Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... Reviewers to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) ACTION... Intergovernmental Panel on Climate Change (IPCC). SUMMARY: The U.S. Department of State invites recommendations for... Intergovernmental Panel on Climate Change (IPCC), which will be developed and finalized over the coming four years...
NASA Astrophysics Data System (ADS)
Barrett, K.
2017-12-01
Scientific integrity is the hallmark of any assessment and is a paramount consideration in the Intergovernmental Panel on Climate Change (IPCC) assessment process. Procedures are in place for rigorous scientific review and to quantify confidence levels and uncertainty in the communication of key findings. However, the IPCC is unique in that its reports are formally accepted by governments through consensus agreement. This presentation will present the unique requirements of the IPCC intergovernmental assessment and discuss the advantages and challenges of its approach.
Intergovernmental Panel on Climate Change. First Assessment Report Overview.
ERIC Educational Resources Information Center
International Environmental Affairs, 1991
1991-01-01
Presented are policymakers' summaries of the three working groups of the Intergovernmental Panel on Climate Change (IPCC)--science, impacts, and response strategies, the report of the IPCC Special Committee on the Participation of Developing Countries, and a discussion of international cooperation and future work. (CW)
Ronald Raunikar; Joseph Buongiorno; James A. Turner; Shushuai Zhu
2010-01-01
The Global Forest Products Model (GFPM) was modified to link the forest sector to two scenarios of the Intergovernmental Panel on Climate Change (IPCC), and to represent the utilization of fuelwood and industrial roundwood to produce biofuels. The scenarios examined were a subset of the âstory linesâ prepared by the IPCC. Each scenario has projections of population and...
76 FR 6651 - Intergovernmental Panel on Climate Change Special Report Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... time that they accept the overall report. Principles and procedures for the IPCC and its preparation of..._documents/ipcc-principles-appendix-a.pdf (pdf) http://ipcc.ch/organization/organization_procedures.shtml In.... The following section of the report discusses risk management at the local, national and international...
Climate Change Draws World Attention: The 2007 Nobel Peace Award Goes to Gore and IPCC
ERIC Educational Resources Information Center
Bisland, Beverly Milner; Ahmad, Iftikhar
2008-01-01
In the fall of 2007, the Nobel Committee awarded their Peace Prize to the Intergovernmental Panel on Climate Change (a scientific intergovernmental body set up by the World Meteorological Organization and by the United Nations Environment Program) and to former Vice-President Al Gore, Jr. The committee praised the United Nations panel for creating…
New chairman takes helm at Climate Change Panel
NASA Astrophysics Data System (ADS)
Showstack, Randy
An Indian industrial engineer and economist who supports the Kyoto Protocol, and who has sharply criticized the administration of George W. Bush on the climate change issue for not doing enough to curb greenhouse gas emissions, won the first-ever contested election for chairman of the Intergovernmental Panel on Climate Change (IPCC) during a meeting on 19 April.Rajendra Pachauri is the first representative from a developing country to chair the IPCC, a panel of about 2,500 experts on a wide range of areas related to climate change. The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. In total, the IPCC currently includes 192 member states. Although the bulk of the IPCC's work is conducted by three technical working groups, the chairman plays a key role in facilitating the overall process of the IPCC, organizing the scientific debate within the IPCC, and serving as chief spokesman.
IPCC Methodologies for the Waste Sector: Past, Present, and Future
USDA-ARS?s Scientific Manuscript database
The reporting of national greenhouse gas (GHG) emissions began more than a decade ago by the signatory countries of the United Nations Framework Convention on Climate Change (UNFCCC). National GHG inventories rely on the evolving Intergovernmental Panel on Climate Change (IPCC) national GHG inventor...
Finding the CO[subscript 2] Culprit
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2015-01-01
In 2013, the Intergovernmental Panel on Climate Change (IPCC) released its fifth report, attributing 95% of "all" climate warming--from the 1950s through today--to humans. Not only did the report--like previous IPCC reports dating back to 1990--accredit global warming to anthropogenic carbon dioxide emissions, but over time the vast…
O'Reilly, Jessica; Oreskes, Naomi; Oppenheimer, Michael
2012-10-01
How and why did the scientific consensus about sea level rise due to the disintegration of the West Antarctic Ice Sheet (WAIS), expressed in the third Intergovernmental Panel on Climate Change (IPCC) assessment, disintegrate on the road to the fourth? Using ethnographic interviews and analysis of IPCC documents, we trace the abrupt disintegration of the WAIS consensus. First, we provide a brief historical overview of scientific assessments of the WAIS. Second, we provide a detailed case study of the decision not to provide a WAIS prediction in the Fourth Assessment Report. Third, we discuss the implications of this outcome for the general issue of scientists and policymakers working in assessment organizations to make projections. IPCC authors were less certain about potential WAIS futures than in previous assessment reports in part because of new information, but also because of the outcome of cultural processes within the IPCC, including how people were selected for and worked together within their writing groups. It became too difficult for IPCC assessors to project the range of possible futures for WAIS due to shifts in scientific knowledge as well as in the institutions that facilitated the interpretations of this knowledge.
GLOBAL CHANGE RESEARCH NEWS #3: IPCC SPECIAL REPORT ON "LAND USE, LAND USE CHANGE, AND FORESTRY"
ORD is participating in the development of an Intergovernmental Panel on Climate Change (IPCC) Special Report on "Land Use, Land Use Change and Forestry." Preparation of the Special Report was requested by the Conference of the Parties(COP) to the United Nations Framework Conve...
Southern United States climate, land use, and forest conditions
David N. Wear; Thomas L. Mote; J. Marshall Shepherd; K. C. Benita; Christopher W. Strother
2014-01-01
The Intergovernmental Panel on Climate Change (IPCC) has concluded, with 90% certainty, that human or "anthropogenic" activities (emissions of greenhouse gases, aerosols and pollution, landuse/land-cover change) have altered global temperature patterns over the past 100-150 years (IPCC 2007a). Such temperature changes have a set of cascading, and sometimes...
Douglas J. Arent - Deputy Associate Lab Director, Scientific Computing
Coordinating Lead Author for the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC of Sciences Panel on Limiting the Magnitude of Future Climate Change, and also served on the
IPCC Report Calls Climate Changes Unprecedented
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
Warming of the Earth's climate "is unequivocal and since the 1950s many of the observed changes are unprecedented over decades to millennia," according to a new assessment report by the Intergovernmental Panel on Climate Change (IPCC). The 27 September summary for policy makers of IPCC's report "Climate Change 2013: The Physical Science Basis" also states that "it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."
D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence
2011-01-01
Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...
Framing the future in the Southern United States climate, land use, and forest conditions
David N. Wear; Thomas L. Mote; J. Marshall Shepherd; K.C. Binita; Christopher W. Strother
2014-01-01
The Intergovernmental Panel on Climate Change (IPCC) has concluded, with 90% certainty, that human or âanthropogenicâ activities (emissions of greenhouse gases, aerosols and pollution, landuse/ land-cover change) have altered global temperature patterns over the past 100-150 years (IPCC 2007a). Such temperature changes have a set of cascading, and sometimes amplifying...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolin, B.
2007-11-15
In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less
Potential Adverse Environmental Impacts of Greenhouse Gas Mitigation Strategies
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The Fourth Assessment Report released by the Intergovernmental Panel on Cli-mate Change (IPCC) in 2007 was unequivocal in its message that warming of the global climate system is now occurring, and found...
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2012-01-01
Dr. Nancy Maynard was invited by the Alaska Forum on the Environment to participate in a Panel Discussion to discuss (1) background about what the US NCA and International IPCC assessments are, (2) the impact the assessments have on policy-making, (3) the process for participation in both assessments, (4) how we can increase participation by Indigenous Peoples such as Native Americans and Alaska Natives, (5) How we can increase historical and current impacts input from Native communities through stories, oral history, "grey" literature, etc. The session will be chaired by Dr. Bull Bennett, a cochair of the US NCA's chapter on "Native and Tribal Lands and Resources" and Dr. Maynard is the other co-chair of that chapter and they will discuss the latest activities under the NCA process relevant to Native Americans and Alaska Natives. Dr. Maynard is also a Lead Author of the "Polar Regions" chapter of the IPCC WG2 (5th Assessment) and she will describes some of the latest approaches by the IPCC to entrain more Indigenous peoples into the IPCC process.
Gay-Antaki, Miriam; Liverman, Diana
2018-02-27
The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women's views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. Copyright © 2018 the Author(s). Published by PNAS.
Gay-Antaki, Miriam; Liverman, Diana
2018-01-01
The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women’s views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. PMID:29440422
75 FR 35121 - Intergovernmental Panel on Climate Change Special Report Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...--bio-energy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy--which... expert review of the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) of..._procedures.htm ). In April 2008, the IPCC approved the development of a Special Report on Renewable Energy...
75 FR 12232 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... recommended by the Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory... of Atmospheric Programs, Climate Change Division, (202) 343-9432, [email protected
78 FR 12310 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
76 FR 10026 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... Intergovernmental Panel on Climate Change (IPCC), and reported in a format consistent with the United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas...: Comments should be submitted to Mr. Leif Hockstad at: Environmental Protection Agency, Climate Change...
Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River
USDA-ARS?s Scientific Manuscript database
Bottom-up estimates of riverine nitrous oxide (N2O) emissions developed by the Intergovernmental Panel on Climate Change (IPCC) assume a constant emission factor (EF5r) that predicts N2O production from anthropogenic nitrogen inputs. This relation ignores any direct stream water biochemical charact...
Section summary: Remote sensing
Belinda Arunarwati Margono
2013-01-01
Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...
Linguistic analysis of IPCC summaries for policymakers and associated coverage
NASA Astrophysics Data System (ADS)
Barkemeyer, Ralf; Dessai, Suraje; Monge-Sanz, Beatriz; Renzi, Barbara Gabriella; Napolitano, Giulio
2016-03-01
The Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers (SPM) is the most widely read section of IPCC reports and the main springboard for the communication of its assessment reports. Previous studies have shown that communicating IPCC findings to a variety of scientific and non-scientific audiences presents significant challenges to both the IPCC and the mass media. Here, we employ widely established sentiment analysis tools and readability metrics to explore the extent to which information published by the IPCC differs from the presentation of respective findings in the popular and scientific media between 1990 and 2014. IPCC SPMs clearly stand out in terms of low readability, which has remained relatively constant despite the IPCC’s efforts to consolidate and readjust its communications policy. In contrast, scientific and quality newspaper coverage has become increasingly readable and emotive. Our findings reveal easy gains that could be achieved in making SPMs more accessible for non-scientific audiences.
Climate change and the biosphere
F. Stuart Chapin
2008-01-01
Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...
Chapter 3: Climate change and the relevance of historical forest conditions
H.D. Safford; M. North; M.D. Meyer
2012-01-01
Increasing human emissions of greenhouse gases are modifying the Earth's climate. According to the Intergovernmental Panel on Climate Change (IPCC), "Warming of the climate system is unequivocal, as is now evident from observation of increases in average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea...
ERIC Educational Resources Information Center
Harris, Adam J. L.; Corner, Adam
2011-01-01
Verbal probability expressions are frequently used to communicate risk and uncertainty. The Intergovernmental Panel on Climate Change (IPCC), for example, uses them to convey risks associated with climate change. Given the potential for human action to mitigate future environmental risks, it is important to understand how people respond to these…
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate ...
Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models
USDA-ARS?s Scientific Manuscript database
Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...
J. G. Isebrands; E. P. McDonald; E. Kruger; G. Hendrey; K. Percy; K. Pregitzer; J. Sober; D. F. Karnosky
2001-01-01
The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess...
Sequestration of carbon in harvested wood products for the United States
Kenneth E. Skog
2008-01-01
The Intergovernmental Panel on Climate Change (IPCC) provides guidelines for countries to report greenhouse gas removals by sinks and emissions from sources. These guidelines allow use of several accounting approaches when reporting the contribution of harvested wood products (HWP) under the United Nations Framework Convention on Climate Change. Using extensions of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, C.B.; Barros, V.; Stocker, T.F.
2012-07-01
This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decision making under uncertainty, analyzing response in the context of risk management.more » The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies. (LN)« less
NASA Astrophysics Data System (ADS)
Harris, Adam
2014-05-01
The Intergovernmental Panel on Climate Change (IPCC) prescribes that the communication of risk and uncertainty information pertaining to scientific reports, model predictions etc. be communicated with a set of 7 likelihood expressions. These range from "Extremely likely" (intended to communicate a likelihood of greater than 99%) through "As likely as not" (33-66%) to "Extremely unlikely" (less than 1%). Psychological research has investigated the degree to which these expressions are interpreted as intended by the IPCC, both within and across cultures. I will present a selection of this research and demonstrate some problems associated with communicating likelihoods in this way, as well as suggesting some potential improvements.
Managing fish and wildlife habitat in the face of climate change: USDA Forest Service perspective
Gregory D. Hayward; Curtis H. Flather; Erin Uloth; Hugh D. Safford; David A. Cleaves
2009-01-01
The spatial and temporal scope of environmental change anticipated during the next century as a result of climate change presents unprecedented challenges for fish and wildlife management. The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC 2007) suggested impacts from climate change on natural systems will be more grave than earlier...
Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky
2000-01-01
Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...
J. Brown; V.E. Romanovsky
2008-01-01
Recent assessments have considered present-day and future responses of permafrost terrain to climate change; included are the Intergovernmental Panel on Climate Change (IPCC) , Arctic Climate Impact Assessment (ACIA) and United Nations Environment Programme assessments (Romanovsky et al., 2007), the on-going National Oceanic and Atmospheric Administration (NOAA) annual...
A clarion call for aeolian research to engage with global land degradation and climate change
NASA Astrophysics Data System (ADS)
Chappell, Adrian; Lee, Jeffrey A.; Baddock, Matthew; Gill, Thomas E.; Herrick, Jeffrey E.; Leys, John F.; Marticorena, Beatrice; Petherick, Lynda; Schepanski, Kerstin; Tatarko, John; Telfer, Matt; Webb, Nicholas P.
2018-06-01
This editorial represents a clarion call for the aeolian research community to provide increased scientific input to the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Convention to Combat Desertification (UNCCD) and an invitation to apply for ISAR funding to organize a working group to support this engagement.
[The climate debate: the facts].
van den Broeke, Michiel R
2009-01-01
The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.
Global Warming - Myth or Reality?, The Erring Ways of Climatology
NASA Astrophysics Data System (ADS)
Leroux, Marcel
In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.
Stanley J. Zarnoch; H. Ken Cordell; Carter J. Betz
2010-01-01
County-level population projections from 2010 to 2060 are developed under three national population growth scenarios for reporting in the 2010 Renewable Resources Planning Act (RPA) Assessment. These population growth scenarios are tied to global futures scenarios defined by the Intergovernmental Panel on Climate Change (IPCC), a program within the United Nations...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... review. Climate Change Information Provided in the Petition The petitioner states that the western United States will likely suffer a decrease in water resources due to climate change, which will affect montane... conclusions from the Intergovernmental Panel on Climate Change (IPCC) (2007, p. 52) and RMNP (2007a, p. 6...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... climate change and provides several references about the effects of climate change in general to support this claim. The petition explains that human-induced climate change is causing global increases of...; Fagre 2005, p. 1; Hall and Fagre 2003, p. 139; Intergovernmental Panel on Climate Change (IPCC) 2007a, p...
Severe Weather in United States Under a Changing Climate
NASA Astrophysics Data System (ADS)
Wuebbles, Donald J.; Kunkel, Kenneth; Wehner, Michael; Zobel, Zachary
2014-05-01
The science has become clear and convincing that the Earth's climate is rapidly changing [e.g., Intergovernmental Panel on Climate Change (IPCC), 2014]. Along with the overall changes in climate, there is strong evidence of an increasing trend over recent decades in the frequency, intensity, and duration of some types of extreme weather events, with resulting effects on U.S. society.
The effects of climate-change-induced drought and freshwater wetlands
Middleton, B.A.; Kleinebecker, Till; Middleton, B.A.
2012-01-01
Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.
Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal
2009-03-17
Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."
Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal
2009-01-01
Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662
Asayama, Shinichiro; Ishii, Atsushi
2014-02-01
The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.
;Agreement; in the IPCC Confidence measure
NASA Astrophysics Data System (ADS)
Rehg, William; Staley, Kent
2017-02-01
The Intergovernmental Panel on Climate Change (IPCC) has, in its most recent Assessment Report (AR5), articulated guidelines for evaluating and communicating uncertainty that include a qualitative scale of confidence. We examine one factor included in that scale: the "degree of agreement." Some discussions of the degree of agreement in AR5 suggest that the IPCC is employing a consensus-oriented social epistemology. We consider the application of the degree of agreement factor in practice in AR5. Our findings, though based on a limited examination, suggest that agreement attributions do not so much track the overall consensus among investigators as the degree to which relevant research findings substantively converge in offering support for IPCC claims. We articulate a principle guiding confidence attributions in AR5 that centers not on consensus but on the notion of support. In concluding, we tentatively suggest a pluralist approach to the notion of support.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.
2012-04-01
In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar
2008-05-01
This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.
Linda A. Joyce; David T. Price; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence; David P. Coulson
2011-01-01
Projections of future climate were selected for four well-established general circulation models (GCM) forced by each of three greenhouse gas (GHG) emissions scenarios, namely A2, A1B, and B1 from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). Monthly data for the period 1961-2100 were downloaded mainly from the web...
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2008-01-01
Intergovernmental Panel on Climate Change (IPCC). RESULTS Temporal and Spatial Variations of Sea Surface Temperature and Chlorophyll a in Coastal Waters of...Duck, North Carolina [4] Climate change has affected the North Carolina coastal environments and coastal hazards have already taken place in the area...from geological materials (sands, dead and/or bleached corals ...etc) shifted by waves, tides, and currents moving sediments and eroding shorelines
Grant M. Domke; Christopher W. Woodall; Brian F. Walters; Ronald E. McRoberts; Mark A. Hatfield
2014-01-01
Forest ecosystem carbon (C) stocks and stock change in the United States (US) have been documented using Intergovernmental Panel on Climate Change (IPCC) procedures and guidance with 1990 as a baseline reference for all United Nations Framework Convention on Climate Change reports. In the US, estimates of forest C stocks and stock change are obtained from data...
Global Climate Change - U.S. Economic and National Security Opportunity
2009-03-20
The most recent findings of the Intergovernmental Panel on Climate Change (IPCC) state that the current trajectory of greenhouse gas (GHG) emissions...challenges and opportunities for the United States as they balance national security and economic interests. The effects of climate change could act as a...are various opportunities associated with climate change including opening arctic navigational channels and the vast oil and natural gas resources
Valerie Esposito; Spencer Phillips; Roelof Boumans; Azur Moulaert; Jennifer Boggs
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) (2007) reports a likely 2 °C to 4.5 °C temperature rise in the upcoming decades. This warming is likely to affect ecosystems and their ability to provide services that benefit human well-being. Ecosystem services valuation (ESV), meanwhile, has emerged as a way to recognize the economic value embodied in these...
An interactive web application for visualizing climate data
Alder, J.; Hostetler, S.; Williams, D.
2013-01-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
An Interactive Web Application for Visualizing Climate Data
NASA Astrophysics Data System (ADS)
Alder, J.; Hostetler, S.; Williams, D.
2013-05-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
Christopher W. Woodall; Brian F. Walters; John Coulston; A.W. D’Amato; Grant M. Domke; M.B. Russell; Paul Sowers
2015-01-01
Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a regionâwide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories...
NASA Astrophysics Data System (ADS)
Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P.
2016-12-01
New calculations of the radiative forcing (RF) are presented for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane's RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750-2011 RF is about 25% higher (increasing from 0.48 W m-2 to 0.61 W m-2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750-2011 CO2 RF is within 1% of IPCC's value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.
NASA Technical Reports Server (NTRS)
Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.;
2006-01-01
The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.
Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)
NASA Astrophysics Data System (ADS)
Manning, M. R.; Swart, R.
2009-12-01
Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that assessment [IPCC, 2005]. This paper extends a review of the treatment of uncertainty in the IPCC assessments by Swart et al [2009]. It is shown that progress towards consistency has been made but that there also appears to be a need for continued use of several complementary approaches in order to cover the wide range of circumstances across different disciplines involved in climate change. While this reflects the situation in the science community, it also raises the level of complexity for policymakers and other users of the assessments who would prefer one common consensus approach. References IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties, IPCC, Geneva. Manning, M., et al. (2004), IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. IPCC Moss, R., and S. Schneider (2000), Uncertainties, in Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC, edited by R. Pachauri, et al., Intergovernmental Panel on Climate Change (IPCC), Geneva. Swart, R., et al. (2009), Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC Climatic Change, 92(1-2), 1 - 29.
Coastal wetlands and global change: overview
Guntenspergen, G.R.; Vairin, B.; Burkett, V.R.
1997-01-01
The potential impacts of climate change are of great practical concern to those interested in coastal wetland resources. Among the areas of greatest risk in the United States are low-lying coastal habitats with easily eroded substrates which occur along the northern Gulf of Mexico and southeast Atlantic coasts. The Intergovernmental Panel on Climate Change (IPCC) and the World Meteorological Organization (WMO) have identified coastal wetlands as ecosystems most vulnerable to direct, large-scale impacts of climate change, primarily because of their sensitivity to increases in sea-level rise.
Fifth IPCC Assessment Report Now Out
NASA Astrophysics Data System (ADS)
Kundzewicz, Zbigniew W.
2014-01-01
The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is now available. It provides policymakers with an assessment of information on climate change, its impacts and possible response options (adaptation and mitigation). Summaries for policymakers of three reports of IPCC working groups and of the Synthesis Report have now been approved by IPCC plenaries. This present paper reports on the most essential findings in AR5. It briefly informs on the contents of reports of all IPCC working groups. It discusses the physical science findings, therein observed changes (ubiquitous warming, shrinking cryosphere, sea level rise, changes in precipitation and extremes, and biogeochemical cycles). It deals with the drivers of climate change, progress in climate system understanding (evaluation of climate models, quantification of climate system responses), and projections for the future. It reviews impacts, adaptation and vulnerability, including observed changes, key risks, key reasons for concern, sectors and systems, and managing risks and building resilience. Finally, mitigation of climate change is discussed, including greenhouse gas emissions in the past, present and future, and mitigation in sectors. It is hoped that the present article will encourage the readership of this journal to dive into the AR5 report that provides a wealth of useful information.
Coastal sea level projections with improved accounting for vertical land motion
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-01-01
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions. PMID:26526287
Coastal sea level projections with improved accounting for vertical land motion.
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-11-03
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions.
NASA Astrophysics Data System (ADS)
Cook, B. R.; Overpeck, J. T.
2014-12-01
Scientific knowledge production is based on recognizing and filling knowledge deficits or 'gaps' in understanding, but for climate adaptation and mitigation, the applicability of this approach is questionable. The Intergovernmental Panel on Climate Change (IPCC) mandate is an example of this type of 'gap filling,' in which the elimination of uncertainties is presumed to enable rational decision making for individuals and rational governance for societies. Presumed knowledge deficits, though, are unsuited to controversial problems with social, cultural, and economic dimensions; likewise, communication to educate is an ineffective means of inciting behavioural change. An alternative is needed, particularly given the economic, social, and political scale that action on climate change requires. We review the 'deficit-education framing' and show how it maintains a wedge between those affected and those whose knowledge is required. We then review co-production to show how natural and social scientists, as well as the IPCC, might more effectively proceed.
Ice2sea - Estimating the future contribution of continental ice to sea-level rise - project summary
NASA Astrophysics Data System (ADS)
Ford, Elaina; Vaughan, David
2013-04-01
Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major European-funded programme will inform the fifth IPCC report (due in September 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise. Understanding about the crucial ice-sheet effects was "too limited to assess their likelihood or provide a best estimate of an upper bound for sea-level rise". Ice2sea was created to address these issues - the project started in 2009 and is now drawing to a close, with our final symposium in May 2013, and final publicity activities around the IPCC report release in autumn 2013. Here we present a summary of the overall and key outputs of the ice2sea project.
NASA Astrophysics Data System (ADS)
Leuliette, E.; Nerem, S.; Jakub, T.
2006-07-01
Recen tly, multiple ensemble climate simulations h ave been produced for th e forthco ming Fourth A ssessment Report of the Intergovernmental Panel on Climate Change (IPCC). N early two dozen coupled ocean- atmo sphere models have contr ibuted output for a variety of climate scen arios. One scenar io, the climate of the 20th century exper imen t (20C3 M), produces model output that can be comp ared to th e long record of sea level provided by altimetry . Generally , the output from the 20C3M runs is used to initialize simulations of future climate scenar ios. Hence, v alidation of the 20 C3 M experiment resu lts is crucial to the goals of th e IPCC. We present compar isons of global mean sea level (G MSL) , global mean steric sea level change, and regional patterns of sea lev el chang e from these models to r esults from altimetry, tide gauge measurements, and reconstructions.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Riley, William J.; Randerson, James T.
2016-06-01
The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).
NASA Technical Reports Server (NTRS)
Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica
2016-01-01
Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.
Uncertainty quantification of US Southwest climate from IPCC projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark Bruce Elrick
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less
NASA Astrophysics Data System (ADS)
Yan, Xiaoyuan; Akiyama, Hiroko; Yagi, Kazuyuki; Akimoto, Hajime
2009-06-01
The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH4) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a-1, which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a-1; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH4 emissions would be reduced by 4.1 Tg a-1. Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a-1 globally. Finally, if both of these mitigation options were adopted, the global CH4 emission from rice paddies could be reduced by 7.6 Tg a-1. Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N2O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH4 reduction associated with draining the fields.
An evaluation of the treatment of risk and uncertainties in the IPCC reports on climate change.
Aven, Terje; Renn, Ortwin
2015-04-01
Few global threats rival global climate change in scale and potential consequence. The principal international authority assessing climate risk is the Intergovernmental Panel on Climate Change (IPCC). Through repeated assessments the IPCC has devoted considerable effort and interdisciplinary competence to articulating a common characterization of climate risk and uncertainties. We have reviewed the assessment and its foundation for the Fifth Assessment Reports published in 2013 and 2014, in particular the guidance note for lead authors of the fifth IPCC assessment report on consistent treatment of uncertainties. Our analysis shows that the work carried out by the ICPP is short of providing a theoretically and conceptually convincing foundation on the treatment of risk and uncertainties. The main reasons for our assessment are: (i) the concept of risk is given a too narrow definition (a function of consequences and probability/likelihood); and (ii) the reports lack precision in delineating their concepts and methods. The goal of this article is to contribute to improving the handling of uncertainty and risk in future IPCC studies, thereby obtaining a more theoretically substantiated characterization as well as enhanced scientific quality for risk analysis in this area. Several suggestions for how to improve the risk and uncertainty treatment are provided. © 2014 Society for Risk Analysis.
Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC
NASA Astrophysics Data System (ADS)
Drouet, L.; Bosetti, V.; Tavoni, M.
2015-10-01
Strategies for dealing with climate change must incorporate and quantify all the relevant uncertainties, and be designed to manage the resulting risks. Here we employ the best available knowledge so far, summarized by the three working groups of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5; refs , , ), to quantify the uncertainty of mitigation costs, climate change dynamics, and economic damage for alternative carbon budgets. We rank climate policies according to different decision-making criteria concerning uncertainty, risk aversion and intertemporal preferences. Our findings show that preferences over uncertainties are as important as the choice of the widely discussed time discount factor. Climate policies consistent with limiting warming to 2 °C above preindustrial levels are compatible with a subset of decision-making criteria and some model parametrizations, but not with the commonly adopted expected utility framework.
Estimation of CO2 emissions from waste incinerators: Comparison of three methods.
Lee, Hyeyoung; Yi, Seung-Muk; Holsen, Thomas M; Seo, Yong-Seok; Choi, Eunhwa
2018-03-01
Climate-relevant CO 2 emissions from waste incineration were compared using three methods: making use of CO 2 concentration data, converting O 2 concentration and waste characteristic data, and using a mass balance method following Intergovernmental Panel on Climate Change (IPCC) guidelines. For the first two methods, CO 2 and O 2 concentrations were measured continuously from 24 to 86 days. The O 2 conversion method in comparison to the direct CO 2 measurement method had a 4.8% mean difference in daily CO 2 emissions for four incinerators where analyzed waste composition data were available. However, the IPCC method had a higher difference of 13% relative to the direct CO 2 measurement method. For three incinerators using designed values for waste composition, the O 2 conversion and IPCC methods in comparison to the direct CO 2 measurement method had mean differences of 7.5% and 89%, respectively. Therefore, the use of O 2 concentration data measured for monitoring air pollutant emissions is an effective method for estimating CO 2 emissions resulting from waste incineration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate of the past 2000 years in IPCC AR5 (Invited)
NASA Astrophysics Data System (ADS)
Masson-Delmotte, V.
2013-12-01
Different aspects of the climate of the past 2000 years are covered in several chapters of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, including information from paleoclimate archives, changes in the carbon and biogeochemical cycles, changes in sea level, climate model evaluation and detection and attribution. This presentation will summarize the main findings regarding pre-industrial changes in radiative forcings, reconstructed and simulated temperature variations at the hemispheric and regional scales, as well as global sea level for the past 2000 years, in the perspective of the current and earlier interglacial periods.
NASA Technical Reports Server (NTRS)
Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick
1991-01-01
An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.
Myers, J; Young, T; Galloway, M; Manyike, P; Tucker, T
2011-11-01
Anthropogenic climate change and anticipated adverse impacts on human health as outlined by the Intergovernmental Panel on Climate Change (IPCC) are taken as given. A conceptual model for thinking about the spectrum of climate-related health risks ranging from distal and infrastructural to proximal and behavioural and their relation to the burden of disease pattern typical of sub-Saharan Africa is provided. The model provides a tool for identifying modifiable risk factors with a view to future research, specifically into the performance of interventions to reduce the impact of climate change.
Payload advisory panel recommendations
NASA Technical Reports Server (NTRS)
Moore, Berrien, III
1991-01-01
The Payload Advisory Panel proposes a restructured Earth Observing System (EOS) mission to address high-priority science and environmental policy issues in Earth System Science. These issues have been identified through studies conducted by the Intergovernmental Panel on Climate Change (IPCC), the United States Environmental Protection Agency (EPA), and the Committee on Earth and Environmental Sciences (CEES). The restructured EOS defers efforts to improve the understanding of the middle and upper stratosphere and solid earth geophysics. The strategy of the mission combines high priority new measurements with continuation of critical data sets begun by missions which precede EOS. Collaborative arrangements with international partners are an essential part of the program and additional arrangements are posed. The need for continuity in Earth observations and the urgency of environmental questions require launch of some EOS elements as soon as possible. They further require maintenance of the EOS objective of obtaining consistent 15-year measurement records.
Payload advisory panel recommendations
NASA Astrophysics Data System (ADS)
Moore, Berrien, III
1991-11-01
The Payload Advisory Panel proposes a restructured Earth Observing System (EOS) mission to address high-priority science and environmental policy issues in Earth System Science. These issues have been identified through studies conducted by the Intergovernmental Panel on Climate Change (IPCC), the United States Environmental Protection Agency (EPA), and the Committee on Earth and Environmental Sciences (CEES). The restructured EOS defers efforts to improve the understanding of the middle and upper stratosphere and solid earth geophysics. The strategy of the mission combines high priority new measurements with continuation of critical data sets begun by missions which precede EOS. Collaborative arrangements with international partners are an essential part of the program and additional arrangements are posed. The need for continuity in Earth observations and the urgency of environmental questions require launch of some EOS elements as soon as possible. They further require maintenance of the EOS objective of obtaining consistent 15-year measurement records.
A multistage crucible of revision and approval shapes IPCC policymaker summaries.
Mach, Katharine J; Freeman, Patrick T; Mastrandrea, Michael D; Field, Christopher B
2016-08-01
Intergovernmental Panel on Climate Change (IPCC) member governments approve each report's summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain.
The Co-evolution of Climate Models and the Intergovernmental Panel on Climate Change
NASA Astrophysics Data System (ADS)
Somerville, R. C.
