in response to the views of the former. Further, I argue that the most pronounced criticisms against the AR4’s Bayesian approach, which are outlined below, are misguided. §1 Introduction Central to AR4 is a list of terms related to uncertainty that in colloquial conversations would be considered vague. The IPCC attempts to reduce the vagueness of its expressions of uncertainty by calibrating uncertainty terms with numerical probability values derived from a subjective Bayesian methodology. This style of analysis and expression has stimulated some controversy, as critics reject as inappropriate and even misleading the association of uncertainty terms with Bayesian probabilities. [...] The format of the paper is as follows. The investigation begins (§2) with an explanation of background considerations relevant to the IPCC and its use of uncertainty expressions. It then (§3) outlines some general philosophical worries regarding vague expressions and (§4) relates those worries to the AR4 and its method of dealing with them, which is a subjective Bayesian probability analysis. The next phase of the paper (§5) examines the notions of ‘objective’ and ‘subjective’ probability interpretations and compares the IPCC’s subjective Bayesian strategy with a frequentist approach. It then (§6) addresses objections to that methodology, and concludes (§7) that those objections are wrongheaded.
When could global warming reach 4°C?
Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G
2011-01-13
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.
Coastal sea level projections with improved accounting for vertical land motion
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-01-01
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions. PMID:26526287
Coastal sea level projections with improved accounting for vertical land motion.
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-11-03
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions.
Assessing the present and future probability of Hurricane Harvey's rainfall.
Emanuel, Kerry
2017-11-28
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981-2000 and will increase to 18% over the period 2081-2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century. Copyright © 2017 the Author(s). Published by PNAS.
2014-09-01
pH of Household Items and Associated Effect on Fish , after [5] 5 As the world’s average surface temperature increases and continues to negatively... Effect on Fish , after [5] ........... 4 Figure 4. Historical and Predicted Sea Level Change, after [10] ......................... 6 Figure 5...IPCC states in a 2014 climate change report [4] that, “[t]he global average consumption of fish and other products from fisheries and aquaculture in
Climate Change and the Greenhouse Effect - Nature and Humans
NASA Astrophysics Data System (ADS)
Alevizos, Anastasios; Zygouras, Grigorios
2014-05-01
In this project twenty A grade students of Lyceum (age 16) were involved (2011-12) and had been learning to give answers to questions about greenhouse gases, their origin and the processes forming them with regard to human activity on our planet and our dependence on fossil fuels. They had considered whether and how this dependence affects global warming, how this dependence can be reduced by changing attitudes and using renewable energy sources and further more they had put questions and doubts about anthropogenic global warming existence. The student dialogues during a '' TV series debate '' concerning the views, questions and answers of three groups, the ''IPCCs'', the ''CLIMATE SCEPTICS'' and the '' REALISTS'' are exposed on a poster.
Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.
Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella
2017-10-01
We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.
Rader, Romina; Reilly, James; Bartomeus, Ignasi; Winfree, Rachael
2013-10-01
If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mohan, Riya Rachel
2018-04-01
Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.
Herding cats? A multi-model perspective on tropospheric ozone
NASA Astrophysics Data System (ADS)
Young, P. J.
2015-12-01
Various global multi-model studies have investigated tropospheric ozone changes over multi-decadal timescales. Several robust features emerge, which - for instance - allows the IPCC to associate high confidence in the radiative forcing associated with ozone increases between 1750 and the present day. However, such quantities hide the spread in results between different models, particularly when looking at seasonal and regional scales, and including for comparisons with observations. What can we learn about our scientific understanding from the model spread? What can we learn about models from the model spread? And can we make recommendations for deficient or missing processes if we wish to use our models for environmental prediction? Of course, these questions also have to be asked in the context of what we want the model(s) to do (air quality, climate, stratospheric ozone depletion etc.). This poster will report ongoing work in my group which draws on results from multi-model experiments conducted in support of the most recent IPCC report (CMIP5 and ACCMIP), with an eye to the expected outcomes from the ongoing Chemistry-Climate Model Initiative (CCMI) model simulations.
NASA Astrophysics Data System (ADS)
Crooks, S.; Wirth, T. C.; Herold, N.; Bernal, B.; Holmquist, J. R.; Troxler, T.; Megonigal, P.; Sutton-Grier, A.; Muth, M.; Emmett-Mattox, S.
2016-12-01
The Inventory of U.S. GHG Emissions and Sinks' (Inventory) chapter on Land Use, Land Use Change and Forestry (LULUCF) reports C stock changes and emissions of CH4 and N2O from forest management, and other land-use/land-use change activities. With the release of the 2013 Supplement to the 2006 IPCC Guidelines for National GHG Inventories: Wetlands (Wetlands Supplement) the United States has begun working to include emissions and removals from management activities on coastal wetlands, and is responding to a request by the United Nations Framework Convention on Climate Change (UNFCCC) for Parties to report back in March 2017 on their country's experience in applying the Wetlands Supplement. To support the EPA, NOAA has formed an interagency and science community group i.e., Coastal Wetland Carbon Working Group (CWCWG). The task of the CWCWG is to conduct an initial IPCC Tier 1-2 baseline assessment of GHG emissions and removals associated with coastal wetlands using the methodologies described in the recently released IPCC Wetlands Supplement for inclusion in the Inventory submitted to the UNFCCC in April 2017. The 5 million ha coastal land area of the conterminous United States has been delineated based upon tide stations and LIDAR derived digital elevation model. Land use change within the coastal land area has been calculated from NOAA Coastal Change Analysis Program (C-CAP), Forest Inventory and National Resource Inventory (NRI). Tier 2 (i.e., country-specific) subnational / climate zone estimates of carbon stocks (including soils), along with carbon sequestration rates and methane emissions rates have been developed from literature. Future opportunities to improve the coastal wetland estimates include: refined quantification of methane emissions from wetlands across the salinity gradient (including mapping of this gradient) and from impounded waters; quantification of impacts of forestry activities on wetland soils; emissions and removals on forested tidally influenced and palustrine wetlands on coastal land areas; the fate of carbon released from eroded wetlands; and the extent of seagrass along with the emissions and removals associated with anthropogenic impacts to them.
Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R
2015-02-20
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.
Elhakeem, Abubaker; Elshorbagy, Walid
2015-12-30
A comprehensive basin wide hydrodynamic evaluation has been carried out to assess the long term impacts of climate change and coastal effluents on the salinity and seawater temperature of the Arabian Gulf (AG) using Delft3D-Flow model. The long term impacts of climate change scenarios A2 and B1 of the IPCC-AR4 on the AG hydrodynamics were evaluated. Using the current capacity and production rates of coastal desalination, power, and refinery plants, two projection scenarios until the year 2080 with 30 year intervals were developed namely the realistic and the optimistic discharge scenarios. Simulations of the individual climate change scenarios ascertained overall increase of the AG salinity and temperature and decrease of precipitation. The changes varied spatially with different scenarios as per the depth, proximity to exchange with ocean water, flushing, vertical mixing, and flow restriction. The individual tested scenarios of coastal projected discharges showed significant effects but within 10-20 km from the outfalls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Science Support for Climate Change Adaptation in South Florida
Early, Laura M.; Harvey, Rebecca G.
2010-01-01
Earth's changing climate is among the foremost conservation challenges of the 21st century, threatening to permanently alter entire ecosystems and contribute to extinctions of species. Lying only a few feet above sea level and already suffering effects of anthropogenic stressors, south Florida's ecosystems are particularly vulnerable to negative impacts of climate change. Recent research accounting for the gravitational effects of melting ice sheets predicts that sea level rise on U.S. coastlines will be much higher than global averages (Gomez et al. 2010), and the Miami-Dade Climate Change Advisory Task Force predicts that local sea level rise will be at least 3 to 5 ft. (0.9 m to 1.5 m) by 2100 (MDCCATF 2008). In a 5 ft. scenario, up to 873 additional square miles of the Everglades would be inundated with saltwater (see maps below). Accelerated sea level rise is likely to be accompanied by increasing temperatures (IPCC 2007a) and more intense tropical storms and hurricanes (Webster et al. 2005). In addition, changes in amount, timing, and distribution of rainfall in south Florida may lead to more severe droughts and floods (SFWMD 2009).
Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigley, T.M.L.; Jones, P.D.
1994-07-01
In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided bymore » a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.« less
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
Editorial for Journal of Hydrology: Regional Studies
Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.
2014-01-01
Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.
Understanding observed and simulated historical temperature trends in California
NASA Astrophysics Data System (ADS)
Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.
2006-12-01
In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the summertime maximum temperature trends. We conduct an empirical study based on observed climate and irrigation changes to evaluate this assumption.
Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations
Sharma, Sapna; Vander Zanden, M. Jake; Magnuson, John J.; Lyons, John
2011-01-01
Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046–2065 and 2081–2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25–70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change. PMID:21860661
Comparing climate change and species invasions as drivers of coldwater fish population extirpations.
Sharma, Sapna; Vander Zanden, M Jake; Magnuson, John J; Lyons, John
2011-01-01
Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.
NASA Technical Reports Server (NTRS)
Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.
2017-01-01
Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.
Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2
Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.
2013-01-01
Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).
Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.; Balmford, Andrew; Burgess, Neil D.; Lovett, Jon C.; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L.; Marchant, Rob; Marshall, Andrew R.; Mbilinyi, Boniface; Munishi, Pantaleon K. T.; Owen, Nisha; Swetnam, Ruth D.; Topp-Jorgensen, Elmer J.; Lewis, Simon L.
2012-01-01
Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for a relatively low investment. PMID:23024764
2012-01-01
Background The default international accounting rules estimate the carbon emissions from forest products by assuming all harvest is immediately emitted to the atmosphere. This makes it difficult to assess the greenhouse gas (GHG) consequences of different forest management or manufacturing activities that maintain the storage of carbon. The Intergovernmental Panel on Climate Change (IPCC) addresses this issue by allowing other accounting methods. The objective of this paper is to provide a new model for estimating annual stock changes of carbon in harvested wood products (HWP). Results The model, British Columbia Harvested Wood Products version 1 (BC-HWPv1), estimates carbon stocks and fluxes for wood harvested in BC from 1965 to 2065, based on new parameters on local manufacturing, updated and new information for North America on consumption and disposal of wood and paper products, and updated parameters on methane management at landfills in the USA. Based on model results, reporting on emissions as they occur would substantially lower BC’s greenhouse gas inventory in 2010 from 48 Mt CO2 to 26 Mt CO2 because of the long-term forest carbon storage in-use and in the non-degradable material in landfills. In addition, if offset projects created under BC’s protocol reported 100 year cumulative emissions using the BC-HWPv1 the emissions would be lower by about 11%. Conclusions This research showed that the IPCC default methods overestimate the emissions North America wood products. Future IPCC GHG accounting methods could include a lower emissions factor (e.g. 0.52) multiplied by the annual harvest, rather than the current multiplier of 1.0. The simulations demonstrated that the primary opportunities for climate change mitigation are in shifting from burning mill waste to using the wood for longer-lived products. PMID:22828161
Willcock, Simon; Phillips, Oliver L; Platts, Philip J; Balmford, Andrew; Burgess, Neil D; Lovett, Jon C; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L; Marchant, Rob; Marshall, Andrew R; Mbilinyi, Boniface; Munishi, Pantaleon K T; Owen, Nisha; Swetnam, Ruth D; Topp-Jorgensen, Elmer J; Lewis, Simon L
2012-01-01
Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for a relatively low investment.