2010-12-01
As recently as the 1950s, global climate models, or GCMs, did not exist, and the notion that man-made carbon dioxide might lead to significant climate change was not regarded as a serious possibility by most experts. Today, of course, the prospect or threat of exactly this type of climate change dominates the science and ranks among the most pressing issues confronting all mankind. Indeed, the prevailing scientific view throughout the first half of the twentieth century was that adding carbon dioxide to the atmosphere would have only a negligible effect on climate. The science of climate change caused by atmospheric carbon dioxide changes has thus undergone a genuine revolution. An extraordinarily rapid development of global climate models has also characterized this period, especially in the three decades since about 1980. In these three decades, the number of GCMs has greatly increased, and their physical and computational aspects have both markedly improved. Modeling progress has been enabled by many scientific advances, of course, but especially by a massive increase in available computer power, with supercomputer speeds increasing by roughly a factor of a million in the three decades from about 1980 to 2010. This technological advance has permitted a rapid increase in the physical comprehensiveness of GCMs as well as in spatial computational resolution. In short, GCMs have dramatically evolved over time, in exactly the same recent period as popular interest and scientific concern about anthropogenic climate change have markedly increased. In parallel, a unique international organization, the Intergovernmental Panel on Climate Change, or IPCC, has also recently come into being and also evolved rapidly. Today, the IPCC has become widely respected and globally influential. The IPCC was founded in 1988, and its history is thus even shorter than that of GCMs. Yet, its stature today is such that a series of IPCC reports assessing climate change science has already been endorsed by many leading scientific professional societies and academies of science worldwide. These reports are considered as definitive summaries of the state of the science. In 2007, in recognition of its exceptional accomplishments, the IPCC shared the Nobel Peace Prize equally with Al Gore. The present era is characterized not only by the reality and seriousness of human-caused climate change, but also by a young yet powerful science that enables us to understand much about the climate change that has occurred already and that awaits in the future. The development of GCMs is a critical part of the scientific story, and the development of the IPCC is a key factor in connecting the science to the perceptions and priorities of the global public and policymakers. GCMs and the IPCC have co-evolved and strongly influenced one another, as both scientists and the world at large have worked to confront the challenge of climate change.
Fischer, Helen; Schütte, Stefanie; Depoux, Anneliese; Amelung, Dorothee; Sauerborn, Rainer
2018-04-27
Graphs are prevalent in the reports of the Intergovernmental Panel on Climate Change (IPCC), often depicting key points and major results. However, the popularity of graphs in the IPCC reports contrasts with a neglect of empirical tests of their understandability. Here we put the understandability of three graphs taken from the Health chapter of the Fifth Assessment Report to an empirical test. We present a pilot study where we evaluate objective understanding (mean accuracy in multiple-choice questions) and subjective understanding (self-assessed confidence in accuracy) in a sample of attendees of the United Nations Climate Change Conference in Marrakesh, 2016 (COP22), and a student sample. Results show a mean objective understanding of M = 0.33 for the COP sample, and M = 0.38 for the student sample. Subjective and objective understanding were unrelated for the COP22 sample, but associated for the student sample. These results suggest that (i) understandability of the IPCC health chapter graphs is insufficient, and that (ii) particularly COP22 attendees lacked insight into which graphs they did, and which they did not understand. Implications for the construction of graphs to communicate health impacts of climate change to decision-makers are discussed.
Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models
Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita
2010-01-01
Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720
Coastal Impact Underestimated From Rapid Sea Level Rise
NASA Astrophysics Data System (ADS)
Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander
2010-06-01
A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).
A multistage crucible of revision and approval shapes IPCC policymaker summaries
Mach, Katharine J.; Freeman, Patrick T.; Mastrandrea, Michael D.; Field, Christopher B.
2016-01-01
Intergovernmental Panel on Climate Change (IPCC) member governments approve each report’s summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain. PMID:27532046
Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations
NASA Astrophysics Data System (ADS)
Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2011-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.
Jha, Arvind K; Sharma, C; Singh, Nahar; Ramesh, R; Purvaja, R; Gupta, Prabhat K
2008-03-01
Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.
Measuring Engagement with the Potential Consequences of Climate Change
NASA Astrophysics Data System (ADS)
Young, N.; Danielson, R. W.; Lombardi, D.
2015-12-01
Across three studies, we investigated engagement with the consequences of climate change. We drew from the conceptual change and risk analysis literatures to find the factors that determine how much people will care about future risks. Questions derived from these factors were then asked about many hypothesized consequences of climate change. These consequences were drawn from an Intergovernmental Panel on Climate Change special report (IPCC, 2012) and, in the third study, additionally from the IPCC AR5 (IPCC, 2014). The first two studies, using undergraduate students, demonstrated that some consequences were indeed considerably more engaging than others. The third study used a more representative sample of American adults, drawn from Amazon Mechanical Turk and used the Global Warming's Six Americas Screening Tool (Maibach, Leiserowitz, Roser-Renouf, Mertz, & Akerlof, 2011) in a large screening survey to find 20 participants in each of the six audiences defined by this tool. These participants were then asked about the potential consequences of climate change. Results again showed that some consequences are considered more engaging than others, and also showed the ways in which members of these six audiences perceive the consequences of climate change differently.
Measuring progress of the global sea level observing system
NASA Astrophysics Data System (ADS)
Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian
Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].
Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte
2014-01-01
In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report. PMID:24718388
Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte
2014-01-01
In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.
Enting, I. G.; Wigley, M. L.; Heimann, M.
1995-01-01
This database contains the results of various projections of the relation between future CO2 concentrations and future industrial emissions. These projections were contributed by groups from a number of countries as part of the scientific assessment for the report, "Radiative Forcing of Climate Change" (1994), issued by Working Group 1 of the Intergovernmental Panel on Climate Change. There were three types of calculations: (1) forward projections, calculating the atmospheric CO2 concentrations resulting from specified emissions scenarios; (2) inverse calculations, determining the emission rates that would be required to achieve stabilization of CO2 concentrations via specified pathways; (3) impulse response function calculations, required for determining Global Warming Potentials. The projections were extrapolations of global carbon cycle models from pre-industrial times (starting at 1765) to 2100 or 2200 A.D. There were two aspects to the exercise: (1) an assessment of the uncertainty due to uncertainties regarding the current carbon budget, and (2) an assessment of the uncertainties arising from differences between models. To separate these effects, a set of standard conditions was used to explore inter-model differences and then a series of sensitivity studies was used to explore the consequences of current uncertainties in the carbon cycle.
Assessing the present and future probability of Hurricane Harvey's rainfall
NASA Astrophysics Data System (ADS)
Emanuel, Kerry
2017-11-01
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.
Unleashing Expert Judgment in the IPCC's Fifth Assessment Report
NASA Astrophysics Data System (ADS)
Freeman, P. T.; Mach, K. J.; Mastrandrea, M.; Field, C. B.
2016-12-01
IPCC assessments are critical vehicles for evaluating and synthesizing existing knowledge about climate change, its impacts, and potential options for adaptation and mitigation. In these assessments, rigorous expert judgment is essential for characterizing current scientific understanding including persistent and complex uncertainties related to climate change. Over its history the IPCC has iteratively developed frameworks for evaluating and communicating what is known and what is not known about climate change science. In this presentation, we explore advances and challenges in approaches to evaluating and communicating expert judgment in the Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5). We present an analysis of the frequency of the use of calibrated degree-of-certainty terms in the policymaker summaries from the IPCC's AR5 and Fourth Assessment Report (AR4). We find that revised guidance for IPCC author teams in the AR5 improved the development of balanced judgments on scientific evidence across disciplines. Overall, degree-of-certainty terms are more abundant in the AR5 policymaker summaries compared to those of the AR4, demonstrating an increased commitment to extensively and transparently characterizing expert judgments underpinning report conclusions. This analysis also shows that while working groups still favor different degree-of-certainty scales in the AR5, authors employed a wider array of degree-of-certainty scales to communicate expert judgment supporting report findings compared to the policymaker summaries of the AR4. Finally, our analysis reveals greater inclusion of lower-certainty findings in the AR5 as compared to the AR4, critical for communicating a fuller range of possible climate change impacts and response options. Building on our findings we propose a simpler, more transparent, and more rigorous framework for developing and communicating expert judgments in future climate and environmental assessments.
How IPCC Science-Policy Interactions Shape Its Policymaker Summaries
NASA Astrophysics Data System (ADS)
Mach, K. J.; Freeman, P. T.; Mastrandrea, M.; Field, C. B.
2016-12-01
Government approval is a defining feature of the Intergovernmental Panel on Climate Change (IPCC) assessment process. In plenary sessions with scientist authors, IPCC member governments discuss and agree each sentence of every report's summary for policymakers (SPM). This consensus-based approval builds joint ownership of scientific knowledge by both scientists and governments. The approval process and its resulting SPM revisions have received extensive attention in published anecdotes and perspectives, but without comprehensive evaluation to date. We present the results of an in-depth analysis of IPCC SPM revisions, providing an evidence basis for understanding a complex science-policy interaction. Revisions resulting from governmental review and approval expand SPMs. SPM text lengthens by 17 to 53% in recent assessment summaries. Political sensitivities and associated failures of consensus have led to prominent exceptions resulting in SPM contractions. Contrasting recent assertions, we find IPCC SPMs to be as readable as other professionally edited assessment summaries, for multiple measures of reading ease. Across metrics, some SPMs, but not all, become more readable through the revision process. We additionally examine each revision in an SPM for which we have deep familiarity. Most of the SPM's revisions occur prior to the in-person government-approval session, and they emphasize different purposes compared to revisions made during the approval session. Revisions prior to the in-person session largely pertain to clarity, scientific rigor, and explanation, whereas the subsequent in-person government-approval revisions place more emphasis on policy relevance, comprehensiveness of examples, and nuances of expert judgment. The value added in the IPCC government-approval process emerges through multiple stages of revision and approval, as scientists and governments together navigate a complex science-policy interaction.
Towards the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
NASA Astrophysics Data System (ADS)
Fuglestvedt, J. S.; Masson-Delmotte, V.; Zhai, P.; Pirani, A.
2016-12-01
The IPCC, set up in 1988 by WMO and UNEP, is the international body for assessing the science related to climate change. The reports of the IPCC include Assessments, Synthesis and Special Reports (and their Summaries for Policymakers), as well as Methodological Reports, providing policymakers with regular assessments of the scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation. These assessments are policy-relevant, but not policy-prescriptive, and based on the assessment of the published literature. The assessments of the IPCC follow precise procedures to ensure that they provide a rigorous and balanced scientific information. Particularly critical is the volunteer involvment of tens of scientists involved in the scoping of each report, as well as the work of hundreds of Coordinating Lead Authors and Lead Authors of reports, with the complementary expertise of hundreds of sollicited Contributing Authors. The review process plays a key role in the open and transparent process underlying the IPCC reports. It is organized in multiple rounds and mobilizes thousands of other experts, a process monitored by Review Editors. The author teams develop rigorous methodologies to report the degree of confidence associated with each finding and report information with uncertainty. As a result, successive IPCC reports provide regular steps to determine matured climate science, through robust findings, but also emerging research pathways, and facilitate science maturation through analyses of multiple perspectives provided by the scientific literature in a comprehensive approach. While the IPCC does not conduct its own scientific research, the timeline of the IPCC reports acts as a stimulation for the research community, especially for internationally coordinated research programmes associated with global climate projections. These aspects will be developed in this presentation, with a focus on Working Group I (the physical science basis), and the 6th Assessment Report (AR6). For more information, see : www.ipcc.ch For new special reports planned in 2018-2019 : http://www.ipcc.ch/activities/activities.shtml For the strategic planning schedule for the AR6 : http://www.ipcc.ch/activities/pdf/ar6_WSPSchedule_07072016.pdf
NASA Technical Reports Server (NTRS)
Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew
2013-01-01
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.
Climate sensitivity uncertainty: when is good news bad?
Freeman, Mark C; Wagner, Gernot; Zeckhauser, Richard J
2015-11-28
Climate change is real and dangerous. Exactly how bad it will get, however, is uncertain. Uncertainty is particularly relevant for estimates of one of the key parameters: equilibrium climate sensitivity--how eventual temperatures will react as atmospheric carbon dioxide concentrations double. Despite significant advances in climate science and increased confidence in the accuracy of the range itself, the 'likely' range has been 1.5-4.5°C for over three decades. In 2007, the Intergovernmental Panel on Climate Change (IPCC) narrowed it to 2-4.5°C, only to reverse its decision in 2013, reinstating the prior range. In addition, the 2013 IPCC report removed prior mention of 3°C as the 'best estimate'. We interpret the implications of the 2013 IPCC decision to lower the bottom of the range and excise a best estimate. Intuitively, it might seem that a lower bottom would be good news. Here we ask: when might apparently good news about climate sensitivity in fact be bad news in the sense that it lowers societal well-being? The lowered bottom value also implies higher uncertainty about the temperature increase, definitely bad news. Under reasonable assumptions, both the lowering of the lower bound and the removal of the 'best estimate' may well be bad news. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.
1998-03-01
There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized
Global Mean Temperature Timeseries Projections from GCMs: The Implications of Rebasing
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2017-12-01
Global climate models are assessed by comparison with observations through several benchmarks. One highlighted by the InterGovernmental Panel on Climate Change (IPCC) is their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. These aspects of annual mean global mean temperature (GMT) change are presented as one feature demonstrating the relevance of these models for climate projections. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies. The models have absolute temperatures which range over about 3K so this means their timeseries (and the observations) are rebased. We show that rebasing in combination with general agreement, implies a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. It also implies a degree of linearity in the GMT slow timescale response. For each individual model these implications only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a wider range of GMTs. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.
Santidrián Tomillo, Pilar; Saba, Vincent S; Blanco, Gabriela S; Stock, Charles A; Paladino, Frank V; Spotila, James R
2012-01-01
Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.
Assessing the present and future probability of Hurricane Harvey's rainfall.
Emanuel, Kerry
2017-11-28
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981-2000 and will increase to 18% over the period 2081-2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century. Copyright © 2017 the Author(s). Published by PNAS.
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
Climate-change-driven accelerated sea-level rise detected in the altimeter era.
Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T
2018-02-27
Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.
Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang
2016-11-12
The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China's HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China.
Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang
2016-01-01
The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China’s HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China. PMID:27845760
ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?
DOE Office of Scientific and Technical Information (OSTI.GOV)
AchutaRao, K; Sperber, K R
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared withmore » reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.« less
Rescuing Data from International Scientific Assessments: A Case Study
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.; Xing, X.
2016-12-01
International scientific assessments such as the Millennium Ecosystem Assessment (MA) and the Intergovernmental Panel on Climate Change (IPCC) assessments represent significant efforts by the global scientific community to review, synthesize, and communicate diverse scientific knowledge, data, and information to support societal decision making on pressing problems such as resource management and climate change. To support the transparency, integrity, and usability of these assessments, it is vital that the underlying data used in these assessments be made openly available and usable by diverse stakeholders. Unfortunately, due to the many geographically dispersed contributors to assessments of this kind, as well as the severe time pressures and limited resources when assessments are conducted, appropriate management and preservation of these data are not always a priority. This can lead to the need to "rescue" key data to ensure their long-term preservation, integrity, accessibility, and appropriate reuse, especially in subsequent assessments. We describe here efforts over two decades to rescue selected data from the MA and IPCC assessments, to work with assessment authors and other contributors to validate and document assessment data, and to develop appropriate levels of data stewardship in light of potential user needs and constrained resources. The IPCC efforts are supported by the IPCC Data Distribution Center (DDC), which is operated collaboratively by the Center for Environmental Data Analysis in the United Kingdom, the World Data Center-Climate in Germany, and the NASA Socioeconomic Data and Applications Center (SEDAC) in the U.S. With the sixth IPCC assessment cycle now starting, a key challenge is to help the assessment community improve data management during the assessment process to reduce the risks of data loss, inadequate documentation, incomplete provenance, unnecessary data restrictions, and other problems.
NASA Astrophysics Data System (ADS)
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
The origin of climate changes.
Delecluse, P
2008-08-01
Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Impact of Urban Surfaces on Precipitation Processes
NASA Technical Reports Server (NTRS)
Shepherd, J. M.
2004-01-01
The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.
Global warming and the potential spread of vector-borne diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patz, J.
1996-12-31
Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectlymore » contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.« less
An international nanoscience advisory board to improve and harmonize nanotechnology oversight
NASA Astrophysics Data System (ADS)
Marchant, Gary E.; White, Andrew
2011-04-01
As governments around the world begin to implement regulations aimed at controlling nanotechnology, those regulations should be based upon the best available science, applied as consistently as possible within jurisdictions and, to the extent feasible, across jurisdictions. These goals would be easier to achieve with the creation of an international nanoscience advisory board. Such a body could be modeled on similar international scientific advisory bodies for other issues, such as the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Such a body should also take into account lessons learned from these similar organizations. An international nanoscience advisory board could assist regulatory bodies by providing a central source of accurate scientific information about the risks and benefits of nanotechnology, including relevant uncertainties, rather than having each regulatory body make these determinations independently. An international nanoscience advisory board could facilitate harmonization within and between jurisdictions by involving the top experts in the field to produce a centralized knowledge base for regulatory decisions. While an international nanoscience advisory board presents many potential benefits, it also faces significant difficulties, which are best illustrated by examining the history and challenges of existing international science advisory bodies.
NASA Technical Reports Server (NTRS)
Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.
2017-01-01
Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.
Patterns of authorship in the IPCC Working Group III report
NASA Astrophysics Data System (ADS)
Corbera, Esteve; Calvet-Mir, Laura; Hughes, Hannah; Paterson, Matthew
2016-01-01
The Intergovernmental Panel on Climate Change (IPCC) has completed its Fifth Assessment Report (AR5). Here, we explore the social scientific networks informing Working Group III (WGIII) assessment of mitigation for the AR5. Identifying authors’ institutional pathways, we highlight the persistence and extent of North-South inequalities in the authorship of the report, revealing the dominance of US and UK institutions as training sites for WGIII authors. Examining patterns of co-authorship between WGIII authors, we identify the unevenness in co-authoring relations, with a small number of authors co-writing regularly and indicative of an epistemic community’s influence over the IPCC’s definition of mitigation. These co-authoring networks follow regional patterns, with significant EU-BRICS collaboration and authors from the US relatively insular. From a disciplinary perspective, economists, engineers, physicists and natural scientists remain central to the process, with insignificant participation of scholars from the humanities. The shared training and career paths made apparent through our analysis suggest that the idea that broader geographic participation may lead to a wider range of viewpoints and cultural understandings of climate change mitigation may not be as sound as previously thought.
Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel
2013-08-01
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.
NASA Astrophysics Data System (ADS)
Spencer, S.; Ogle, S. M.; Wirth, T. C.; Sivakami, G.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) provides methods and guidance for estimating anthropogenic greenhouse gas emissions for reporting to the United Nations Framework Convention on Climate Change. The methods are comprehensive and require extensive data compilation, management, aggregation, documentation and calculations of source and sink categories to achieve robust emissions estimates. IPCC Guidelines describe three estimation tiers that require increasing levels of country-specific data and method complexity. Use of higher tiers should improve overall accuracy and reduce uncertainty in estimates. The AFOLU sector represents a complex set of methods for estimating greenhouse gas emissions and carbon sinks. Major AFOLU emissions and sinks include carbon dioxide (CO2) from carbon stock change in biomass, dead organic matter and soils, urea or lime application to soils, and oxidation of carbon in drained organic soils; nitrous oxide (N2O) and methane (CH4) emissions from livestock management and biomass burning; N2O from organic amendments and fertilizer application to soils, and CH4 emissions from rice cultivation. To assist inventory compilers with calculating AFOLU-sector estimates, the Agriculture and Land Use Greenhouse Gas Inventory Tool (ALU) was designed to implement Tier 1 and 2 methods using IPCC Good Practice Guidance. It guides the compiler through activity data entry, emission factor assignment, and emissions calculations while carefully maintaining data integrity. ALU also provides IPCC defaults and can estimate uncertainty. ALU was designed to simplify the AFOLU inventory compilation process at regional or national scales, disaggregating the process into a series of steps reduces the potential for errors in the compilation process. An example application has been developed using ALU to estimate methane emissions from rice production in the United States.
Anthropogenic Climate Change in Asia: Key Challenges
NASA Astrophysics Data System (ADS)
Ramaswamy, V.
2009-12-01
The energy, agricultural, and water sectors in Asia, a vast continent that comprises more than half of the world's population, are crucially vulnerable to shifts in climate. The acceleration of economic development in Asia over the past few decades, the dependence of its huge agricultural economy on rainfall, and its growing energy demands have thrust climate change and its impacts squarely into important sectors of the Asian society. Further, it is likely that there has been significant anthropogenic warming over the past 50 years averaged over the Asian continent (Intergovernmental Panel on Climate Change (IPCC) [2007]; see Figure 1a). Asian megacities are already witnessing stresses in food, water, transportation, health, and air quality. The situation could become even worse with projected changes in temperature and rainfall in the 21st century, coupled with the likelihood that climate change will exacerbate extremes.
Climate change unlikely to increase malaria burden in West Africa
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.
2016-11-01
The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.
NASA Technical Reports Server (NTRS)
Horton, Radley M.; Bader, Daniel A.; Rosenzweig, Cynthia; DeGaetano, Arthur T.; Solecki, William
2014-01-01
In its 2013-2014 Fifth Assessment Report (AR5), the Intergovernmental Panel on Climate Change (IPCC) states that there is a greater than 95 percent chance that rising global average temperatures, observed since the mid-20th century, are primarily due to human activities. As had been predicted in the 1800s, the principal driver of climate change over the past century has been increasing levels of atmospheric greenhouse gases associated with fossil-fuel combustion, changing land-use practices, and other human activities. Atmospheric concentrations of the greenhouse gas carbon dioxide are now approximately 40 percent higher than in preindustrial times. Concentrations of other important greenhouse gases, including methane and nitrous oxide, have increased rapidly as well.
NASA Astrophysics Data System (ADS)
Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent
2015-04-01
In this study, the projected changes for the periods of 2016 - 2035, 2046 - 2065, and 2081 - 2100 in the seasonal averages of air temperature and precipitation variables with respect to the reference period of 1981 - 2000 were examined for the Middle East and North Africa region. In this context, Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was run by using two different global climate models. MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology and HadGEM2 of the Met Office Hadley Centre were dynamically downscaled to 50 km for the CORDEX-MENA domain. The projections were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC (Intergovernmental Panel of Climate Change).
Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M
2018-10-15
Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie
2010-05-01
The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of the dispersion, though for a given SST pattern, ARPEGE does not necessarily reproduce the anomaly produced originally by the IPCC model which produced the SST anomaly. Many factors can contribute to this discrepancy, but the most prominent seems to be the absence of coupling between the forced atmospheric ARPEGE simulation and the underlying ocean. When the atmospheric model is forced by prescribed SST anomalies some retroactions between cyclogenesis and ocean are missing. There are however areas over the globe were models agree about the CYGP or GPI anomalies induced by global warming, such as the Indian Ocean that shows a better coherency in the coupled and forced responses. This could be an indication that interaction between ocean and atmosphere is not as strong there as in the other basins. Details of the results for all the other ocean basins will be presented. References: Chauvin F. and J.-F. Royer and M. Déqué , 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dynamics 27(4), 377-399. IPCC [Intergovernmental Panel for Climate Change], Climate change 2007: The physical science basis, in: S. Solomon et al. (eds.), Cambridge University Press. Royer JF, F Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. "Hurricanes and Climate Change", J. B. Elsner and T. H. Jagger (Eds.), Springer, ISBN: 978-0-387-09409-0, pp 213-234.
Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph
Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less
Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; ...
2014-12-08
Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less
Kevin E. Trenberth Receives 2013 Climate Communication Prize: Response
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2014-01-01
I am delighted to be recognized with this prize. I want to first thank AGU and the prize committee and, especially, Nature's Own for establishing this prize in a field that has become contentious and highly political. It did not used to be this way. Following the media frenzy with the 2007 Intergovernmental Panel on Climate Change (IPCC) report, there was hope at the 2009 Conference of Parties meeting in Copenhagen that an international framework agreement on climate change might be achieved. It was not to be. Planned actions to address issues of climate change were undermined by huge funding of misinformation by vested interests. It was not helped by so-called "climategate" in which many emails illegally hacked from a computer server at the University of East Anglia in the United Kingdom were released, cherry picked, distorted, and misused by climate change deniers. Minor errors in the IPCC report were blown out of all proportion and ineffectively addressed. I was caught up in all this, and one of my many emails went viral: the "travesty" quote in which I bemoaned the inability to close the global energy balance associated with short-term climate variability but which was misinterpreted as saying there was no global warming. These examples highlight failures of communication.
The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models
NASA Astrophysics Data System (ADS)
Jenney, A.; Randall, D. A.
2014-12-01
Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
Harmonisation of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtt, George; Chini, Louise Parsons; Frolking, Steve
2009-06-01
In preparation for the fifth Intergovernmental Panel on Climate Change climate change assessment (IPCC-AR5), the international community is developing new advanced computer models (CMs) to address the combined effects of human activities (e.g. land-use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005-2100) are being developed by four Integrated Assessment Modeling teams (IAMs) to be used as input to the CMs for future climate projections. The diversity of requirements and approaches among CMs and IAMs for tracking land-use changes (past, present, and future), presents major challenges for treating land-usemore » comprehensively and consistently between these communities. As part of an international working group, we have been working to meet these challenges by developing a "harmonized" set of land-use change scenarios that smoothly connects gridded historical reconstructions of land-use with future projections, in a format required by CMs. This approach to harmonizing the treatment of land-use between two key modeling communities, CMs and IAMs, represents a major advance that will facilitate more consistent and fuller treatments of land-use/land-use change effects including both CO2 emissions and corresponding land-surface changes.« less
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-07-07
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-01-01
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. PMID:22378808
Less than 2 °C warming by 2100 unlikely
NASA Astrophysics Data System (ADS)
Raftery, Adrian E.; Zimmer, Alec; Frierson, Dargan M. W.; Startz, Richard; Liu, Peiran
2017-09-01
The recently published Intergovernmental Panel on Climate Change (IPCC) projections to 2100 give likely ranges of global temperature increase in four scenarios for population, economic growth and carbon use. However, these projections are not based on a fully statistical approach. Here we use a country-specific version of Kaya's identity to develop a statistically based probabilistic forecast of CO2 emissions and temperature change to 2100. Using data for 1960-2010, including the UN's probabilistic population projections for all countries, we develop a joint Bayesian hierarchical model for Gross Domestic Product (GDP) per capita and carbon intensity. We find that the 90% interval for cumulative CO2 emissions includes the IPCC's two middle scenarios but not the extreme ones. The likely range of global temperature increase is 2.0-4.9 °C, with median 3.2 °C and a 5% (1%) chance that it will be less than 2 °C (1.5 °C). Population growth is not a major contributing factor. Our model is not a `business as usual' scenario, but rather is based on data which already show the effect of emission mitigation policies. Achieving the goal of less than 1.5 °C warming will require carbon intensity to decline much faster than in the recent past.
Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.
2004-01-01
The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.
The Discovery of Global Warming
NASA Astrophysics Data System (ADS)
MacCracken, Michael C.
2004-07-01
At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).
Kurz, Tim; Augoustinos, Martha; Crabb, Shona
2010-09-01
The release of the fourth United Nations Intergovernmental Panel on Climate Change (IPCC) report in February 2007 prompted a flood of responses from political leaders around the globe. Perhaps nowhere was this more apparent than in Australia, where its release coincided with the first sitting week of the Australian Parliament, in an election year. The current study involves a discursive analysis of climate change rhetoric produced by politicians from the major Australian political parties in the period following the release of the IPCC leading up to the national election. Data include both transcripts of parliamentary debate and statements directly broadcast in the media. The analysis focuses on the various ways in which the issue of climate change was invoked and rhetorically managed by each of the two parties in the lead up to the election. In particular, it focuses on the ways in which appeals to the 'national interest' and 'lifestyle maintenance', both regular features of political rhetoric, were mobilized by both parties to discursively manage their positions on the climate change issue. Implications of the ways in which such appeals were constructed are discussed in relation to the discursive limits of the ways in which the issue of climate change is constructed in public debate.
Inevitable changes in snowpack and water resources over California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Hall, A. D.; Sun, F.; Walton, D.; Berg, N.; Schwartz, M. A.
2015-12-01
Here we use a downscaling technique incorporating both dynamical and statistical methods to project end-of-century changes in spring snow water equivalent in California's Sierra Nevada. The technique produces outcomes for all Global Climate Models (GCMs) and the four greenhouse gas forcing scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC). For all GCMs and forcing scenarios, significant snow loss occurs at elevations below 2500 meters, despite increasing precipitation in many GCMs. The loss is significantly enhanced by snow albedo feedback. The approximate intermodel range in percent of total snow remaining in the entire region is 60-85% for a likely "mitigation" scenario, and 35-55% for the "business-as-usual" scenario. Thus significant snowpack decrease by century's end is inevitable, even if the loss can be cushioned through greenhouse gas emissions reductions over the coming decades. The snowpack loss also leads to significant changes in runoff timing, which are also inevitable.
Renewable Energy and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H. L.
2012-01-01
The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad
2017-12-01
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.
Advances in atmospheric light scattering theory and remote-sensing techniques
NASA Astrophysics Data System (ADS)
Videen, Gorden; Sun, Wenbo; Gong, Wei
2017-02-01
This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].
The United Nations and Climate Change: Legal and Policy Developments
NASA Astrophysics Data System (ADS)
Bunn, Isabella D.
2009-07-01
The Secretary-General of the United Nations, Ban Ki-moon, has declared that climate change is "the defining challenge of our times." Climate change trends indicate increasingly severe negative impacts on the majority of countries, with disproportionate effects on poor and vulnerable populations. The scientific reports of the Intergovernmental Panel on Climate Change (IPCC), as well as the negotiations under the UN Framework Convention on Climate Change (UNFCCC), have placed the issue on the forefront of the international agenda. This article examines how climate change is shaping legal and policy developments in five key areas of UN responsibility: international law, humanitarian affairs, human rights, development, and peace and security. It concludes with some observations about high-level efforts to coordinate the response of multilateral institutions, the changing stance of the US government, and the role of environmental protection in addressing the current global economic crisis.
Atmospheric Aerosol Properties and Climate Impacts
NASA Technical Reports Server (NTRS)
Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip;
2009-01-01
This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.
Climate Change: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Chapman, David S.; Davis, Michael G.
2010-09-01
Questions about global warming concern climate scientists and the general public alike. Specifically, what are the reliable surface temperature reconstructions over the past few centuries? And what are the best predictions of global temperature change the Earth might expect for the next century? Recent publications [National Research Council (NRC), 2006; Intergovernmental Panel on Climate Change (IPCC), 2007] permit these questions to be answered in a single informative illustration by assembling temperature reconstructions of the past thousand years with predictions for the next century. The result, shown in Figure 1, illustrates present and future warming in the context of natural variations in the past [see also Oldfield and Alverson, 2003]. To quote a Chinese proverb, “A picture's meaning can express ten thousand words.” Because it succinctly captures past inferences and future projections of climate, the illustration should be of interest to scientists, educators, policy makers, and the public.
Climate Change and Water Resources Management: A Federal Perspective
Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.
2009-01-01
Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.
Fixing Climate: What Past Climate Changes Reveal About the Current Threat-And How to Counter It
NASA Astrophysics Data System (ADS)
McKinley, Galen A.
2008-10-01
The Earth's climate is changing due to human activities. Recent polls suggest that the U.S. public generally recognizes this fact, and the efforts that led the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore to win the 2007 Nobel Peace Prize have played no small role in bringing most of the public to realize what scientists have been discussing for years. Yet aside from distorted Hollywood movie accounts such as The Day After Tomorrow, the public knows little about the potential for abrupt change in the climate system. With support from climate science philanthropist Gary Comer, climate scientist Wally Broecker has teamed with science writer Robert Kunzig in this book to bring abrupt climate change into public view. They do this elegantly and convincingly, making the first 12 chapters quite enjoyable.
Kouazounde, J B; Gbenou, J D; Babatounde, S; Srivastava, N; Eggleston, S H; Antwi, C; Baah, J; McAllister, T A
2015-03-01
The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.
Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas
Philibert, Aurore; Loyce, Chantal; Makowski, David
2012-01-01
Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable “applied N”, (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha−1. Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced. PMID:23226430
The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.
Assessment of simulated and projected climate change in Pakistan using IPCC AR4-based AOGCMs
NASA Astrophysics Data System (ADS)
Saeed, F.; Athar, H.
2017-11-01
A detailed spatio-temporal assessment of two basic climatic parameters (temperature and precipitation) is carried out using 22 Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)-based atmospheric oceanic general circulation models (AOGCMs) over data-sparse and climatically vulnerable region of Pakistan (20°-37° N and 60°-78° E), for the first time, for the baseline period (1975-1999), as well as for the three projected periods during the twenty-first century centered at 2025-2049, 2050-2074, and 2075-2099, respectively, both on seasonal and on annual bases, under three Special Report on Emission Scenarios (SRES): A2, A1B, and B1. An ensemble-based approach consisting of the IPCC AR4-based AOGCMs indicates that during the winter season (from December to March), 66% of the models display robust projected increase of winter precipitation by about 10% relative to the baseline period, irrespective of emission scenario and projection period, in the upper northern subregion of Pakistan (latitude > 35° N). The projected robust changes in the temperature by the end of twenty-first century are in the range of 3 to 4 ° C during the winter season and on an annual basis, in the central and western regions of Punjab province, especially in A2 and A1B emission scenarios. In particular, the IPCC AR4 models project a progressive increase in temperature throughout Pakistan, in contrast to spatial distribution of precipitation, where spatially less uniform and robust results for projected periods are obtained on sign of change. In general, changes in both precipitation and temperature are larger in the summer season (JAS) as compared to the winter season in the coming decades, relative to the baseline period. This may require comprehensive long-term strategic policies to adapt and mitigate climate change in Pakistan, in comparison to what is currently envisaged.