NASA Astrophysics Data System (ADS)
Carter, Peter
2017-04-01
This paper provides further compelling evidence for 'an immediate, massive effort to control CO2 emissions, stopped by mid-century' (Cai, Lenton & Lontzek, 2016). Atmospheric CO2 which is above 405 ppm (actual and trend) still accelerating, despite flat emissions since 2014, with a 2015 >3ppm unprecedented spike in Earth history (A. Glikson),is on the worst case IPCC scenario. Atmospheric methane is increasing faster than its past 20-year rate, almost on the worst-case IPCC AR5 scenario (Global Carbon Project, 2016). Observed effects of atmospheric greenhouse gas (GHG) pollution are increasing faster. This includes long-lived atmospheric GHG concentrations, radiative forcing, surface average warming, Greenland ice sheet melting, Arctic daily sea ice anomaly, ocean heat (and rate of going deeper), ocean acidification, and ocean de-oxygenation. The atmospheric GHG concentration of 485 ppm CO2 eq (WMO, 2015) commits us to 'about 2°C' equilibrium (AR5). 2°C by 2100 would require 'substantial emissions reductions over the next few decades' (AR5). Instead, the May 2016 UN update on 'intended' national emissions targets under the Paris Agreement projects global emissions will be 16% higher by 2030 and the November 2016 International Energy Agency update projects energy-related CO2 eq emissions will be 30% higher by 2030, leading to 'around 2.7°C by 2100 and above 3°C thereafter'. Climate change feedback will be positive this century and multiple large vulnerable sources of amplifying feedback exist (AR5). 'Extensive tree mortality and widespread forest die-back linked to drought and temperature stress have been documented on all vegetated continents' (AR5). 'Recent studies suggest a weakening of the land sink, further amplifying atmospheric growth of CO2' (WMO, 2016). Under all but the best-case IPCC AR5 scenario, surface temperature is projected to increase above 2°C by 2100, which is above 3°C (equilibrium) after 2100, with ocean acidification still increasing at 2100. Ocean heat is increasing under all scenarios at 2100. For all producing regions 'With or without adaptation, negative impacts on average crop yields become likely from the 2030s' (AR5). Crop models do not capture all adverse effects. The climate change of 2030 is practically locked in. NASA NEX downscaled daily maximum temperature projections at 1.5°C are incompatible with today's crop yields in major agricultural regions. Climate-change-related impacts from extreme events are high at 1.5°C (AR5) and add to modeled crop declines. 'Some unique and threatened systems are already at risk from climate change (high confidence)' with 'risk of severe consequences' higher with warming of around 1.5°C (AR5). At today's surface temperature increase, 'risks associated with tipping points become moderate' and 'increase disproportionately' as temperature increases above 1.5°C (AR5). According to mitigation projections, global emissions would decline forthwith for a better than 66% chance of a 2°C limit by 2100 (over 3°C after 2100). Failure to do so would risk the future sustainability of civilization and the human population. The IPCC does not make recommendations so this falls on scientists. By recommending immediate (emergency) massive action on CO2, the science community would make a momentous contribution to the future of humanity.
Web based visualization of large climate data sets
Alder, Jay R.; Hostetler, Steven W.
2015-01-01
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.
NASA Astrophysics Data System (ADS)
Niepold, F.; Karsten, J. L.
2009-12-01
Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009
Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam
Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.
2010-01-01
Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.
Woolf, Dominic; Lehmann, Johannes; Lee, David R
2016-10-21
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.
Woolf, Dominic; Lehmann, Johannes; Lee, David R.
2016-01-01
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177
Mountain Glaciers and Ice Caps
Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.
2011-01-01
Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.
Barbet-Massin, Morgane; Walther, Bruno A.; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric
2009-01-01
We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is −13 per cent (from −97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500±373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa. PMID:19324660
Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio
2014-04-01
Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Perez, Alfredo; Gil, Salvador; Lopez, Francisco; Barriendos, Mariano
2016-04-01
In recent decades, there has been an increase in physical and economic losses (WMO, CRED and UCL, 2014) that raises serious concerns in society. Climate change projections may explain the rise in flood losses; however, these shouldn't be considered yet (Bouwer, 2011). According to IPCC (2014), there is low confidence in anthropogenic climate change affecting the frequency and magnitude of fluvial floods on a global scale. In other words, this increase in flood events is not completely related to the higher frequency of heavy rainfall. To illustrate the aforementioned, a spatial example can be seen in the study area. In the Spanish Mediterranean coast, we see an increase in economic losses within the last 50 years due to flood events (Gil et al., 2014). It seems that the socio-economic growth and the rise of housing construction (Gaja, 2008) have led to an increase in vulnerability and exposure which are mainly responsible for those losses and the increase in severity of flood events (Pérez et al., 2015). Furthermore, this situation will probably become more precarious if some climate forecasts are met [IPCC, 2014; AEMET, 2015], and if the economic model fails to adopt efficient adaptive measures. Therefore, it is interesting to focus attention on social factors either within the present or future scenario in order to minimise the potential consequences and improve the adaptation. The main objective of this work focuses on the study of the evolution of the severity of the floods in the Spanish Mediterranean coast for the period (1960-2015). To do that, a statistical analysis of the data base [Gil et al., 2014; extended to the entire Spanish Mediterranean coast (MEDIFLOOD)] and a multiscale mapping (local, provincial and regional level) of the frequency of these events will take place in order to make comparisons and show spatiotemporal patterns according to the severity events evolution. Preliminary results show some interesting statistically significant relationships between severity and the increase of population and buildings mentioned above. Bibliography: AEMET (Agencia Estatal de Meteorología) (2015). Proyecciones Climáticas para el siglo XXI en España. www.aemet.es/es/serviciosclimaticos/cambio_climat Bouwer L.M. (2011). Have disaster losses increased due to anthropogenic climate change? Bull Am Meteorol Soc, 92. Gaja F. (2008). El 'tsunami urbanizador' en el litoral mediterráneo. El ciclo de hiperproducción inmobiliaria 1996-2006. Scripta Nova, 12. Gil S., Pérez A. & Barriendos M. (2014). Increasing vulnerability to flooding in the southern spanish mediterranean coast (1960-2013). In: Hydrological extreme events in historic and prehistoric times. Bonn (Germany). IPCC. (2014) Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core Writing Team, R.K. Pachauri & L.A. Meyer, eds. Geneva, Switzerland. Pérez-Morales, A., Gil-Guirado, S., & Olcina-Cantos, J. (2015). Housing bubbles and the increase of flood exposure. Failures in flood risk management on the Spanish south-eastern coast (1975-2013). Journal of Flood Risk Management. WMO, CRED and UCL (2014). Atlas of mortality and economic losses from weather, climate and water extremes 1970-2012. Geneva, Switzerland.
NASA Astrophysics Data System (ADS)
Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.
2015-12-01
As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.
Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela;
2016-01-01
The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.
A review of uncertainty visualization within the IPCC reports
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Reusser, Dominik; Wrobel, Markus
2015-04-01
Results derived from climate model simulations confront non-expert users with a variety of uncertainties. This gives rise to the challenge that the scientific information must be communicated such that it can be easily understood, however, the complexity of the science behind is still incorporated. With respect to the assessment reports of the IPCC, the situation is even more complicated, because heterogeneous sources and multiple types of uncertainties need to be compiled together. Within this work, we systematically (1) analyzed the visual representation of uncertainties in the IPCC AR4 and AR5 reports, and (2) executed a questionnaire to evaluate how different user groups such as decision-makers and teachers understand these uncertainty visualizations. Within the first step, we classified visual uncertainty metaphors for spatial, temporal and abstract representations. As a result, we clearly identified a high complexity of the IPCC visualizations compared to standard presentation graphics, sometimes even integrating two or more uncertainty classes / measures together with the "certain" (mean) information. Further we identified complex written uncertainty explanations within image captions even within the "summary reports for policy makers". In the second step, based on these observations, we designed a questionnaire to investigate how non-climate experts understand these visual representations of uncertainties, how visual uncertainty coding might hinder the perception of the "non-uncertain" data, and if alternatives for certain IPCC visualizations exist. Within the talk/poster, we will present first results from this questionnaire. Summarizing, we identified a clear trend towards complex images within the latest IPCC reports, with a tendency to incorporate as much as possible information into the visual representations, resulting in proprietary, non-standard graphic representations that are not necessarily easy to comprehend on one glimpse. We conclude that further translation is required to (visually) present the IPCC results to non-experts, providing tailored static and interactive visualization solutions for different user groups.
Temperature and heat wave trends in northwest Mexico
NASA Astrophysics Data System (ADS)
Martínez-Austria, Polioptro F.; Bandala, Erick R.; Patiño-Gómez, Carlos
2016-02-01
Increase in temperature extremes is one of the main expected impacts of climate change, as well as one of the first signs of its occurrence. Nevertheless, results emerging from General Circulation Models, while sufficient for large scales, are not enough for forecasting local trends and, hence, the IPCC has called for local studies based on on-site data. Indeed, it is expected that climate extremes will be detected much earlier than changes in climate averages. Heat waves are among the most important and least studied climate extremes, however its occurrence has been only barely studied and even its very definition remains controversial. This paper discusses the observed changes in temperature trends and heat waves in Northwestern Mexico, one of the most vulnerable regions of the country. The climate records in two locations of the region are analyzed, including one of the cities with extreme climate in Mexico, Mexicali City in the state of Baja California and the Yaqui River basin at Sonora State using three different methodologies. Results showed clear trends on temperature increase and occurrence of heat waves in both of the study zones using the three methodologies proposed. As result, some policy making suggestion are included in order to increase the adaptability of the studied regions to climate change, particularly related with heat wave occurrence.
Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.
2010-04-01
Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-modelmore » ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.« less
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Cook, K. H.
2008-12-01
As greenhouse warming continues there is growing concern about the future climate of both Africa, which is highlighted by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) as exceptionally vulnerable to climate change, and India. Precipitation projections from the AOGCMs of the IPCC AR4 are relatively consistent over India, but not over northern Africa. Inconsistencies can be related to the model's inability to capture climate process correctly, deficiencies in physical parameterizations, different SST projections, or horizontal atmospheric resolution that is too coarse to realistically represent the tight gradients over West Africa and complex topography of East Africa and India. Treatment of the land surface in a model may also be an issue over West Africa and India where land-surface/atmosphere interactions are very important. Here a method for simulating future climate is developed and applied using a high-resolution regional model in conjunction with output from a suite of AOGCMs, drawing on the advantages of both the regional and global modeling approaches. Integration by the regional model allows for finer horizontal resolution and regionally appropriate selection of parameterizations and land-surface model. AOGCM output is used to provide SST projections and lateral boundary conditions to constrain the regional model. The control simulation corresponds to 1981-2000, and eight future simulations representing 2081-2100 are conducted, each constrained by a different AOGCM and forced by CO2 concentrations from the SRES A2 emissions scenario. After model spin-up, May through October remain for investigation. Analysis is focused on climate change parameters important for impacts on agriculture and water resource management, and is presented in a format compatible with the IPCC reports. Precipitation projections simulated by the regional model are quite consistent, with 75% or more ensemble members agreeing on the sign of the anomaly over vast regions of Africa and India. Over West Africa, where the regional model provides the greatest improvement over the AOGCMs in consistency of ensemble members, precipitation at the end of the century is generally projected to increase during May and decrease in June and July. Wetter conditions are simulated during August though October, with the exception of drying close to the Guinean Coast in August. In late summer, high rainfall rates are simulated more frequently in the future, indicating the possibility for increases in flooding events. The regional model's projections over India are in stark contrast to the AOGCM's, producing intense and generally widespread drying in August and September. The very promising method developed here is young and further potential developments are recognized, including the addition of ocean, vegetation, and dust models. Ensembles which employ other regional models, sets of parameterizations, and emissions scenarios should also be explored.
[Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
Yang, Xia; Zheng, Jiang-Hua; Mu, Chen; Lin, Jun
2017-02-01
Specific information on geographic distribution of a species is important for its conservation. This study was conducted to determine the potential geographic distribution of Alhagi sparsifolia, which is a plant used in traditional Uighur medicine, and predict how climate change would affect its geographic range. The potential geographic distribution of A. sparsifolia under the current conditions in China was simulated with MaxEnt software based on species presence data at 42 locations and 19 climatic variables. The future distributions of A. sparsifolia were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).The result showed that mean temperature of the coldest quarter, annual mean temperature, precipitation of the coldest quarter, annual precipitation, precipitation of the wettest month, mean temperature of the wettest quarter and the temperature annual range were the seven climatic factors influencing the geographic distribution of A. sparsifolia under current climate, the suitable habitats are mainly located in the Xinjiang, in the middle and north of Gansu, in the west of Neimeng, in the north of Nei Monggol. From 2050 to 2070, the model simulations indicated that the suitable habitats of A. sparsifolia would decrease under the climate change scenarios of RCP2.6 and scenarios of RCP8.5 on the whole. Copyright© by the Chinese Pharmaceutical Association.
From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems
N. M. Tchebakova; G. E. Rehfeldt; E. I. Parfenova
2010-01-01
Evidence for global warming over the past 200 years is overwhelming, based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001, 2007). On the background of global warming at a rate of 0.6°C during the twentieth century (IPCC 2001),...