NASA Astrophysics Data System (ADS)
Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon
2016-08-01
Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.
Solar cycle length hypothesis appears to support the ipcc on global warming
NASA Astrophysics Data System (ADS)
Laut, P.; Gundermann, J.
1998-12-01
Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of northern hemisphere land air temperatures, there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The solar hypothesis (as we shall term this assumption) claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier article we have demonstrated that for data covering the period 1860-1980 the solar hypothesis does not rule out any significant contribution from man-made greenhouse gases and sulphate aerosols. The present analysis goes a step further. We analyse the period 1579-1987 and find that the solar hypothesis-instead of contradicting-appears to support the assumption of a significant warming due to human activities. We have tentatively corrected the historical northern hemisphere land air temperature anomalies by removing the assumed effects of human activities. These are represented by northern hemisphere land air temperature anomalies calculated as the contributions from man-made greenhouse gases and sulphate aerosols by using an upwelling diffusion-energy balance model similar to the model of [Wigley and Raper, 1993] employed in the Second Assessment Report of The Intergovernmental Panel on Climate Change (IPCC). It turns out that the agreement of the filtered solar cycle lengths with the corrected temperature anomalies is substantially better than with the historical anomalies, with the mean square deviation reduced by 36% for a climate sensitivity of 2.5°C, the central value of the IPCC assessment, and by 43% for the best-fit value of 1.7°C. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.
O'Dwyer, Jean; Walshe, Dylan; Byrne, Kenneth A
2018-03-01
Large quantities of wood products have historically been disposed of in landfills. The fate of this vast pool of carbon plays an important role in national carbon balances and accurate emission reporting. The Republic of Ireland, like many EU countries, utilises the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas reporting in the waste sector, which provides default factors for emissions estimation. For wood products, the release of carbon is directly proportional to the decomposition of the degradable organic carbon fraction of the product, for which the IPCC provides a value of 0.5 (50%). However, in situ analytic results of the decomposition rates of carbon in landfilled wood do not corroborate this figure; suggesting that carbon emissions are likely overestimated. To assess the impact of this overestimation on emission reporting, carbon decomposition values obtained from literature and the IPCC default factor were applied to the Irish wood fraction of landfilled waste for the years 1957-2016 and compared. Univariate analysis found a statistically significant difference between carbon (methane) emissions calculated using the IPCC default factor and decomposition factors from direct measurements for softwoods (F = 45.362, p = <.001), hardwoods (F = 20.691, p = <.001) and engineered wood products (U = 4.726, p = <.001). However, there was no significant difference between emissions calculated using only the in situ analytic decomposition factors, regardless of time in landfill, location or subsequently, climate. This suggests that methane emissions from the wood fraction of landfilled waste in Ireland could be drastically overestimated; potentially by a factor of 56. The results of this study highlight the implications of emission reporting at a lower tierand prompts further research into the decomposition of wood products in landfills at a national level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T
2008-10-01
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.
The climate crisis: An introductory guide to climate change
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2011-06-01
Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.
COSP: Satellite simulation software for model assessment
Bodas-Salcedo, A.; Webb, M. J.; Bony, S.; ...
2011-08-01
Errors in the simulation of clouds in general circulation models (GCMs) remain a long-standing issue in climate projections, as discussed in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. This highlights the need for developing new analysis techniques to improve our knowledge of the physical processes at the root of these errors. The Cloud Feedback Model Intercomparison Project (CFMIP) pursues this objective, and under that framework the CFMIP Observation Simulator Package (COSP) has been developed. COSP is a flexible software tool that enables the simulation of several satellite-borne active and passive sensor observations from model variables. The flexibilitymore » of COSP and a common interface for all sensors facilitates its use in any type of numerical model, from high-resolution cloud-resolving models to the coarser-resolution GCMs assessed by the IPCC, and the scales in between used in weather forecast and regional models. The diversity of model parameterization techniques makes the comparison between model and observations difficult, as some parameterized variables (e.g., cloud fraction) do not have the same meaning in all models. The approach followed in COSP permits models to be evaluated against observations and compared against each other in a more consistent manner. This thus permits a more detailed diagnosis of the physical processes that govern the behavior of clouds and precipitation in numerical models. The World Climate Research Programme (WCRP) Working Group on Coupled Modelling has recommended the use of COSP in a subset of climate experiments that will be assessed by the next IPCC report. Here we describe COSP, present some results from its application to numerical models, and discuss future work that will expand its capabilities.« less
U.S. ozone air quality under changing climate and anthropogenic emissions.
Racherla, Pavan N; Adams, Peter J
2009-02-01
We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.
Regional Climate Change across North America in 2030 Projected from RCP6.0
NASA Astrophysics Data System (ADS)
Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.
Tseng, Linda Y; Robinson, Alice K; Zhang, Xiaying; Xu, Xiaomei; Southon, John; Hamilton, Andrew J; Sobhani, Reza; Stenstrom, Michael K; Rosso, Diego
2016-11-15
The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO 2 ) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO 2 -emission-potential m -3 wastewater treated). By including fossil CO 2 , total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO 2 should be analyzed for each WRRF and not omitted from GHG accounting.
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumeyer, Charles; Goldston, Robert
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
NASA Astrophysics Data System (ADS)
Tian, B.
2017-12-01
The Coupled Model Intercomparison Project (CMIP) has become a central element of national and international assessments of climate change. The CMIP Phase 6 (CMIP6) model experiments will be the foundation for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), scheduled for publication around 2021. To increase the fidelity of the IPCC AR6, the CMIP6 model experiments need rigorous evaluation. The "Observations for Model Intercomparison Projects" (Obs4MIPs) collects, organizes and publishes various well-established satellite data sets for CMIP model evaluation. The Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU), the NASA's temperature and humidity sounding system on the Aqua satellite, has provided over a decade-long high-quality tropospheric temperature and moisture sounding data. Under the current support of the NASA Data for Operation and Assessment (NDOA) program, we are generating and publishing the AIRS Obs4MIPs V2 data set including the monthly mean tropospheric air temperature, specific humidity, and relative humidity profiles from September 2002 to September 2016. This will provide the latest AIRS data in Obs4MIPs and assist the climate modeling community to better use the AIRS data for CMIP (including CMIP3, CMIP5, and CMIP6) model evaluation. In this presentation, we will discuss the AIRS Obs4MIPs V2 data set and their possible use for CMIP6 climate model evaluation.
Weighting climate model projections using observational constraints.
Gillett, Nathan P
2015-11-13
Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.
Estimating the potential for methane clathrate instability in the 1%-CO2 IPCC AR-4 simulations
NASA Astrophysics Data System (ADS)
Lamarque, Jean-François
2008-10-01
The recent work of Reagan and Moridis (2007) has shown that even a limited warming of 1 K over 100 years can lead to clathrate destabilization, leading to a significant flux of methane into the ocean water, at least for shallow deposits. Here we study the potential for methane clathrate destabilization by identifying the 100-year temperature increase in the available IPCC (Intergovernmental Panel on Climate Change) AR-4 1%-CO2 increase per year (up to doubling over pre-industrial conditions, which occurs after 70 years) simulations. Depending on assumptions made on the possible locations (in this case, only depth) of methane clathrates and on temperature dependence, our calculation leads to an estimated model-mean release of methane at the bottom of the ocean of approximately 560-2140 Tg(CH4)/year; as no actual geographical distribution of methane clathrates is considered here, these flux estimates must be viewed as upper bound estimates. Using an observed 1% ratio to estimate the amount of methane reaching the atmosphere, our analysis leads to a relatively small methane flux of approximately 5-21 Tg(CH4)/year, with an estimated inter-model standard deviation of approximately 30%. The role of sea-level rise by 2100 will be to further stabilize methane clathrates, albeit to a small amount as the sea-level rise is expected to be less than a few meters.
A Harder Rain is Going to Fall: Challenges for Actionable Projections of Extremes
NASA Astrophysics Data System (ADS)
Collins, W.
2014-12-01
Hydrometeorological extremes are projected to increase in both severity and frequency as the Earth's surface continues to warm in response to anthropogenic emissions of greenhouse gases. These extremes will directly affect the availability and reliability of water and other critical resources. The most comprehensive suite of multi-model projections has been assembled under the Coupled Model Intercomparison Project version 5 (CMIP5) and assessed in the Fifth Assessment (AR5) of the Intergovernmental Panel on Climate Change (IPCC). In order for these projections to be actionable, the projections should exhibit consistency and fidelity down to the local length and timescales required for operational resource planning, for example the scales relevant for water allocations from a major watershed. In this presentation, we summarize the length and timescales relevant for resource planning and then use downscaled versions of the IPCC simulations over the contiguous United States to address three questions. First, over what range of scales is there quantitative agreement between the simulated historical extremes and in situ measurements? Second, does this range of scales in the historical and future simulations overlap with the scales relevant for resource management and adaptation? Third, does downscaling enhance the degree of multi-model consistency at scales smaller than the typical global model resolution? We conclude by using these results to highlight requirements for further model development to make the next generation of models more useful for planning purposes.
Why Hasn't Earth Warmed as Much as Expected?
NASA Technical Reports Server (NTRS)
Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph A.; Ogren, John A.; Rodhe, Henning
2010-01-01
The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15 %. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
Neumeyer, Charles; Goldston, Robert
2016-04-28
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
Report on Climate Change E-mails Exonerates Scientists
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-07-01
A new report commissioned by the University of East Anglia (UEA) has largely exonerated climate scientists from the university's Climatic Research Unit (CRU) who wrote a number of controversial e-mail messages that were made public without authorization in November 2009. Critics have argued that the e-mails indicate that scientists had tampered with scientific data—including data related to land station temperatures and temperature reconstructions from tree ring analysis—subverted the peer review process, misused the Intergovernmental Panel on Climate Change (IPCC) process, and withheld data from critics. At a 7 July news conference to release the “Independent climate change e-mails review,” report chair Muir Russell said, “Climate science is a matter of such global importance that the highest standards of honesty, rigor, and openness are needed in its conduct. On the specific allegations made against the behavior of CRU scientists, we find that their rigor and honesty as scientists are not in doubt.” He continued, “In addition, we do not find that their behavior has prejudiced the balance of advice given to policy makers. In particular, we did not find any evidence of behavior that might undermine the conclusions of the IPCC assessments.” Russell is chair of the Judicial Appointments Board for Scotland and formerly was principal and vice-chancellor of the University of Glasgow, in Scotland.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor... Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel...
High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints
NASA Astrophysics Data System (ADS)
Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger
According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.
Reducing greenhouse gas emissions for climate stabilization: framing regional options.
Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J
2009-03-15
The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.
Climate Change: The Physical Basis and Latest Results
Stocker, Thomas
2018-05-18
The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.
NASA Astrophysics Data System (ADS)
Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.
2011-12-01
According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.
[Estimating spatiotemporal dynamics of methane emissions from livestock in China].
Lin, Yu; Zhang, Wen; Huang, Yao
2011-08-01
Combining Tier 2 method presented in the guidelines of the Intergovernmental Panel on Climate Change (IPCC, 2006) with GIS techniques, a primary estimation of methane emission from livestock in 2004 (including emission from enteric fermentation and manure management system) was made with county-level livestock statistics and 1 km x 1 km raster data. The results indicated that the methane emission from livestock was 12.79 x 10(6) tons totally in China, and 11.64 x 10(6) tons from enteric fermentation and 1.16 x 10(6) tons from manure management. The uncertainties of the methane emission from enteric fermentation and manure management were +/- 35.10% and +/- 14. 58% respectively. The high methane emission was at Yellow River basin, especially in the lower reaches of the Yellow River and the North China Plain. The Southwestern China also can be found with high emission. In accordance with the seasonal temperature changes, the temporal variation of manure management emission was estimated the highest in summer and the lowest in winter.
Science and policy applicability of the transient climate response to cumulative emissions of carbon
NASA Astrophysics Data System (ADS)
Rogelj, J.
2014-12-01
The Transient Climate Response to cumulative Carbon Emissions (TCRE) provides a quantification of the near-linear relationship between cumulative emissions of carbon and global-mean temperature increase. For its most recent report, the Intergovernmental Panel on Climate Change bases its assessment on a large body of literature which encompasses multiple lines of evidence. In this session I will look at the literature basis that was available for TCRE at the time of the IPCC Fifth Assessment Report, providing an easy-to-access introduction into the TCRE concept. Building on this basis and summarizing my own recent work on this, I will discuss the strengths and weaknesses of the use of TCRE for climate policy. While the TCRE concept provides a clear long-term view of what is required to stabilize global-mean temperature increase, I will explore how TCRE uncertainties might pose problems for using TCRE as the only policy guidance in near-term policy decisions.
Climate change drives expansion of Antarctic ice-free habitat.
Lee, Jasmine R; Raymond, Ben; Bracegirdle, Thomas J; Chadès, Iadine; Fuller, Richard A; Shaw, Justine D; Terauds, Aleks
2017-07-06
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km 2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Drought disaster vulnerability mapping of agricultural sector in Bringin District, Semarang Regency
NASA Astrophysics Data System (ADS)
Lestari, D. R.; Pigawati, B.
2018-02-01
Agriculture sector is a sector that is directly affected by drought. The phenomenon of drought disaster on agriculture sector has occurred in Semarang regency. One of districts in Semarang which is affected by drought is Bringin district. Bringin district is a productive agricultural area. However, the district experienced the most severe drought in 2015. The question research of this study is, “How is the spatial distribution of drought vulnerability on agriculture sector in Bringin district, Semarang regency?” The purpose of this study is to determine the spatial distribution of drought vulnerability on agriculture sector to village units in Bringin district. This study investigated drought vulnerability based on Intergovernmental Panel on Climate Change (IPCC) by analyzing exposure, sensitivity, and adaptive capacity through mapping process. This study used quantitative approach. There were formulation analysis, scoring analysis, and overlay analysis. Drought vulnerability on agriculture sector in Bringin district was divided into three categories: low, medium, and high.
Representative concentration pathways and mitigation scenarios for nitrous oxide
NASA Astrophysics Data System (ADS)
Davidson, Eric A.
2012-06-01
The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.
The Impact of Climate Change on the United States Economy
NASA Astrophysics Data System (ADS)
Mendelsohn, Robert; Neumann, James E.
2004-08-01
Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.
Estimation and projection of nitrous oxide (N2O) emissions from anthropogenic sources in Taiwan.
Tsai, Wen-Tien; Chyan, Jih-Ming
2006-03-01
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.
Climate change and animal diseases in South America.
Pinto, J; Bonacic, C; Hamilton-West, C; Romero, J; Lubroth, J
2008-08-01
Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming trends predicted in the 2007 Intergovernmental Panel on Climatic Change (IPCC) report for South America are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as bluetongue, West Nile fever, vesicular stomatitis and New World screwworm. Changes in distribution will be partially modulated by El Niño Southern Oscillation events, which will become more frequent and lead to a greater frequency of droughts and floods. Active disease surveillance for animal diseases in South America, particularly for vector-borne diseases, is very poor. Disease reporting is often lacking, which affects knowledge of disease distribution and impact, and preparedness for early response. Improved reporting for animal diseases that may be affected by climate change is needed for better prevention and intervention measures in susceptible livestock, wildlife and vectors in South America. This requires contributions from multidisciplinary experts, including meteorologists, epidemiologists, biologists and ecologists, and from local communities.
Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete
2014-01-01
Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.
Climate change drives expansion of Antarctic ice-free habitat
NASA Astrophysics Data System (ADS)
Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks
2017-07-01
Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.
Indirect chemical effects of methane on climate warming
NASA Astrophysics Data System (ADS)
Lelieveld, Jos; Crutzen, Paul J.
1992-01-01
METHANE concentrations in the atmosphere have increased from about 0.75 to 1.7 p.p.m.v. since pre-industrial times1,2. The current annual rate of increase of about 0.8% yr-1 (ref. 2) is due to increases in industrial and agricultural emissions. This increase in atmospheric methane concentrations not only influences the climate directly, but also indirectly through chemical reactions. Here we show that the climate effects of methane's atmospheric chemistry have previously been overestimated, notably by the Inter-governmental Panel on Climate Change (IPCC)3, largely owing to neglect of the height dependence of certain atmospheric radiative processes. Using available estimates of fossil-fuel-related leaks of methane, our results show that switching from coal and oil to natural gas as an energy source would reduce climate warming. A significant fraction of methane emissions cannot, however, be accounted for by known sources; should leakages from gas production and distribution be underestimated for some countries, then it might be unwise to switch to using natural gas.
Demographic aspects of climate change mitigation and adaptation.
Lutz, Wolfgang; Striessnig, Erich
2015-01-01
This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.
Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela;
2016-01-01
The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.
Newman, Todd P
2017-10-01
Using the immediate release of the Working Group 1 Summary for Policymakers of the Intergovernmental Panel on Climate Change Fifth Assessment Report as a case study, this article seeks to describe what type of actors were most active during the summary release, the substance of the most propagated tweets during the summary release, and the media sources that attracted the most attention during the summary release. The results from the study suggest that non-elite actors, such as individual bloggers and concerned citizens, accounted for the majority of the most propagated tweets in the sample. This study also finds that the majority of the most propagated tweets in the sample focused on public understanding of the report. Finally, while mainstream media sources were the most frequently discussed media sources, a number of new media and science news and information sources compete for audience attention.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
NASA Astrophysics Data System (ADS)
Baek, H.; Park, E.; Kwon, W.
2009-12-01
Water balance calculations are becoming increasingly important for earth-system studies, because humans require water for their survival. Especially, the relationship between climate change and freshwater resources is of primary concern to human society and also has implications for all living species. The goal of this study is to assess the closure and annual variations of the water cycles based on the multi-model ensemble approach. In this study, the projection results of the previous works focusing on global and six sub-regions are updated using sixteen atmosphere-ocean general circulation model (AOGCM) simulations based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Before projecting future climate, model performances are evaluated on the simulation of the present-day climate. From the result, we construct and use mainly multi-model ensembles (MMEs), which is referred to as MME9, defined from nine selected AOGCMs of higher performance. Analyzed variables include annual and seasonal precipitation, evaporation, and runoff. The overall projection results from MME9 show that most regions will experience warmer and wetter climate at the end of 21st century. The evaporation shows a very similar trend to precipitation, but not in the runoff projection. The internal and inter-model variabilities are larger in the runoff than both precipitation and evaporation. Moreover, the runoff is notably reduced in Europe at the end of 21st century.
Cunha, C S; Lopes, N L; Veloso, C M; Jacovine, L A G; Tomich, T R; Pereira, L G R; Marcondes, M I
2016-11-15
The adoption of carbon inventories for dairy farms in tropical countries based on models developed from animals and diets of temperate climates is questionable. Thus, the objectives of this study were to estimate enteric methane (CH4) emissions through the SF6 tracer gas technique and through equations proposed by the Intergovernmental Panel on Climate Change (IPCC) Tier 2 and to calculate the inventory of greenhouse gas (GHG) emissions from two dairy systems. In addition, the carbon balance of these properties was estimated using enteric CH4 emissions obtained using both methodologies. In trial 1, the CH4 emissions were estimated from seven Holstein dairy cattle categories based on the SF6 tracer gas technique and on IPCC equations. The categories used in the study were prepubertal heifers (n=6); pubertal heifers (n=4); pregnant heifers (n=5); high-producing (n=6); medium-producing (n=5); low-producing (n=4) and dry cows (n=5). Enteric methane emission was higher for the category comprising prepubertal heifers when estimated by the equations proposed by the IPCC Tier 2. However, higher CH4 emissions were estimated by the SF6 technique in the categories including medium- and high-producing cows and dry cows. Pubertal heifers, pregnant heifers, and low-producing cows had equal CH4 emissions as estimated by both methods. In trial 2, two dairy farms were monitored for one year to identify all activities that contributed in any way to GHG emissions. The total emission from Farm 1 was 3.21t CO2e/animal/yr, of which 1.63t corresponded to enteric CH4. Farm 2 emitted 3.18t CO2e/animal/yr, with 1.70t of enteric CH4. IPCC estimations can underestimate CH4 emissions from some categories while overestimate others. However, considering the whole property, these discrepancies are offset and we would submit that the equations suggested by the IPCC properly estimate the total CH4 emission and carbon balance of the properties. Thus, the IPCC equations should be utilized with caution, and the herd composition should be analysed at the property level. When the carbon stock in pasture and other crops was considered, the carbon balance suggested that both farms are sustainable for GHG, by both methods. On the other hand, carbon balance without carbon stock, by both methods, suggests that farms emit more carbon than the system is capable of stock. Copyright © 2016 Elsevier B.V. All rights reserved.
Santos, M M O; van Elk, A G P; Romanel, C
2015-12-01
Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same amount of waste for 20 years -, the error would be an overestimation of 25% if the CDM project activity starts from the very first year or an underestimation of 15% if it starts just after the landfill closure. Therefore, a correction in the tool to calculate emissions from landfills as adopted by the CDM Executive Board is needed. Moreover, in countries not using the latest IPCC guidelines, which provides clear formulas to prevent misunderstandings, inventory compilers can also benefit from this paper by having more accurate results in national GHG inventories related to solid waste disposal, especially when increasing amounts of waste are landfilled, which is the case of the developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
The implications of rebasing global mean temperature timeseries for GCM based climate projections
NASA Astrophysics Data System (ADS)
Stainforth, David; Chapman, Sandra; Watkins, Nicholas
2017-04-01
Global climate and earth system models are assessed by comparison with observations through a number of metrics. The InterGovernmental Panel on Climate Change (IPCC) highlights in particular their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. This focus on annual mean global mean temperature (hereafter GMT) change is presented as an important element in demonstrating the relevance of these models for climate projections. Any new model or new model version whose historic simulations fail to reproduce the "general features " and 20th century trends is likely therefore to undergo further tuning. Thus this focus could have implications for model development. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies i.e. changes with respect to some period. Since the models have absolute temperatures which range over about 3K (roughly observed GMT +/- 1.5K) this means their timeseries (and the observations) are rebased. We present timeseries of the slow timescale response of the CMIP5 models rebased to late-20th century temperatures and to mid-19th century temperatures. We provide a mathematical interpretation of this approach to model assessment and discuss two consequences. First is a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. Second, is an implication of linearity in the GMT response (to the extent that the slow-timescale response of the historic simulations is consistent with observations, and given their uncertainties). For each individual model these consequences only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a much wider range of GMTs. The analysis suggests that this aspect of model evaluation risks providing a model development pressure which acts against a wide exploration of physically plausible responses; in particular against an exploration of potentially globally significant nonlinear responses and feedbacks. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.
NASA Astrophysics Data System (ADS)
Stanfield, R. E.; Dong, X.; Xi, B.; Del Genio, A. D.; Minnis, P.; Doelling, D.; Loeb, N. G.
2011-12-01
To better advise policymakers, it is necessary for climate models to provide credible predictions of future climates. Meeting this goal requires climate models to successfully simulate the present and past climates. The past, current and future Earth climate has been simulated by the NASA GISS ModelE climate model and has been summarized by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4, 2007). New simulations from the updated AR5 version of the NASA GISS ModelE GCM have been released to the public community and will be included in the IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, however, they have yet to be extensively validated against observations. To evaluate the GISS AR5 simulated global clouds and TOA radiation budgets, we have collected and processed the NASA CERES and MODIS observations during the period 2000-2005. In detail, the 1ox1o resolution monthly averaged SYN1 product has been used with combined observations from both Terra and Aqua satellites, and degraded to a 2ox2.5o grid box to match the GCM spatial resolution. These observations are temporally interpolated and fit to data from geostationary satellites to provide time continuity. The GISS AR5 products were downloaded from the CMIP5 (Coupled Model Intercomparison Project Phase 5) for the IPCC-AR5. Preliminary comparisons between GISS AR5 simulations and CERES-MODIS observations have shown that although their annual and seasonal mean CFs agree within a few percent, there are significant differences in several climatic regions. For example, the modeled CFs have positive biases in the Arctic, Antarctic, Tropics, and Sahara Desert, but negative biases over the southern middle latitudes (30-65 oS). The OLR, albedo and NET radiation comparisons are similar to the CF comparison.
Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.; Balmford, Andrew; Burgess, Neil D.; Lovett, Jon C.; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L.; Marchant, Rob; Marshall, Andrew R.; Mbilinyi, Boniface; Munishi, Pantaleon K. T.; Owen, Nisha; Swetnam, Ruth D.; Topp-Jorgensen, Elmer J.; Lewis, Simon L.
2012-01-01
Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for a relatively low investment. PMID:23024764
2012-01-01
Background The default international accounting rules estimate the carbon emissions from forest products by assuming all harvest is immediately emitted to the atmosphere. This makes it difficult to assess the greenhouse gas (GHG) consequences of different forest management or manufacturing activities that maintain the storage of carbon. The Intergovernmental Panel on Climate Change (IPCC) addresses this issue by allowing other accounting methods. The objective of this paper is to provide a new model for estimating annual stock changes of carbon in harvested wood products (HWP). Results The model, British Columbia Harvested Wood Products version 1 (BC-HWPv1), estimates carbon stocks and fluxes for wood harvested in BC from 1965 to 2065, based on new parameters on local manufacturing, updated and new information for North America on consumption and disposal of wood and paper products, and updated parameters on methane management at landfills in the USA. Based on model results, reporting on emissions as they occur would substantially lower BC’s greenhouse gas inventory in 2010 from 48 Mt CO2 to 26 Mt CO2 because of the long-term forest carbon storage in-use and in the non-degradable material in landfills. In addition, if offset projects created under BC’s protocol reported 100 year cumulative emissions using the BC-HWPv1 the emissions would be lower by about 11%. Conclusions This research showed that the IPCC default methods overestimate the emissions North America wood products. Future IPCC GHG accounting methods could include a lower emissions factor (e.g. 0.52) multiplied by the annual harvest, rather than the current multiplier of 1.0. The simulations demonstrated that the primary opportunities for climate change mitigation are in shifting from burning mill waste to using the wood for longer-lived products. PMID:22828161
Willcock, Simon; Phillips, Oliver L; Platts, Philip J; Balmford, Andrew; Burgess, Neil D; Lovett, Jon C; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L; Marchant, Rob; Marshall, Andrew R; Mbilinyi, Boniface; Munishi, Pantaleon K T; Owen, Nisha; Swetnam, Ruth D; Topp-Jorgensen, Elmer J; Lewis, Simon L
2012-01-01
Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for a relatively low investment.
Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons
NASA Astrophysics Data System (ADS)
Hossaini, R.; Chipperfield, M. P.; Dhomse, S.; Ordóñez, C.; Saiz-Lopez, A.; Abraham, N. L.; Archibald, A.; Braesicke, P.; Telford, P.; Warwick, N.; Yang, X.; Pyle, J.
2012-10-01
Simulations with a chemistry-climate model (CCM) show a future increase in the stratospheric source gas injection (SGI) of biogenic very short-lived substances (VSLS). For 2000, the modelled SGI of bromine from VSLS is ∼1.7 parts per trillion (pptv) and largest over the tropical West Pacific. For 2100, this increases to ∼2.0 and ∼2.7 pptv when the model is forced with Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCPs) 4.5 and 8.5. The increase is largely due to stronger tropical deep convection transporting more CHBr3 to the lower stratosphere. For CH2Br2, CHBr2Cl, CH2BrCl and CHBrCl2, changes to primary oxidant OH determines their SGI contribution. Under RCP 4.5 (moderate warming), OH increases in a warmer, more humid troposphere. Under RCP 8.5 (extreme warming) OH decreases significantly due to a large methane increase, allowing greater SGI of bromine from these VSLS. Potentially enhanced VSLS emissions in the future would further increase these estimates.
China CO2 emission accounts 1997–2015
Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang
2018-01-01
China is the world’s top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China’s CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China. PMID:29337312
NASA Astrophysics Data System (ADS)
Sawitri, E.; Hardiman, G.; Buchori, I.
2017-06-01
The high growth of human activity potentially increases the number of vehicles and the use of fossil fuels that contribute the increase of CO2 emissions in atmosphere. Controlling CO2 emission that causes greenhouse effect becomes the main agenda of Indonesian Government. The first step control CO2 emissions is by measuring the level of CO2 emissions, especially CO2 emissions from fossil fuel consumption in the transport sector. This research aims to assess the level of CO2 emissions from transportation sector on the main roads in the city centre of Pemalang both in weekdays and weekend days. The methods applied to calculate CO2 emissions using Intergovernmental Panel on Climate Change (IPCC) 2006 method. For this, a survey on the number of vehicles passing through the main roads using hand tally counter is firstly done. The results, CO2 emissions in working day, i.e. 49,006.95 tons/year compared to weekend i.e. 38,865.50 tons/year.
2016-01-01
The Intergovernmental Panel on Climate Change (IPCC) has made it clear that anthropogenic greenhouse gasses are the main cause of observed global warming that leads to climate change. Climate change is now a global reality. In the South African political set-up, local municipalities are the structures that are in direct contact with communities and they draw up Integrated Development Plans (IDPs), which are reviewed and upgraded annually. The article seeks to investigate the extent to which climate change adaptation and mitigation strategies are embedded IDPs in seven vulnerable municipalities in the Limpopo Province. The article conducted an in-depth content analysis of the IDPs of the seven municipalities and the results have revealed that these municipalities have not included adaptation and mitigation strategies adequately in their IDPs despite being the most vulnerable municipalities in the province. The article concludes that these municipalities have not as yet institutionalised climate change in their daily operations, planning and decision making. To this end, the paper recommends that local municipalities should include climate change adaptation and mitigation strategies in their IDPs.
NASA Astrophysics Data System (ADS)
Norhana Selamat, Siti; Nor, Nik Hisyamudin Muhd; Rashid, Muhammad Hanif Abdul; Fauzi Ahmad, Mohd; Mohamad, Fariza; Ismail, Al Emran; Fahrul Hassan, Mohd; Turan, Faiz Mohd; Zain, Mohd Zamzuri Mohd; Abu Bakar, Elmi; Seiji, Yokoyama
2017-10-01
Climate change, greenhouse gas effect, and global warming is envisioning to turn more awful and more terrible by year. Since the leading cause of global warming is uncontrolled CO2 in atmosphere. The amount of unused steel slag is expected to increment later on, steel industries is one of the mechanical industries that contribute the CO2 emission. That because this businesses deliver carbon in light of powers reductant and substantial volume of steel. The changes of atmosphere these day is truly developing concern and that make steel creator are confronted with test of discovering methods for bringing down CO2 emission. Malaysia is working decidedly in the diminishment of CO2 gas. There are a few techniques in decreasing the amount of CO2 in the air as underlined by the Intergovernmental Panel of Climate Change (IPCC), an organization under the United Country however CCS is an extremely encouraging innovation to moderate CO2 emission in air. Mineral carbonation is another technique to store carbon dioxide permanently, long term stability and vast capacity.
Characteristics and Scenarios Projection of Climate Change on the Tibetan Plateau
Hao, Zhenchun; Ju, Qin; Jiang, Weijuan; Zhu, Changjun
2013-01-01
The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) presents twenty-two global climate models (GCMs). In this paper, we evaluate the ability of 22 GCMs to reproduce temperature and precipitation over the Tibetan Plateau by comparing with ground observations for 1961~1900. The results suggest that all the GCMs underestimate surface air temperature and most models overestimate precipitation in most regions on the Tibetan Plateau. Only a few models (each 5 models for precipitation and temperature) appear roughly consistent with the observations in annual temperature and precipitation variations. Comparatively, GFCM21 and CGMR are able to better reproduce the observed annual temperature and precipitation variability over the Tibetan Plateau. Although the scenarios predicted by the GCMs vary greatly, all the models predict consistently increasing trends in temperature and precipitation in most regions in the Tibetan Plateau in the next 90 years. The results suggest that the temperature and precipitation will both increase in all three periods under different scenarios, with scenario A1 increasing the most and scenario A1B increasing the least. PMID:23970827
The Hockey Stick and the Climate Wars: Dispatches From The Front Lines
NASA Astrophysics Data System (ADS)
Mann, M. E.