Response of the European ecosystems to climate change: a modelling approach for the 21st century.
NASA Astrophysics Data System (ADS)
Dury, Marie; Warnant, Pierre; François, Louis; Henrot, Alexandra; Favre, Eric; Hambuckers, Alain
2010-05-01
According to projections, over the 21st century, significant climatic changes appear and will be strengthened all over the world with the continuing increase of the atmospheric CO2 level. Climate will be generally warmer with notably changes in the seasonality and in the precipitation regime. These changes will have major impacts on the environment and on the biodiversity of natural ecosystems. Geographic distribution of ecosystems may be modified since species will be driven to migrate towards more suitable areas (e. g., shifting of the arctic tree lines). The CARAIB dynamic vegetation model (Carbon Assimilation in the Biosphere) forced with 21st century climate scenarios of the IPCC (ARPEGE-Climat model) is used to illustrate and analyse the potential impacts of climate change on tree species distribution and productivity over Europe. Changes in hydrological budget (e. g., runoff) and fire effects on forests will also be shown. Transient runs (1975-2100) with a new dynamic module introduced in CARAIB are performed to follow the future evolutions. In the new module, the processes of species establishment, competition and mortality due to stresses and disturbances have been improved. Among others, increased atmospheric CO2 and warmer climate increase tree productivity while drier conditions decrease it. Regions with more severe droughts will also be affected by an increase of wildfire frequency, which may have large impacts on vegetation density and distribution.
NASA Astrophysics Data System (ADS)
Lefèvre, Roger-Alexandre
2017-04-01
Cultural Heritage is the core of civilization and mankind and contributes substantially to quality of life. Its preservation for its historical value and aesthetics, for its conservation and transmission, must be one of the paramount preoccupations of each citizen and institution. It is therefore fundamental to guard against a major evolution of our planet that is increasing and harmful for all the materials: climate imbalance. The tangible Cultural Heritage, often in an urban environment, is threatened both by extreme climate events, relatively short but recurrent, and by slow, insidious and continuous ones, often in relationship with pollution. The main climate factor at global scale - a general increase of mean temperatures leading to sea level rise - will have direct and indirect consequences on Cultural Heritage. The other climate threats (rain, relative humidity, solar radiation, drought, wind, floods…) and pollution (by gases and particles) will have specific effects on materials of Cultural Heritage, both outdoors (façades of monuments, historical centres of cities, open-air statues, cultural landscapes…) and indoors (museums, libraries, reserves, collections…). Since the 1st International Workshop on « Climate Change and Cultural Heritage » held at the European University Centre for Cultural Heritage in Ravello in May 2009, three important events appeared: • The publication in 2014 of the 5th IPCC Assessment Report. For the first time the Cultural Heritage was cited in an IPCC Report. • The holding in 2015 in Paris of the COP21. Some round-tables were organised during this conference concerning the Cultural Heritage. • The holding the same year in Paris of the International Scientific Conference "Our Common Future under Climate Change" in the frame and ahead of the COP21. Cultural Heritage was the topic of a special session at this important conference. During the last decade, the European scientific community was focused on the Threats and Impacts of Climate Change on Cultural Heritage thanks to important projects funded by the European Commission among them: Noah's Ark (2003-2007) and Climate for Culture (2009-2014). The time is arrived focusing on the Resilience and Adaptation of Cultural Heritage to Climate Change. Italy and France already have National Adaptation Plan to Climate Change where Cultural Heritage is taken into account. Other national and international bodies are involved in this field, including European Commission (Horizon 2020 Programme, JPI Cultural Heritage), Council of Europe, UNESCO, ICOMOS… The organisation in Ravello in 2017 of the 2nd International Workshop on "Resilience and Adaptation of Cultural Heritage to Climate Change" should be an opportunity to give the word to scientists, teachers, curators, conservators, restorers, politicians, decision-makers and stake-holders…for reviewing the current state of this urgent problematic and of this scarcely explored area of research (www.univeur.org ).
Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry
NASA Astrophysics Data System (ADS)
Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.
2015-12-01
Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.
NASA Astrophysics Data System (ADS)
Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.
2002-12-01
There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human exposures and responses to heat stress and air quality differ as a function of socio-economic status and race/ethnicity across the region? The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Regional Atmospheric Modeling System (RAMS) and PennState/NCAR MM5 mesoscale meteorological models; the SLEUTH land use model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); the Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) models for simulating regional air quality; and exposure-risk coefficients for assessing population health impacts based on exposure to extreme heat, fine particulates (PM2.5) and ozone. Two different IPCC global emission scenarios and two different regional land use growth scenarios are considered in the simulations, spanning a range of possible futures. In addition to base simulations for selected time periods in the decade 1990 - 2000, the integrated model is used to simulate future scenarios in the 2020s, 2050s, and 2080s. Predictions from both the meteorological models and the air quality models are compared against available observations for the simulations in the 1990s to establish baseline model performance. A series of sensitivity tests will address whether changes in meteorology due to global climate change, changes in regional land use, or changes in emissions have the largest impact on predicted ozone and particulate matter concentrations.
The Consequential Challenges of Climate Change
2011-03-22
LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT UNCLASSIFED b. ABSTRACT UNCLASSIFED c . THIS PAGE...3 precipitation events. As measured by multiple methods, the global annual average temperature rose 0.13˚ C per decade between 1955 and 2005...The IPCC projects global temperatures will rise by approximately 5 C in the next twenty years and 8 C to 4 C by the end of the century.15 These
NASA Astrophysics Data System (ADS)
Kharel, G.; Kirilenko, A.
2014-12-01
Terminal lakes are heavily impacted by regional changes in climate. Devils Lake (DL) is a terminal lake located in the northeastern North Dakota of the US. Since 1990, following a shift in regional precipitation pattern, DL has encountered a 10 m water level rise, with over 400% increase in surface area and 600% increase in water volume, costing over $1.5 billion in mitigation. Currently, the lake is <1.5 m from spillover level to the nearby Sheyenne River with potential negative consequences for downstream water quality and flooding. Recently, the artificial outlets have been constructed and operated to divert DL water to the Sheyenne River amid legal and political pressure. Outlet construction however did not take into consideration possible changes in local climate. We modeled the DL basin ( 9,800 km2) hydrology using the Soil and Water Assessment Tool (SWAT) and estimated future water levels of DL for different outlet scenarios under three Intergovernmental Panel on Climate Change (IPCC) SRES scenarios (A1B, B1 & A2) for 2020s and 2050s. We evaluated model performance by comparing SWAT simulated daily streamflow outputs against the observed streamflow data recorded at 6 USGS water gauge locations within the basin. Future climate conditions in the region were estimated by combining historical weather data (1981-2010), 15 CMIP3 General Circulation Model projections from the IPCC data center, and stochastic downscaling methodology (LARS-WG). Our results indicate significant likelihood (7.3% ̶ 20.0%) of uncontrolled DL water overspill in the next few decades in the absence of outlets, with some members of GCM integration ensemble carrying over 85.0% and 95.0% overspill probability for 2020s and 2050s respectively. However, full-capacity outlets show radical reduction in overspill probability to partially mitigate the flooding problem by decreasing the average lake level by approximately 1.9 m and 1.5 m in 2020s and 2050s. Moreover, had there been outlet operation from the beginning of the flood episode since 1990s, not only the future overspill risks but also the current flooding extent would have been reduced significantly (Fig. 1).
NASA Astrophysics Data System (ADS)
Sleeman, J.; Halem, M.; Finin, T.; Cane, M. A.
2016-12-01
Approximately every five years dating back to 1989, thousands of climate scientists, research centers and government labs volunteer to prepare comprehensive Assessment Reports for the Intergovernmental Panel on Climate Change. These are highly curated reports distributed to 200 nation policy makers. There have been five IPCC Assessment Reports to date, the latest leading to a Paris Agreement in Dec. 2016 signed thus far by 172 nations to limit the amount of global Greenhouse gases emitted to producing no more than a 20 C warming of the atmosphere. These reports are a living evolving big data collection tracing 30 years of climate science research, observations, and model scenario intercomparisons. They contain more than 200,000 citations over a 30 year period that trace the evolution of the physical basis of climate science, the observed and predicted impact, risk and adaptation to increased greenhouse gases and mitigation approaches, pathways, policies for climate change. Document-topic and topic-term probability distributions are built from the vocabularies of the respective assessment report chapters and citations. Using Microsoft Bing, we retrieve 150,000 citations referenced across chapters and convert those citations to text. Using a word n-gram model based on a heterogeneous set of climate change terminology, lemmatization, noise filtering and stopword elimination, we calculate word frequencies for chapters and citations. Temporal document sets are built based on the assessment period. In addition to topic modeling, we employ cross domain correlation measures. Using the Jensen-Shannon divergence and Pearson correlation we build correlation matrices for chapter and citations topics. The shared vocabulary acts as the bridge between domains resulting in chapter-citation point pairs in space. Pairs are established based on a document-topic probability distribution. Each chapter and citation is associated with a vector of topics and based on the n most probable topics, we establish which chapter-citation pairs are most similar. We will perform posterior inferences based on Hastings -Metropolis simulated annealing MCMC algorithm to infer, from the evolution of topics starting from AR1 to AR4, assertions of topics for AR5 and potentially AR6.
NASA Astrophysics Data System (ADS)
Ranatunga, T.; Tong, S.; Yang, J.
2011-12-01
Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
Solar cycle length hypothesis appears to support the ipcc on global warming
NASA Astrophysics Data System (ADS)
Laut, P.; Gundermann, J.
1998-12-01
Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of northern hemisphere land air temperatures, there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The solar hypothesis (as we shall term this assumption) claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier article we have demonstrated that for data covering the period 1860-1980 the solar hypothesis does not rule out any significant contribution from man-made greenhouse gases and sulphate aerosols. The present analysis goes a step further. We analyse the period 1579-1987 and find that the solar hypothesis-instead of contradicting-appears to support the assumption of a significant warming due to human activities. We have tentatively corrected the historical northern hemisphere land air temperature anomalies by removing the assumed effects of human activities. These are represented by northern hemisphere land air temperature anomalies calculated as the contributions from man-made greenhouse gases and sulphate aerosols by using an upwelling diffusion-energy balance model similar to the model of [Wigley and Raper, 1993] employed in the Second Assessment Report of The Intergovernmental Panel on Climate Change (IPCC). It turns out that the agreement of the filtered solar cycle lengths with the corrected temperature anomalies is substantially better than with the historical anomalies, with the mean square deviation reduced by 36% for a climate sensitivity of 2.5°C, the central value of the IPCC assessment, and by 43% for the best-fit value of 1.7°C. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.
O'Dwyer, Jean; Walshe, Dylan; Byrne, Kenneth A
2018-03-01
Large quantities of wood products have historically been disposed of in landfills. The fate of this vast pool of carbon plays an important role in national carbon balances and accurate emission reporting. The Republic of Ireland, like many EU countries, utilises the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas reporting in the waste sector, which provides default factors for emissions estimation. For wood products, the release of carbon is directly proportional to the decomposition of the degradable organic carbon fraction of the product, for which the IPCC provides a value of 0.5 (50%). However, in situ analytic results of the decomposition rates of carbon in landfilled wood do not corroborate this figure; suggesting that carbon emissions are likely overestimated. To assess the impact of this overestimation on emission reporting, carbon decomposition values obtained from literature and the IPCC default factor were applied to the Irish wood fraction of landfilled waste for the years 1957-2016 and compared. Univariate analysis found a statistically significant difference between carbon (methane) emissions calculated using the IPCC default factor and decomposition factors from direct measurements for softwoods (F = 45.362, p = <.001), hardwoods (F = 20.691, p = <.001) and engineered wood products (U = 4.726, p = <.001). However, there was no significant difference between emissions calculated using only the in situ analytic decomposition factors, regardless of time in landfill, location or subsequently, climate. This suggests that methane emissions from the wood fraction of landfilled waste in Ireland could be drastically overestimated; potentially by a factor of 56. The results of this study highlight the implications of emission reporting at a lower tierand prompts further research into the decomposition of wood products in landfills at a national level. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
WU, Y.; Liu, S.; Li, Z.; Young, C.; Werner, J.; Dahal, D.; Liu, J.; Schmidt, G.