2011-12-01
A central figure in the controversy over human-caused climate change has been The Hockey Stick, a simple, easy-to-understand graph my colleagues and I constructed to depict changes in Earth's temperature back to 1000 AD. The graph was featured in the high-profile Summary for Policy Makers of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), and it quickly became an icon in the debate over human-caused (anthropogenic) climate change. I will tell the story behind the Hockey Stick, using it as a vehicle for exploring broader issues regarding the role of skepticism in science, the uneasy relationship between science and politics, and the dangers that arise when special economic interests and those who do their bidding attempt to skew the discourse over policy-relevant areas of science. In short, I attempt to use the Hockey Stick to cut through the fog of disinformation that has been generated by the campaign to deny the reality of climate change. It is my intent, in so doing, to reveal the very real threat to our future that lies behind it.
NASA Astrophysics Data System (ADS)
Lawrence, B.; Pepler, S.
2009-04-01
CEDA (http://www.ceda.ac.uk) hosts three main data centres: the British Atmospheric Data Centre (http://badc.nerc.ac.uk), the NERC Earth Observation Data Centre (http://neodc.nerc.ac.uk), and the Intergovernmental Panel for Climate Change Dedicated Data Centre (http://ipcc-data.org) as well as components of many national and international projects. CEDA recieves both core funding (from the UK Natural Environment Research Council) and per project funding (from a variety of sources). However, all funders require metrics assessing success. In the case of preservation it is hard to measure success - usage alone is not enough, since next year someone may use currently unused data if it is well preserved, and so it is the act of preservation which in this case marks success. Even where data is accessed, it is not necessarily used. Hence at CEDA we have three key focii in our approach to metrics: measuring direct website access, benchmarking procedures against best practice, and hopefully soon, recording data citation. In this presentation we cover how we are addressing each of these three areas.
Upper Limit for Regional Sea Level Projections
NASA Astrophysics Data System (ADS)
Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John
2016-04-01
With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.
Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam
Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.
2010-01-01
Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.
Woolf, Dominic; Lehmann, Johannes; Lee, David R
2016-10-21
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.
Woolf, Dominic; Lehmann, Johannes; Lee, David R.
2016-01-01
Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177
China CO2 emission accounts 1997-2015
NASA Astrophysics Data System (ADS)
Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang
2018-01-01
China is the world's top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China's CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China.
Mountain Glaciers and Ice Caps
Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.
2011-01-01
Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2007-09-27
This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. Themore » ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.« less
Future changes in the Mediterranean water budget projected by an ensemble of regional climate models
NASA Astrophysics Data System (ADS)
Sanchez-Gomez, E.; Somot, S.; Mariotti, A.
2009-11-01
The Mediterranean basin is a region characterized by its vulnerability to changes in the water cycle. Hence, the impact of global warming on the water resources in the Mediterranean zone is one of the major concerns for the scientific community. The future climate projections used to elaborate the IPCC report of 2007 show great alterations in the evaporation and precipitation over the Mediterranean Sea at the end of 21st century. In this work we investigate the changes in the Mediterranean Sea water budget by using SRES-A1B scenario experiments performed with high resolution (25 km) regional climate models (RCMs). The RCMs provide good estimates of the water budget components, in particular with a significant improvement of the runoff and Black Sea discharge terms compared to the coarser resolution general circulation models (GCMs) used in the last Intergovernmental Panel of Climate Change (IPCC) report. As for the case of GCMs, the RCMs show that the Mediterranean water budget is likely to be significantly altered at the end of 21st century. The response of the hydrological variables to global warming starts to be statistically significant from 2050, though some alterations are already observed before 2050. The RCMs predict an increase of evaporation, and a decrease of precipitation, and river and Black Sea discharge, yielding to a large increase of the Mediterranean fresh water deficit. The freshwater deficit for the period 2070-2099 related to 1950-1999 presents a mean increase of +40% for both RCMs and GCMs.
NASA Astrophysics Data System (ADS)
Ritchie, Justin; Dowlatabadi, Hadi
2018-02-01
Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.
A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, H. T.; Kim, K. M.
2012-01-01
Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
NASA Astrophysics Data System (ADS)
Li, Wenhong; Fu, Rong; Dickinson, Robert E.
2006-01-01
The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.
Beggs, Paul John
2014-01-01
Anthropogenic climate change is inherently a biometeorological issue. As such, it would be reasonably expected that the International Society of Biometeorology (ISB) and its journal, International Journal of Biometeorology (IJB), would have had climate change feature prominently in their activities, articles etc., and to therefore have made a substantial and valuable contribution to the science of the issue. This article presents an analysis of climate change science in ISB and IJB. The analysis focusses on climate-change-related publications by ISB Presidents found through searches of Thomson Reuters Web of Science; contributions to the Intergovernmental Panel on Climate Change's (IPCC's) Working Group II (WGII) by ISB Presidents; and climate change-related publications in IJB found through searches of Thomson Reuters Web of Science. The results demonstrate that the ISB, as represented by its recent, current, and future Presidents, is actively engaged in climate change research and the production of scholarly climate change publications. For example, ISB Presidents have contributed as authors to all four IPCC WGII Assessment Reports, with some Presidents having contributed to more than one Assessment Report or several chapters of the one report. Similarly, it is evident that the IJB is increasingly attracting and publishing climate-change-related articles, with such articles generally having greater impact (as indicated by citations) than other IJB articles. Opportunities for the ISB to provide an internal framework for, and showcase, its climate change work are described. Such opportunities, if enacted, would complement the recent creation of two IJB climate change Field Editor positions.
NASA Astrophysics Data System (ADS)
Beggs, Paul John
2014-01-01
Anthropogenic climate change is inherently a biometeorological issue. As such, it would be reasonably expected that the International Society of Biometeorology (ISB) and its journal, International Journal of Biometeorology ( IJB), would have had climate change feature prominently in their activities, articles etc., and to therefore have made a substantial and valuable contribution to the science of the issue. This article presents an analysis of climate change science in ISB and IJB. The analysis focusses on climate-change-related publications by ISB Presidents found through searches of Thomson Reuters Web of Science; contributions to the Intergovernmental Panel on Climate Change's (IPCC's) Working Group II (WGII) by ISB Presidents; and climate change-related publications in IJB found through searches of Thomson Reuters Web of Science. The results demonstrate that the ISB, as represented by its recent, current, and future Presidents, is actively engaged in climate change research and the production of scholarly climate change publications. For example, ISB Presidents have contributed as authors to all four IPCC WGII Assessment Reports, with some Presidents having contributed to more than one Assessment Report or several chapters of the one report. Similarly, it is evident that the IJB is increasingly attracting and publishing climate-change-related articles, with such articles generally having greater impact (as indicated by citations) than other IJB articles. Opportunities for the ISB to provide an internal framework for, and showcase, its climate change work are described. Such opportunities, if enacted, would complement the recent creation of two IJB climate change Field Editor positions.
Are the impacts of land use on warming underestimated in climate policy?
NASA Astrophysics Data System (ADS)
Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.
2017-09-01
While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.
Climate Change, Soils, and Human Health
NASA Astrophysics Data System (ADS)
Brevik, Eric C.
2013-04-01
According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Greenhouse gas emissions from municipal wastewater treatment plants
NASA Astrophysics Data System (ADS)
Parravicini, Vanessa; Svardal, Karl
2016-04-01
Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly by a person in Germany or Austria (10.6 t CO2e/p/a, UBA, 2016). The results indicate that GHG emissions from WWTP have at global scale a small impact, as also highlighted by the Austrian national inventory report (NIR, 2015), where the estimated CO2e emissions from WWTPs account for only 0.23% of the total CO2e emission in Austria. References IPCC (2006). Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Anabe K. (eds). Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/. NIR (2015). Austria's National Inventory Report 2015. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Reports, Band 0552, ISBN: 978-3-99004-364-6, Umweltbundesamt, Wien. Parravicini V., Valkova T., Haslinger J., Saracevic E., Winkelbauer A., Tauber J., Svardal K., Hohenblum P., Clara M., Windhofer G., Pazdernik K., Lampert C. (2015). Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes (ReLaKO). The research project was financially supported by the Ministry for agriculture, forestry, Environment and Water Management. Project leader: TU Wien, Institute for Water Quality, Ressources and Waste Management; Project partner: Umweltbundesamt GmbH. Final report: http://www.bmlfuw.gv.at/service/publikationen/wasser/Lachgasemissionen---Kl-ranlagen.html. UBA (2016). German average carbon footprint. Umweltbundesamt, Januar 2016, http://uba.klimaktiv-co2-rechner.de/de_DE/page/footprint/
Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change
ERIC Educational Resources Information Center
Colaianne, Blake
2015-01-01
Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…
NASA Astrophysics Data System (ADS)
Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.
2017-12-01
At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.
NASA Astrophysics Data System (ADS)
Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.
2015-12-01
As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.
Emergent constraint on equilibrium climate sensitivity from global temperature variability.
Cox, Peter M; Huntingford, Chris; Williamson, Mark S
2018-01-17
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Ahlström, Anders; Allison, Steven D.
Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned
NASA Astrophysics Data System (ADS)
Sokona, Youba
2014-05-01
The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.
Estimation of methane emission rate changes using age-defined waste in a landfill site.
Ishii, Kazuei; Furuichi, Toru
2013-09-01
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.
van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B.; Veldkamp, Edzo
2015-01-01
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000
Impacts of past and future climate change on wind energy resources in the United States
NASA Astrophysics Data System (ADS)
McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.
2009-12-01
The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.
Ramanathan, V; Feng, Y
2008-09-23
The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4 degrees C (1.4 degrees C to 4.3 degrees C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4 degrees C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4 degrees C to 4.3 degrees C in the committed warming overlaps and surpasses the currently perceived threshold range of 1 degrees C to 3 degrees C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan-Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that approximately 25% (0.6 degrees C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6 degrees C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO(2) mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4 degrees C.
Productivity of Rice Grown on Arsenic Contaminated Soil under a Changing Climate
NASA Astrophysics Data System (ADS)
Wang, T.; Plaganas, M.; Muehe, E. M.; Fendorf, S. E.
2016-12-01
Rice is the staple food for more than 50% of the global population. In South and Southeast Asia, native soil arsenic coupled with arsenic-laden irrigation water result in paddy soils having arsenic levels that decrease the quality and productivity of rice and thus compromise food security worldwide. However, it remains unknown how climate change will affect the accumulation of arsenic in rice plants, specifically grain, grown in arsenic-bearing paddy soils. We hypothesize that the bioavailability of arsenic in the paddy soil will increase with climate change leading to an even sharper decrease of rice productivity and quality than presently estimated. In order to shed light on this question, we performed greenhouse studies to simulate today's climate condition in Asian paddy soils and compare it to the conditions projected for the year 2100. We investigated climate conditions estimated in the 5th assessment report of the IPCC1, indicating up to a 5°C increase in temperature and doubled atmospheric CO2 concentrations. Under these current and future climate conditions, we examined rice physiology including plant height and biomass, leaf chlorophyll content, grain number and weight as well as contents of accumulated arsenic, and its species in the different rice tissues. We further correlate different geochemical parameters of the soil, including arsenic and other relevant metal dynamics in the soil, to plant response. In sum, our analyses will allow us to better predict the productivity of rice and its grain quality in a future climate condition, and may help to take precautions to avoid a global food crisis, particularly for South and Southeast Asia where rice is a daily staple. 1IPCC - Intergovernmental Panel on Climate Change, Climate Change 2013, The Physical Science Basis.
LaHue, Gabriel T; van Kessel, Chris; Linquist, Bruce A; Adviento-Borbe, Maria Arlene; Fonte, Steven J
2016-09-01
Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (NO) concentrations over the past half-century, yet there is considerable uncertainty in estimates of NO emissions from agriculture. Such estimates are typically based on the amount of N applied and a fertilizer-induced emission factor (EF), which is calculated as the difference in emissions between a fertilized plot and a zero-N control plot divided by the amount of N applied. A fertilizer-induced EF of 1% is currently recognized by the Intergovernmental Panel on Climate Change (IPCC) based on several studies analyzing published field measurements of NO emissions. Although many zero-N control plots used in these measurements received historical N applications, the potential for a residual impact of these inputs on NO emissions has been largely ignored and remains poorly understood. To address this issue, we compared NO emissions under laboratory conditions from soils sampled within zero-N control plots that had historically received N inputs versus soils from plots that had no N inputs for 20 yr. Historical N fertilization of zero-N control plots increased initial NO emissions by roughly one order of magnitude on average relative to historically unfertilized control plots. Higher NO emissions were positively correlated with extractable N and potentially mineralizable N. This finding suggests that accounting for fertilization history may help reduce the uncertainty associated with the IPCC fertilizer-induced EF and more accurately estimate the contribution of fertilizer N to agricultural NO emissions, although further research to demonstrate this relationship in the field is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries
NASA Astrophysics Data System (ADS)
Chen, Nan; Han, Guoqi; Yang, Jingsong
2018-01-01
Mean relative sea level (MRSL) rise has caused more frequent flooding in many parts of the world. The MRSL rise varies substantially from place to place. Here we use tide-gauge data and satellite measurements to examine past MRSL trends for the coasts of the China Seas. We then combine climate model output and satellite observations to provide MRSL projections in the 21st century. The MRSL trend based on tide-gauge data shows substantial regional variations, from 1 to 5 mm/yr. The vertical land motion (VLM) based on altimetry and tide-gauge (ATG) data indicates large land subsidence at some tide-gauge locations, consistent with the Global Positioning Systems (GPS)-based VLM but different significantly from small uplift estimated by a Glacial Isostatic Adjustment (GIA) model, which suggests other important factors causing the VLM instead of the GIA process. When GPS- or ATG-based VLM estimates are used, the projected MRSL rise between 1986-2005 and 2081-2100 at tide-gauge sites varies from 60 to 130 cm under the Representative Concentration Pathway 8.5 (RCP8.5) scenario of the Intergovernmental Panel on Climate Change (IPCC). Our projections are significantly larger than those of IPCC and other literature, as a result of accounting for the land subsidence derived from observations. Steric and dynamic ocean effects and land-ice melt effects are comparable (about 30 cm each) and do not vary much over the tide-gauge locations. The VLM effect varies from -10 to 60 cm. The projections between 1986-2005 and 2081-2100 under RCP4.5 show a similar spatial distribution to that under RCP8.5, with a smaller amount of rise by 18 cm on average for this region.
Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order
Turner, Peter A.; Griffis, Timothy J.; Lee, Xuhui; Baker, John M.; Venterea, Rodney T.; Wood, Jeffrey D.
2015-01-01
N2O is an important greenhouse gas and the primary stratospheric ozone depleting substance. Its deleterious effects on the environment have prompted appeals to regulate emissions from agriculture, which represents the primary anthropogenic source in the global N2O budget. Successful implementation of mitigation strategies requires robust bottom-up inventories that are based on emission factors (EFs), simulation models, or a combination of the two. Top-down emission estimates, based on tall-tower and aircraft observations, indicate that bottom-up inventories severely underestimate regional and continental scale N2O emissions, implying that EFs may be biased low. Here, we measured N2O emissions from streams within the US Corn Belt using a chamber-based approach and analyzed the data as a function of Strahler stream order (S). N2O fluxes from headwater streams often exceeded 29 nmol N2O-N m−2⋅s−1 and decreased exponentially as a function of S. This relation was used to scale up riverine emissions and to assess the differences between bottom-up and top-down emission inventories at the local to regional scale. We found that the Intergovernmental Panel on Climate Change (IPCC) indirect EF for rivers (EF5r) is underestimated up to ninefold in southern Minnesota, which translates to a total tier 1 agricultural underestimation of N2O emissions by 40%. We show that accounting for zero-order streams as potential N2O hotspots can more than double the agricultural budget. Applying the same analysis to the US Corn Belt demonstrates that the IPCC EF5r underestimation explains the large differences observed between top-down and bottom-up emission estimates. PMID:26216994
Ramanathan, V.; Feng, Y.
2008-01-01
The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4°C (1.4°C to 4.3°C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4°C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4°C to 4.3°C in the committed warming overlaps and surpasses the currently perceived threshold range of 1°C to 3°C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan–Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that ≈25% (0.6°C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6°C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO2 mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4°C. PMID:18799733
van Straaten, Oliver; Corre, Marife D; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B; Veldkamp, Edzo
2015-08-11
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.
Developing perturbations for Climate Change Impact Assessments
NASA Astrophysics Data System (ADS)
Hewitson, Bruce
Following the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report [TAR; IPCC, 2001], and the paucity of climate change impact assessments from developing nations, there has been a significant growth in activities to redress this shortcoming. However, undertaking impact assessments (in relation to malaria, crop stress, regional water supply, etc.) is contingent on available climate-scale scenarios at time and space scales of relevance to the regional issues of importance. These scales are commonly far finer than even the native resolution of the Global Climate Models (GCMs) (the principal tools for climate change research), let alone the skillful resolution (scales of aggregation at which GCM observational error is acceptable for a given application) of GCMs.Consequently, there is a growing demand for regional-scale scenarios, which in turn are reliant on techniques to downscale from GCMs, such as empirical downscaling or nested Regional Climate Models (RCMs). These methods require significant skill, experiential knowledge, and computational infrastructure in order to derive credible regional-scale scenarios. In contrast, it is often the case that impact assessment researchers in developing nations have inadequate resources with limited access to scientists in the broader international scientific community who have the time and expertise to assist. However, where developing effective downscaled scenarios is problematic, it is possible that much useful information can still be obtained for impact assessments by examining the system sensitivity to largerscale climate perturbations. Consequently, one may argue that the early phase of assessing sensitivity and vulnerability should first be characterized by evaluation of the first-order impacts, rather than immediately addressing the finer, secondary factors that are dependant on scenarios derived through downscaling.
NASA Astrophysics Data System (ADS)
Hovenga, P. A.; Wang, D.; Medeiros, S. C.; Hagen, S. C.
2015-12-01
Located in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay within the Northern Gulf of Mexico, resulting in a direct influence on the ecology of the region, in particular seagrass and oyster production. This study examines the seasonal response of overland flow and sediment loading in the Apalachicola River under projected climate change scenarios and land use land cover (LULC) change. A hydrologic model using the Soil Water Assessment Tool (SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment load under present (circa 2000) and future conditions (circa 2100) to understand how parameters respond over a seasonal time frame to changes in climate only, LULC only, and coupled climate / LULC. These physically-based models incorporate digital elevation model (DEM), LULC, soil maps, climate data, and management controls. Long Ashton Research Station-Weather Generator (LARS-WG) was used to create stochastic temperature and precipitation inputs from four Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change (IPCC) carbon emission scenarios for A1B, A2, and B1. These scenarios represent potential future emissions resulting from a range driving forces, e.g. social, economic, environmental, and technologic. Projected 2100 LULC data provided by the United States Geological Survey (USGS) EROS Center was incorporated for each corresponding IPCC scenario. Results from this study can be used to further understand climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar fluvial estuaries while providing tools to better guide management and mitigation practices.
Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry
NASA Astrophysics Data System (ADS)
Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.
2015-12-01
Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.
Kim, Jinsoo; Choi, Jisun; Choi, Chuluong; Park, Soyoung
2013-05-01
This study examined the separate and combined impacts of future changes in climate and land use/land cover (LULC) on streamflow in the Hoeya River Basin, South Korea, using the representative concentration pathway (RCP) 4.5 and 8.5 scenarios of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). First, a LULC change model was developed using RCP 4.5 and RCP 8.5 storylines and logistic regression. Three scenarios (climate change only, LULC change only, and climate and LULC change combined) were established, and the streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool (SWAT) model. Each scenario showed distinct seasonal variations in streamflow. Under climate change only, streamflow increased in spring and winter but decreased in summer and autumn, whereas LULC change increased high flow during wet periods but decreased low flow in dry periods. Although the LULC change had less effect than climate change on the changes in streamflow, the effect of LULC change on streamflow was significant. The result for the combined scenario was similar to that of the climate change only scenario, but with larger seasonal changes in streamflow. Although the effects of LULC change were smaller than those caused by climate change, LULC changes may heighten the problems of increased seasonal variability in streamflow caused by climate change. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area. Copyright © 2013 Elsevier B.V. All rights reserved.
Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
Babel, Sandhya; Vilaysouk, Xaysackda
2016-01-01
Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.
Climate change in the Seychelles: implications for water and coral reefs.
Payet, Rolph; Agricole, Wills
2006-06-01
The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCM3 model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.
2016-01-01
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
Emergent constraint on equilibrium climate sensitivity from global temperature variability
NASA Astrophysics Data System (ADS)
Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.
2018-01-01
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
NASA Astrophysics Data System (ADS)
Mohan, Riya Rachel
2018-04-01
Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.
Verification of Agricultural Methane Emission Inventories
NASA Astrophysics Data System (ADS)
Desjardins, R. L.; Pattey, E.; Worth, D. E.; VanderZaag, A.; Mauder, M.; Srinivasan, R.; Worthy, D.; Sweeney, C.; Metzger, S.
2017-12-01
It is estimated that agriculture contributes more than 40% of anthropogenic methane (CH4) emissions in North America. However, these estimates, which are either based on the Intergovernmental Panel on Climate Change (IPCC) methodology or inverse modeling techniques, are poorly validated due to the challenges of separating interspersed CH4 sources within agroecosystems. A flux aircraft, instrumented with a fast-response Picarro CH4 analyzer for the eddy covariance (EC) technique and a sampling system for the relaxed eddy accumulation technique (REA), was flown at an altitude of about 150 m along several 20-km transects over an agricultural region in Eastern Canada. For all flight days, the top-down CH4 flux density measurements were compared to the footprint adjusted bottom-up estimates based on an IPCC Tier II methodology. Information on the animal population, land use type and atmospheric and surface variables were available for each transect. Top-down and bottom-up estimates of CH4 emissions were found to be poorly correlated, and wetlands were the most frequent confounding source of CH4; however, there were other sources such as waste treatment plants and biodigesters. Spatially resolved wavelet covariance estimates of CH4 emissions helped identify the contribution of wetlands to the overall CH4 flux, and the dependence of these emissions on temperature. When wetland contribution in the flux footprint was minimized, top-down and bottom-up estimates agreed to within measurement error. This research demonstrates that although existing aircraft-based technology can be used to verify regional ( 100 km2) agricultural CH4 emissions, it remains challenging due to diverse sources of CH4 present in many regions. The use of wavelet covariance to generate spatially-resolved flux estimates was found to be the best way to separate interspersed sources of CH4.
Agricultural soil greenhouse gas emissions: a review of national inventory methods.
Lokupitiya, Erandathie; Paustian, Keith
2006-01-01
Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.
NASA Astrophysics Data System (ADS)
Arellano, B.; Rivas, D.
2015-12-01
The response of the physical and biological dynamics of the Pacific Ocean off Baja California to the projected effects of climate change are studied using numerical simulations. This region is part of the California Current System, which is a highly productive ecosystem due to the seasonal upwelling, supporting all the trophic levels and important fisheries. The response of the ecosystem to the effects of climate change is uncertain and the information generated by models could be useful to predict future conditions. A three-dimensional hydrodinamical model is coupled to a Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) trophic model, and it is forced by the GFDL 3.0 model outputs. Monthly climatologies of variables such as temperature, nutrients, wind, and ocean circulation patterns during the historical period 1985-2005 are compared to the available observed data in order to assess the model's ability to reproduce the observed patterns. The system's response to a high-emission scenario proposed by the Intergovernmental Panel of Climate Change (IPCC) is also studied. The experiments are carried out using data correspondig to the RCP 6.0 scenario during the period 2006-2050.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
Model simulations of the competing climatic effects of SO2 and CO2
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Chou, Ming-Dah
1993-01-01
Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO2 effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Using a conservative approach, results show that the cooling induced by the SO2 emission can presently counteract 50 percent of the CO2 greenhouse warming. Since 1980, a strong warming trend has been predicted by the model: 0.15 C during the 1980-1990 period alone. The model predicts that by the year 2060 the SO2 cooling reduces climate warming by 0.5 C or 25 percent for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2 C or 20 percent for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere and the Southern Hemisphere can be used to validate the presence of the SO2-induced cooling.
Recent and possible future variations in the North American Monsoon
Hoell, Andrew; Funk, Chris; Barlow, Mathew; Shukla, Shraddhanand
2016-01-01
The dynamics and recent and possible future changes of the June–September rainfall associated with the North American Monsoon (NAM) are reviewed in this chapter. Our analysis as well as previous analyses of the trend in June–September precipitation from 1948 until 2010 indicate significant precipitation increases over New Mexico and the core NAM region, and significant precipitation decreases over southwest Mexico. The trends in June–September precipitation have been forced by anomalous cyclonic circulation centered at 15°N latitude over the eastern Pacific Ocean. The anomalous cyclonic circulation is responsible for changes in the flux of moisture and the divergence of moisture flux within the core NAM region. Future climate projections using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, as part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), support the observed analyses of a later shift in the monsoon season in the presence of increased greenhouse gas concentrations in the atmosphere under the RCP8.5 scenario. The CMIP5 models under the RCP8.5 scenario predict significant NAM-related rainfall decreases during June and July and predict significant NAM-related rainfall increases during September and October.
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Permafrost thaw in a nested groundwater-flow system
McKenzie, Jeffery M.; Voss, Clifford I.
2013-01-01
Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding
NASA Astrophysics Data System (ADS)
Frei, Thomas; Gassner, Ewald
2008-09-01
As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.
Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)
NASA Astrophysics Data System (ADS)
Asante, K. O.; Khimsara, P.; Chan, A.
2013-12-01
Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.
Modeling barrier island response to sea-level rise in the Outer Banks, North Carolina
Moore, Laura J.; List, Jeffrey H.; Williams, S. Jeffress; Stolper, David
2007-01-01
An 8500-year Holocene simulation developed in GEOMBEST provides a possible scenario to explain the evolution of barrier coast between Rodanthe and Cape Hatteras, NC. Sensitivity analyses suggest that in the Outer Banks, the rate of sea-level rise is the most important factor in determining how barrier islands evolve. The Holocene simulation provides a basis for future simulations, which suggest that if sea level rises up to 0.88 m by AD 2100, as predicted by the highest estimates of the Intergovernmental Panel on Climate Change, the barrier in the study area may migrate on the order of 2.5 times more rapidly than at present. If sea level rises beyond IPCC predictions to reach 1.4–1.9 m above modern sea level by AD 2100, model results suggest that barrier islands in the Outer Banks may become vulnerable to threshold collapse, disintegrating during storm events, by the end of the next century. Consistent with sensitivity analyses, additional simulations indicate that anthropogenic activities, such as increasing the rate of sediment supply through beach nourishment, will only slightly affect barrier island migration rates and barrier island vulnerability to collapse.
[Comment on “Unknowns about climate variability render treaty targets premature”] Time to act is now
NASA Astrophysics Data System (ADS)
Dickinson, Robert E.
While I can agree with several of Singer's points, I think his discussion distorts and confuses by ignoring the more important questions to be asked. What the United States can or should do about the buildup of greenhouse gases is much more of an ethical, moral, and economic issue than one that can be answered by science alone, and thus, is rightly being decided by political processes rather than by scientific committees. We do know much more about the question of climate change from greenhouse gases than we did 20 years ago when the issue first became of major concern. Indeed, it would take thousands of pages to put down in full all the details of what we now know; and such a description would also require hundreds of pages to say what we still don't know. The past Intergovernmental Panel on Climate Change (IPCC) reports have been carefully crafted, albeit heavily abbreviated, summaries of our current scientific understanding. It is fairly certain that in another 20 years our scientific understanding will be yet much more improved, but there will also still be many important unknowns.
Web based visualization of large climate data sets
Alder, Jay R.; Hostetler, Steven W.
2015-01-01
We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.
Decomposition and carbon storage of selected paper products in laboratory-scale landfills.
Wang, Xiaoming; De la Cruz, Florentino B; Ximenes, Fabiano; Barlaz, Morton A
2015-11-01
The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loboda, Tatiana V.
2014-11-01
Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.
Biodiesel production in a semiarid environment: a life cycle assessment approach.
Biswas, Wahidul K; Barton, Louise; Carter, Daniel
2011-04-01
While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.
NASA Astrophysics Data System (ADS)
Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.
2017-12-01
A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.
Assessing hydrologic impacts of future Land Change scenarios in the San Pedro River (U.S./Mexico)
NASA Astrophysics Data System (ADS)
Kepner, W. G.; Burns, S.; Sidman, G.; Levick, L.; Goodrich, D. C.; Guertin, P.; Yee, W.; Scianni, M.
2012-12-01
An approach was developed to characterize the hydrologic impacts of urban expansion through time for the San Pedro River, a watershed of immense international importance that straddles the U.S./Mexico border. Future urban growth is a key driving force altering local and regional hydrology and is represented by decadal changes in housing density maps from 2010 to 2100 derived from the Integrated Climate and Land-Use Scenarios (ICLUS) database. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize the hydrologic impacts of future growth, the housing density maps were reclassified to National Land Cover Database 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The presentation will report 1) the methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate basin-wide impacts of development on water-quantity and -quality, 2) initial results of the application of the methodology, and 3) discuss implications of the analysis.
Identifying Crucial Issues in Climate Science
NASA Astrophysics Data System (ADS)
Ikeda, Motoyoshi; Greve, Ralf; Hara, Toshika; Watanabe, Yutaka W.; Ohmura, Atsumu; Ito, Akihiko; Kawamiya, Michio
2009-01-01
Drastic Change in the Earth System During Global Warming; Sapporo, Japan, 24 June 2008; The Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore indicates that global warming is recognized as a real phenomenon critical to human beings. However, humanity's knowledge concerning global warming is based on an uncertainty larger than 50% in the warming rate during the past century. Therefore, scientific clarification is needed to understand important mechanisms that potentially produce positive feedbacks in the Earth system-such mechanisms must be better understood before scientists can develop more reliable predictions. To plan for the future, a symposium was organized at Japan's Hokkaido University in association with the G8 Summit, where the most recent updates on the five urgent issues in climate science were discussed. These issues, considered to be crucial as severe impacts on human society continue to rise, included (1) causes and magnitude of sea level rise; (2) decay of glaciers and the Greenland and Antarctic ice sheets; (3) disappearance of the summer Arctic sea ice; (4) carbon uptake or emission by the terrestrial ecosystem; and (5) marine ecosystem change resulting in carbon emissions.
NASA Astrophysics Data System (ADS)
Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki
2017-11-01
In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways
. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
NASA Astrophysics Data System (ADS)
Parker, Andy; Geden, Oliver
2016-12-01
The Intergovernmental Panel on Climate Change is preparing a report on keeping global warming below 1.5 °C. How the panel chooses to deal with the option of solar geoengineering will test the integrity of scientific climate policy advice.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Climate Change (IPCC), Climate Change 2013: The Physical Science Basis Summary: The United States Global... Panel on Climate Change (IPCC) Climate Change 2013: The Physical Science Basis. The United Nations..., and socio-economic information for understanding the scientific basis of climate change, potential...
Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover
NASA Astrophysics Data System (ADS)
Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.
2010-12-01
Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).
The impact of climate change on the drought variability over Australia
NASA Astrophysics Data System (ADS)
Kirono, D. G. C.; Hennessy, K.; Mpelasoka, F.; Bathols, J.; Kent, D.
2009-04-01
Drought has significant environmental and socio-economic impacts in Australia. Government assistance for drought events is guided by the current National Drought Policy (NDP). The Commonwealth Government provides support to farmers and rural communities under the Exceptional Circumstances (EC) arrangements and other drought programs, while state and territory governments also participate in the NDP and provide support measures of their own. To be classified as an EC event, the event must be rare, that is must not have occurred more than once on average in every 20-25 years. Given the likely increase in the area of the world affected by droughts in future due to climate change (IPCC, 2007), this paper presents assessments on how climate change may affect the concept of a one in 20-25 year event into the future for Australia. As droughts can be experienced and defined in different ways, many drought indices are available to monitor and to assess drought conditions. Commonly, these indices are categorised into four types: meteorological, hydrological, agricultural, and socio-economic. The meteorological drought indices are more widely used because they require data that are readily available and that they are relatively easy to calculate. However, meteorological drought indices based on rainfall alone fail to include the important contribution of evaporation. Here, the assessment is made using outputs of 13 global climate models (GCMs) and a meteorological drought index called the Reconnaissance Drought Index (RDI). It incorporates the aggregated deficits between the rainfall and the evaporative demand of the atmosphere. If the RDI were the sole trigger for EC declarations, then the mean projections indicate that more declarations would be likely in the future. As a comparison, results from an assessment based on other measures (temperature, rainfall, and soil wetness) will also be presented. IPCC, 2007: Climate Change 2007 - The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, www.ipcc.ch
IPCC Reasons for Concern Regarding Climate Change Risks: Implications for 1.5 and 2 C Targets
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Oppenheimer, M.