2012-12-01
Climate and land cover changes may influence the capacity of the terrestrial ecosystems to be carbon sinks or sources. The objective of this study was to investigate the potential change of the carbon sequestration in the Marine West Coast Forests ecoregion in the Pacific Northwest United States using the General Ensemble Biogeochemical Modeling System (GEMS). In GEMS, the underlying biogeochemical model, Erosion and Deposition Carbon Model (EDCM), was used and calibrated using MODIS net primary production (NPP) and grain yield data during the baseline period from 2002 to 2005, and then validated with another four-year period from 2006 to 2009. GEMS-EDCM was driven using projected climate from three General Circulation Models (GCMs) under three IPCC scenarios (A2, A1B, and B1) and derived land cover data from the FORecasting SCEnarios (FORE-SCE) model under the same three IPCC scenarios for the period from 2006 to 2050. This ecoregion, two-thirds of which is covered by forest, was projected to continue to gain carbon from 2005 to 2050, with an annual carbon sequestration of about -3 Tg C. It was also predicted that live biomass and soil organic carbon (SOC) would contain about 48% and 33% of the total carbon storage by 2050, respectively. In addition, forest carbon sequestration (-2 Tg C yr-1) demonstrated to be the largest sink among all ecosystems, accounting for 73% of the total, followed by grass/shrub and agriculture. Overall, results about predicted dynamics of carbon storage and sequestration can be informative to policy makers for seeking mitigation plans to reduce greenhouse gases emissions.
NASA Astrophysics Data System (ADS)
Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.
2011-12-01
Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2011-04-02
This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal
2012-09-01
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems. © 2012 Blackwell Publishing Ltd.
Climate change and human health: what are the research trends? A scoping review protocol.
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-12-23
For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Climate change and human health: what are the research trends? A scoping review protocol
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-01-01
Introduction For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. Methods and analysis A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. Ethics and dissemination No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. PMID:28011805
NASA Astrophysics Data System (ADS)
Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Ellis, J.; Woodruff, D.; Quattrochi, D.; Rose, K.; Swann, R.
2012-12-01
Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.
NASA Technical Reports Server (NTRS)
Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Swann, R.
2012-01-01
Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.
Robust and Heterogeneous Hydrological Changes under Global Warming
NASA Astrophysics Data System (ADS)
Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.
2015-12-01
The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
Jha, Arvind K; Sharma, C; Singh, Nahar; Ramesh, R; Purvaja, R; Gupta, Prabhat K
2008-03-01
Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M
2013-01-01
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.
Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.
2013-01-01
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts. PMID:23950785
NASA Astrophysics Data System (ADS)
Mörner, Nils-Axel
2014-05-01
Sea level may rise due to glacier melting, heat expansion of the oceanic water column, and redistribution of the waster masses - all these factors can be handled as to rates and amplitudes (provided one knows what one is talking about). In key areas over the entire Indian Ocean and in many Pacific Islands there are no traces of and sea level rise over the last 40-50 years. This is also the case for test-areas like Venice and the North Sea coasts. In the Kattegatt Sea one can fix the sea level factor to a maximum rise of 1.0-0.9 mm/year over the last century. The 204 tide gauges selected by NOAA for their global sea level monitoring provide a strong and sharp maximum (of 182 sites) in the range of 0.0-2.0 mm/yr. Satellite altimetry is said to give a rise of 3.2 mm/yr; this, however, is a value achieved after a quite subjective and surely erroneous "correction". The IPCC is talking about exceptionally much higher rates, and even worse are some "boy scouts" desperate try to launce real horror ratios. Physical laws set the frames of the rate and amount of ice melting, and so do records of events in the past (i.e. the geological records). During the Last Ice Age so much ice was accumulated on land, that the sea level dropped by about 120 m. When the process was reversed and ice melted under exceptionally strong climate forcing, sea level rose at a maximum rate of about 10 mm/yr (a meter per century). This can never happen under today's climate conditions. Even with IPCC's hypothetical scenarios, the true sea rise must be far less. When people like Rahmstorf (claiming 1 m or more by 2100) and Hansen (claiming a 4 m rise from 2080 to 2100) give their values, they exceed what is possible according to physical laws and accumulated geological knowledge. The expansion of the oceanic water column may reach amounts of sea level rise in the order of a few centimetres, at the most a decimetre. Old temperature measurements may record a temperature rise over the last 50 years in the order of 0.4o C. The improved ARGO measurements starting 2004 give virtually no change, however. The physically possible amount of expansion decreases, of course, with the decreasing water columns towards the coasts, and at the coasts it is zero (±0.0 mm). The redistribution of water masses in response to the Earth's rotation, surface current beat, wind stress, air pressure, etc. is an important factor. It gives local to regional changes, cancelled out on the global scale, however. From a geoethical point of view, it is of course quite blameworthy that IPCC excels in spreading these horror scenarios of a rapid, even accelerating, sea level rise. Besides, modern understanding of the planetary-solar-terrestrial interaction shows that we are now on our way into grand solar minimum with severely colder climate - that is just the opposite to IPCC's talk about an accelerating warming. In science we should debate - but we should not dictate (as IPCC insist upon), and it is here the perspectives of geoethics comes into the picture.
Cunha, C S; Lopes, N L; Veloso, C M; Jacovine, L A G; Tomich, T R; Pereira, L G R; Marcondes, M I
2016-11-15
The adoption of carbon inventories for dairy farms in tropical countries based on models developed from animals and diets of temperate climates is questionable. Thus, the objectives of this study were to estimate enteric methane (CH4) emissions through the SF6 tracer gas technique and through equations proposed by the Intergovernmental Panel on Climate Change (IPCC) Tier 2 and to calculate the inventory of greenhouse gas (GHG) emissions from two dairy systems. In addition, the carbon balance of these properties was estimated using enteric CH4 emissions obtained using both methodologies. In trial 1, the CH4 emissions were estimated from seven Holstein dairy cattle categories based on the SF6 tracer gas technique and on IPCC equations. The categories used in the study were prepubertal heifers (n=6); pubertal heifers (n=4); pregnant heifers (n=5); high-producing (n=6); medium-producing (n=5); low-producing (n=4) and dry cows (n=5). Enteric methane emission was higher for the category comprising prepubertal heifers when estimated by the equations proposed by the IPCC Tier 2. However, higher CH4 emissions were estimated by the SF6 technique in the categories including medium- and high-producing cows and dry cows. Pubertal heifers, pregnant heifers, and low-producing cows had equal CH4 emissions as estimated by both methods. In trial 2, two dairy farms were monitored for one year to identify all activities that contributed in any way to GHG emissions. The total emission from Farm 1 was 3.21t CO2e/animal/yr, of which 1.63t corresponded to enteric CH4. Farm 2 emitted 3.18t CO2e/animal/yr, with 1.70t of enteric CH4. IPCC estimations can underestimate CH4 emissions from some categories while overestimate others. However, considering the whole property, these discrepancies are offset and we would submit that the equations suggested by the IPCC properly estimate the total CH4 emission and carbon balance of the properties. Thus, the IPCC equations should be utilized with caution, and the herd composition should be analysed at the property level. When the carbon stock in pasture and other crops was considered, the carbon balance suggested that both farms are sustainable for GHG, by both methods. On the other hand, carbon balance without carbon stock, by both methods, suggests that farms emit more carbon than the system is capable of stock. Copyright © 2016 Elsevier B.V. All rights reserved.
ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?
DOE Office of Scientific and Technical Information (OSTI.GOV)
AchutaRao, K; Sperber, K R
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared withmore » reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.« less
Change of ocean circulation in the East Asian Marginal Seas under different climate conditions
NASA Astrophysics Data System (ADS)
Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho
2010-05-01
Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.
NASA Astrophysics Data System (ADS)
Loboda, Tatiana V.
2014-11-01
Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.
Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.
Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien
2015-10-01
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.
Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change
Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien
2015-01-01
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958
Simulating Soil C Stock with the Process-based Model CQESTR
NASA Astrophysics Data System (ADS)
Gollany, H.; Liang, Y.; Rickman, R.; Albrecht, S.; Follett, R.; Wilhelm, W.; Novak, J.; Douglas, C.
2009-04-01
The prospect of storing carbon (C) in soil, as soil organic matter (SOM), provides an opportunity for agriculture to contribute to the reduction of carbon dioxide in the atmosphere while enhancing soil properties. Soil C models are useful for examining the complex interactions between crop, soil management practices and climate and their effects on long-term carbon storage or loss. The process-based carbon model CQESTR, pronounced ‘sequester,' was developed by USDA-ARS scientists at the Columbia Plateau Conservation Research Center, Pendleton, Oregon, USA. It computes the rate of biological decomposition of crop residues or organic amendments as they convert to SOM. CQESTR uses readily available field-scale data to assess long-term effects of cropping systems or crop residue removal on SOM accretion/loss in agricultural soil. Data inputs include weather, above- ground and below-ground biomass additions, N content of residues and amendments, soil properties, and management factors such as tillage and crop rotation. The model was calibrated using information from six long-term experiments across North America (Florence, SC, 19 yrs; Lincoln, NE, 26 yrs; Hoytville, OH, 31 yrs; Breton, AB, 60 yrs; Pendleton, OR, 76 yrs; and Columbia, MO, >100 yrs) having a range of soil properties and climate. CQESTR was validated using data from several additional long-term experiments (8 - 106 yrs) across North America having a range of SOM (7.3 - 57.9 g SOM/kg). Regression analysis of 306 pairs of predicted and measured SOM data under diverse climate, soil texture and drainage classes, and agronomic practices at 13 agricultural sites resulted in a linear relationship with an r2 of 0.95 (P < 0.0001) and a 95% confidence interval of 4.3 g SOM/kg. Estimated SOC values from CQESTR and IPCC (the Intergovernmental Panel on Climate Change) were compared to observed values in three relatively long-term experiments (20 - 24 years). At one site, CQESTR and IPCC estimates of SOC stocks were within 5% of each other for three rotations. At a second site, decreasing tillage intensity increased SOC stocks for winter wheat-fallow rotation for both observed and estimated values by CQESTR and IPCC. At the third site, CQESTR simulated an increase in SOC stocks with increased fertility levels, while IPCC estimates of SOC stocks did not reflect an increase. The CQESTR model successfully predicts SOM dynamics from various management practices and offers the potential for C sequestration planning for C credits or to guide crop residue removal for bio-energy production without degrading the soil resource, environmental quality, or productivity.
NASA Astrophysics Data System (ADS)
Pathak, T. B.; Doll, J. E.
2016-12-01
It is evident that changes in climate will adversely impact various sectors including agriculture and natural resources worldwide. Increased temperatures, longer than normal growing seasons, more frequent extreme weather events, decreased winter snowpack, earlier snowmelt, and vulnerability to pest are some of the examples of changes and impacts documented in the literature. According to the IPCC 2007, mainstreaming` climate change issues into decision-making is an important aspect for sustainability. Due to the lack of locally and regionally focused educational programs, it becomes difficult for people to translate the science into meaningful actions. One of the strengths of the Cooperative Extension system is that it is one of the most trusted sources of science-based information that is locally relevant. In order to utilize strong network of Cooperative Extension system, we implemented a project to provide regionally tailored climate change and sustainable agriculture professional development for Cooperative Extension and Natural Resources Conservation Services (NRCS) educators in 12 states in north central US. We conducted these activities: 1) creation and dissemination of a Climate Change and Sustainable Agriculture Resource Handbook and a curriculum and 2) two climate change and sustainable agriculture workshops. In general, this project resulted in improved ability of Cooperative Extension academics to respond to climate change questions with science-based information. Several workshop attendees also integrated information provided to them through resource handbook and curriculum into their existing programming. In the long-term, we hope these programs will result in educators and farmers making informed choices and recommendations that lead to sustainable agriculture in the face of climate change.
Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel
2013-08-01
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.
Inevitable changes in snowpack and water resources over California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Hall, A. D.; Sun, F.; Walton, D.; Berg, N.; Schwartz, M. A.