2016-12-01
The Reasons for Concern (RFC) framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, which has been a cornerstone of the Intergovernmental Panel on Climate Change (IPCC) assessments since the Third Assessment Report, aggregates global risks into five categories as a function of global mean temperature change (GMT). The RFC framework was developed to inform discussions relevant to implementation of Article 2 of the UN Framework Convention on Climate Change (UNFCCC). Article 2 presents the Convention's long-term objective of avoiding "dangerous anthropogenic interference with the climate system." The RFC framework and the associated "Burning Embers" diagram illustrating authors' risk judgments have since been widely discussed and used to inform policy decisions. For example, they informed a recent dialog between Parties to the UNFCCC and experts on the adequacy of the long-term goal of avoiding a warming of 2°C relative to pre-industrial, contributing to a strengthening of that goal in the recent Paris Agreement. We draw on a new review and update of the RFC's conceptual basis and the risk judgments made in the most recent IPCC report to discuss their implications for risks associated with GMT targets of 1.5 C and 2 C adopted in the Paris Agreement. In general, the RFCs imply that continued high emissions of greenhouse gases (GHGs) would lead to high or very high risk of severe, widespread, and in some cases irreversible climate change impacts within this century. At 2°C above preindustrial, High risks are based on increasing risks to Arctic and coral reef systems, as well as increasing species extinction risks that undermine ecosystems (RFC 1), and projected increasing magnitude and likelihood of extreme weather events (RFC 2). Moderate-to-High risks are based on projections of increasing risks to crop production and water resources (RFC 3), and to the risks associated with ice sheet disintegration and very large sea level rise (RFC5). Limiting warming to 1.5°C would reduce the risks for RFCs 1 and 2 from High to the Moderate-to-High transition.
Human health risk assessment due to global warming--a case study of the Gulf countries.
Husain, Tahir; Chaudhary, Junaid Rafi
2008-12-01
Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates increased mortality rates due to cardiovascular and respiratory illnesses, thermal stress, and increased frequency of infectious vector borne diseases in the region between 2070 and 2099.
2012-01-01
Background Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation objectives. This paper uses the Intergovernmental Panel on Climate Change (IPCC) production accounting approach and the California Forest Project Protocol (CFPP) to estimate HWP carbon storage from 1906 to 2010 for the USFS Northern Region, which includes forests in northern Idaho, Montana, South Dakota, and eastern Washington. Results Based on the IPCC approach, carbon stocks in the HWP pool were increasing at one million megagrams of carbon (MgC) per year in the mid 1960s, with peak cumulative storage of 28 million MgC occurring in 1995. Net positive flux into the HWP pool over this period is primarily attributable to high harvest levels in the mid twentieth century. Harvest levels declined after 1970, resulting in less carbon entering the HWP pool. Since 1995, emissions from HWP at solid waste disposal sites have exceeded additions from harvesting, resulting in a decline in the total amount of carbon stored in the HWP pool. The CFPP approach shows a similar trend, with 100-year average carbon storage for each annual Northern Region harvest peaking in 1969 at 937,900 MgC, and fluctuating between 84,000 and 150,000 MgC over the last decade. Conclusions The Northern Region HWP pool is now in a period of negative net annual stock change because the decay of products harvested between 1906 and 2010 exceeds additions of carbon to the HWP pool through harvest. However, total forest carbon includes both HWP and ecosystem carbon, which may have increased over the study period. Though our emphasis is on the Northern Region, we provide a framework by which the IPCC and CFPP methods can be applied broadly at sub-national scales to other regions, land management units, or firms. PMID:22244260
Emissions Scenarios and Fossil-fuel Peaking
NASA Astrophysics Data System (ADS)
Brecha, R.
2008-12-01
Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some indicators are presented that the scenario presented here should not be disregarded, and comparisons are made to the outputs of emission scenarios used for the IPCC reports.
The socio-economic dimension of flood risk assessment: insights of KULTURisk framework
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Gain, Animesh; Mojtahed, Vahid; Balbi, Stefano
2013-04-01
The approaches for vulnerability and risk assessment have found different and often contrasting solutions by various schools of thought. The two most prominent communities in this field are: climate change adaptation (CCA), and disaster risk reduction (DRR). Although those communities have usually in common the aim of reducing socio-economic vulnerability and risk to natural hazards, they have usually referred to different definitions and conceptualizations. For example, the DRR community has always driven more emphasis on the concept of risk and vulnerability is considered as a physical/environmental input for the quantification of risk, while the CCA research stream, mainly under the auspices of the Intergovernmental Panel on Climate Change (IPCC), considered vulnerability as an output deriving from social conditions and processes such as adaptation or maladaptation. Recently, with the publication of the IPCC Special Report on extreme events and disasters (IPCC-SREX), the notions of vulnerability and risk are somehow integrated in order to jointly consider both climate change adaptation and disaster risk management. The IPCC-SREX indeed is expected to significantly contribute to find common language and methodological approaches across disciplines and, therefore, the opportunity emerges for proposing new operational solutions, consistent with the most recent evolution of concepts and terminology. Based on the development of the IPCC Report, the KULTURisk project developed an operational framework to support integrated assessment and decision support through the combination of contributions from diverse disciplinary knowledge, with emphasis on the social and economic dimensions. KIRAF (KULTURisk Integrated Risk Assessment Framework) is specifically aimed at comprehensively evaluate the benefits of risk mitigation measures with consideration of the dynamic context deriving from the consideration of climatic changes and their effects on natural disasters, within the policy framework of climate change adaptation (CCA). Three main innovations are proposed with respect to the current state of the art: (1) to include the social capacities of reducing risk, (2) to go beyond the estimation direct tangible costs, and (3) to provide an operational solution for decision support to assess risks, impacts and the benefits of plausible risk reduction measures, compatible with both the DRR and the CCA literatures. As stated above, the proposed framework is the inclusion of social capacities (adaptive and coping capacities) in the process of translating risk into a comprehensive cost matrix considering not only direct tangible costs (damages), but also the three other components deriving from the combination of tangible/intangible and direct/indirect costs. The proposed KIRAF approach is thus expected to provide: 1) an operational basis for multidisciplinary integration; 2) a flexible reference to deal with heterogeneous case studies and potentially various types of hazards; and 3) a means to support the assessment of alternative risk prevention measures including consideration of social and cultural dimensions.
Simulating Soil C Stock with the Process-based Model CQESTR
NASA Astrophysics Data System (ADS)
Gollany, H.; Liang, Y.; Rickman, R.; Albrecht, S.; Follett, R.; Wilhelm, W.; Novak, J.; Douglas, C.
2009-04-01
The prospect of storing carbon (C) in soil, as soil organic matter (SOM), provides an opportunity for agriculture to contribute to the reduction of carbon dioxide in the atmosphere while enhancing soil properties. Soil C models are useful for examining the complex interactions between crop, soil management practices and climate and their effects on long-term carbon storage or loss. The process-based carbon model CQESTR, pronounced ‘sequester,' was developed by USDA-ARS scientists at the Columbia Plateau Conservation Research Center, Pendleton, Oregon, USA. It computes the rate of biological decomposition of crop residues or organic amendments as they convert to SOM. CQESTR uses readily available field-scale data to assess long-term effects of cropping systems or crop residue removal on SOM accretion/loss in agricultural soil. Data inputs include weather, above- ground and below-ground biomass additions, N content of residues and amendments, soil properties, and management factors such as tillage and crop rotation. The model was calibrated using information from six long-term experiments across North America (Florence, SC, 19 yrs; Lincoln, NE, 26 yrs; Hoytville, OH, 31 yrs; Breton, AB, 60 yrs; Pendleton, OR, 76 yrs; and Columbia, MO, >100 yrs) having a range of soil properties and climate. CQESTR was validated using data from several additional long-term experiments (8 - 106 yrs) across North America having a range of SOM (7.3 - 57.9 g SOM/kg). Regression analysis of 306 pairs of predicted and measured SOM data under diverse climate, soil texture and drainage classes, and agronomic practices at 13 agricultural sites resulted in a linear relationship with an r2 of 0.95 (P < 0.0001) and a 95% confidence interval of 4.3 g SOM/kg. Estimated SOC values from CQESTR and IPCC (the Intergovernmental Panel on Climate Change) were compared to observed values in three relatively long-term experiments (20 - 24 years). At one site, CQESTR and IPCC estimates of SOC stocks were within 5% of each other for three rotations. At a second site, decreasing tillage intensity increased SOC stocks for winter wheat-fallow rotation for both observed and estimated values by CQESTR and IPCC. At the third site, CQESTR simulated an increase in SOC stocks with increased fertility levels, while IPCC estimates of SOC stocks did not reflect an increase. The CQESTR model successfully predicts SOM dynamics from various management practices and offers the potential for C sequestration planning for C credits or to guide crop residue removal for bio-energy production without degrading the soil resource, environmental quality, or productivity.
Endurance of larch forest ecosystems in eastern Siberia under warming trends
NASA Astrophysics Data System (ADS)
Sato, H.; Iwahana, G.; Ohta, T.
2015-12-01
The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.
NASA Astrophysics Data System (ADS)
Pastor, M. A.; Casado, M. J.
2012-10-01
This paper presents an evaluation of the multi-model simulations for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in terms of their ability to simulate the ERA40 circulation types over the Euro-Atlantic region in winter season. Two classification schemes, k-means and SANDRA, have been considered to test the sensitivity of the evaluation results to the classification procedure. The assessment allows establishing different rankings attending spatial and temporal features of the circulation types. Regarding temporal characteristics, in general, all AR4 models tend to underestimate the frequency of occurrence. The best model simulating spatial characteristics is the UKMO-HadGEM1 whereas CCSM3, UKMO-HadGEM1 and CGCM3.1(T63) are the best simulating the temporal features, for both classification schemes. This result agrees with the AR4 models ranking obtained when having analysed the ability of the same AR4 models to simulate Euro-Atlantic variability modes. This study has proved the utility of applying such a synoptic climatology approach as a diagnostic tool for models' assessment. The ability of the models to properly reproduce the position of ridges and troughs and the frequency of synoptic patterns, will therefore improve our confidence in the response of models to future climate changes.
Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura
2013-11-01
In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future.
Seasonal variation in natural recharge of coastal aquifers
NASA Astrophysics Data System (ADS)
Mollema, Pauline N.; Antonellini, Marco
2013-06-01
Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.
Agent Model Development for Assessing Climate-Induced Geopolitical Instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark B.; Backus, George A.
2005-12-01
We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such modelsmore » do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3« less
NASA Astrophysics Data System (ADS)
Spiess, Andy
2008-12-01
The recent assessment by the Intergovernmental Panel on Climate Change (IPCC) has emphasized that understanding the institutional context in which policies are made and implemented is critical to define sustainable development paths from a climate change perspective. Nevertheless, while the importance of social, political and cultural factors is getting more recognition in some parts of the world, little is known about the human dimensions or the contexts in which they operate in the affluent oil economies of the Arabian Peninsula. Policies that implicitly subsidize or support a wasteful and environmentally destructive use of resources are still pervasive, while noteworthy environmental improvements still face formidable political and institutional constraints to the adaptation of the necessary far reaching and multisectoral approach. The principal aim of this paper is to identify some of the major shortcomings within the special context of the Arab Gulf states' socio-cultural environment in support of appropriate development pathways. Conclusions highlight that past and current policy recommendations for mitigating environmental threats are likely to be ineffective. This is because they are based on the unverified assumption that Western-derived standards of conduct, specifically the normative concept of "good governance" and "democracy", will be adopted in non-Western politico-cultural contexts.
Zhang, Guomin; Sandanayake, Malindu; Setunge, Sujeeva; Li, Chunqing; Fang, Jun
2017-02-01
Emissions from equipment usage and transportation at the construction stage are classified as the direct emissions which include both greenhouse gas (GHG) and non-GHG emissions due to partial combustion of fuel. Unavailability of a reliable and complete inventory restricts an accurate emission evaluation on construction work. The study attempts to review emission factor standards readily available worldwide for estimating emissions from construction equipment. Emission factors published by United States Environmental Protection Agency (US EPA), Australian National Greenhouse Accounts (AUS NGA), Intergovernmental Panel on Climate Change (IPCC) and European Environmental Agency (EEA) are critically reviewed to identify their strengths and weaknesses. A selection process based on the availability and applicability is then developed to help identify the most suitable emission factor standards for estimating emissions from construction equipment in the Australian context. A case study indicates that a fuel based emission factor is more suitable for GHG emission estimation and a time based emission factor is more appropriate for estimation of non-GHG emissions. However, the selection of emission factor standards also depends on factors like the place of analysis (country of origin), data availability and the scope of analysis. Therefore, suitable modifications and assumptions should be incorporated in order to represent these factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of CESM1 (WACCM) with Observations of Stratospheric Composition
NASA Astrophysics Data System (ADS)
Kinnison, Doug; Froidevaux, Lucien; Garcia, Rolando; Fuller, Ryan
2017-04-01
The Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) is used in this study. CESM1 (WACCM) includes a detailed representation of tropospheric through lower thermospheric chemistry and physical processes. Simulations for this work were based on scenarios defined by the Chemistry Climate Model Initiative (CCMI). These scenarios included both free-running (FR) and specified-dynamics versions (SD) of CESM1 (WACCM). Comparisons were made with global monthly zonal mean stratospheric data records from satellite-based remote measurements created by the Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere (GOZCARDS) project. These data records were drawn from high quality measurements of stratospheric composition starting in 1979 for ozone and in the early 1990s for other species. We discuss stratospheric variability and trends through analyses of observed time series of ozone (O3), hydrogen chloride (HCl), nitrous oxide (N2O), nitric acid (HNO3), and water vapor (H2O), and we contrast the fits from the FR and SD model versions. Conclusions from this work have aided in the development of a new version of CESM (WACCM) that will be used in the next Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 6 (CMIP6) assessment.
Assessing Hydrologic Impacts of Future Land Cover Change ...
Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologic impacts from future urban growth through time. This methodology was then expanded and utilized to characterize the changing hydrology on the South Platte River Basin. Future urban growth is represented by housingdensity maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land‐Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and describe a methodology for adapting the ICLUS data for use in AGWA as anapproach to evaluate basin‐wide impacts of development on water‐quantity and ‐quality, 2) present initial results from the application of the methodology to
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; ...
2017-09-13
Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less
Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program
NASA Technical Reports Server (NTRS)
Moore, Berrien, III; Sahagian, Dork
1997-01-01
The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.
Major cellular and physiological impacts of ocean acidification on a reef building coral.
Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove
2012-01-01
As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral
Kaniewska, Paulina; Campbell, Paul R.; Kline, David I.; Rodriguez-Lanetty, Mauricio; Miller, David J.
2012-01-01
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification. PMID:22509341
Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.
2013-01-01
The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.
NASA Astrophysics Data System (ADS)
Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.
2017-06-01
Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.
Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng
2016-07-20
Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong
Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less
Quality Controlling CMIP datasets at GFDL
NASA Astrophysics Data System (ADS)
Horowitz, L. W.; Radhakrishnan, A.; Balaji, V.; Adcroft, A.; Krasting, J. P.; Nikonov, S.; Mason, E. E.; Schweitzer, R.; Nadeau, D.
2017-12-01
As GFDL makes the switch from model development to production in light of the Climate Model Intercomparison Project (CMIP), GFDL's efforts are shifted to testing and more importantly establishing guidelines and protocols for Quality Controlling and semi-automated data publishing. Every CMIP cycle introduces key challenges and the upcoming CMIP6 is no exception. The new CMIP experimental design comprises of multiple MIPs facilitating research in different focus areas. This paradigm has implications not only for the groups that develop the models and conduct the runs, but also for the groups that monitor, analyze and quality control the datasets before data publishing, before their knowledge makes its way into reports like the IPCC (Intergovernmental Panel on Climate Change) Assessment Reports. In this talk, we discuss some of the paths taken at GFDL to quality control the CMIP-ready datasets including: Jupyter notebooks, PrePARE, LAMP (Linux, Apache, MySQL, PHP/Python/Perl): technology-driven tracker system to monitor the status of experiments qualitatively and quantitatively, provide additional metadata and analysis services along with some in-built controlled-vocabulary validations in the workflow. In addition to this, we also discuss the integration of community-based model evaluation software (ESMValTool, PCMDI Metrics Package, and ILAMB) as part of our CMIP6 workflow.
Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations
Sharma, Sapna; Vander Zanden, M. Jake; Magnuson, John J.; Lyons, John
2011-01-01
Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046–2065 and 2081–2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25–70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change. PMID:21860661
Robust and Heterogeneous Hydrological Changes under Global Warming
NASA Astrophysics Data System (ADS)
Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.
2015-12-01
The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.
Comparing climate change and species invasions as drivers of coldwater fish population extirpations.
Sharma, Sapna; Vander Zanden, M Jake; Magnuson, John J; Lyons, John
2011-01-01
Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin
2017-01-01
Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.
Clay illuviation provides a long-term sink for C sequestration in subsoils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier P. O.; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel E.
2017-04-01
Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.
Hellberg, Rosalee S; Chu, Eric
2016-08-01
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Préndez, Margarita; Lara-González, Scarlette
2008-09-01
Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65 Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.
The impact of SciDAC on US climate change research and the IPCCAR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael
2005-07-08
SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less
NASA Astrophysics Data System (ADS)
Lark, R. M.; Ander, E. L.; Cave, M. R.; Knights, K. V.; Glennon, M. M.; Scanlon, R. P.
2014-05-01
Deficiency or excess of certain trace elements in the soil causes problems for agriculture, including disorders of grazing ruminants. Farmers and their advisors in Ireland use index values for the concentration of total soil cobalt and manganese to identify where grazing sheep are at risk of cobalt deficiency. We used cokriging with topsoil data from a regional geochemical survey across six counties of Ireland to form local cokriging predictions of cobalt and manganese concentrations with an attendant distribution which reflects the joint uncertainty of these predictions. From this distribution we then computed conditional probabilities for different combinations of cobalt and manganese index values, and so for the corresponding inferred risk to sheep of cobalt deficiency and the appropriateness of different management interventions. The challenge is to communicate these results effectively to an audience comprising, inter alia, farmers, agronomists and veterinarians. Numerical probabilities are not generally well-understood by non-specialists. For this reason we presented our results as maps using a verbal scale to communicate the probability that a deficiency is indicated by local soil conditions, or that a particular intervention is indicated. In the light of recent research on the effectiveness of the verbal scale used by the Intergovernmental Panel on Climate Change to communicate probabilistic information we reported the geostatistical predictions as follows. First, we use the basic IPCC scale with intensifiers, but we also indicate the corresponding probabilities (as percentages) as recommended by Budescu et al. (2009). Second, we make it clear that the source of uncertainty in these predictions is the spatial variability of soil Co and Mn. The outcome under consideration is therefore that a particular soil management scenario would be indicated if the soil properties were known without error, possible uncertainty about the implications of particular soil conditions for the Co status of grazing livestock are excluded. Third, we frame the management outcomes without the use of quantifiers which are potentially ambiguous (Budescu et al., 2009) or which may introduce severity bias (Harris and Corner, 2011). Specifically we did not refer to the 'low' or 'high' risk of a cobalt deficiency indicated for particular combinations of Co and Mn indices. Rather we consider the following possible outcomes: 'Soil Co and Mn indicate a risk of Co deficiency' (the Co and Mn index correspond to any cell in Table 1 not designated 'None'). 'Soil Co and Mn indicate that soil treatment at 3 kg ha-1 cobalt sulphate is required.' 'Soil Co and Mn indicate that soil treatment at 2 kg ha-1 cobalt sulphate is required.' 'Soil Co and Mn indicate that animal treatment is required to avoid Co deficiency.' Budescu, D.V., Broomell, S., Por, H.-H. 2009. Improving communication of uncertainty in the reports of the Intergovernmental Panel on Climate Change. Psychological Science, 20, 299-308. Harris, A.J.L., Corner, A. 2011. Communicating environmental risks: clarifying the severity effect in interpretations of verbal probability expressions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1571-1578.
Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios
NASA Astrophysics Data System (ADS)
Lee, D. K.; Park, J. H.; Park, C.; Kim, S.
2017-12-01
Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused by ozone was about 5.0-5.6% in the SSP2 scenario and 3.8-4.2% in the RCP scenario.
Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.
Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.
2015-09-29
A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability components. To maintain consistency with the IPCC definition of vulnerability, DOI may want to focus initial climate adaptation planning only on the outcomes of studies that comprehensively address vulnerability as inclusive of exposure, sensitivity, and adaptive capacity. Although the present study results are preliminary and used an unstructured survey design, they illustrate the importance of a comprehensive and consistent vulnerability definition and of using information on vulnerability components in DOI surveys to ensure relevant data are used to identify adaptation options.
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...
2016-01-21
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
On Recovery of the Ozone Layer in the Northern Hemisphere in the 21st Century
NASA Astrophysics Data System (ADS)
Larin, Igor
2014-05-01
Time recovery of the ozone layer in the latitudinal zones of 0°-85° N, 0°-30° N, 30°-60° N and 60°-85° N in the 21st century has been evaluated. Evaluations have been made using an interactive chemical dynamical radiative two-dimensional (2-D) model of the middle atmosphere Socrates (height 0-120 km). As initial data for calculations for the first time the greenhouse gas concentration scenarios of Intergovernmental Panel on Climate Change (IPCC) RCP 4.5 and RCP 6.0 have been used. According to the scenario RCP 4.5 a stabilization of the radiative forcing must occur before the end of the twenty-first century, and according to the scenario RCP 6.0 - in the 22nd century. It has been shown that under both scenarios, the recovery of the ozone layer in the northern hemisphere (0°-85° N) can take place in 2035, and in zones of 0°-30° N, 30°-60° N and 60°-85° N does in 2020, 2030 and 2035, respectively. It has been also shown that after recovery the ozone layer will continue to grow and by the end of the 21st century will reach the stationary level exceeding undisturbed level of 1960 at 2.7% (scenario RCP 4.5) and 3.6% (scenario RCP 6.0) in zone 0°-85° N. It seems to be not smaller ecological threat than depletion of the ozone layer at the end of the twentieth century. The results obtained are in good agreement with the known literary data (see, for example, Table 3-3 in "Scientific Assessment of Ozone Depletion: 2010"), indicating that the model Socrates and "concentration" scenarios of IPCC can successfully be used for such calculations.
Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia
NASA Astrophysics Data System (ADS)
DONG, X.; Fu, J. S.; Huang, K.
2014-12-01
Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010, Atmospheric Chemistry and Physics, 12, 7591-7607.
Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio
2015-09-15
European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. Copyright © 2015 Elsevier B.V. All rights reserved.
2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa
Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac
2015-01-01
Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements. PMID:26479229
Soil nitrous oxide emissions after deposition of dairy cow excreta in eastern Canada.
Rochette, Philippe; Chantigny, Martin H; Ziadi, Noura; Angers, Denis A; Bélanger, Gilles; Charbonneau, Édith; Pellerin, Doris; Liang, Chang; Bertrand, Normand
2014-05-01
Urine and dung deposited by grazing dairy cows are a major source of nitrous oxide (NO), a potent greenhouse gas that contributes to stratospheric ozone depletion. In this study, we quantified the emissions of NO after deposition of dairy cow excreta onto two grassland sites with contrasting soil types in eastern Canada. Our objectives were to determine the impact of excreta type, urine-N rate, time of the year, and soil type on annual NO emissions. Emissions were monitored on sandy loam and clay soils after spring, summer, and fall urine (5 and 10 g N patch) and dung (1.75 kg fresh weight dung) applications to perennial grasses in two successive years. The mean NO emission factor (EF) for urine was 1.09% of applied N in the clay soil and 0.31% in the sandy loam soil, estimates much smaller than the default Intergovernmental Panel on Climate Change (IPCC) default value for total excreta N (2%). Despite variations in urine composition and in climatic conditions, these soil-specific EFs were similar for the two urine-N application rates. The time of the year when urine was applied had no impact on emissions from the sandy loam soil, but greater EFs were observed after summer (1.59%) than spring (1.14%) and fall (0.55%) applications in the clay soil. Dung deposition impact on NO emission was smaller than that of urine, with a mean EF of 0.15% in the sandy loam soil and 0.08% in the clay soil. Our results suggest (i) that the IPCC default EF overestimates NO emissions from grazing cattle excreta in eastern Canada by a factor of 4.3 and (ii) that a region-specific inventory methodology should account for soil type and should use specific EFs for urine and dung. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The influence of non-CO2 forcings on cumulative carbon emissions budgets
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten
2018-03-01
Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
Nitrous oxide emission factors from N-fertilizer in sugarcane production in Brazil
NASA Astrophysics Data System (ADS)
Galdos, M. V.; Siqueira Neto, M.; Feigl, B. J.; Carvalho, J. L.; Cerri, C. E.; Cerri, C. C.
2013-12-01
The Brazilian sugarcane production is rapidly expanding due to the increase of global demand for ethanol. Concurrently the necessary inputs to culture, especially N-fertilizer, are growing, since N is one of the key element to maintain sugarcane productivity. However, it is known that N-fertilizer is responsible for the largest share of N2O emissions from agricultural soils. The Intergovernmental Panel on Climate Changes (IPCC) estimated that under favorable climatic conditions approximately 1% of the N-fertilizer applied can be emitted as N2O. Our goal was to estimate N2O emission factors from N-fertilizer used in the sugarcane ratoon for ethanol production. A field study was conducted at the Capuava Mill, located in southeastern Brazil. The experimental design was completely randomized, with four replications in a factorial scheme (2 x 2): two N sources (urea and ammonium nitrate), two application rates (80 and 120 kg ha-1), and a control treatment. N2O concentrations were determined by gas chromatography using a Shimadzu© GC-mini. N2O fluxes were calculated from linear regressions of concentration versus incubation time in the soil static chambers. The N2O emission factor of N-fertilizer was calculated according to the methodology described in the Guidelines for National Greenhouse Gas Inventories (IPCC). Comparatively, ammonium nitrate emitted 45 to 75% less N2O than urea application. There was no significant difference in N2O emission between the two applied rates of urea. Also the N2O emission factor of ammonium nitrate (0.3×0.2%) was lower than that of urea (1.1×0.4%). Our results indicated that on average the N fertilization of sugarcane plantation has an emission factor of 0.7×0.5% suggesting that N-fertilizer management can be used to reduce greenhouse gas emissions in order to improve the sustainability of bioethanol from sugarcane.
The uncertain climate footprint of wetlands under human pressure
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D.; Roulet, Nigel T.; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C.; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y. F.; Veenendaal, Elmar; Parmentier, Frans-Jan W.; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B.; Shurpali, Narasinha J.; Grünwald, Thomas; Humphreys, Elyn R.; Jackowicz-Korczyński, Marcin; Aurela, Mika A.; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A. R.; Schrier-Uijl, Arina P.; Christensen, Torben R.; Tamstorf, Mikkel P.; Mastepanov, Mikhail; Martikainen, Pertti J.; Verma, Shashi B.; Bernhofer, Christian; Cescatti, Alessandro
2015-01-01
Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange. PMID:25831506
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
The carbon count of 2000 years of rice cultivation.
Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid
2013-04-01
More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.
Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India
NASA Astrophysics Data System (ADS)
Singh, N.; Mishra, T.; Banerjee, R.
2017-12-01
India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.
The uncertain climate footprint of wetlands under human pressure.
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D; Desai, Ankur R; Roulet, Nigel T; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y F; Veenendaal, Elmar; Parmentier, Frans-Jan W; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B; Shurpali, Narasinha J; Grünwald, Thomas; Humphreys, Elyn R; Jackowicz-Korczyński, Marcin; Aurela, Mika A; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A R; Schrier-Uijl, Arina P; Christensen, Torben R; Tamstorf, Mikkel P; Mastepanov, Mikhail; Martikainen, Pertti J; Verma, Shashi B; Bernhofer, Christian; Cescatti, Alessandro
2015-04-14
Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei
2017-04-10
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 10 6 km 2 , 0.14 × 10 6 km 2 , and 0.11 × 10 6 km 2 , respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.
[Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
Yang, Xia; Zheng, Jiang-Hua; Mu, Chen; Lin, Jun
2017-02-01
Specific information on geographic distribution of a species is important for its conservation. This study was conducted to determine the potential geographic distribution of Alhagi sparsifolia, which is a plant used in traditional Uighur medicine, and predict how climate change would affect its geographic range. The potential geographic distribution of A. sparsifolia under the current conditions in China was simulated with MaxEnt software based on species presence data at 42 locations and 19 climatic variables. The future distributions of A. sparsifolia were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).The result showed that mean temperature of the coldest quarter, annual mean temperature, precipitation of the coldest quarter, annual precipitation, precipitation of the wettest month, mean temperature of the wettest quarter and the temperature annual range were the seven climatic factors influencing the geographic distribution of A. sparsifolia under current climate, the suitable habitats are mainly located in the Xinjiang, in the middle and north of Gansu, in the west of Neimeng, in the north of Nei Monggol. From 2050 to 2070, the model simulations indicated that the suitable habitats of A. sparsifolia would decrease under the climate change scenarios of RCP2.6 and scenarios of RCP8.5 on the whole. Copyright© by the Chinese Pharmaceutical Association.
The Impact of Long-Term Climate Change on Nitrogen Runoff at the Watershed Scale.
NASA Astrophysics Data System (ADS)
Dorley, J.; Duffy, C.; Arenas Amado, A.
2017-12-01
The impact of agricultural runoff is a major concern for water quality of mid-western streams. This concern is largely due to excessive use of agricultural fertilizer, a major source of nutrients in many Midwestern watersheds. In order to improve water quality in these watersheds, understanding the long-term trends in nutrient concentration and discharge is an important water quality problem. This study attempts to analyze the role of long-term temperature and precipitation on nitrate runoff in an agriculturally dominated watershed in Iowa. The approach attempts to establish the concentration-discharge (C-Q) signature for the watershed using time series analysis, frequency analysis and model simulation. The climate data is from the Intergovernmental Panel on Climate Change (IPCC), model GFDL-CM3 (Geophysical Fluid Dynamic Laboratory Coupled Model 3). The historical water quality data was made available by the IIHR-Hydroscience & Engineering at the University of Iowa for the clear creek watershed (CCW). The CCW is located in east-central Iowa. The CCW is representative of many Midwestern watersheds with humid-continental climate with predominantly agricultural land use. The study shows how long-term climate changes in temperature and precipitation affects the C-Q dynamics and how a relatively simple approach to data analysis and model projections can be applied to best management practices at the site.
Land use, climate parameters and water quality changes at surroundings of Code River, Indonesia
NASA Astrophysics Data System (ADS)
Muryanto; Suntoro; Gunawan, T.; Setyono, P.
2018-03-01
Regional development of an area has the potential of adverse impact on land use, vegetation, or green space. The reduction of green open space is known to contribute to global warming. According to the Intergovernmental Panel on Climate Change (IPCC), global warming has become a serious and significant phenomenon in human life. It affects not only ecological environment but also social and cultural environment. Global warming is a rise in global annual temperature due to, one of which, greenhouse gases. The purpose of this research is to determine the effects of land use change on water pollution and climate parameters at Code river. The results showed that Code River is experiencing land use conversion. Rice field was the most extensively reduced land use, by 467.496 ha. Meanwhile, the other land uses, namely plantation, grass, and forest, were reduced by 111.475 ha, 31.218 ha, and 1.307 ha, respectively. The least converted land use was bushed, whose decreased 0.403 ha. The land use conversion in the study area deteriorated the water quality of river, as proven by the increasing trend of COD and BOD from 2012 to 2016. The COD from 2012 to 2016 was 14, 16.6, 18.7, 22.5, and 22.8 ppm, respectively. Meanwhile, the BOD from the same observation years was 6, 7.2, 8.9, 9.3, and 10.3 ppm, respectively.
NASA Astrophysics Data System (ADS)
Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei
2017-04-01
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.
NASA Astrophysics Data System (ADS)
Zhong, Jia; Wei, Yuansong; Wan, Hefeng; Wu, Yulong; Zheng, Jiaxi; Han, Shenghui; Zheng, Bofu
2013-12-01
Greenhouse gas (GHG) emissions from animal manure management are of great concern in China. However, there are still great uncertainties about China's GHG inventory due to the GHG emission factors partly used default values from the Intergovernmental Panel of Climate Change (IPCC) guidelines. The purpose of this study was to use a case study in Beijing to determine the regional GHG emission factors based on the combination of swine manure composting and land application of the compost with both on-site examination and a life cycle assessment (LCA). The results showed that the total GHG emission factor was 240 kgCO2eq tDS-1 (dry solids), including the direct GHG emission factor of 115 kgCO2eq tDS-1 for swine manure composting and 48 kgCO2eq tDS-1 for land application of the compost. Among the total GHG emissions of 5.06 kgCH4 tDS-1 and 0.13 kgN2O tDS-1, the swine manure composting contributed approximately 89% to CH4 emissions while land application accounted for 92% of N2O emission. Meanwhile, the GHG emission profile from the full process in Beijing in 2015 and 2020 was predicted by the scenario analysis. The composting and land application is a cost-effective way for animal manure management in China considering GHG emissions.
Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs.
Enochs, Ian C; Manzello, Derek P; Kolodziej, Graham; Noonan, Sam H C; Valentino, Lauren; Fabricius, Katharina E
2016-11-16
Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO 2 ) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO 2 , and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO 2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat. © 2016 The Authors.
Projected changes in rainfall and temperature over homogeneous regions of India
NASA Astrophysics Data System (ADS)
Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara
2018-01-01
The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.
Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs
Manzello, Derek P.; Kolodziej, Graham; Noonan, Sam H. C.; Valentino, Lauren; Fabricius, Katharina E.
2016-01-01
Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO2) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO2, and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat. PMID:27852802
Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng
2016-01-01
Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095
Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM
NASA Technical Reports Server (NTRS)
Yao, Mao-Sung; Cheng, Ye
2013-01-01
The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-08-01
Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Detection and Attribution of Anthropogenic Climate Change Impacts
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Neofotis, Peter
2013-01-01
Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.
NASA Astrophysics Data System (ADS)
Katzav, Joel
2014-05-01
I bring out the limitations of four important views of what the target of useful climate model assessment is. Three of these views are drawn from philosophy. They include the views of Elisabeth Lloyd and Wendy Parker, and an application of Bayesian confirmation theory. The fourth view I criticise is based on the actual practice of climate model assessment. In bringing out the limitations of these four views, I argue that an approach to climate model assessment that neither demands too much of such assessment nor threatens to be unreliable will, in typical cases, have to aim at something other than the confirmation of claims about how the climate system actually is. This means, I suggest, that the Intergovernmental Panel on Climate Change's (IPCC's) focus on establishing confidence in climate model explanations and predictions is misguided. So too, it means that standard epistemologies of science with pretensions to generality, e.g., Bayesian epistemologies, fail to illuminate the assessment of climate models. I go on to outline a view that neither demands too much nor threatens to be unreliable, a view according to which useful climate model assessment typically aims to show that certain climatic scenarios are real possibilities and, when the scenarios are determined to be real possibilities, partially to determine how remote they are.
Comparison of Field Measurements to Methane Emissions ...
Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la
Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei
2017-01-01
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species. PMID:28393865
ICLUS v1.3 Population Projections
Climate and land-use change are major components of global environmental change with feedbacks between these components. The consequences of these interactions show that land use may exacerbate or alleviate climate change effects. Based on these findings it is important to use land-use scenarios that are consistent with the specific assumptions underlying climate-change scenarios. The Integrated Climate and Land-Use Scenarios (ICLUS) project developed land-use outputs that are based on a downscaled version of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines. ICLUS outputs are derived from a pair of models. A demographic model generates county-level population estimates that are distributed by a spatial allocation model (SERGoM v3) as housing density across the landscape. Land-use outputs were developed for the four main SRES storylines and a baseline (base case). The model is run for the conterminous USA and output is available for each scenario by decade to 2100. In addition to housing density at a 1 hectare spatial resolution, this project also generated estimates of impervious surface at a resolution of 1 square kilometer. This shapefile holds population data for all counties of the conterminous USA for all decades (2010-2100) and SRES population growth scenarios (A1, A2, B1, B2), as well as a 'base case' (BC) scenario, for use in the Integrated Climate and Land Use
The advantage of calculating emission reduction with local emission factor in South Sumatera region
NASA Astrophysics Data System (ADS)
Buchari, Erika
2017-11-01
Green House Gases (GHG) which have different Global Warming Potential, usually expressed in CO2 equivalent. German has succeeded in emission reduction of CO2 in year 1990s, while Japan since 2001 increased load factor of public transports. Indonesia National Medium Term Development Plan, 2015-2019, has set up the target of minimum 26% and maximum 41% National Emission Reduction in 2019. Intergovernmental Panel on Climate Change (IPCC), defined three types of accuracy in counting emission of GHG, as tier 1, tier 2, and tier 3. In tier 1, calculation is based on fuel used and average emission (default), which is obtained from statistical data. While in tier 2, calculation is based fuel used and local emission factors. Tier 3 is more accurate from those in tier 1 and 2, and the calculation is based on fuel used from modelling method or from direct measurement. This paper is aimed to evaluate the calculation with tier 2 and tier 3 in South Sumatera region. In 2012, Regional Action Plan for Greenhouse Gases of South Sumatera for 2020 is about 6,569,000 ton per year and with tier 3 is about without mitigation and 6,229,858.468 ton per year. It was found that the calculation in tier 3 is more accurate in terms of fuel used of variation vehicles so that the actions of mitigation can be planned more realistically.
Effects of land cover change on the tropical circulation in a GCM
NASA Astrophysics Data System (ADS)
Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan
2010-09-01
Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.
Dissemination of Climate Model Output to the Public and Commercial Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Stockwell, PhD
2010-09-23
Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature andmore » precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).« less
When could global warming reach 4°C?
Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G
2011-01-13
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.
NASA Astrophysics Data System (ADS)
Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick
2015-04-01
As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys. 13, 6757-6776 (2013). [4] M.I. Mishchenko, L.D. Travis and A.A. Lacis: "Scattering, absorption and emission of Light by small particles," 3rd edition, Cambridge University Press UK, (2002). [5] G. David, B. Thomas, E. Coillet, A. Miffre, and P. Rairoux, Polarization-resolved exact light backscattering by an ensemble of particles in air, Opt. Exp., 21, No. 16, 18624-18639, (2013). [6] G. David, B. Thomas, Y. Dupart, B. D'Anna, C. George, A. Miffre and P. Rairoux, UV polarization lidar for remote sensing new particles formation in the atmosphere, Opt. Exp., 22, A1009-A1022, (2014).
Impact of groundwater flow on permafrost degradation and transportation infrastructure stability.
DOT National Transportation Integrated Search
2013-02-01
A warming climate has been identified as unequivocal by the Intergovernmental Panel on Climate Change with greater and faster temperature increase demonstrated at : northern latitudes, and with an overall increase in precipitation. Analysis of field ...
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Budgell, W. P.; Carniel, S.; Sclavo, M.
2005-03-01
Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays--a non-glacial period--appears to be as rather stable. However, concern is raised by the buildup of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001. A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus131961224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and codes have been accordingly modified.This relevant numerical help coming from the computer science can now allow scientists to devote larger attention in the efforts of understanding the deep mechanisms of such complex processes.
230Th and 231Pa: Tracers for Deep Water Circulation and Particle Fluxes in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Valk, O.; Rutgers van der Loeff, M.; Puigcorbe Lacueva, V.; Paffrath, R.; Gdaniec, S.
2016-02-01
230Th and 231Pa data from the central Arctic Ocean is very limited. 230Th and 231Pa are produced at a constant rate in the water column by radioactive decay of Uranium isotopes (234U and 235U respectively) (e.g. Anderson et al., 1983). They are both particle reactive and are scavenged on settling particles. As 230Th is more particle reactive than 231Pa, their distribution in the water column and activity ratio give us information about particle fluxes and circulation patterns and -intensities (Henderson et al., 1999; Scholten et al., 2001). The Arctic Ocean is an almost landlocked ocean with limited connections to the Atlantic and Pacific and a high input of river water. About 10 % of the global river run-off is delivered to the Arctic Ocean. Due to climate change the Arctic Ocean will undergo dramatic changes in sea ice cover and supply of fresh water, while increasing coastal erosion will cause an increased input of terrestrial material (Peterson et al., 2002). This will influence the biogeochemical cycling and transport of carbon, nutrients and trace elements (IPCC, 2007). We expect that the distribution of 230Th and 231Pa will reflect changes in particle fluxes and shelf-basin exchange (Roy-Barman, 2009). We will present the first results of 230Th and 231Pa, in combination with on board measured particulate 234Th, collected during the 2015 Polarstern section (GEOTRACES section GN04 2015) through the Nansen, Amundsen, and Makarov Basins. Anderson, R. F., et al. (1983). EPSL 62: 7-23. Henderson, G. M., et al. (1999). DSR I 46: 1861-1893. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. et al.]. Cambridge University Press. Peterson, B. J., et al. (2002). Science 298: 2171-2173. Roy-Barman, M. (2009). Biogeosciences 6: 3091-3107. Scholten, J. C., et al. (2001). DSR II 48: 2383-2408.
Health in climate change research from 1990 to 2014: positive trend, but still underperforming.
Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer
2016-01-01
Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest in this research area in young scientists remains a challenge and should lead to innovative courses for large audiences, such as Massive Open Online Courses.
Wilson, Tamara S.; Sleeter, Benjamin M.; Sohl, Terry L.; Griffith, Glenn; Acevedo, William; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Ryan, Christy; Sayler, Kristi L.; Sleeter, Rachel; Soulard, Christopher E.
2012-01-01
Detecting, quantifying, and projecting historical and future changes in land use and land cover (LULC) has emerged as a core research area for the U.S. Geological Survey (USGS). Changes in LULC are important drivers of changes to biogeochemical cycles, the exchange of energy between the Earth’s surface and atmosphere, biodiversity, water quality, and climate change. To quantify the rates of recent historical LULC change, the USGS Land Cover Trends project recently completed a unique ecoregion-based assessment of late 20th century LULC change for the western United States. To characterize present LULC, the USGS and partners have created the National Land Cover Database (NLCD) for the years 1992, 2001, and 2006. Both Land Cover Trends and NLCD projects continue to evolve in an effort to better characterize historical and present LULC conditions and are the foundation of the data presented in this report. Projecting future changes in LULC requires an understanding of the rates and patterns of change, the major driving forces, and the socioeconomic and biophysical determinants and capacities of regions. The data presented in this report is the result of an effort by USGS scientists to downscale the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) to ecoregions of the conterminous United States as part of the USGS Biological Carbon Sequestration Assessment. The USGS biological carbon assessment was mandated by Section 712 of the Energy Independence and Security Act of 2007. As part of the legislative mandate, the USGS is required to publish a methodology describing, in detail, the approach to be used for the assessment. The development of future LULC scenarios is described in chapter 3.2 and appendix A. Spatial modeling is described in chapter 3.3.2 and appendix B and in Sohl and others (2011). In this report, we briefly summarize the major components and methods used to downscale IPCC-SRES scenarios to ecoregions of the conterminous United States, followed by a description of the Marine West Coast Forests Ecoregion, and lastly a description of the data being published as part of this report.
NASA Astrophysics Data System (ADS)
Sleeman, J.; Halem, M.; Finin, T.; Cane, M. A.
2016-12-01
Approximately every five years dating back to 1989, thousands of climate scientists, research centers and government labs volunteer to prepare comprehensive Assessment Reports for the Intergovernmental Panel on Climate Change. These are highly curated reports distributed to 200 nation policy makers. There have been five IPCC Assessment Reports to date, the latest leading to a Paris Agreement in Dec. 2016 signed thus far by 172 nations to limit the amount of global Greenhouse gases emitted to producing no more than a 20 C warming of the atmosphere. These reports are a living evolving big data collection tracing 30 years of climate science research, observations, and model scenario intercomparisons. They contain more than 200,000 citations over a 30 year period that trace the evolution of the physical basis of climate science, the observed and predicted impact, risk and adaptation to increased greenhouse gases and mitigation approaches, pathways, policies for climate change. Document-topic and topic-term probability distributions are built from the vocabularies of the respective assessment report chapters and citations. Using Microsoft Bing, we retrieve 150,000 citations referenced across chapters and convert those citations to text. Using a word n-gram model based on a heterogeneous set of climate change terminology, lemmatization, noise filtering and stopword elimination, we calculate word frequencies for chapters and citations. Temporal document sets are built based on the assessment period. In addition to topic modeling, we employ cross domain correlation measures. Using the Jensen-Shannon divergence and Pearson correlation we build correlation matrices for chapter and citations topics. The shared vocabulary acts as the bridge between domains resulting in chapter-citation point pairs in space. Pairs are established based on a document-topic probability distribution. Each chapter and citation is associated with a vector of topics and based on the n most probable topics, we establish which chapter-citation pairs are most similar. We will perform posterior inferences based on Hastings -Metropolis simulated annealing MCMC algorithm to infer, from the evolution of topics starting from AR1 to AR4, assertions of topics for AR5 and potentially AR6.
NASA Astrophysics Data System (ADS)
Chantjaroen, Chat
According to the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC), aerosols and CO2 are the largest contributors to anthropogenic radiative forcing--net negative for aerosols and positive for CO2. This relates to the amount of impact that aerosols and CO2 can have on our atmosphere and climate system. CO2 is the predominant greenhouse gas in the atmosphere and causes great impacts on our climate system. Recent studies show that a less well known atmospheric component--aerosols, which are solid particles or liquid droplets suspended in air, can cause great impact on our climate system too. They can affect our climate directly by absorbing and scattering sunlight to warm or cool our climate. They can also affect our climate indirectly by affecting cloud microphysical properties. Typically sulfate aerosols or sea salts act as condensation nuclei for clouds to form. Clouds are estimated to shade about 60% of the earth at any given time. They are preventing much of the sunlight from reaching the earth's surface and are helping with the flow of the global water cycle. These are what permit lifeforms on earth. In the IPCC report, both aerosols and CO2 also have the largest uncertainties and aerosols remains at a low level of scientific understanding. These indicate the need of more accurate measurements and that new technologies and instruments needs to be developed. This dissertation focuses on the development of two instruments--a scannable Micro-Pulsed Lidar (MPL) for atmospheric aerosol measurements and an Optical Parametric Oscillator (OPO) for use as a transmitter in a Differential Absorption Lidar (DIAL) for atmospheric CO2 measurements. The MPL demonstrates successful measurements of aerosols. It provides the total aerosol optical depth (AOD) and aerosol lidar ratio (Sa) that agree well with an instrument used by the Aerosol Robotic Network (AERONET). It also successfully provides range-resolved information about aerosols that AERONET instrument is incapable of. The range-resolved information is important in the study of the sources and sinks of aerosols. The OPO results show good promise for its use as a DIAL transmitter.
Cost analysis of impacts of climate change on regional air quality.
Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun
2010-02-01
Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.
Orrù, Martino; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi
2012-12-01
The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l). Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10-25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C). Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (T(b)) of 9·0-11·3 °C and a thermal time requirement for 50 % of germination (θ(50)) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations. The thermal thresholds for seed germination identified in this study (T(b) and θ(50)) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.
NASA Astrophysics Data System (ADS)
Kharel, G.; Kirilenko, A.
2014-12-01
Terminal lakes are heavily impacted by regional changes in climate. Devils Lake (DL) is a terminal lake located in the northeastern North Dakota of the US. Since 1990, following a shift in regional precipitation pattern, DL has encountered a 10 m water level rise, with over 400% increase in surface area and 600% increase in water volume, costing over $1.5 billion in mitigation. Currently, the lake is <1.5 m from spillover level to the nearby Sheyenne River with potential negative consequences for downstream water quality and flooding. Recently, the artificial outlets have been constructed and operated to divert DL water to the Sheyenne River amid legal and political pressure. Outlet construction however did not take into consideration possible changes in local climate. We modeled the DL basin ( 9,800 km2) hydrology using the Soil and Water Assessment Tool (SWAT) and estimated future water levels of DL for different outlet scenarios under three Intergovernmental Panel on Climate Change (IPCC) SRES scenarios (A1B, B1 & A2) for 2020s and 2050s. We evaluated model performance by comparing SWAT simulated daily streamflow outputs against the observed streamflow data recorded at 6 USGS water gauge locations within the basin. Future climate conditions in the region were estimated by combining historical weather data (1981-2010), 15 CMIP3 General Circulation Model projections from the IPCC data center, and stochastic downscaling methodology (LARS-WG). Our results indicate significant likelihood (7.3% ̶ 20.0%) of uncontrolled DL water overspill in the next few decades in the absence of outlets, with some members of GCM integration ensemble carrying over 85.0% and 95.0% overspill probability for 2020s and 2050s respectively. However, full-capacity outlets show radical reduction in overspill probability to partially mitigate the flooding problem by decreasing the average lake level by approximately 1.9 m and 1.5 m in 2020s and 2050s. Moreover, had there been outlet operation from the beginning of the flood episode since 1990s, not only the future overspill risks but also the current flooding extent would have been reduced significantly (Fig. 1).
Health in climate change research from 1990 to 2014: positive trend, but still underperforming
Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer
2016-01-01
Background Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. Design We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. Results The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. Conclusions There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest in this research area in young scientists remains a challenge and should lead to innovative courses for large audiences, such as Massive Open Online Courses. PMID:27339855
Climate Change: Vulnerability Assessment for Water Resources Management in South Florida
NASA Astrophysics Data System (ADS)
Obeysekera, J.
2008-12-01
South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of projected climate change on water supply for all water sectors including the environment, and the potential impact of sea level rise on coastal regions. Questions on the potential impacts of climate change including sea level rise need to be investigated along with the uncertainties of projections to provide critical information for decision making on the planned infrastructure and operational changes in south Florida.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
Duveneck, Matthew J; Scheller, Robert M
2015-09-01
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).
Flying into the future: aviation emissions scenarios to 2050.
Owen, Bethan; Lee, David S; Lim, Ling
2010-04-01
This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid and significant technology development and transition. A global model of aircraft movements and emissions (FAST) was used to calculate fuel use and emissions to 2050 with a further outlook to 2100. The aviation emission scenarios presented are designed to interpret the SRES and have been developed to aid in the quantification of the climate change impacts of aviation. Demand projections are made for each scenario, determined by SRES economic growth factors and the SRES storylines. Technology trends are examined in detail and developed for each scenario providing plausible projections for fuel efficiency and emissions control technology appropriate to the individual SRES storylines. The technology trends that are applied are calculated from bottom-up inventory calculations and industry technology trends and targets. Future emissions of carbon dioxide are projected to grow between 2000 and 2050 by a factor in the range of 2.0 and 3.6 depending on the scenario. Emissions of oxides of nitrogen associated with aviation over the same period are projected to grow by between a factor of 1.2 and 2.7.
Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions
NASA Astrophysics Data System (ADS)
Van Hooidonk, R. J.
2011-12-01
Future widespread coral bleaching and subsequent mortality has been projected with sea surface temperature (SST) data from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. These model weaknesses likely reduce the skill of coral bleaching predictions, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends and their propagation in predictions. To analyze the relative importance of various types of model errors and biases on coral reef bleaching predictive skill, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from GCMs 20th century simulations to be included in the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate skill using an objective measure of forecast quality, the Peirce Skill Score (PSS). This methodology will identify frequency bands that are important to predicting coral bleaching and it will highlight deficiencies in these bands in models. The methodology we describe can be used to improve future climate model derived predictions of coral reef bleaching and it can be used to better characterize the errors and uncertainty in predictions.
Making sense scientific claims in advertising. A study of scientifically aware consumers.
Dodds, Rachel E; Tseëlon, Efrat; Weitkamp, Emma L C
2008-04-01
Evidence that science is becoming increasingly embedded in culture comes from the proliferation of discourses of ethical consumption, sustainability, and environmental awareness. Al Gore's recent award, along with UN's Inter-governmental Panel on Climate Change (IPCC) of the Nobel peace prize-- provided a recent high profile linking of consumption and science. It is not clear to what extent the public at large engages in evaluating the scientific merits of the arguments about the link between human consumption and global environmental catastrophes. But on a local scale, we are routinely required to evaluate, scientific and pseudoscientific claims in advertising. Since advertising is used to sell products, the discourse of scientifically framed claims is being used to persuade consumers of the benefits of these products. In the case of functional foods and cosmetics, such statements are deployed to promote the health benefits and effectiveness of their products. This exploratory study examines the views of British consumers about the scientific and pseudoscientific claims made in advertisements for foods, with particular reference to functional foods, and cosmetics. The participants in the study all worked in scientific environments, though they were not all scientists. The study found that scientific arguments that were congruent with existing health knowledge tended to be accepted while pseudoscientific knowledge was regarded skeptically and concerns were raised over the accuracy and believability of the pseudoscientific claims. It appears that scientific awareness may play a part in consumers' ability to critically examine scientifically and pseudoscientifically based advertising claims.
Wildfire Suppression Costs for Canada under a Changing Climate
Stocks, Brian J.; Gauthier, Sylvie
2016-01-01
Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980–2009) fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC) climate projections. Area burned was modelled as a function of a climate moisture index (CMI), and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs); these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980–2009 period) under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period) under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years) are projected to become commonplace (i.e., occur once every two years or more often) as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses. PMID:27513660
Glibert, Patricia M; Icarus Allen, J; Artioli, Yuri; Beusen, Arthur; Bouwman, Lex; Harle, James; Holmes, Robert; Holt, Jason
2014-12-01
Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.
2016-12-01
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.
Light-weight Parallel Python Tools for Earth System Modeling Workflows
NASA Astrophysics Data System (ADS)
Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.
2015-12-01
With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.
Regional temperature and precipitation changes under high-end (≥4°C) global warming.
Sanderson, M G; Hemming, D L; Betts, R A
2011-01-13
Climate models vary widely in their projections of both global mean temperature rise and regional climate changes, but are there any systematic differences in regional changes associated with different levels of global climate sensitivity? This paper examines model projections of climate change over the twenty-first century from the Intergovernmental Panel on Climate Change Fourth Assessment Report which used the A2 scenario from the IPCC Special Report on Emissions Scenarios, assessing whether different regional responses can be seen in models categorized as 'high-end' (those projecting 4°C or more by the end of the twenty-first century relative to the preindustrial). It also identifies regions where the largest climate changes are projected under high-end warming. The mean spatial patterns of change, normalized against the global rate of warming, are generally similar in high-end and 'non-high-end' simulations. The exception is the higher latitudes, where land areas warm relatively faster in boreal summer in high-end models, but sea ice areas show varying differences in boreal winter. Many continental interiors warm approximately twice as fast as the global average, with this being particularly accentuated in boreal summer, and the winter-time Arctic Ocean temperatures rise more than three times faster than the global average. Large temperature increases and precipitation decreases are projected in some of the regions that currently experience water resource pressures, including Mediterranean fringe regions, indicating enhanced pressure on water resources in these areas.
Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal
Jueterbock, Alexander; Tyberghein, Lennert; Verbruggen, Heroen; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2013-01-01
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. PMID:23762521
Sherba, Jason T.; Sleeter, Benjamin M.; Davis, Adam W.; Parker, Owen P.
2015-01-01
Global land-use/land-cover (LULC) change projections and historical datasets are typically available at coarse grid resolutions and are often incompatible with modeling applications at local to regional scales. The difficulty of downscaling and reapportioning global gridded LULC change projections to regional boundaries is a barrier to the use of these datasets in a state-and-transition simulation model (STSM) framework. Here we compare three downscaling techniques to transform gridded LULC transitions into spatial scales and thematic LULC classes appropriate for use in a regional STSM. For each downscaling approach, Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) LULC projections, at the 0.5 × 0.5 cell resolution, were downscaled to seven Level III ecoregions in the Pacific Northwest, United States. RCP transition values at each cell were downscaled based on the proportional distribution between ecoregions of (1) cell area, (2) land-cover composition derived from remotely-sensed imagery, and (3) historic LULC transition values from a LULC history database. Resulting downscaled LULC transition values were aggregated according to their bounding ecoregion and “cross-walked” to relevant LULC classes. Ecoregion-level LULC transition values were applied in a STSM projecting LULC change between 2005 and 2100. While each downscaling methods had advantages and disadvantages, downscaling using the historical land-use history dataset consistently apportioned RCP LULC transitions in agreement with historical observations. Regardless of the downscaling method, some LULC projections remain improbable and require further investigation.
Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis
NASA Astrophysics Data System (ADS)
Zhan, Yaoyao; Hu, Wanbin; Duan, Lizhu; Liu, Minbo; Zhang, Weijie; Chang, Yaqing; Li, Cong
2017-10-01
In this study, we evaluated the effects of CO2-induced seawater acidification on fertilization, embryogenesis and early larval development in the sea urchin Glyptocidaris crenularis, that inhabits subtidal coastal areas in northern China. The range in seawater pH used in experiments was based on the projections of the Intergovernmental Panel on Climate Change (IPCC), to the year 2100. A natural seawater treatment (pHnbs=7.98±0.03) and three laboratory-controlled acidified treatments (OA1, ΔpHnbs=-0.3 units; OA2, ΔpHnbs=-0.4 units; OA3, ΔpHnbs=-0.5 units) were used in experiments. Results show that: (1) there was a negative effect of seawater acidification on fertilization and on the percentage of abnormal fertilized eggs; (2) the size of early cleavage stage embryos decreased in a dose-dependent manner with decreasing pH; (3) both the hatching rate of blastulae and the survival rate of four-armed pluteus larvae decreased as pH declined; (4) larval abnormalities including asymmetrical development, changes in the length of skeletal elements, and corroded spicules were observed in all seawater acidified-treatments compared with the control. These data indicate that seawater acidification has a negative impact on the early development of G. crenularis, and supports the hypothesis that the response of echinoderms to ocean acidification (OA) varies among species. Further research is required to clarify the specific cellular mechanisms involved.
NASA Astrophysics Data System (ADS)
Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.
2012-12-01
MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.
A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation
NASA Technical Reports Server (NTRS)
Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.
2006-01-01
Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray, B J; O'Sullivan, D; Atkinson, J D; Webb, M E
2012-10-07
The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Tsai, Wen-Tien
2008-09-01
The management of food garbage is of great importance because of its high energy consumption, potential environmental hazards and public health risks. In Taiwan, through the competent authorities at all levels and the citizens' participation in sorting household wastes, many recycling efforts have recently been implemented to further utilize it as available resources such as swine feeds and organic fertilizer by composting. As a result, a total of approximately 570 thousand metric tons was recycled with a recycling ratio of about 21.2% on a basis of food garbage generation in 2006, rising over 22% from a year earlier. These figures showed that compulsory garbage sorting has indeed dramatically increased the recycling of food garbage. The objective of this paper is to present and discuss some management considerations in turning food garbage into agricultural resources due to the compulsory garbage sorting directive in Taiwan. The description first aims at the current status in food garbage generation and its recycling, and at the regulatory polices which have become effective since 2000. It also centers on the environmental and agricultural measures on upgrading food garbage recycling. Based on the preliminary analysis of environmental benefit by the Revised 1996 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, it is obvious that composting food garbage is superior to that by traditional treatments (i.e., incineration and sanitary landfill) from the viewpoint of reducing greenhouse gases (i.e., CO(2) and CH(4)) emissions.
Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.
2015-01-01
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074
Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper
Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria
2010-01-01
Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.
Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L
2013-03-01
Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.
Changes in land-uses and ecosystem services under multi-scenarios simulation.
Liu, Jingya; Li, Jing; Qin, Keyu; Zhou, Zixiang; Yang, Xiaonan; Li, Ting
2017-05-15
Social economy of China has been rapidly developing for more than 30years with efficient reforms and policies being issued. Societal developments have resulted in a greater use of many natural resources to the extent that the ecosystem can no longer self-regulate, thus severely damaging the balance of the ecosystem itself. This in turn has led to a deterioration in people's living environments. Our research is based on a combination of climate scenarios presented in the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and policy scenarios, including the one-child policy and carbon tax policy. We adopted Land Change Modeler of IDRISI software to simulate and analyze land-use change under 16 future scenarios in 2050. Carbon sequestration, soil conservation and water yields were quantified, based on those land-use maps and different ecosystem models. We also analyzed trade-offs and synergy among each ecosystem service and discussed why those interactions happened. The results show that: (1) Global climate change has a strong influence on future changes in land-use. (2) Carbon sequestration, water yield and soil conservation have a mutual relationship in the Guanzhong-Tianshui economic region. (3) Climate change and implementation of policy have a conspicuous impact on the changes in ecosystem services in the Guanzhong-Tianshui economic region. This paper can be used as a reference for further related research, and provide a reliable basis for achieving the sustainable development of the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect:more » natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.« less
DOT National Transportation Integrated Search
2012-06-30
Approximately a quarter of all greenhouse gases originate from motor vehicle tailpipe emissions (Intergovernmental Panel on Climate Change, 2007). Along with reducing household energy usage, changes in transportation behavior would have the most dire...
DOT National Transportation Integrated Search
2009-08-01
According to the Intergovernmental Panel on Climate Changea United Nations organization that assesses scientific, technical, and economic information on the effects of climate changeglobal atmospheric concentrations of greenhouse gases have inc...
NASA Astrophysics Data System (ADS)
Lewis, Sophie; Karoly, David
2013-04-01
Changes in extreme climate events pose significant challenges for both human and natural systems. Some climate extremes are likely to become "more frequent, more widespread and/or more intense during the 21st century" (Intergovernmental Panel on Climate Change, 2007) due to anthropogenic climate change. Particularly in Australia, El Niño-Southern Oscillation (ENSO) has a relationship to the relative frequency of temperature and precipitation extremes. In this study, we investigate the record high two-summer rainfall observed in Australia (2010-2011 and 2011-2012). This record rainfall occurred in association with a two year extended La Niña event and resulted in severe and extensive flooding. We examine simulated changes in seasonal-scale rainfall extremes in the Australian region in a suite of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). In particular, we utilise the novel CMIP5 detection and attribution historical experiments with various forcings (natural forcings only and greenhouse gas forcings only) to examine the impact of various anthropogenic forcings on seasonal-scale extreme rainfall across Australia. Using these standard detection and attribution experiments over the period of 1850 to 2005, we examine La Niña contributions to the 2-season record rainfall, as well as the longer-term climate change contribution to rainfall extremes. Was there an anthropogenic influence in the record high Australian summer rainfall over 2010 to 2012, and if so, how much influence? Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.
Regional Climate Change Hotspots over Africa
NASA Astrophysics Data System (ADS)
Anber, U.
2009-04-01
Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)
Climate Products and Services to Meet the Challenges of Extreme Events
NASA Astrophysics Data System (ADS)
McCalla, M. R.
2008-12-01
The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf
NASA Astrophysics Data System (ADS)
Hayes, M.
2014-12-01
The IMBECS Protocol concept employs large cultivation and biorefinery installations, within the five Subtropical Convergence Zones (STCZs), to support the production of commodities such as carbon negative biofuels, seafood, organic fertilizer, polymers and freshwater, as a flexible and cost effective means of Global Warming Mitigation (GWM) with the primary objective being the global scale replacement of fossil fuels (FF). This governance approach is categorically distinct from all other large scale GWM governance concepts. Yet, many of the current marine related GWM technologies are adaptable to this proposals. The IMBECS technology would be managed by an intergovernmentally sanctioned non-profit foundation which would have the following functions/mission: Synthesises relevant treaty language Performs R&D activities and purchases relevant patents Under intergovernmental commission, functions as the primary responsible international actorfor environmental standards, production quotas and operational integrity Licence technology to for-profit actors under strict production/environmental standards Enforce production and environmental standards along with production quotas Provide a high level of transparency to all stakeholders Provide legal defence The IMBECS Protocol is conceptually related to the work found in the following documents/links. This list is not exhaustive: Climate Change Geoengineering The Science and Politics of Global Climate Change: A guide to the debate IPCC Special Report on Renewable Energy and Climate Change Mitigation DoE Roadmap for Algae Biofuels PodEnergy Ocean Agronomy development leaders and progenitor of this proposal. Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert NASAs' OMEGA study. Cool Planet; Land based version of a carbon negative biofuel concept. Cellana; Leading developer of algae based bioproducts. The State of World Fisheries and Aquaculture Mariculture: A global analysis of production trends since 1950 BECCS /Biochar/ Olivine UNFCCC/IMO/CBD The President's Climate Action Plan The conclusion of this analysis calls for funding of an investigational deployment of the relevant technologies for an open evaluation at the intergovernmental level.
Characterizing changes in drought risk for the United States from climate change
The effect of climate change on the frequency and intensity of droughts across the contiguous United States over the next century is assessed by applying Standardized Precipitation Indices and the Palmer Drought Severity Index to the full suite of 22 Intergovernmental Panel on Cl...
Status of the World's Soil Resources Report, Intergovernmental Technical Panel on Soils
The scope of main objectives of the report are: (a) to provide a global scientific assessment of current and projected soil conditions built on regional data analysis and expertise (b) to explore the implications of these soil conditions for food security, climate change, water q...
NASA Astrophysics Data System (ADS)
Sauer, M.; Bergamaschi, B. A.; Smith, R. A.; Zhu, Z.; Shih, J.