2015-12-01
Here we use a downscaling technique incorporating both dynamical and statistical methods to project end-of-century changes in spring snow water equivalent in California's Sierra Nevada. The technique produces outcomes for all Global Climate Models (GCMs) and the four greenhouse gas forcing scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC). For all GCMs and forcing scenarios, significant snow loss occurs at elevations below 2500 meters, despite increasing precipitation in many GCMs. The loss is significantly enhanced by snow albedo feedback. The approximate intermodel range in percent of total snow remaining in the entire region is 60-85% for a likely "mitigation" scenario, and 35-55% for the "business-as-usual" scenario. Thus significant snowpack decrease by century's end is inevitable, even if the loss can be cushioned through greenhouse gas emissions reductions over the coming decades. The snowpack loss also leads to significant changes in runoff timing, which are also inevitable.
NASA Astrophysics Data System (ADS)
Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki
2017-11-01
In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways
. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
Measuring progress of the global sea level observing system
NASA Astrophysics Data System (ADS)
Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian
Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].
Eide, Arne
2017-12-01
Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets' fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC's SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
NASA Astrophysics Data System (ADS)
Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.
2015-10-01
This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.
Changes of the potential distribution area of French Mediterranean forests under global warming
NASA Astrophysics Data System (ADS)
Gaucherel, C.; Guiot, J.; Misson, L.
2008-11-01
This work aims at understanding future spatial and temporal distributions of tree species in the Mediterranean region of France under various climates. We focused on two different species (Pinus Halepensis and Quercus Ilex) and compared their growth under the IPCC-B2 climate scenario in order to quantify significant changes between present and future. The influence of environmental factors such as atmospheric CO2 increase and topography on the tree growth has also been quantified. We modeled species growth with the help of a process-based model (MAIDEN), previously calibrated over measured ecophysiological and dendrochronological series with a Bayesian scheme. The model was fed with the ARPEGE MeteoFrance climate model, combined with an explicit increase in CO2 atmospheric concentration. The main output of the model gives the carbon allocation in boles and thus tree production. Our results show that the MAIDEN model is correctly able to simulate pine and oak production in space and time, after detailed calibration and validation stages. Yet, these simulations, mainly based on climate, are indicative and not predictive. The comparison of simulated growth at end of 20th and 21st centuries, show a shift of the pine production optimum from about 650 to 950 m due to 2.5 K temperature increase, while no optimum has been found for oak. With the direct effect of CO2 increase taken into account, both species show a significant increase in productivity (+26 and +43% for pine and oak respectively) at the end of the 21st century. While both species have different growth mechanisms, they have a good chance to extend their spatial distribution and their elevation in the Alps during the 21st century under the IPCC-B2 climate scenario. This extension is mainly due to the CO2 fertilization effect.
Towards a Unified Framework in Hydroclimate Extremes Prediction in Changing Climate
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Yan, H.; Zarekarizi, M.; Bracken, C.
2016-12-01
Spatio-temporal analysis and prediction of hydroclimate extremes are of paramount importance in disaster mitigation and emergency management. The IPCC special report on managing the risks of extreme events and disasters emphasizes that the global warming would change the frequency, severity, and spatial pattern of extremes. In addition to climate change, land use and land cover changes also influence the extreme characteristics at regional scale. Therefore, natural variability and anthropogenic changes to the hydroclimate system result in nonstationarity in hydroclimate variables. In this presentation recent advancements in developing and using Bayesian approaches to account for non-stationarity in hydroclimate extremes are discussed. Also, implications of these approaches in flood frequency analysis, treatment of spatial dependence, the impact of large-scale climate variability, the selection of cause-effect covariates, with quantification of model errors in extreme prediction is explained. Within this framework, the applicability and usefulness of the ensemble data assimilation for extreme flood predictions is also introduced. Finally, a practical and easy to use approach for better communication with decision-makers and emergency managers is presented.
Visualizing interconnections among climate risks
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.
2015-12-01
It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is therefore imperative to improve our understanding on how climate change may induce a chain of impacts. Our study is a first step toward this goal by mapping out climate risks and their cause-effect relationships based on current literature.
Our Changing Climate: A Brand New Way to Study Climate Science
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.
2014-12-01
Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy websites to spur further interest. Faculty support materials are also provided. AMS Climate Studies has been licensed by 130 institutions since Fall 2010. Our Changing Climate reveals the impact that each of us has on the climate. With this understanding come choices and actions for a more sustainable future.
Preparing teachers to address climate change with project-based instructional modules
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Small, M.; Dhaniyala, S.
2012-12-01
Clarkson University's Project-Based Global Climate Change Education project funded by NASA has created and disseminated several instructional modules for middle and high school teachers. The modules were developed by a team of teachers and university students and faculty. Fundamental to these inquiry-based modules are questions about climate change or mitigation efforts, use of real-world data to explore historical climate changes, and review of IPCC model results to understand predictions of further changes over the next century. As an example, the Climate Connections module requires middle school students to investigate a geographic region, learn about the culture and likely carbon footprint, and then acquire and analyze data sets of historical and predicted temperature changes. The findings are then interpreted in relation to the impact of these changes on the region's culture. NOAA, NASA, IPCC and DOE databases are used extensively. The inquiry approach and core content included in these modules are well aligned with the new Framework for K-12 Science Education. The climate change science in these modules covers aspects of the disciplinary core subjects (dimension 3) and most of the cross cutting concepts (dimension 2). Our approach for inquiry and analysis are also authentic ways to include most of the science and engineering practices (dimension 1) included in the framework. Dissemination of the modules to teachers in New York State has been a joint effort by NYSERDA (New York State Energy Research and Development Authority) and Clarkson. Half-day and full-day workshops and week-long institutes provided opportunities to either introduce the modules and the basics of finding and using temperature data, or delve into the science concepts and integration of the modules into an instructional plan. A significant challenge has been identified by the workshop instructors - many science teachers lack the skills necessary to fully engage in the science and engineering practices required for dimension 1 of the Framework for K-12 Science Education. Downloading data, using a spreadsheet to plot and analyze data and calculating basic statistical parameters are new skills for many of the teachers with whom we have worked. But our teacher professional development opportunities have been effective. 23 teachers attended the intensive one or two week-long institutes. A pre- and post-climate literacy survey administered to these teachers showed statistically significant gains (p <0.01) in their climate change content knowledge and attitudes. For example, the percentage of teachers who agreed or strongly agreed to the statement "Life on earth will continue without major disruptions only if we take immediate and drastic action to reduce global warming" increased from 52% to 90% (pre, post). Changes in responses to the behavior items were not significant. Presentation of this work will include a brief introduction to the instructional modules and climate literacy assessment as a basis for identifying the prerequisite skill sets needed by science teachers to effectively incorporate new content and engineering practices through projects that require accessing and analyzing real-world climate change and mitigation data.
Scientists' views about attribution of global warming.
Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo
2014-08-19
Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.
Orrù, Martino; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi
2012-12-01
The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l). Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10-25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C). Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (T(b)) of 9·0-11·3 °C and a thermal time requirement for 50 % of germination (θ(50)) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations. The thermal thresholds for seed germination identified in this study (T(b) and θ(50)) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.
The impact of SciDAC on US climate change research and the IPCCAR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael
2005-07-08
SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less
NASA Astrophysics Data System (ADS)
Radhakrishnan, A.; Gupta, J.; R, D.
2016-12-01
In recent years climate variability has threatened the sustainability of dairy animals and dairy farming in India. The study aims at assessing the vulnerability and tradeoffs of Dairy Based Livelihoods to Climate Variability and Change in the Western Ghat ecosystem and for this purpose; data were aggregated to an overall Livelihood Vulnerability Index (LVI) to Climate Change underlying the principles of IPCC, using 28 indicators and trade-off between vulnerability and milk production was calculated. Data were collected through Participatory Rural Appraisal and personal interviews from 360 randomly selected dairy farmers of three states of Western Ghat region, complemented by thirty years of gridded weather data and livestock data. The index score of dairy based livelihoods of many regions were negative. Lanja taluka of Maharashtra has highest level of vulnerability with overall LVI value -4.17 with 48% farmers falling in highly vulnerable category. There is also significant tradeoff between milk production and components of LVI. Thus our research will provide an important basis for policy makers to develop appropriate adaptation strategies for alarming situation and decision making for farmers to minimize the risk of dairy sector to climate variability.
Emissions Scenarios and Fossil-fuel Peaking
NASA Astrophysics Data System (ADS)
Brecha, R.
2008-12-01
Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some indicators are presented that the scenario presented here should not be disregarded, and comparisons are made to the outputs of emission scenarios used for the IPCC reports.
Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L
2013-03-01
Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.
Projected changes in rainfall and temperature over homogeneous regions of India
NASA Astrophysics Data System (ADS)
Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara
2018-01-01
The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.
ICLUS v1.3 Population Projections
Climate and land-use change are major components of global environmental change with feedbacks between these components. The consequences of these interactions show that land use may exacerbate or alleviate climate change effects. Based on these findings it is important to use land-use scenarios that are consistent with the specific assumptions underlying climate-change scenarios. The Integrated Climate and Land-Use Scenarios (ICLUS) project developed land-use outputs that are based on a downscaled version of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines. ICLUS outputs are derived from a pair of models. A demographic model generates county-level population estimates that are distributed by a spatial allocation model (SERGoM v3) as housing density across the landscape. Land-use outputs were developed for the four main SRES storylines and a baseline (base case). The model is run for the conterminous USA and output is available for each scenario by decade to 2100. In addition to housing density at a 1 hectare spatial resolution, this project also generated estimates of impervious surface at a resolution of 1 square kilometer. This shapefile holds population data for all counties of the conterminous USA for all decades (2010-2100) and SRES population growth scenarios (A1, A2, B1, B2), as well as a 'base case' (BC) scenario, for use in the Integrated Climate and Land Use
Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T
2008-10-01
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.
NASA Astrophysics Data System (ADS)
Yan, Xiaoyuan; Akiyama, Hiroko; Yagi, Kazuyuki; Akimoto, Hajime
2009-06-01
The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH4) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a-1, which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a-1; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH4 emissions would be reduced by 4.1 Tg a-1. Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a-1 globally. Finally, if both of these mitigation options were adopted, the global CH4 emission from rice paddies could be reduced by 7.6 Tg a-1. Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N2O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH4 reduction associated with draining the fields.
Impacts of climate change in the sugarcane production in the center-south macro-region of Brazil
NASA Astrophysics Data System (ADS)
R Pereira, V.; Zullo, J., Jr.; Koga-Vicente, A.
2016-12-01
This paper describes the most important results of a Project developed over four years by a research network having 19 researchers and 45 students. The main objective of this Project was to generate alcohol production scenarios as support for the formulation of public policy applied to the adaptation of the Brazilian sugar and alcohol industry to the possible climate changes. The study area was the center-south macro-region of Brazil, with the states of São Paulo, Paraná, Minas Gerais, Mato Grosso do Sul and Goiás, that is the main producer area of sugarcane in the world. The scenarios were developed using the HadGEM2-ES and Miroc5 models of CMIP5/IPCC and did not show significant differences between them and were very close to those obtained with the HadCM3 and Miroc3 models of the AR4/IPCC. The results considering the sugarcane varieties grown nowadays indicate that in a scenario with changes in precipitation and temperatures, the main producing region will not have a decrease in municipalities with low climatic risk. Also the expansion region (South of Goiás and North-West of São Paulo) may become of high climatic risk, becoming an area where the artificial irrigation will be demanded. The challenge related to the water use and availability that already exists nowadays will be yet more important in the future. The expansion of Brazilian sugarcane production is being much more based on the territorial extension, i.e. by increasing the production area, than by increasing the productivity. The increased mechanization of cane harvesting improves the air quality and reduces the incidence of respiratory diseases. It is extremely important that incentives to mechanization be extended to other regions of the country since the end of burning benefits the health of people living close to the sugarcane fields. This confirms the need for planning this sector, with the development of new varieties and new production technologies considering the possible future climate conditions.
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
NASA Astrophysics Data System (ADS)
Arellano, B.; Rivas, D.
2015-12-01
The response of the physical and biological dynamics of the Pacific Ocean off Baja California to the projected effects of climate change are studied using numerical simulations. This region is part of the California Current System, which is a highly productive ecosystem due to the seasonal upwelling, supporting all the trophic levels and important fisheries. The response of the ecosystem to the effects of climate change is uncertain and the information generated by models could be useful to predict future conditions. A three-dimensional hydrodinamical model is coupled to a Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) trophic model, and it is forced by the GFDL 3.0 model outputs. Monthly climatologies of variables such as temperature, nutrients, wind, and ocean circulation patterns during the historical period 1985-2005 are compared to the available observed data in order to assess the model's ability to reproduce the observed patterns. The system's response to a high-emission scenario proposed by the Intergovernmental Panel of Climate Change (IPCC) is also studied. The experiments are carried out using data correspondig to the RCP 6.0 scenario during the period 2006-2050.