2012-12-01
Flux of nutrients and sediments to the coastal zone varies in response to land-use modification, reservoir construction, management action and population change. It is anticipated that future changes in the flux of these components in response to climate and terrestrial processes will affect carbon (C) burial in the coastal ocean. Coastal oceans store appreciable amounts of C as a result of river inflows: coastal primary production is enhanced by inputs of terrestrially derived nutrients, and C burial is controlled by terrestrial sediment supply. Assessing the capacity and changes to coastal C preservation, therefore, requires estimation of (1) riverine nutrient and sediment delivery to the coastal ocean, and (2) the enhanced C production and sediment deposition in the coastal ocean. The United States Geological Survey (USGS) has embarked on a congressionally-mandated nationwide effort to assess the future effects of climate and land use and land cover change (LULC) on C storage. The USGS has developed alternative scenarios for changes in US LULC from 2006 to 2100 based on the Intergovernmental Panel on Climate Change (IPCC) climate, economic, and demographic scenarios (Sohl et al 2012). These spatially-detailed scenarios provide inputs to national-scale SPARROW watershed models of total nitrogen, total phosphorus, total organic C (TOC), and suspended sediment (Smith et al 1997; Schwarz et al, 2006). The watershed models, in turn, provide inputs of nutrients, TOC, and sediment to a coupled model of coastal transport, production, and sedimentation. This coastal modelling component includes particulate C sedimentation and burial estimated as functions of bathymetry and pycnocline depth (Armstrong, et al 2002; Dunne et al 2007). River borne fluxes of TOC to US Pacific coastal waters under baseline conditions (1992) were 1.59 TgC/yr. Projected future (2050) fluxes under a regionally-downscaled LULC scenario aligned with the IPCC A2 scenario were similar (1.61TgC/yr). C storage in coastal environments as influenced by terrestrial processes represents a significant sink for C in comparison to terrestrial biomass C sinks, and is significantly sensitive to changes in LULC and population. The estimated rate of storage in Pacific coastal waters was 2.0 TgC/yr under baseline conditions. Projection of land use and population changes through 2050 associated with the IPCC A2 scenario had a small effect on coastal C storage processes, reducing C storage by 4% over baseline conditions. Results of this modeling exercise indicate that the size of the C sink associated with terrestrial exports is substantial and sensitive to anthropogenic activity. Thus, future assessments of how terrestrial policy and management actions may alter C storage should include an evaluation of the effects prospective alterations in terrestrial processes have on coastal C storage.
Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.
2015-01-01
Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.
2011-12-01
As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is 16% lower, mainly due to uncertainty in activity factors. With only 4% of Bogota's fleet, diesel use accounts for 42% of the CO2 emissions. The emissions are almost evenly shared between public (9% of the fleet) and private transport. Peak emissions occur at 8 a.m. and 6 p.m. with maximum values over a densely industrialized area at the northwest of Bogota. This investigation allowed estimating the relative contribution of fuel and vehicle categories to spatially- and temporally-resolved CO2 emissions. Fuel consumption time series indicate a near-stabilization trend on energy consumption for transportation, which is unexpected taking into account the sustained economic and vehicle fleet growth in Bogota. The comparison of the disaggregation methodology with the IPCC methodology contributes to the analysis of possible error sources on activity factor estimations. This information is very useful for uncertainty estimation and adjustment of primary air pollutant emissions inventories.
Robbins, Lisa L.; Yates, Kimberly K.; Gove, Matthew D.; Knorr, Paul O.; Wynn, Jonathan; Byrne, Robert H.; Liu, Xuewu
2013-01-01
Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form carbonic acid, a weak, naturally occurring acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.
Robbins, Lisa L.; Yates, Kimberly K.; Knorr, Paul O.; Wynn, Jonathan; Lisle, John; Buczkowski, Brian J.; Moore, Barbara; Mayer, Larry; Armstrong, Andrew; Byrne, Robert H.; Liu, Xuewu
2013-01-01
Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.
Future drying of the southern Amazon and central Brazil
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Cook, B.
2008-12-01
Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.
Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions
NASA Astrophysics Data System (ADS)
van Hooidonk, R.; Huber, M.
2012-03-01
Future widespread coral bleaching and subsequent mortality has been projected using sea surface temperature (SST) data derived from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. Such weaknesses most likely reduce the accuracy of predicting coral bleaching, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends, and their propagation in predictions. To analyze the relative importance of various types of model errors and biases in predicting coral bleaching, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from 24 GCMs 20th century simulations included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate accuracy using an objective measure of forecast quality, the Peirce skill score (PSS). Major findings are that: (1) predictions are most sensitive to the seasonal cycle and inter-annual variability in the ENSO 24-60 months frequency band and (2) because models tend to understate the seasonal cycle at reef locations, they systematically underestimate future bleaching. The methodology we describe can be used to improve the accuracy of bleaching predictions by characterizing the errors and uncertainties involved in the predictions.
Will the California Current lose its nesting Tufted Puffins?
Kelly, Ryan P.; Pearson, Scott F.
2018-01-01
Tufted Puffin (Fratercula cirrhata) populations have experienced dramatic declines since the mid-19th century along the southern portion of the species range, leading citizen groups to petition the United States Fish and Wildlife Service (USFWS) to list the species as endangered in the contiguous US. While there remains no consensus on the mechanisms driving these trends, population decreases in the California Current Large Marine Ecosystem suggest climate-related factors, and in particular the indirect influence of sea-surface temperature on puffin prey. Here, we use three species distribution models (SDMs) to evaluate projected shifts in habitat suitable for Tufted Puffin nesting for the year 2050 under two future Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Ensemble model results indicate warming marine and terrestrial temperatures play a key role in the loss of suitable Tufted Puffin nesting conditions in the California Current under both business-as-usual (RCP 8.5) and moderated (RCP 4.5) carbon emission scenarios, and in particular, that mean summer sea-surface temperatures greater than 15 °C are likely to make habitat unsuitable for breeding. Under both emission scenarios, ensemble model results suggest that more than 92% of currently suitable nesting habitat in the California Current is likely to become unsuitable. Moreover, the models suggest a net loss of greater than 21% of suitable nesting sites throughout the entire North American range of the Tufted Puffin, regardless of emission-reduction strategies. These model results highlight continued Tufted Puffin declines—particularly among southern breeding colonies—and indicate a significant risk of near-term extirpation in the California Current Large Marine Ecosystem. PMID:29593940
Will the California Current lose its nesting Tufted Puffins?
Hart, Christopher J; Kelly, Ryan P; Pearson, Scott F
2018-01-01
Tufted Puffin ( Fratercula cirrhata ) populations have experienced dramatic declines since the mid-19th century along the southern portion of the species range, leading citizen groups to petition the United States Fish and Wildlife Service (USFWS) to list the species as endangered in the contiguous US. While there remains no consensus on the mechanisms driving these trends, population decreases in the California Current Large Marine Ecosystem suggest climate-related factors, and in particular the indirect influence of sea-surface temperature on puffin prey. Here, we use three species distribution models (SDMs) to evaluate projected shifts in habitat suitable for Tufted Puffin nesting for the year 2050 under two future Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Ensemble model results indicate warming marine and terrestrial temperatures play a key role in the loss of suitable Tufted Puffin nesting conditions in the California Current under both business-as-usual (RCP 8.5) and moderated (RCP 4.5) carbon emission scenarios, and in particular, that mean summer sea-surface temperatures greater than 15 °C are likely to make habitat unsuitable for breeding. Under both emission scenarios, ensemble model results suggest that more than 92% of currently suitable nesting habitat in the California Current is likely to become unsuitable. Moreover, the models suggest a net loss of greater than 21% of suitable nesting sites throughout the entire North American range of the Tufted Puffin, regardless of emission-reduction strategies. These model results highlight continued Tufted Puffin declines-particularly among southern breeding colonies-and indicate a significant risk of near-term extirpation in the California Current Large Marine Ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.R.; Algieri, C.A.; Ong, J.R.
2011-04-01
Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less
Baltensperger, A. P.; Huettmann, F.
2015-01-01
Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828
Current and Future Patterns of Global Marine Mammal Biodiversity
Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris
2011-01-01
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431
NASA Astrophysics Data System (ADS)
Plach, Andreas; Hestnes Nisancioglu, Kerim
2016-04-01
The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
NASA Astrophysics Data System (ADS)
Fernandes, K.; Baethgen, W.; Verchot, L. V.; Giannini, A.; Pinedo-Vasquez, M.
2014-12-01
A complete assessment of climate change projections requires understanding the combined effects of decadal variability and long-term trends and evaluating the ability of models to simulate them. The western Amazon severe droughts of the 2000s were the result of a modest drying trend enhanced by reduced moisture transport from the tropical Atlantic. Most of the WA dry-season precipitation decadal variability is attributable to decadal fluctuations of the north-south gradient (NSG) in Atlantic sea surface temperature (SST). The observed WA and NSG decadal co-variability is well reproduced in Global Climate Models (GCMs) pre-industrial control (PIC) and historical (HIST) experiments that were part of the Intergovernmental Panel on Climate Change fifth assessment report (IPCC-AR5). This suggests that unforced or natural climate variability, characteristic of the PIC simulations, determines the nature of this coupling, as the results from HIST simulations (forced with greenhouse gases (GHG) and natural and anthropogenic aerosols) are comparable in magnitude and spatial distribution. Decadal fluctuation in the NSG also determines shifts in the probability of repeated droughts and pluvials in WA, as there is a 65% chance of 3 or more years of droughts per decade when NSG>0 compared to 18% when NSG<0. The HIST and PIC model simulations also reproduce the observed shifts in probability distribution of droughts and pluvials as a function of the NSG decadal phase, suggesting there is great potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase may lead to continuing above normal frequencies of western Amazon dry-season droughts.
NASA Astrophysics Data System (ADS)
Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Ellis, J.; Woodruff, D.; Quattrochi, D.; Rose, K.; Swann, R.
2012-12-01
Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.
Ocean acidification causes bleaching and productivity loss in coral reef builders.
Anthony, K R N; Kline, D I; Diaz-Pulido, G; Dove, S; Hoegh-Guldberg, O
2008-11-11
Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO(2) levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO(2) is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO(2) induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO(2) scenario led to a 30% increase in productivity in Acropora, whereas high CO(2) lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO(2) leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.
Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie
2015-01-01
Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.
Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie
2015-01-01
Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159
NASA Astrophysics Data System (ADS)
Wilderbuer, Thomas; Stockhausen, William; Bond, Nicholas
2013-10-01
This study provides a retrospective analysis of the relationship between physical oceanography, biology and recruitment of three Eastern Bering Sea flatfish stocks: flathead sole (Hippoglossoides elassodon), northern rock sole (Lepidopsetta polyxystra), and arrowtooth flounder (Atheresthes stomias) during the period 1978-2005. Stock assessment model estimates of recruitment and spawning stock size indicate that temporal patterns in productivity are consistent with decadal scale (or shorter) patterns in climate variability, which may influence marine survival during the early life history phases. Density-dependence (through spawning stock size) was statistically significant in a Ricker stock-recruit model of flatfish recruitment that included environmental terms. Wind-driven advection of northern rock sole and flathead sole larvae to favorable nursery grounds was found to coincide with years of above-average recruitment. Ocean forcing of Bristol Bay surface waters during springtime was mostly on-shelf (eastward) during the 1980s and again in the early 2000s, but was off-shelf (westerly) during the 1990s, corresponding with periods of good and poor recruitment, respectively. Finally, the Arctic Oscillation was found to be an important indicator of arrowtooth flounder productivity. Model results were applied to IPCC (Intergovernmental Panel on Climate Change) future springtime wind scenarios to predict the future impact of climate on northern rock sole productivity and indicated that a moderate future increase in recruitment might be expected because the climate trends favor on-shelf transport but that density-dependence will dampen this effect such that northern rock sole abundance will not be substantially affected by climate change.
NASA Technical Reports Server (NTRS)
Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Swann, R.
2012-01-01
Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.
Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.
2010-04-01
Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-modelmore » ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.« less
Wei, Jiufeng; Zhao, Qing; Zhao, Wanqing; Zhang, Hufang
2018-01-01
Cycads are an ancient group of gymnosperms that are popular as landscaping plants, though nearly all of them are threatened or endangered in the wild. The cycad aulacaspis scale (CAS), Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae), has become one of the most serious pests of cycads in recent years; however, the potential distribution range and the management approach for this pest are unclear. A potential risk map of cycad aulacaspis scale was created based on occurrence data under different climatic conditions and topology factors in this study. Furthermore, the future potential distributions of CAS were projected for the periods 2050s and 2070s under three different climate change scenarios (GFDL-CM3, HADGEM2-AO and MIROC5) described in the Special Report on Emissions Scenarios of the IPCC (Intergovernmental Panel on Climate Change). The model suggested high environmental suitability for the continents of Asia and North America, where the species has already been recorded. The potential distribution expansions or reductions were also predicted under different climate change conditions. Temperature of Driest Quarter (Bio9) was the most important factor, explaining 48.1% of the distribution of the species. The results also suggested that highly suitable habitat for CAS would exist in the study area if the mean temperature of 15-20 °C in the driest quarter and a mean temperature of 25-28 °C the wettest quarter. This research provides a theoretical reference framework for developing policy to manage and control this invasive pest.
2015-01-01
In this paper we estimate the living carbon lost from Ecuador’s mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador’s estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services. PMID:25738286
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion
NASA Astrophysics Data System (ADS)
Zhang, X.; Caldeira, K.
2015-12-01
The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.
NASA Astrophysics Data System (ADS)
Dabanlı, İsmail; Şen, Zekai
2018-04-01
The statistical climate downscaling model by the Turkish Water Foundation (TWF) is further developed and applied to a set of monthly precipitation records. The model is structured by two phases as spatial (regional) and temporal downscaling of global circulation model (GCM) scenarios. The TWF model takes into consideration the regional dependence function (RDF) for spatial structure and Markov whitening process (MWP) for temporal characteristics of the records to set projections. The impact of climate change on monthly precipitations is studied by downscaling Intergovernmental Panel on Climate Change-Special Report on Emission Scenarios (IPCC-SRES) A2 and B2 emission scenarios from Max Plank Institute (EH40PYC) and Hadley Center (HadCM3). The main purposes are to explain the TWF statistical climate downscaling model procedures and to expose the validation tests, which are rewarded in same specifications as "very good" for all stations except one (Suhut) station in the Akarcay basin that is in the west central part of Turkey. Eventhough, the validation score is just a bit lower at the Suhut station, the results are "satisfactory." It is, therefore, possible to say that the TWF model has reasonably acceptable skill for highly accurate estimation regarding standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) criteria. Based on the validated model, precipitation predictions are generated from 2011 to 2100 by using 30-year reference observation period (1981-2010). Precipitation arithmetic average and standard deviation have less than 5% error for EH40PYC and HadCM3 SRES (A2 and B2) scenarios.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M... is used to replace an ODS. The Agency has identified four possible decision categories for...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
.... The Agency has identified four possible decision categories for substitutes that are submitted for... Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M...
Looking at emissions and economics of biomass use
Sharon Ritter
2007-01-01
There is more and more discussion these days about greenhouse gas emissions and their contribution to global warming. As a result of the 2006 documentary film An Inconvenient Truth, and reports released intermittently by the Intergovernmental Panel on Climate Change, individuals, businesses, and private and governmental agencies feel a greater urgency to find ways to...
Energy, atmospheric chemistry, and global climate
NASA Technical Reports Server (NTRS)
Levine, Joel S.
1991-01-01
Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.
Future carbon storage in harvested wood products from Ontario's Crown forests
Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath
2008-01-01
This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to...
Amundsen Sea simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Menemenlis, D.; Schodlok, M.; Heimbach, P.; Nguyen, A. T.; Rignot, E. J.
2016-12-01
Ice shelves and glaciers of the West Antarctic Ice Sheet are thinning and melting rapidly in the Amundsen Sea (AS). This is thought to be caused by warm Circumpolar Deep Water (CDW) that intrudes via submarine glacial troughs located at the continental shelf break. Recent studies, however, point out that the depth of thermocline, or thickness of Winter Water (WW, potential temperature below -1 °C located above CDW) is critical in determining the melt rate, especially for the Pine Island Glacier (PIG). For example, the basal melt rate of PIG, which decreased by 50% during summer 2012, has been attributed to thickening of WW. Despite the possible importance of WW thickness on ice shelf melting, previous modeling studies in this region have focused primarily on CDW intrusion and have evaluated numerical simulations based on bottom or deep CDW properties. As a result, none of these models have shown a good representation of WW for the AS. In this study, we adjust a small number of model parameters in a regional Amundsen and Bellingshausen Seas configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to better fit the available observations during the 2007-2010 period. We choose this time period because summer observations during these years show small interannual variability in the eastern AS. As a result of adjustments, our model shows significantly better match with observations than previous modeling studies, especially for WW. Since density of sea water depends largely on salinity at low temperature, this is crucial for assessing the impact of WW on PIG melt rate. In addition, we conduct several sensitivity studies, showing the impact of surface heat loss on the thickness and properties of WW. We also discuss some preliminary results pertaining to further optimization using the adjoint method. Our work is a first step toward improved representation of ice-shelf ocean interactions in the ECCO (Estimating the Circulation and Climate of the Ocean) global ocean retrospective analysis. Moreover, the resolution of our regional domain ( 10 km horizontal grid spacing) is comparable to that of current-generation IPCC (Intergovernmental Panel on Climate Change) global climate models and hence is expected to lead to better representation of these processes in IPCC-class global climate models.
Effects of climate change on aerosol concentrations in Europe
NASA Astrophysics Data System (ADS)
Megaritis, Athanasios G.; Fountoukis, Christos; Pandis, Spyros N.
2013-04-01
High concentrations of particulate matter less than 2.5 μm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality - climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P., Charalampidis P. E., Pilinis C., Wiedensohler A., Dall'Osto M., O'Dowd C., and S. N. Pandis: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331-10347, 2011. Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report: Summary for Policymakers, 2007. Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed.; John Wiley and Sons, Hoboken, NJ, 2006.
Projections of atmospheric mercury levels and their effect on air quality in the United States
NASA Astrophysics Data System (ADS)
Lei, H.; Wuebbles, D. J.; Liang, X.-Z.; Tao, Z.; Olsen, S.; Artz, R.; Ren, X.; Cohen, M.
2013-08-01
The individual and combined effects of global climate change and emissions changes from 2000 to 2050 on atmospheric mercury levels in the US are investigated by using the global climate-chemistry model, CAM-chem, coupled with a mercury chemistry-physics mechanism (CAM-Chem/Hg). Three future pathways from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) are considered, with the A1FI, A1B and B1 scenarios representing the upper, middle and lower bounds of potential climate warming, respectively. The anthropogenic and biomass burning emissions of mercury are projected from the energy use assumptions in the IPCC SRES report. Natural emissions from both land and ocean sources are projected using dynamic schemes. The zonal mean surface total gaseous mercury (TGM) concentrations in the tropics and mid-latitudes of the Southern Hemisphere are projected to increase by 0.5-1.2 ng m-3 in 2050. TGM concentration increases are greater in the low latitudes than they are in the high latitudes, indicative of a larger meridional gradient than in the present day. In the A1FI scenario, TGM concentrations in 2050 are projected to increase by 2.1-4.0 ng m-3 for the eastern US and 1.4-3.0 ng m-3 for the western US. This pattern corresponds to potential increases in wet deposition of 10-14 μg m-2 for the eastern US and 2-4 μg m-2 for the western US. The increase in Hg(II) emissions tends to enhance wet deposition and hence increase the risk of higher mercury entering the hydrological cycle and ecosystems. In the B1 scenario, mercury concentrations in 2050 are similar to present level concentrations; this indicates that the domestic reduction in mercury emissions is essentially counteracted by the effects of climate warming and emissions increases in other regions. The sensitivity analyses presented show that anthropogenic emissions changes contribute 32-53% of projected mercury air concentration changes, while the independent contribution by climate change accounts for 47-68%. In summary, global climate change could have a comparable effect on mercury pollution in the US to that caused by global emissions changes.
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
2010-01-01
Background Developing countries that are willing to participate in the recently adopted (16th Session of the Conference of Parties (COP) in Cancun) mitigation mechanism of Reducing emissions from Deforestation and Forest Degradation - and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks (REDD+) - will have to establish a national forest monitoring system in order to assess anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks. Such a system should support the Measurement, Reporting and Verification (MRV) requirement of the United Nations Framework Convention on Climate Change (UNFCCC) as the REDD+ mechanism is results-based. A national forest inventory (NFI) is one potential key component of such an MRV system. Following the Decision adopted during the 15th Session of the COP in Copenhagen, the most recent Intergovernmental Panel on Climate Change (IPCC) Guidance and Guidelines should be used as a basis for estimating anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks and changes in forest carbon stocks and area. Results First, we present the key indispensable elements of the IPCC Guidance and Guidelines that have been developed to fulfil the UNFCCC reporting requirements. This is done in order to set the framework to develop the MRV requirement in which a NFI for REDD+ implementation could be developed. Second, within this framework, we develop and propose a novel scheme for the stratification of forest land for REDD+. Finally, we present some non-exhaustive optional elements within this framework that a country could consider to successfully operationalise and implement its REDD+ NFI. Conclusion Evidently, both the methodological guidance and political decisions on REDD+ under the UNFCCC will continue to evolve. Even so, and considering that there exists decades of experience in setting up traditional NFIs, developing a NFI that a country may use to directly support REDD+ activities under the UNFCCC represents the development of a new challenge in this field. It is therefore important that both the scientific community and national implementing agencies acquaint themselves with both the context and content of this challenge so that REDD+ mitigation actions may be implemented successfully and with environmental integrity. This paper provides important contributions to the subject through our proposal of the stratification of forest land for REDD+. PMID:21187009
NASA Astrophysics Data System (ADS)
Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.
2017-12-01
An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the hurricane-induced storm surge and inundation to be amplified. The relative importance of the ocean warming versus the SLR was evaluated. Keywords: Hurricane Matthew, Global Warming, Coupled Atmosphere-Ocean Model, Air-Sea interactions, Storm Surge, Inundation
NASA Astrophysics Data System (ADS)
Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.
2013-07-01
The prospective future adoption of molecular hydrogen (H2) to power the road transportation sector could greatly improve tropospheric air quality but also raises the question of whether the adoption would have adverse effects on the stratospheric ozone. The possibility of undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on the stratospheric ozone, with the MOZART (Model for OZone And Related chemical Tracers) model. Since future growth is highly uncertain, we evaluate the impact of two world evolution scenarios, one based on an IPCC (Intergovernmental Panel on Climate Change) high-emitting scenario (A1FI) and the other on an IPCC low-emitting scenario (B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario evolves and which H2 technology option is applied. For the evolution growth scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall between the above two boundary scenarios. However, the magnitude of these changes is much smaller than the increases in 2050 stratospheric ozone projected, as stratospheric ozone is expected to recover due to the limits in ozone depleting substance emissions imposed in the Montreal Protocol.
NASA Astrophysics Data System (ADS)
Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.
2012-04-01
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this problem by establishing a Data Application Center for conducting social science research focused on understanding the best ways to use, transfer, and communicate mission data to decision-makers. The CHASER Data Application Center supports the visions of the National Research Council and the Decadal Survey for an integrated program of observations from space that secures practical benefits for humankind by developing data products for assessing risks due to severe weather and climate change.
Global Air Quality and Climate
NASA Technical Reports Server (NTRS)
Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.;
2012-01-01
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.
NASA Astrophysics Data System (ADS)
Duke, C. S.; Quach, K.; Jackson, S. T.
2015-12-01
The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) offers major opportunities to enhance scientific collaboration and advance global environmental sustainability. IPBES was established in 2012 as an independent intergovernmental body dedicated to assessing the state of the planet's biodiversity, its ecosystems, and the essential services they provide to society. IPBES has four functions: 1) identify and prioritize key scientific information needed for policymakers and catalyze efforts to generate new knowledge by engaging relevant scientific, policy and funding organizations; 2) perform regular and timely assessments of knowledge on biodiversity and ecosystem services and their interlinkages; 3) support policy formulation and implementation by identifying policy-relevant tools and methodologies; and 4) prioritize key capacity-building needs to improve the science-policy interface and catalyze related financing. To date, IPBES has brought together representatives of 124 countries at three annual plenary meetings and numerous panel meetings about specific assessments. This presentation will summarize IPBES' opportunities and achievements to date. These include a conceptual framework for IPBES processes and products, an assessment of the status of pollination and pollinators associated with food production, draft reports on scenario analyses and capacity building, and scoping for assessments of land degradation and restoration and of biodiversity in five regions of the world. IPBES provides natural and social scientists and other experts with important opportunities to support collaborative, science-based environmental decision-making at global to local scales. The presentation will conclude by describing opportunities to participate as expert panel members, contributors to assessments, and reviewers.
Potential impacts of climate change on neotropical migrants: management implications
Jeff T. Price; Terry L. Root
2005-01-01
The world is warming. Over the last 100 years, the global average temperature has increased by approximately 0.7°C. The United Nations Intergovernmental Panel on Climate Change projects a further increase in global mean temperatures of between 1.4° - 5.8° C by the year 2100. How will climate change affect Neotropical migrants? Models of changes...
ERIC Educational Resources Information Center
Lombardi, Douglas Adler
2012-01-01
The Intergovernmental Panel on Climate Change (2007) reported a greater than 90% chance that human activities are responsible for global temperature increases over the last 50 years, as well as other climatic changes. The scientific report also states that alternative explanations (e.g., increasing energy received from the Sun) are less plausible…
Present State of Knowledge of the Upper Atmosphere 1999: An Assessment Report. Part 2
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to the Congress and the Environmental Protection Agency. NASA specifically is charged with the responsibility of reporting on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part l of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1997-1999. Part 2 (this document) is a compilation of several scientific assessments, reviews, and summaries. Section B (Scientific Assessment of Ozone Depletion: 1998), Section C (a summary of the 1998 Stratospheric Processes and their Role in Climate, SPARC, ozone trends report), Section D (the policymakers summary of the Intergovernmental Panel on Climate Change, IPCC, report on Aviation and the Global Atmosphere), and Section E (the executive summary of the NASA Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998) are summaries of the most recent assessments of our current understanding of the chemical composition and the physical structure of the stratosphere, with particular emphasis on how the abundance and distribution of ozone is predicted to change in the future. Section F (the executive summary of NASA's Second Workshop on Stratospheric Models and Measurements, M&M 11) and Section G (the end-of-mission statement for the Photochemistry of ozone Loss in the Arctic Region in Summer, POLARIS, campaign) describe the scientific results for a comprehensive modeling intercomparison exercise and an aircraft and balloon measurement campaign, respectively. Section H (Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Update to Evaluation Number 12 of the NASA Panel for Data Evaluation) highlights the latest of NASA's reviews of this important aspect of the atmospheric sciences. A list of contributors to each of the included documents appears in Section I of this report.
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, G.
2015-12-01
Drylands are extensive, covering 30% of the Earth's land surface and 50% of Africa. Projections of the IPCC (Intergovernmental Panel on Climate Change, 2007) indicate that the extent of these regions have high probability to increase with a considerable additional impact on water resources, which should be taken into account by water management plans. In these water-controlled areas, vegetation plays a key role in the water cycle. Ecohydrological models provide a tool to investigate the relationships between vegetation and water resources. However, studies in Africa often face the problem that many ecohydrological models have quite extensive parametrical requirements, while available data are scarce. Therefore, there is a need for assessments using models whose requirements match the data availability. In that context, parsimonious models, together with available remote sensing information, can be valuable tools for ecohydrological studies. For this reason, we have focused on the use of a parsimonious model based on the amount of photosynthetically active radiation absorbed by green vegetation (APAR) and the Light Use Efficiency index (the efficiency by which that radiation is converted to plant biomass increment) in order to compute the gross primary production (GPP).This model has been calibrated using only remote sensing data (particularly, NDVI data from Modis products) in order to explore the potential of satellite information in implementing a simple distributed model. The model has been subsequently validated against stream flow data with the aim to define a tool able to account for landuse characteristics in describing water budget. Results are promising for studies aimed at the description of the consequences of ongoing land use changes on water resources.
NASA Technical Reports Server (NTRS)
Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica
2016-01-01
Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data, researchers can develop systems that automatically quantify the socioeconomic impacts resulting from flood disaster events.
NASA Astrophysics Data System (ADS)
Ranatunga, T.; Tong, S.; Yang, J.
2011-12-01
Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.
NASA Astrophysics Data System (ADS)
Rosenzweig, B.; Miara, A.; Stewart, R. J.; Wollheim, W. M.; Vorosmarty, C. J.
2012-12-01
Aquatic ecosystems of the Northeast United States will be significantly impacted by both global climate change and the regional-scale strategic management decisions made in the next few years. We have developed a Regional Earth System Model for the Northeast Corridor (NE-RESM) that simulates the impacts of climate, land use, and development policy on the interacting cycles of energy, water, carbon and nutrients. The NE-RESM will provide a unique and critically needed tool for policymakers to understand how their current decisions will impact ecosystem services over the 21st Century. To test our modeling framework, we conducted a retrospective experiment focusing on the water-energy-economy nexus during the period 2000-2010. Component models were developed to 'translate' physical outputs from the NE-RESM - such as stream discharge and water temperature - into ecosystem services including water regulation for thermoelectric cooling and the ability for streams to serve as a refugia for wildlife. Simulations were performed both with and without Clean Water Act limits on thermal pollution. Through this work, we were able to obtain spatially distributed information on how these laws impact power generation by the thermoelectric sector but also enable Northeast streams to serve as habitat for temperature-sensitive aquatic species (Brook Trout, Atlantic Salmon, River Herring and the American Eel). Our ongoing research examines future climate and policy scenarios through 2100. We are considering the impact of changing land cover patterns (a return to agriculture vs. suburban sprawl) and various strategies to meet energy and municipal water needs under different Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika
2010-08-11
We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available atmore » this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.« less
The effects of climate change on instream nitrogen transport in the contiguous United States
NASA Astrophysics Data System (ADS)
Alam, M. J.; Goodall, J. L.
2011-12-01
Excessive nitrogen loading has caused significant environmental impacts such as eutrophication and hypoxia in waterbodies around the world. Nitrogen loading is largely dependent on nonpoint source pollution and nitrogen transport from nonpoint source pollution is greatly impacted by climate conditions. For example, increased precipitation leads to more runoff and a higher nitrogen yield. However, higher temperatures also impact nitrogen transport in that higher temperatures increase denitrification and therefore reduce nitrogen yield. The purpose of this research is to quantify potential changes in nitrogen yield for the contiguous United States under predicted climate change scenarios, specifically changes in precipitation and air temperature. The analysis was performed for high (A2) and low (B1) emission scenarios and for the year 2030, 2050 and 2090. We used 11 different IPCC (The Intergovernmental Panel on Climate Change) models predicted precipitation and temperature estimates to capture uncertainty. The SPARROW model was calibrated using historical nitrogen loading data and used to predict nitrogen yields for future climate conditions. We held nitrogen source data constant in order to isolate the impact of predicted precipitation and temperature changes for each model scenario. Preliminary results suggest an overall decrease in nitrogen yield if climate change impacts are considered in isolation. For the A2 scenario, the model results indicated an overall incremental nitrogen yield decrease of 2-17% by the year 2030, 4-26% by the year 2050, and 11-45% by the year 2090. The B1 emission scenario also indicated an incremental yield decrease, but at lesser amounts of 2-18%, 5-21% and 10-38% by the years 2030, 2050, and 2090, respectively. This decrease is mainly due to higher predicted temperatures that result in increased denitrification rates.
Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content
NASA Astrophysics Data System (ADS)
Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.
2017-07-01
Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.
NASA Center for Climate Simulation (NCCS) Presentation
NASA Technical Reports Server (NTRS)
Webster, William P.
2012-01-01
The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.
Climate change and human health: what are the research trends? A scoping review protocol.
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-12-23
For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
Guo, Yanlong; Lu, Chunyan; Gao, Bei
2016-01-01
Climate change will significantly affect plant distribution as well as the quality of medicinal plants. Although numerous studies have analyzed the effect of climate change on future habitats of plants through species distribution models (SDMs), few of them have incorporated the change of effective content of medicinal plants. Schisandra sphenanthera Rehd. et Wils. is an endangered traditional Chinese medical plant which is mainly located in the Qinling Mountains. Combining fuzzy theory and a maximum entropy model, we obtained current spatial distribution of quality assessment for S. spenanthera. Moreover, the future quality and distribution of S. spenanthera were also projected for the periods 2020s, 2050s and 2080s under three different climate change scenarios (SRES-A1B, SRES-A2 and SRES-B1 emission scenarios) described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that the moderately suitable habitat of S. sphenanthera under all climate change scenarios remained relatively stable in the study area. The highly suitable habitat of S. sphenanthera would gradually decrease in the future and a higher decline rate of the highly suitable habitat area would occur under climate change scenarios SRES-A1B and SRES-A2. The result suggested that in the study area, there would be no more highly suitable habitat areas for S. sphenanthera when the annual mean temperature exceeds 20 °C or its annual precipitation exceeds 1,200 mm. Our results will be influential in the future ecological conservation and management of S. sphenanthera and can be taken as a reference for habitat suitability assessment research for other medicinal plants. PMID:27781160
[Climatic change and public health: scenarios after the coming into force of the Kyoto Protocol].