NASA Astrophysics Data System (ADS)
Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.
2015-12-01
IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.
Climate change and nutrition: creating a climate for nutrition security.
Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A
2013-12-01
Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.
Implications of cumulative GHG Emissions to Climate, Society and Ecosystems in California
NASA Astrophysics Data System (ADS)
Cayan, D. R.; Franco, G.; Pierce, D. W.
2016-12-01
We investigate simulations conducted for the ongoing Climate Change Assessments in California. In this presentation, we explore implications of global climate change threshold targets on temperature, precipitation, sea level rise, snow pack, and extreme events including heat waves, wildfire and coastal flooding in California. A set of regional models driven by an ensemble of global climate change futures from 4th and 5th IPCC Assessment GCMs indicate how California's climate and thus its hydrological systems, coast and wildlands respond to increasing atmospheric greenhouse gas concentrations at levels that produce global warming of 1.5°C and beyond. Differing global greenhouse gas emissions scenarios would produce strongly diverging results after mid-21st Century, as emphasized by the suite of modeled regional climate measures. The results demonstrate that global emissions can be used, independent of emissions pathway (but not entirely and not for all climate and impact measures), to estimate physical changes at the local and regional levels in the State. These relationships are explored to re-interpret prior studies that were based on the SRES emission scenarios along with the current suite of RCP scenarios. In addition, because historical emissions are above what was envisioned for the RCPs, and since the 2015 Conference of Parties implies a departure from the RCPs, consideration of cumulative CO2 emissions provides a useful tool for contextualizing historical emissions and expected outcomes from COP21. Climate policy implications are described, including climate adaptation guidance that California entities are required or encouraged to follow.
Interactive Nature of Climate Change and Aerosol Forcing
NASA Technical Reports Server (NTRS)
Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.
2017-01-01
The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.
Regional temperature and precipitation changes under high-end (≥4°C) global warming.
Sanderson, M G; Hemming, D L; Betts, R A
2011-01-13
Climate models vary widely in their projections of both global mean temperature rise and regional climate changes, but are there any systematic differences in regional changes associated with different levels of global climate sensitivity? This paper examines model projections of climate change over the twenty-first century from the Intergovernmental Panel on Climate Change Fourth Assessment Report which used the A2 scenario from the IPCC Special Report on Emissions Scenarios, assessing whether different regional responses can be seen in models categorized as 'high-end' (those projecting 4°C or more by the end of the twenty-first century relative to the preindustrial). It also identifies regions where the largest climate changes are projected under high-end warming. The mean spatial patterns of change, normalized against the global rate of warming, are generally similar in high-end and 'non-high-end' simulations. The exception is the higher latitudes, where land areas warm relatively faster in boreal summer in high-end models, but sea ice areas show varying differences in boreal winter. Many continental interiors warm approximately twice as fast as the global average, with this being particularly accentuated in boreal summer, and the winter-time Arctic Ocean temperatures rise more than three times faster than the global average. Large temperature increases and precipitation decreases are projected in some of the regions that currently experience water resource pressures, including Mediterranean fringe regions, indicating enhanced pressure on water resources in these areas.
AgMIP Regional Activities in a Global Framework: The Brazil Experience
NASA Technical Reports Server (NTRS)
Assad, Eduardo D.; Marin, Fabio R.; Valdivia, Roberto O.; Rosenzweig, Cynthia E.
2012-01-01
Climate variability and change are projected to increate the frequency of extreme high-temperature events, floods, and droughts, which can lead to subsequent changes in soil moister in many locations (Alexandrov and Hoogenboom, 2000). In Brazil, observations reveal a tendency for increasing frequency of extreme rainfall events particularly in south Brazil (Alexander et al., 2006; Carvalho et al., 2014; Groissman et al., 2005), as well as projections for increasing extremes in both maximum and minimum temperatures and high spatial variability for rainfall under the IPCC SRES A2 and B2 scenarios (Marengo et al., 2009).
Evolution of the potential distribution area of french mediterranean forests under global warming
NASA Astrophysics Data System (ADS)
Gaucherel, C.; Guiot, J.; Misson, L.
2008-02-01
This work aims at understanding future spatial and temporal distributions of tree species in the Mediterranean region of France under various climates. We focused on two different species (Pinus Halepensis and Quercus Ilex) and compared their growth under the IPCC-B2 climate scenario in order to quantify significant changes between present and future. The influence of environmental factors such as atmospheric CO2 increase and topography on the tree growth has also been quantified. We modeled species growths with the help of a process-based model (MAIDEN), previously calibrated over measured ecophysiological and dendrochronological series with a Bayesian scheme. The model was fed with the ARPEGE - MeteoFrance climate model, combined with an explicit increase in CO2 atmospheric concentration. The main output of the model gives the carbon allocation in boles and thus tree production. Our results show that the MAIDEN model is correctly able to simulate pine and oak production in space and time, after detailed calibration and validation stages. Yet, these simulations, mainly based on climate, are indicative and not predictive. The comparison of simulated growth at end of 20 and 21 centuries, show a shift of the pine production optimum from about 650 to 950 m due to 2.5°K temperature increase, while no optimum has been found for oak. With the direct effect of CO2 increase taken into account, both species show a significant increase in productivity (+26 and +43% for pine and oak, respectively) at the end of the 21 century. While both species have complementary growth mechanisms, they have a good chance to extend their spatial distribution and their elevation in the Alps during the 21 century under the IPCC-B2 climate scenario. This extension is mainly due to the CO2 fertilization effect.
Godoy, Mario D P; de Lacerda, Luiz D
2015-01-01
Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.
Problems with the North American Monsoon in CMIP/IPCC GCM Precipitation
NASA Astrophysics Data System (ADS)
Schiffer, N. J.; Nesbitt, S. W.
2011-12-01
Successful water management in the Desert Southwest and surrounding areas hinges on anticipating the timing and distribution of precipitation. IPCC AR4 models predict a more arid climate, more extreme precipitation events, and an earlier peak in springtime streamflow in the North American Monsoon region as the area warms. This study aims to assess the summertime skill with which general circulation models (GCMs) simulate precipitation and related dynamics over this region, a necessary precursor to reliable hydroclimate projections. Thirty-year climatologies of several GCMs in the third and fifth Climate Model Intercomparison Projects (CMIP) are statistically evaluated against each other and observed climatology for their skill in representing the location, timing, variability, character, and large-scale forcing of precipitation over the southwestern United States and northwestern Mexico. The results of this study will lend greater credence to more detailed, higher resolution studies, based on the CMIP and IPCC models, of the region's future hydrology. Our ultimate goal is to provide guidance such that decision-makers can plan future water management with more confidence.
Attribution of irreversible loss to anthropogenic climate change
NASA Astrophysics Data System (ADS)
Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo
2016-04-01
The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss of land area due to coastal and hillslope erosion and sea level change; loss of plant and animal species, loss of ecosystems and biodiversity; loss of human lives, homelands, and cultural identity. Attribution to anthropogenic climate change is analyzed based on recent progress following from the IPCC AR5. Generally, high confidence in attributing irreversible loss to anthropogenic climate change is found in physical systems and more specifically in cryosphere environments, both in mountain and polar regions. Detected loss in terrestrial ecosystems has typically low confidence in attribution whereas loss in some ocean ecosystems (corals) has high confidence. Impacts in human systems that may be classified as irreversible loss are of low confidence in terms of attribution except for the Arctic where higher confidence for a relation with anthropogenic emissions was found. Our analysis suggests that scientific progress in detection and attribution is now at a level that would likely allow policy, or courts, to define mechanisms, or take decisions, as related to irreversible loss in many cryosphere systems. On the other hand, policy may need to consider that at least in the near future it will be difficult to establish clear tracks between irreversible loss in most human systems and anthropogenic climate change, a domain, which however is at the forefront of discussions. We end our discussion with setting out ideas for further clarification of different categories of irreversible loss, including in human systems, and the role of attribution in any policy or legal mechanism in order to help in the development of just and sensible solutions.
[Climatic change and public health: scenarios after the coming into force of the Kyoto Protocol].
Ballester, Ferran; Díaz, Julio; Moreno, José Manuel
2006-03-01
According to the reports of the intergovernmental panel for climatic change (IPCC) human beings of the present and near future are going to experiment, in fact we are already experimenting, important changes in the world climate. Conscious of the magnitude of the problem, international organizations have taken a series of initiatives headed to stop the climatic change and to reduce its impact. This willingness has been shaped into the agreements established in the Kyoto protocol, where countries commit to reduce greenhouse-effect gas emissions. Kyoto protocol has come into force on February 16th 2005 with the support of 141 signing countries. Among the major worries are the effects which climatic change may have upon health, such as: 1) changes in the morbidity- mortality related to temperature; 2) Effects on health related with extreme meteorological events (tornados, storms, hurricanes and extreme raining); 3) Air pollution and increase of associated health effects; d) Diseases transmitted by food and water and 4) Infectious diseases transmitted by vectors and by rodents. Even if all the countries in the world committed to the Kyoto Protocol, some consequences of the climatic change will be inevitable; among them some will have a negative impact on health. It would be necessary to adapt a key response strategy to minimize the impacts of climatic change and to reduce, at minimum cost, its adverse effects on health. From the Public Health position, a relevant role can and must be played concerning the understanding of the risks for health of such climatic changes, the design of surveillance systems to evaluate possible impacts, and the establishment of systems to prevent or reduce damages as well as the identification and development of investigation needs.
Future change in seasonal march of snow water equivalent due to global climate change
NASA Astrophysics Data System (ADS)
Hara, M.; Kawase, H.; Ma, X.; Wakazuki, Y.; Fujita, M.; Kimura, F.
2012-04-01
Western side of Honshu Island in Japan is one of the heaviest snowfall areas in the world, although the location is relatively lower latitude than other heavy snowfall areas. Snowfall is one of major source for agriculture, industrial, and house-use in Japan. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities (ex. Ma et al., 2011). We performed the four numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. NCEP/NCAR reanalysis is used for initial and boundary conditions in present climate simulation and PGW method. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. In much-snow cases, Maximum total snow water equivalent over Japan, which is mostly observed in early February, is 49 G ton in the present simulation, the one decreased 26 G ton in the future simulation. The decreasing rate of snow water equivalent due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is strongly affected by the air temperature rise due to global climate change. The difference in present and future precipitation amount is little.
Climate-driven reduction in soil loss due to the dynamic role of vegetation
NASA Astrophysics Data System (ADS)
Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.
2016-12-01
Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.
2012-01-01
Background Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation objectives. This paper uses the Intergovernmental Panel on Climate Change (IPCC) production accounting approach and the California Forest Project Protocol (CFPP) to estimate HWP carbon storage from 1906 to 2010 for the USFS Northern Region, which includes forests in northern Idaho, Montana, South Dakota, and eastern Washington. Results Based on the IPCC approach, carbon stocks in the HWP pool were increasing at one million megagrams of carbon (MgC) per year in the mid 1960s, with peak cumulative storage of 28 million MgC occurring in 1995. Net positive flux into the HWP pool over this period is primarily attributable to high harvest levels in the mid twentieth century. Harvest levels declined after 1970, resulting in less carbon entering the HWP pool. Since 1995, emissions from HWP at solid waste disposal sites have exceeded additions from harvesting, resulting in a decline in the total amount of carbon stored in the HWP pool. The CFPP approach shows a similar trend, with 100-year average carbon storage for each annual Northern Region harvest peaking in 1969 at 937,900 MgC, and fluctuating between 84,000 and 150,000 MgC over the last decade. Conclusions The Northern Region HWP pool is now in a period of negative net annual stock change because the decay of products harvested between 1906 and 2010 exceeds additions of carbon to the HWP pool through harvest. However, total forest carbon includes both HWP and ecosystem carbon, which may have increased over the study period. Though our emphasis is on the Northern Region, we provide a framework by which the IPCC and CFPP methods can be applied broadly at sub-national scales to other regions, land management units, or firms. PMID:22244260
NASA Astrophysics Data System (ADS)
Wirth, T. C.; Troxler, T.
2015-12-01
As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to estimate the carbon stock changes and emissions of non-CO2 GHG for all land uses and management practices as identified in the IPCC Guidelines at the Tier 1 or Tier 2 level.
The use of Meteonorm weather generator for climate change studies
NASA Astrophysics Data System (ADS)
Remund, J.; Müller, S. C.; Schilter, C.; Rihm, B.
2010-09-01
The global climatological database Meteonorm (www.meteonorm.com) is widely used as meteorological input for simulation of solar applications and buildings. It's a combination of a climate database, a spatial interpolation tool and a stochastic weather generator. Like this typical years with hourly or minute time resolution can be calculated for any site. The input of Meteonorm for global radiation is the Global Energy Balance Archive (GEBA, http://proto-geba.ethz.ch). All other meteorological parameters are taken from databases of WMO and NCDC (periods 1961-90 and 1996-2005). The stochastic generation of global radiation is based on a Markov chain model for daily values and an autoregressive model for hourly and minute values (Aguiar and Collares-Pereira, 1988 and 1992). The generation of temperature is based on global radiation and measured distribution of daily temperature values of approx. 5000 sites. Meteonorm generates also additional parameters like precipitation, wind speed or radiation parameters like diffuse and direct normal irradiance. Meteonorm can also be used for climate change studies. Instead of climate values, the results of IPCC AR4 results are used as input. From all 18 public models an average has been made at a resolution of 1°. The anomalies of the parameters temperature, precipitation and global radiation and the three scenarios B1, A1B and A2 have been included. With the combination of Meteonorm's current database 1961-90, the interpolation algorithms and the stochastic generation typical years can be calculated for any site, for different scenarios and for any period between 2010 and 2200. From the analysis of variations of year to year and month to month variations of temperature, precipitation and global radiation of the past ten years as well of climate model forecasts (from project prudence, http://prudence.dmi.dk) a simple autoregressive model has been formed which is used to generate realistic monthly time series of future periods. Meteonorm can therefore be used as a relatively simple method to enhance the spatial and temporal resolution instead of using complicated and time consuming downscaling methods based on regional climate models. The combination of Meteonorm, gridded historical (based on work of Luterbach et al.) and IPCC results has been used for studies of vegetation simulation between 1660 and 2600 (publication of first version based on IS92a scenario and limited time period 1950 - 2100: http://www.pbl.nl/images/H5_Part2_van%20CCE_opmaak%28def%29_tcm61-46625.pdf). It's also applicable for other adaptation studies for e.g. road surfaces or building simulation. In Meteonorm 6.1 one scenario (IS92a) and one climate model has been included (Hadley CM3). In the new Meteonorm 7 (coming spring 2011) the model averages of the three above mentioned scenarios of the IPCC AR4 will be included.
Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol
Van der Fels-Klerx, H. J.; van Asselt, Esther D.; Madsen, Marianne S.; Olesen, Jørgen E.
2013-01-01
Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards. PMID:24066059
NASA Astrophysics Data System (ADS)
Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.
2006-05-01
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
Development of Climate Change Adaptation Platform using Spatial Information
NASA Astrophysics Data System (ADS)
Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.
2014-12-01
Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the Korea Environmental & Industry Technology Institute .
NASA Astrophysics Data System (ADS)
Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios
2017-04-01
Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).
Forest climate change Vulnerability and Adaptation Assessment in Himalayas
NASA Astrophysics Data System (ADS)
Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.
2014-11-01
Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
NASA Astrophysics Data System (ADS)
Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian
2013-04-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.
A quantitative method for risk assessment of agriculture due to climate change
NASA Astrophysics Data System (ADS)
Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao
2018-01-01
Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.
Talking About Climate: a simple tool for everyday climate conversations
NASA Astrophysics Data System (ADS)
Twedt, J. R.; White, R. H.; Tigchelaar, M.; Doroschak, K.; Buchanan, R.; Lundquist, D.
2017-12-01
Public opinion research from the Yale Climate Opinion Maps shows that more than half of Americans are worried about climate change, yet over 70% of Americans rarely or never discuss it with friends or family. Sociologist Kari Marie Norgaard has written about climate denial and how the subject of climate change kills conversation in her interviews, even among people who feel concerned. At the same time, news reporting on climate is often dense with information or scientific nuance and fails to make people feel personally invested in this global issue. This is problematic, because a fair and civil response to our climate crisis will require not only the personal commitment of many, but also collaborative public discourse. For these reasons, we have developed an app that aims to foster meaningful conversation about climate change. The app draws on a database we constructed of historic climate events and relates these events to people's own lives and experiences. Our database is broad and growing, and includes climate change facts, landmark cases in environmental law, social achievements such as the IPCC earning the Nobel Peace Prize, and the personal account from a 12-year old's blog post about FEMA relocation after Hurricane Katrina. Events are stated in plain language and accompanied by open-ended questions to spark discussion. The goal of ClimateConversations is not to inform or persuade, but to support reflective, open-ended conversation, to encourage personal storytelling about climate-related events, and to foster generative dialogue on an issue that all too often causes discomfort and social division. Here we present the climate science, social science, software, and design considerations that went into developing this app. We will also present early quantitative and qualitative metrics of it's use and effectiveness both in classroom and community settings.
Climate velocity and the future global redistribution of marine biodiversity
NASA Astrophysics Data System (ADS)
García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.
2016-01-01
Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.
The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols
NASA Astrophysics Data System (ADS)
Schultz, T.
2016-12-01
The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.
NASA Astrophysics Data System (ADS)
Silva, Claudio; Yáñez, Eleuterio; Barbieri, María Angela; Bernal, Claudio; Aranis, Antonio
2015-05-01
Recent studies have demonstrated the effects of climate change on both oceanographic conditions and the relative abundance and distribution of fisheries resources. In this study, we investigated the impacts of climate change on swordfish (Xiphias gladius) and common sardine (Strangomera bentincki) fisheries using predictions of changes from global models (according to the NCAR model and IPCC emissions scenario A2), bioclimate envelope models and satellite-based sea surface temperature (SST) estimates from high-resolution regional models for the simulation period 2015-2065. Predictions of SST from global climate models were regionalised using the Delta statistical downscaling technique. The results show an SST trend of 0.0196 °C per year in the study area, equivalent to 0.98 °C for the simulation horizon and for a high CO2 emission scenario (A2). The bioclimate envelope models were developed using historical (2001-2011) monthly environmental and fisheries data. These data included the local relative abundance index of fish catch per unit effort (CPUE), corresponding to the total catch (kg) by 1000 hooks in a 1° latitude × 1° longitude fishing grid for swordfish and to the total catch (ton) by hold capacity (100 m3) in a 10‧ latitude × 10‧ longitude grid for common sardine. The environmental data included temporal (month), spatial (latitude) and thermal conditions (SST). In the first step of the bioclimate modelling performed in this study, generalised additive models (GAMs) were used as an exploratory tool to identify the functional relationships between the environmental variables and CPUE. These relationships were then parameterised using general linear models (GLMs) to provide a robust forecasting tool. With this modelling approach, environmental variables explained 58.7% of the variation in the CPUE of swordfish and 60.6% of the variation in the CPUE of common sardine in the final GLMs. Using IDRISI GIS, these GLMs simulated monthly changes in the relative abundance and distribution of the studied species forced by changes in the regionalised SST projected by the NCAR model under the A2 emission scenario. The simulations predicted a slight decline of 6% (17 kg/1000 hooks) and 7% (3.8 ton/100 m3) for swordfish and common sardine, respectively, in the spatial mean of the potential relative abundance (CPUE) by 2065.
NASA Astrophysics Data System (ADS)
Vidal Vazquez, Eva; Paz Ferreiro, Jorge
2014-05-01
Experimental work is an essential component in training future soil scientists. Soil CO2 emission is a key issue because of the potential impacts of this process on the greenhouse effect. The amount of organic carbon stored in soils worldwide is about 1600 gigatons (Gt) compared to 750 Gt in the atmosphere mostly in the form of CO2. Thus, if soil respiration increased slightly so that just 10% of the soil carbon pool was converted to CO2, atmospheric CO2 concentrations in the atmosphere could increase by one-fifth. General circulation model predictions indicate atmosphere warming between 2 and 5°C (IPCC 2007) and precipitation changes ranging from about -15 to +30%. Traditionally, release of CO2 was thought to occur only in an intracellular environment; however, recently CO2 emissions have been in irradiated soil, in the absence of microorganisms (Maire et al., 2013). Moreover, soil plays a role in the stabilization of respiration enzymes promoting CO2 release after microorganism death. Here, we propose to improve CO2 emission experiments commonly used in soil biology to investigate: 1) effects of climatic factors on soil CO2 emissions, and 2) rates of extracellular respiration in soils and how these rates are affected by environmental factors. Experiment designed to assess the effect of climate change can be conducted either in field conditions under different ecosystems (forest, grassland, cropland) or in a greenhouse using simple soil chambers. The interactions of climate change in CO2 emissions are investigated using climate-manipulation experiment that can be adapted to field or greenhouse conditions (e.g. Mc Daniel et al., 2013). The experimental design includes a control plot (without soil temperature and rain manipulation) a warming treatment as well as wetting and/or drying treatments. Plots are warmed to the target temperature by procedures such as infrared heaters (field) or radiant cable (greenhouse). To analyze extracellular respiration, rates of CO2 emissions from sterilized soils and their unsterilized counterparts are compared. Moreover, different pH treatments are compared to analyze how soil pH affects extracellular CO2 release. Students benefit from experimental learning. Practical courses, being either in the field or indoors are of vital importance to bring soil processes to life and to evaluate implications for environment and climate change. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom, 996 pp. Maire, V., G. Alvarez, J. Colombet, A. Comby, R. Despinasse, E. Dubreucq, M. Joly, A.-C. Lehours, V. Perrier, T. Shahzad, and S. Fontaine. 2013. An unknown oxidative metabolism substantially contributes to soil CO2 emissions. Biogeochemistry, 10, 1155-1167, 2013
NASA Astrophysics Data System (ADS)
Jang, W.; Engel, B.; Chaubey, I.
2015-12-01
Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is hypothesized that: 1) long-term future hydrology and water quality in surface and subsurface drainage areas will be influenced by LULC and climate change, and 2) this approach will be useful to identify specific areas contributing the most pollutants to aquifers due to LULC and climate change.
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
Marquès, Montse; Bangash, Rubab Fatima; Kumar, Vikas; Sharp, Richard; Schuhmacher, Marta
2013-12-15
Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and with high probability to face acute water scarcity problem in the coming years. Francolí River basin (NE Spain), located in this vulnerable region is selected as a case study to evaluate the impact of climate change on the delivery of water considering the IPCC scenarios A2 and B1 for the time spans 2011-2040, 2041-2070 and 2071-2100. InVEST model is applied in a low flow river as a new case study, which reported successful results after its model validation. The studied hydrological ecosystem services will be highly impacted by climate change at Francolí River basin. Water yield is expected to be reduced between 11.5 and 44% while total drinking water provisioning will decrease between 13 and 50% having adverse consequences on the water quality of the river. Focusing at regional scale, Prades Mountains and Brugent Tributary provide most of the provision of water and also considered highly vulnerable areas to climate change. However, the most vulnerable part is the northern area which has the lowest provision of water. Francolí River basin is likely to experience desertification at this area drying Anguera and Vallverd tributaries. Copyright © 2013 Elsevier B.V. All rights reserved.
Health Impacts of Air Pollution Under a Changing Climate
NASA Astrophysics Data System (ADS)
Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.
2003-12-01
Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions shows an increase in temperature and humidity as well as mean and extreme ozone concentrations under the IPCC A2 emission scenario. To address public health impacts, a risk assessment framework is used to estimate ozone-related mortality in the region, with a focus on comparing health impact estimates for the 1990s versus the 2050s. This endpoint represents a potentially appreciable public health impact resulting from climate change-induced alterations in regional air quality profiles. Concentration-response functions from the epidemiological literature describing ozone-mortality relationships are used to estimate numbers of regional deaths in a typical 1990s summer and a typical 2050s summer. Preliminary analysis of future-year ozone-related mortality suggests a subtle increase in the number of summer ozone-related deaths in the New York region in the 2050s as compared to the 1990s. A parallel evaluation of heat-related mortality in a typical summer of the 2050s suggests a greater relative increase as compared to the 1990s, with a doubling to tripling of regional summer heat deaths possible by the 2050s.
Implications for Climate Sensitivity from the Response to Individual Forcings
NASA Technical Reports Server (NTRS)
Marvel, Kate; Schmidt, Gavin A.; Miller, Ron L.; Nazarenko, Larissa
2015-01-01
Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.
Earth radiation balance as observed and represented in CMIP5 models
NASA Astrophysics Data System (ADS)
Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; König-Langlo, Gert
2014-05-01
The genesis and evolution of Earth's climate is largely regulated by the Earth radiation balance. Despite of its key role in the context of climate change, substantial uncertainties still exist in the quantification of the magnitudes of its different components, and its representation in climate models. While the net radiative energy flows in and out of the climate system at the top of atmosphere are now known with considerable accuracy from new satellite programs such as CERES and SORCE, the energy distribution within the climate system and at the Earth's surface is less well determined. Accordingly, the magnitudes of the components of the surface energy balance have recently been controversially disputed, and potential inconsistencies between the estimated magnitudes of the global energy and water cycle have been emphasized. Here we summarize this discussion as presented in Chapter 2.3 of the 5th IPCC assessment report (AR5). In this context we made an attempt to better constrain the magnitudes of the surface radiative components with largest uncertainties. In addition to satellite observations, we thereby made extensive use of the growing number of surface observations to constrain the radiation balance not only from space, but also from the surface. We combined these observations with the latest modeling efforts performed for AR5 (CMIP5) to infer best estimates for the global mean surface radiative components. Our analyses favor global mean values of downward surface solar and thermal radiation near 185 and 342 Wm-2, respectively, which are most compatible with surface observations (Wild et al. 2013). These estimates are on the order of 10 Wm-2 lower and higher, respectively, than in some of the previous global energy balance assessments, including those presented in previous IPCC reports. It is encouraging that these estimates, which make full use of the information contained in the surface networks, coincide within 2 Wm-2 with the latest satellite-derived estimates (Kato et al. 2013), which are completely independently determined. This enhances confidence in these recent surface flux estimates. IPCC AR5 further presents increasing evidence from direct observations that the surface radiative fluxes undergo significant changes on decadal timescales, not only in their thermal components as expected from the increasing greenhouse effect, but also in the amount of solar radiation that reaches the Earth surface. In the thermal range, surface observations suggest an overall increase of downward thermal radiation in line with latest projections from the CMIP5 models and expectations from an increasing greenhouse effect. On the other hand the strong decadal changes in surface solar radiation seen in the observations ("dimming/brightening") are not fully captured by current climate models. These decadal changes in surface solar radiation may largely affect various aspects of climate change. Selected related references: Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L. Alexander, S. Brönnimann, Y. Charabi, F. Dentener, E. Dlugokencky, D. Easterling, A. Kaplan, B. Soden, P. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L.S, and Weller, R.A., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate 26 (9):2719-2740. doi:Doi 10.1175/Jcli-D-12-00436.1 Wild, M., 2012: New Directions: A facelift for the picture of the global energy balance. Atmospheric Environment, 55, 366-367. Wild, M. 2012: Enlightening Global Dimming and Brightening. Bull. Amer. Meteor. Soc., 93, 27-37, doi:10.1175/BAMS-D-11-00074.1 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134, Doi:10.1007/s00382-012-1569-8.
Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2013-03-11
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a result of climate change.
Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2013-01-01
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a result of climate change. PMID:23481091
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B
2017-01-01
Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.
Climate Benchmark Missions: CLARREO
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Young, David F.
2010-01-01
CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in observing the small but critical climate change signals. CLARREO is the recommended attack on this challenge, and builds on the last decade of climate observation advances in the Earth Observing System as well as metrological advances at NIST (National Institute of Standards and Technology) and other standards laboratories.
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Santidrián Tomillo, Pilar; Genovart, Meritxell; Paladino, Frank V; Spotila, James R; Oro, Daniel
2015-08-01
Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years. © 2015 John Wiley & Sons Ltd.
PM2.5 and tropospheric ozone in China: overview of situation and responses
NASA Astrophysics Data System (ADS)
Zhang, Hua
This work reviewed the observational status of PM2.5 and tropospheric ozone in China. It told us the observational facts on the ratios of typical types of aerosol components to the total PM2.5/PM10, and daily and seasonal change of near surface ozone concentration at different cities of China; the global concentration distribution of tropospheric ozone observed by satellite in 2010-2013 was also given for comparison; the PM2.5 concentration distribution and their seasonal change in China region were simulated by an aerosol chemistry-global climate modeling system. Different contribution from five kinds of aerosols to the simulated PM2.5 was analyzed. Then, it linked the emissions of aerosol and greenhouse gases and their radiative forcing and thus gave their climatic effect by reducing their emissions on the basis of most recently published IPCC AR5. Finally it suggested policies on reducing emissions of short-lived climate pollutants (SLCPs) (such as PM2.5 and tropospheric ozone) in China from protecting both climate and environment.
Vegetation Response to Changing Climate - A Case Study from Gandaki River Basin in Nepal Himalaya
NASA Astrophysics Data System (ADS)
Panthi, J., Sr.; Kirat, N. H.; Dahal, P.
2015-12-01
The climate of the Himalayan region is changing rapidly - temperature is increasingly high and rainfall has become unpredictable. IPCC predicts that average annual mean temperature over the Asian land mass, including the Himalayas, will increase by about 3°C by the 2050s and about 5°C by the 2080s and the average annual precipitation in this region will increase by 10-30% by 2080s. Climate and the human activities can influence the land cover status and the eco-environmental quality. There are enough evidences that there is strong interaction between climate variability and ecosystems. A project was carried out in Gandaki river basin in central Nepal to analyze the relationship of NDVI vegetation index with the temperature, rainfall and snowcover information. The relationships were analyzed for different landuses classes-grassland, forest and agriculture. Results show that the snowcover area is decreasing at the rate of 0.15% per year in the basin. The NDVI shows seasonal fluctuations and lightly correlated with the rainfall and temperature.
Permafrost carbon-climate feedbacks accelerate global warming.
Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles
2011-09-06
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.
NASA Astrophysics Data System (ADS)
Oglesby, R. J.; Erickson, D. J.; Hernandez, J. L.; Irwin, D.
2005-12-01
Central America covers a relatively small area, but is topographically very complex, has long coast-lines, large inland bodies of water, and very diverse land cover which is both natural and human-induced. As a result, Central America is plagued by hydrologic extremes, especially major flooding and drought events, in a region where many people still barely manage to eke out a living through subsistence. Therefore, considerable concern exists about whether these extreme events will change, either in magnitude or in number, as climate changes in the future. To address this concern, we have used global climate model simulations of future climate change to drive a regional climate model centered on Central America. We use the IPCC `business as usual' scenario 21st century run made with the NCAR CCSM3 global model to drive the regional model MM5 at 12 km resolution. We chose the `business as usual' scenario to focus on the largest possible changes that are likely to occur. Because we are most interested in near-term changes, our simulations are for the years 2010, 2015, and 2025. A long `present-day run (for 2005) allows us to distinguish between climate variability and any signal due to climate change. Furthermore, a multi-year run with MM5 forced by NCEP reanalyses allows an assessment of how well the coupled global-regional model performs over Central America. Our analyses suggest that the coupled model does a credible job simulating the current climate and hydrologic regime, though lack of sufficient observations strongly complicates this comparison. The suite of model runs for the future years is currently nearing completion, and key results will be presented at the meeting.
Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.
2004-01-01
The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.
The Discovery of Global Warming
NASA Astrophysics Data System (ADS)
MacCracken, Michael C.
2004-07-01
At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).
The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Tolen, J.; Kodra, E. A.; Ganguly, A. R.
2011-12-01
The assertion that higher-resolution experiments or more sophisticated process models within the IPCC AR5 CMIP5 suite of global climate model ensembles improves precipitation projections over the IPCC AR4 CMIP3 suite remains a hypothesis that needs to be rigorously tested. The questions are particularly important for local to regional assessments at scales relevant for the management of critical infrastructures and key resources, particularly for the attributes of sever precipitation events, for example, the intensity, frequency and duration of extreme precipitation. Our case study is South America, where precipitation and their extremes play a central role in sustaining natural, built and human systems. To test the hypothesis that CMIP5 improves over CMIP3 in this regard, spatial and temporal measures of prediction skill are constructed and computed by comparing climate model hindcasts with the NCEP-II reanalysis data, considered here as surrogate observations, for the entire globe and for South America. In addition, gridded precipitation observations over South America based on rain gage measurements are considered. The results suggest that the utility of the next-generation of global climate models over the current generation needs to be carefully evaluated on a case-by-case basis before communicating to resource managers and policy makers.
Climate uncertainty and implications for U.S. state-level risk assessment through 2050.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.
2009-10-01
Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to themore » economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.« less
NASA Astrophysics Data System (ADS)
Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James
2014-12-01
The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.
Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal
Jueterbock, Alexander; Tyberghein, Lennert; Verbruggen, Heroen; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2013-01-01
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. PMID:23762521
Indirect chemical effects of methane on climate warming
NASA Astrophysics Data System (ADS)
Lelieveld, Jos; Crutzen, Paul J.
1992-01-01
METHANE concentrations in the atmosphere have increased from about 0.75 to 1.7 p.p.m.v. since pre-industrial times1,2. The current annual rate of increase of about 0.8% yr-1 (ref. 2) is due to increases in industrial and agricultural emissions. This increase in atmospheric methane concentrations not only influences the climate directly, but also indirectly through chemical reactions. Here we show that the climate effects of methane's atmospheric chemistry have previously been overestimated, notably by the Inter-governmental Panel on Climate Change (IPCC)3, largely owing to neglect of the height dependence of certain atmospheric radiative processes. Using available estimates of fossil-fuel-related leaks of methane, our results show that switching from coal and oil to natural gas as an energy source would reduce climate warming. A significant fraction of methane emissions cannot, however, be accounted for by known sources; should leakages from gas production and distribution be underestimated for some countries, then it might be unwise to switch to using natural gas.
Predictions of extreme precipitation and sea-level rise under climate change.
Senior, C A; Jones, R G; Lowe, J A; Durman, C F; Hudson, D
2002-07-15
Two aspects of global climate change are particularly relevant to river and coastal flooding: changes in extreme precipitation and changes in sea level. In this paper we summarize the relevant findings of the IPCC Third Assessment Report and illustrate some of the common results found by the current generation of coupled atmosphere-ocean general circulation models (AOGCMs), using the Hadley Centre models. Projections of changes in extreme precipitation, sea-level rise and storm surges affecting the UK will be shown from the Hadley Centre regional models and the Proudman Oceanographic Laboratory storm-surge model. A common finding from AOGCMs is that in a warmer climate the intensity of precipitation will increase due to a more intense hydrological cycle. This leads to reduced return periods (i.e. more frequent occurrences) of extreme precipitation in many locations. The Hadley Centre regional model simulates reduced return periods of extreme precipitation in a number of flood-sensitive areas of the UK. In addition, simulated changes in storminess and a rise in average sea level around the UK lead to reduced return periods of extreme high coastal water events. The confidence in all these results is limited by poor spatial resolution in global coupled models and by uncertainties in the physical processes in both global and regional models, and is specific to the climate change scenario used.
Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Lim, Young-Kwon
2012-01-01
Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the basic mechanisms by which extremes vary is incomplete. As noted in IPCC (2007), Incomplete global data sets and remaining model uncertainties still restrict understanding of changes in extremes and attribution of changes to causes, although understanding of changes in the intensity, frequency and risk of extremes has improved. Separating decadal and other shorter-term variability from climate change impacts on extremes requires a better understanding of the processes responsible for the changes. In particular, the physical processes linking sea surface temperature changes to regional climate changes, and a basic understanding of the inherent variability in weather extremes and how that is impacted by atmospheric circulation changes at subseasonal to decadal and longer time scales, are still inadequately understood. Given the fundamental limitations in the time span and quality of global observations, substantial progress on these issues will rely increasingly on improvements in models, with observations continuing to play a critical role, though less as a detection tool, and more as a tool for addressing physical processes, and to insure the quality of the climate models and the verisimilitude of the simulations (CCSP SAP 1.3, 2008).