Ballester, Ferran; Díaz, Julio; Moreno, José Manuel
2006-03-01
According to the reports of the intergovernmental panel for climatic change (IPCC) human beings of the present and near future are going to experiment, in fact we are already experimenting, important changes in the world climate. Conscious of the magnitude of the problem, international organizations have taken a series of initiatives headed to stop the climatic change and to reduce its impact. This willingness has been shaped into the agreements established in the Kyoto protocol, where countries commit to reduce greenhouse-effect gas emissions. Kyoto protocol has come into force on February 16th 2005 with the support of 141 signing countries. Among the major worries are the effects which climatic change may have upon health, such as: 1) changes in the morbidity- mortality related to temperature; 2) Effects on health related with extreme meteorological events (tornados, storms, hurricanes and extreme raining); 3) Air pollution and increase of associated health effects; d) Diseases transmitted by food and water and 4) Infectious diseases transmitted by vectors and by rodents. Even if all the countries in the world committed to the Kyoto Protocol, some consequences of the climatic change will be inevitable; among them some will have a negative impact on health. It would be necessary to adapt a key response strategy to minimize the impacts of climatic change and to reduce, at minimum cost, its adverse effects on health. From the Public Health position, a relevant role can and must be played concerning the understanding of the risks for health of such climatic changes, the design of surveillance systems to evaluate possible impacts, and the establishment of systems to prevent or reduce damages as well as the identification and development of investigation needs.
Drought in Southwestern United States
NASA Technical Reports Server (NTRS)
2007-01-01
The southwestern United States pined for water in late March and early April 2007. This image is based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite from March 22 through April 6, 2007, and it shows the Normalized Difference Vegetation Index, or NDVI, for the period. In this NDVI color scale, green indicates areas of healthier-than-usual vegetation, and only small patches of green appear in this image, near the California-Nevada border and in Utah. Larger areas of below-normal vegetation are more common, especially throughout California. Pale yellow indicates areas with generally average vegetation. Gray areas appear where no data were available, likely due to persistent clouds or snow cover. According to the April 10, 2007, update from the U.S. Drought Monitor, most of the southwestern United Sates, including Utah, Nevada, California, and Arizona, experienced moderate to extreme drought. The hardest hit areas were southeastern California and southwestern Arizona. Writing for the Drought Monitor, David Miskus of the Joint Agricultural Weather Facility reported that March 2007 had been unusually dry for the southwestern United States. While California's and Utah's reservoir storage was only slightly below normal, reservoir storage was well below normal for New Mexico and Arizona. In early April, an international research team published an online paper in Science noting that droughts could become more common for the southwestern United States and northern Mexico, as these areas were already showing signs of drying. Relying on the same computer models used in the Intergovernmental Panel on Climate Change (IPCC) report released in early 2007, the researchers who published in Science concluded that global warming could make droughts more common, not just in the American Southwest, but also in semiarid regions of southern Europe, Mediterranean northern Africa, and the Middle East.
Assessing distributions of two invasive species of contrasting habits in future climate.
Panda, Rajendra Mohan; Behera, Mukunda Dev; Roy, Partha Sarathi
2018-05-01
Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation. Through this study, we try to answer how species differing in phenological cycles, specifically Cassia tora and Lantana camara, differ in the manner in which they invade new regions in India in the future climate. Since both species occupy identical niches, exploring their invasive potential in different climate change scenarios will offer critical insights into invasion and inform ecosystem management. We use three modelling protocols (i.e., maximum entropy, generalised linear model and generalised additive model) to predict the current distribution. Projections are made for both moderate (A1B) and extreme (A2) IPCC (Intergovernmental Panel on Climate Change) scenarios for the year 2050 and 2100. The study reveals that the distributions of C. tora (annual) and L. camara (perennial) would depend on the precipitation of the warmest quarter and moisture availability. C. tora may demonstrate physiological tolerance to the mean diurnal temperature range and L. camara to the solar radiation. C. tora may invade central India, while L. camara may invade the Western Himalaya, parts of the Eastern Himalaya and the Western Ghats. The distribution ranges of both species could shift in the northern and north-eastern directions in India, owing to changes in moisture availability. The possible alterations in precipitation regimes could lead to water stress, which might have cascading effects on species invasion. L. camara might adapt to climate change better compared with C. tora. This comparative analysis of the future distributions of two invasive plants with contrasting habits demonstrates that temporal complementarity would prevail over the competition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wallace, John M.; Fu, Qiang; Smoliak, Brian V.; Lin, Pu; Johanson, Celeste M.
2012-01-01
A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408
NASA Astrophysics Data System (ADS)
Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.
2015-09-01
Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.
Alam, Syed Ashraful; Starr, Mike
2009-01-01
The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr(-1)) was converted into harvested biomass (m(3)) using a wood density value of 0.65 t dm m(-3). For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4x10(3) m(3) of wood biomass, including 267.6x10(3) m(3) round wood and 240.8x10(3) m(3) branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378028 t CO(2), 15554 t CO, 1778 t CH(4), 442 t NO(X), 288 t NO and 12 t N(2)O per annum. The combined CO(2)-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO(X) and NO) is 455666 t yr(-1). While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.
Robinson, Marci; Dowsett, Harry
2010-01-01
U.S. Geological Survey (USGS) researchers are at the forefront of paleoclimate research, the study of past climates. With their unique skills and perspective, only geologists have the tools necessary to delve into the distant past (long before instrumental records were collected) in order to better understand global environmental conditions that were very different from today's conditions. Paleoclimatologists are geologists who study past climates to answer questions about what the Earth was like in the past and to enable projections, plans, and preparations for the future. The Intergovernmental Panel on Climate Change (IPCC) has projected a future warmer climate that has the potential to affect every person on Earth. Extreme weather events, rising sea level, and migrating ecosystems and resources could result in worldwide socio-economic stresses if not met with prudent and proactive action plans based on quality scientific research. Still, the most dangerous aspect of our changing climate is the uncertainty in the exact nature and rate of projected climate change. To reduce the uncertainties, USGS paleoclimatologists are studying a possible analog to a future warmer climate. The middle part of the Piacenzian Stage of the Pliocene Epoch, about 3.3 to 3.0 million years ago, is the most recent period in Earth's history in which global warmth reached and remained at temperatures similar to those projected for the end of this century, about 2 degrees C to 3 degrees C warmer on average than today over the entire globe. This past warmer time interval preceded the ice ages but was recent enough, geologically, to be very similar to today in terms of ocean circulation and the position of the continents. Also, the populations of plants and animals were much like those of today, and so geologists can use their fossils to estimate past environmental conditions such as temperature and sea level.
Yoskowitz, David; Carollo, Cristina; Pollack, Jennifer Beseres; Santos, Carlota; Welder, Kathleen
2017-03-01
The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC. © 2016 SETAC.
Neves, Talles Iwasawa; Uyeda, Claudio Augusto; Carvalho, Monica; Abrahão, Raphael
2017-12-19
Law 12305/10, National Solid Waste Policy of Brazil, banned the disposal in landfills of any solid waste that could be converted to another use. Sludge produced at Industrial Wastewater Treatment Plants, which contains components characteristic of fertilizers, falls into this category. This type of sludge, also known as a biosolid, has great potential to replace commercial chemical fertilization. The use of biosolids in agriculture allows for compliance with new legislation, reducing the burden on landfills and reusing a waste product. The present paper utilizes the life cycle assessment methodology to compare the carbon footprint associated with the use of different quantities of biosolid and selected chemical fertilizers in the production of elephant grass. The IPCC 2013 GWP 100a method, which is based on data published by the Intergovernmental Panel on Climate Change, was selected as the environmental assessment method. The method expresses the emissions of greenhouse gases generated, in kilograms of CO 2 equivalent, over a time horizon of 100 years. The biosolid quantities used were based on the Brazilian Environment Council Resolution 375. The chemical fertilizer used contained urea, simple superphosphate, and potassium chloride. The use of biosolids in the amounts calculated according to Brazilian standards resulted in a carbon footprint approximately 17.7% lower than the use of the chemical fertilization mix, with similar productivity in both cases. The transportation of biosolids to the experimental area was responsible for the majority of emissions associated with the use of biosolids. Urea synthesis was the largest contributor to emissions resulting from the use of commercial chemical fertilizer, accounting for 73.6% of total emissions.
Estimates of twenty-first century sea-level changes for Norway
NASA Astrophysics Data System (ADS)
Simpson, Matthew J. R.; Breili, Kristian; Kierulf, Halfdan P.
2014-03-01
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between -0.2 to 0.3 m (1-sigma ± 0.13 m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6 °C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85 m (min/max ± 0.45 m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.
Wang, Yajing; Guo, Jingheng; Vogt, Rolf David; Mulder, Jan; Wang, Jingguo; Zhang, Xiaoshan
2018-02-01
Nitrous oxide (N 2 O) is a greenhouse gas that also plays the primary role in stratospheric ozone depletion. The use of nitrogen fertilizers is known as the major reason for atmospheric N 2 O increase. Empirical bottom-up models therefore estimate agricultural N 2 O inventories using N loading as the sole predictor, disregarding the regional heterogeneities in soil inherent response to external N loading. Several environmental factors have been found to influence the response in soil N 2 O emission to N fertilization, but their interdependence and relative importance have not been addressed properly. Here, we show that soil pH is the chief factor explaining regional disparities in N 2 O emission, using a global meta-analysis of 1,104 field measurements. The emission factor (EF) of N 2 O increases significantly (p < .001) with soil pH decrease. The default EF value of 1.0%, according to IPCC (Intergovernmental Panel on Climate Change) for agricultural soils, occurs at soil pH 6.76. Moreover, changes in EF with N fertilization (i.e. ΔEF) is also negatively correlated (p < .001) with soil pH. This indicates that N 2 O emission in acidic soils is more sensitive to changing N fertilization than that in alkaline soils. Incorporating our findings into bottom-up models has significant consequences for regional and global N 2 O emission inventories and reconciling them with those from top-down models. Moreover, our results allow region-specific development of tailor-made N 2 O mitigation measures in agriculture. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.
2011-12-01
Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.
Ocean acidification causes bleaching and productivity loss in coral reef builders
Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O.
2008-01-01
Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses. PMID:18988740
NASA Astrophysics Data System (ADS)
Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.
2014-12-01
Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso
2017-01-15
Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.
[Potential distribution of Panax ginseng and its predicted responses to climate change.
Zhao, Ze Fang; Wei, Hai Yan; Guo, Yan Long; Gu, Wei
2016-11-18
This study utilized Panax ginseng as the research object. Based on BioMod2 platform, with species presence data and 22 climatic variables, the potential geographic distribution of P. ginseng under the current conditions in northeast China was simulated with ten species distribution model. And then with the receiver-operating characteristic curve (ROC) as weights, we build an ensemble model, which integrated the results of 10 models, using the ensemble model, the future distributions of P. ginseng were also projected for the periods 2050s and 2070s under the climate change scenarios of RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 emission scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that for the entire region of study area, under the present climatic conditions, 10.4% of the areas were identified as suitable habitats, which were mainly located in northeast Changbai Mountains area and the southeastern region of the Xiaoxing'an Mountains. The model simulations indicated that the suitable habitats would have a relatively significant change under the different climate change scenarios, and generally the range of suitable habitats would be a certain degree of decrease. Meanwhile, the goodness-of-fit, predicted ranges, and weights of explanatory variables was various for each model. And according to the goodness-of-fit, Maxent had the highest model performance, and GAM, RF and ANN were followed, while SRE had the lowest prediction accuracy. In this study we established an ensemble model, which could improve the accuracy of the existing species distribution models, and optimization of species distribution prediction results.
Estimation and Spatiotemporal Analysis of Methane Emissions from Agriculture in China
NASA Astrophysics Data System (ADS)
Fu, Chao; Yu, Guirui
2010-10-01
Estimating and analyzing the temporal and spatial patterns of methane emissions from agriculture (MEA) will help China formulate mitigation and adaptation strategies for the nation’s agricultural sector. Based on the Tier 2 method presented in the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) and on existing reports, this article presents a systematic estimation of MEA in China from 1990 to 2006, with a particular emphasis on trends and spatial distribution. Results from our study indicate that China’s MEA rose from 16.37 Tg yr-1 in 1990 to 19.31 Tg yr-1 in 2006, with an average annual increase of 1.04%. Over the study period, while emissions from field burning of crop residues remained rather low, those from rice cultivation and from livestock typically decreased and increased, respectively, showing extremely opposite trends that chiefly resulted from changes in the cultivated areas for different rice seasons and changes in the populations of different animal species. Over the study period, China’s high-MEA regions shifted generally northward, chiefly as a result of reduced emissions from rice cultivation in most of China’s southern provinces and a substantial growth in emissions from livestock enteric fermentation in most of China’s northern, northeastern, and northwestern provinces. While this article provides significant information on estimates of MEA in China, it also includes some uncertainties in terms of estimating emissions from each source category. We conclude that China’s MEA will likely continue to increase in the future and recommend a demonstration study on MEA mitigation along the middle and lower reaches of the Yellow River. We further recommend enhanced data monitoring and statistical analysis, which will be essential for preparation of the national greenhouse gas (GHG) inventory.
Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.
2011-01-01
Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).
NASA Astrophysics Data System (ADS)
Ahamed, A.; Bolten, J. D.
2016-12-01
Flood disaster events in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to monitor floods and assess their severity can help governments and international agencies formulate an effective response before and during flood events, and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent examples of destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, and 2013. Floods can be particularly costly in the developing countries of Southeast Asia where large portions of the population live on or near the floodplain (Jonkman, 2005; Kirsch et al., 2012; Long and Trong, 2001; Stromberg. 2007). Regional studies (Knox, 1993; Mirza, 2002; Schiermeier, 2011; Västilä et al, 2010) and Intergovernmental Panel on Climate Change (IPCC, 2007) projections suggest that precipitation extremes and flood frequency are increasing. Thus, improved systems to rapidly monitor flooding in vulnerable areas are needed. This study determines surface water extent for current and historic flood events by using stacks of historic multispectral Moderate-resolution Imaging Spectroradiometer (MODIS) 250-meter imagery and the spectral Normalized Difference Vegetation Index (NDVI) signatures of permanent water bodies (MOD44W). Supporting software tools automatically assess flood impacts to population and infrastructure to provide a rapid first set of impact numbers generated hours after the onset of an event. The near real-time component uses twice daily imagery acquired at 3-hour latency, and performs image compositing routines to minimize cloud cover. Case studies for historic flood events are presented. Results suggest that near real-time remote sensing-based observation and impact assessment systems can serve as effective regional decision support tools for governments, international agencies, and disaster responders.
Kim, Hyun-Sun; Yi, Seung-Muk
2009-01-01
Quantifying methane emission from landfills is important to evaluating measures for reduction of greenhouse gas (GHG) emissions. To quantify GHG emissions and identify sensitive parameters for their measurement, a new assessment approach consisting of six different scenarios was developed using Tier 1 (mass balance method) and Tier 2 (the first-order decay method) methodologies for GHG estimation from landfills, suggested by the Intergovernmental Panel on Climate Change (IPCC). Methane emissions using Tier 1 correspond to trends in disposed waste amount, whereas emissions from Tier 2 gradually increase as disposed waste decomposes over time. The results indicate that the amount of disposed waste and the decay rate for anaerobic decomposition were decisive parameters for emission estimation using Tier 1 and Tier 2. As for the different scenarios, methane emissions were highest under Scope 1 (scenarios I and II), in which all landfills in Korea were regarded as one landfill. Methane emissions under scenarios III, IV, and V, which separated the dissimilated fraction of degradable organic carbon (DOC(F)) by waste type and/or revised the methane correction factor (MCF) by waste layer, were underestimated compared with scenarios II and III. This indicates that the methodology of scenario I, which has been used in most previous studies, may lead to an overestimation of methane emissions. Additionally, separate DOC(F) and revised MCF were shown to be important parameters for methane emission estimation from landfills, and revised MCF by waste layer played an important role in emission variations. Therefore, more precise information on each landfill and careful determination of parameter values and characteristics of disposed waste in Korea should be used to accurately estimate methane emissions from landfills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, W.; Sathaye, J.; Fearnside, P.M.
Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous yearsmore » will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, W.; Sathaye, J.; Fearnside, P.M.
Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous yearsmore » will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.« less
Climate uncertainty and implications for U.S. state-level risk assessment through 2050.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.
2009-10-01
Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to themore » economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.« less
Climate change and human health: what are the research trends? A scoping review protocol
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-01-01
Introduction For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. Methods and analysis A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. Ethics and dissemination No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. PMID:28011805
An observational and modeling study of the August 2017 Florida climate extreme event.
NASA Astrophysics Data System (ADS)
Konduru, R.; Singh, V.; Routray, A.
2017-12-01
A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.
Global Environmental Change: Modifying Human Contributions Through Education
NASA Astrophysics Data System (ADS)
Carter, Lynne M.
1998-12-01
The 1995 Intergovernmental Panel on Climate Change (IPCC, 1996) Science report concludes that evidence now available "points toward a discernible human influence on global climate" (p. 439). Reductions in emissions will require changes in human behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible. The study assessed the impact on participant behavior of a two-and-one-half day National Informal Educators Workshop and Videoconference held November 14-16, 1994. The workshops were located in seven down-link sites around the continental U.S. and Hawaii. The program utilized a variety of pedagogical techniques during five hours of satellite programming with national expertise on global change topics (natural variability, greenhouse effect, ozone depletion, ecosystem response, and population and resource distribution) and applications of that information with local experts in regional workshops. Participants implemented many personal and professional behavior changes after participation in this program. Six behavior change scales were created from assessment of survey responses (four coefficient alphas were above .7, one was .68, and one was .58). Personal behavior changes grouped into three categories: Use of Fewer Resources (acts of everyday life generally under volitional control), Purchasing Choices/Options (less frequent acts, not under total volitional control, with significant environmental effect over the lifetime of the decision, e.g., an automobile) and Increased Awareness and Discussion (indicating changes in "habits of mind"). The professional behavior changes also grouped into three categories: Curriculum Development (developing/revising curricula including new knowledge); Networking (with colleagues from the program); and Office Procedures (reflecting environmentally responsible behavior). The statistically significant behavior changes implemented correspond with increases in content knowledge, confidence, a developing national network, regional applications, and satisfaction with the program.
NASA Astrophysics Data System (ADS)
Anandhi, Aavudai; Kannan, Narayanan
2018-02-01
Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.
Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying
2011-01-01
Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.
Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong
2011-01-01
Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.
Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Soulard, Christopher E.; Knuppe, Michelle; Van Hofwegen, Travis
2014-01-01
Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.
Permafrost carbon-climate feedbacks accelerate global warming.
Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles
2011-09-06
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.
Slowdown of N2O emissions from China's croplands
NASA Astrophysics Data System (ADS)
Zhou, F.; Shang, Z.; Ciais, P.; Piao, S.; Tian, H.; Saikawa, E.; Zaehle, S.; Del Grosso, S. J.; Galloway, J. N.
2016-12-01
To feed the increasing population, China has experienced a rapid agricultural development over past decades, accompanied by increased fertilizer consumptions in croplands, but the magnitude, trend, and causes of the associated nitrous oxide (N2O) emissions has remain unclear. The primary sources of this uncertainty are conflicting estimates of fertilizer consumption and emission factors, the latter being uncertain because of very few regional representativeness of the Nrate-flux relationships in China. Here we re-estimate China's N2O emissions from croplands using three different methods: flux upscaling technique, process-based models and atmospheric inversion, and also analyze the corresponding drivers using an attribution approach. The three methods produce similar estimates of N2O emissions in the range of 0.67 ± 0.08 to 0.62± 0.11 Tg nitrogen per year, which is 29% larger than the estimates by the Emission Database for Global Atmospheric Research (EDGAR) that is adopted by Intergovernmental Panel on Climate Change (IPCC) as the emission baseline and twofold larger than the latest Chinese national report submitted to the United Nations Framework Convention on Climate Change, but the revised trend slows down after 2005. Fertilizer N application per area is the dominant factor driving the increase in N2O emissions across most cropping regions from 1990 to 2004, but climate-induced change of emission factors has also controlled N2O flux from 2005 onwards. Our findings suggest that, as precipitation would increase in North China but decline in the South in future, EF will increasingly control China's agri. soil emissions of N2O, unless offset by larger reductions of fertilizer consumptions.
Yang, Hui-Feng; Zheng, Jiang-Hua; Jia, Xiao-Guang; Li, Xiao-Jin
2017-03-01
Apocynum venetum belongs to apocynaceae and is a perennial medicinal plant, its stem is an important textile raw materials. The projection of potential geographic distribution of A. venetum has an important significance for the protection and sustainable utilization of the plant. This study was conducted to determine the potential geographic distribution of A. venetum and to project how climate change would affect its geographic distribution. The projection geographic distribution of A. venetum under current bioclimatic conditions in northern China was simulated using MaxEnt software based on species presence data at 44 locations and 19 bioclimatic parameters. The future distributions of A. venetum were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The result showed that min air temperature of the coldest month, annual mean air temperature, precipitation of the coldest quarter and mean air temperature of the wettest quarter dominated the geographic distribution of A. venetum. Under current climate, the suitable habitats of A. venetum is 11.94% in China, the suitable habitats are mainly located in the middle of Xinjiang, in the northern part of Gansu, in the southern part of Neimeng, in the northern part of Ningxia, in the middle and northern part of Shaanxi, in the southern part of Shanxi, in the middle and northern part of Henan, in the middle and southern part of Hebei, Shandong, Tianjin, in the southern part of Liaoning and part of Beijing. From 2050 to 2070, the model outputs indicated that the suitable habitats of A. venetum would decrease under the climate change scenarios of RCP2.6 and RCP8.5. Copyright© by the Chinese Pharmaceutical Association.
Chua, T H
2012-03-01
According to the report of the Intergovernmental Panel on Climate Change (IPCC), Malaysia will experience an increase of 3-5°C in the future. As the development of the malaria parasite, Plasmodium falciparum, is sensitive to temperature, we investigated, using computer models, the effect of increase of 3º and 5ºC on the possible changes in the epidemiology of malaria transmission of P. falciparum in Malaysia. Four environmentally different locations were selected: Kuala Lumpur (KL), Cameron Highlands (CH), Kota Kinabalu (KK) and Kinabalu Park (KP). The extrinsic incubation period (EIP) was estimated using hourly temperatures and the mean daily temperatures. The EIP values estimated using the mean daily temperature were lower than those computed from hourly temperatures in warmer areas (KL, KK), but higher in the cooler areas (CH, KP). The computer simulations also indicated that the EIP will be decreased if the temperature was raised by 3º or 5ºC, with the effect more pronounced for the greater temperature increase, and for the cooler places. The vector cohort that is still alive at a time to transmit malaria (s(EIP)) also increased when the temperature was raised, with the increase more pronounced in the cooler areas. This study indicates an increase in temperature will have more significant effect in shortening the EIP in a cooler place (eg CH, KP), resulting in a greater s(EIP), and consequently increasing the transmission intensity and malaria risk. A temperature increase arising from the global climate change will likely affect the epidemiology of malaria in Malaysia, especially in the cooler areas.
A Commercialization Roadmap for Carbon-Negative Energy Systems
NASA Astrophysics Data System (ADS)
Sanchez, D.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.
NASA Astrophysics Data System (ADS)
Le Moullac, Gilles; Soyez, Claude; Latchere, Oihana; Vidal-Dupiol, Jeremie; Fremery, Juliette; Saulnier, Denis; Lo Yat, Alain; Belliard, Corinne; Mazouni-Gaertner, Nabila; Gueguen, Yannick
2016-12-01
The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 °C) and partial pressure of carbon dioxide pCO2 (294, 763 and 2485 μatm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO2 levels; no interaction between temperature and pCO2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 °C and dramatically fell at 34 °C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein A1, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 °C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 °C) and somatic growth and reproduction (28.7 °C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade.
Fast growing research on negative emissions
NASA Astrophysics Data System (ADS)
Minx, Jan C.; Lamb, William F.; Callaghan, Max W.; Bornmann, Lutz; Fuss, Sabine
2017-03-01
Generating negative emissions by removing carbon dioxide from the atmosphere is a key requirement for limiting global warming to well below 2 °C, or even 1.5 °C, and therefore for achieving the long-term climate goals of the recent Paris Agreement. Despite being a relatively young topic, negative emission technologies (NETs) have attracted growing attention in climate change research over the last decade. A sizeable body of evidence on NETs has accumulated across different fields that is by today too large and too diverse to be comprehensively tracked by individuals. Yet, understanding the size, composition and thematic structure of this literature corpus is a crucial pre-condition for effective scientific assessments of NETs as, for example, required for the new special report on the 1.5 °C by the Intergovernmental Panel on Climate Change (IPCC). In this paper we use scientometric methods and topic modelling to identify and characterize the available evidence on NETs as recorded in the Web of Science. We find that the development of the literature on NETs has started later than for climate change as a whole, but proceeds more quickly by now. A total number of about 2900 studies have accumulated between 1991 and 2016 with almost 500 new publications in 2016. The discourse on NETs takes place in distinct communities around energy systems, forests as well as biochar and other soil carbon options. Integrated analysis of NET portfolios—though crucial for understanding how much NETs are possible at what costs and risks—are still in their infancy and do not feature as a theme across the literature corpus. Overall, our analysis suggests that NETs research is relatively marginal in the wider climate change discourse despite its importance for global climate policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Daniel; AchutaRao, Krishna; Allen, Myles
The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5 °C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the presentmore » day in worlds that are 1.5 and 2.0 °C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climate variability that dominate CMIP-style experiments under low-emission scenarios.Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006–2015), the second two being estimates of a similar decade but under 1.5 and 2 °C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5 °C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2 °C scenario.« less
Mitchell, Daniel; AchutaRao, Krishna; Allen, Myles; ...
2017-02-08
The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5 °C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the presentmore » day in worlds that are 1.5 and 2.0 °C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climate variability that dominate CMIP-style experiments under low-emission scenarios.Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006–2015), the second two being estimates of a similar decade but under 1.5 and 2 °C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5 °C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2 °C scenario.« less
An Alternative Default Soil Organic Carbon Method for National GHG Inventory Reporting to the UNFCCC
NASA Astrophysics Data System (ADS)
Ogle, S. M.; Gurung, R.; Klepfer, A.; Spencer, S.; Breidt, J.
2016-12-01
Estimating soil organic C stocks is challenging because of the large amount of data needed to evaluate the impact of land use and management on this terrestrial C pool. Moreover, some of the required data are rarely collected by governments through surveys programs, and are not typically available in remote sensing products. Examples include data on organic amendments, cover crops, crop rotation sequences, vegetated fallows, and fertilization practices. Due to these difficulties, only about 20% of the countries report soil organic C stock changes in their national communications to the UNFCCC. Yet, C sequestration in soils represents one of the least expensive options for reducing greenhouse gas emissions, and has the largest potential for mitigation in the agricultural sector. In order to facilitate reporting, we developed an alternative approach to the current default method provided by the Intergovernmental Panel on Climate Change (IPCC) for estimating soil organic C stock changes in mineral soils. The alternative method estimates the steady-state C stocks for a three pool model given annual crop yields or net primary production as the main input, along with monthly average temperature, total precipitation and soil texture data. Yield data are commonly available in a national agricultural census, and global datasets exists with adequate data for weather and soil texture if national datasets are not available. Tillage and irrigation data are also needed to address the impact of these practices on decomposition rates. The change in steady-state stocks is assumed to occur over a few decades. A Bayesian analysis framework has been developed to derive probability distribution functions for the parameters, and the method is being applied in a global analysis of soil organic carbon stock changes.
NASA Astrophysics Data System (ADS)
Ssegane, H.; Negri, M. C.
2015-12-01
Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.
Ceccarelli, Soledad; Rabinovich, Jorge E
2015-11-01
We analyzed the possible effects of global climate change on the potential geographic distribution in Venezuela of five species of triatomines (Eratyrus mucronatus (Stal, 1859), Panstrongylus geniculatus (Latreille, 1811), Rhodnius prolixus (Stål, 1859), Rhodnius robustus (Larrousse, 1927), and Triatoma maculata (Erichson, 1848)), vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. To obtain the future potential geographic distributions, expressed as climatic niche suitability, we modeled the presences of these species using two IPCC (Intergovernmental Panel on Climate Change) future emission scenarios of global climate change (A1B and B1), the Global Climate model CSIRO Mark 3.0, and three periods of future projections (years 2020, 2060, and 2080). After estimating with the MaxEnt software the future climatic niche suitability for each species, scenario, and period of future projections, we estimated a series of indexes of Venezuela's vulnerability at the county, state, and country level, measured as the number of people exposed due to the changes in the geographical distribution of the five triatomine species analyzed. Despite that this is not a measure of the risk of Chagas disease transmission, we conclude that possible future effects of global climate change on the Venezuelan population vulnerability show a slightly decreasing trend, even taking into account future population growth; we can expect fewer locations in Venezuela where an average Venezuelan citizen would be exposed to triatomines in the next 50-70 yr. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Why the predictions for monsoon rainfall fail?
NASA Astrophysics Data System (ADS)
Lee, J.
2016-12-01
To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.
Biogeochemical responses of shallow coastal lagoons to Climate Change
NASA Astrophysics Data System (ADS)
Brito, A.; Newton, A.; Tett, P.; Fernandes, T.
2009-04-01
The importance of climate change and global warming in the near future is becoming consensual within the scientific community (e.g. Kerr et al., 2008; Lloret et al., 2008). The surface temperature and sea level have increased during the last few years in the northern hemisphere (IPCC, 2007). Predictions for future changes include an increase of surface temperature and sea level for Europe. Moreover, the global warming phenomenon will also change the hydrological cycle and increase precipitation in northern and central Europe (IPCC, 2007). Sea level rise already threatens to overwhelm some lagoons, such as Venice and Moroccan lagoons (Snoussi et al., 2008). Shallow coastal lagoons are some of the most vulnerable systems that will be impacted by these changes (Eisenreich, 2005). Environmental impacts on coastal lagoons include an increase of water turbidity and therefore light attenuation. If these effects are strong enough, the lighted bottoms of shallow lagoons may loose a significant part of the benthic algal community. These communities are highly productive and are essential to control nutrient dynamics of the system by uptaking large amounts of nutrients both from the water column and from the sediments. A decrease in benthic algal communities and photosynthetic oxygen production will also contribute to increasing the vulnerability of the lagoons to hypoxia and anoxia. The flux of nutrients such as phosphate from the sediments may increase dramatically, further disrupting the nutrient balance and condition and promoting cyanobacterial blooms. Microbial activity is temperature dependent, therefore, the increase of temperature will increase the concentrations of ammonium within sediments. The release of phosphate and silicate will also increase with temperature. Coastal lagoons are valuable ecosystems and may be severely impacted, both ecologically and economically, by global change. Shallow coastal lagoons should be considered as sentinel systems and should be carefully monitored so that appropriate responses can be timely to mitigate the impacts from global change. References: Eisenreich, S.J. (2005). Climate Change and the European Water Dimension - A report to the European Water Directors. Institute for Environment and Sustainability, European Comission-Joint Research Centre. Ispra, Italy. 253pp. Kerr, R. (2008). Global warming throws some curves in the Atlantic Ocean. Science, 322, 515. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 996pp. Lloret, J., Marín, A., Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403-412. Snoussi, M., Ouchani, T., Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77, 206-213.
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Cook, K. H.
2008-12-01
As greenhouse warming continues there is growing concern about the future climate of both Africa, which is highlighted by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) as exceptionally vulnerable to climate change, and India. Precipitation projections from the AOGCMs of the IPCC AR4 are relatively consistent over India, but not over northern Africa. Inconsistencies can be related to the model's inability to capture climate process correctly, deficiencies in physical parameterizations, different SST projections, or horizontal atmospheric resolution that is too coarse to realistically represent the tight gradients over West Africa and complex topography of East Africa and India. Treatment of the land surface in a model may also be an issue over West Africa and India where land-surface/atmosphere interactions are very important. Here a method for simulating future climate is developed and applied using a high-resolution regional model in conjunction with output from a suite of AOGCMs, drawing on the advantages of both the regional and global modeling approaches. Integration by the regional model allows for finer horizontal resolution and regionally appropriate selection of parameterizations and land-surface model. AOGCM output is used to provide SST projections and lateral boundary conditions to constrain the regional model. The control simulation corresponds to 1981-2000, and eight future simulations representing 2081-2100 are conducted, each constrained by a different AOGCM and forced by CO2 concentrations from the SRES A2 emissions scenario. After model spin-up, May through October remain for investigation. Analysis is focused on climate change parameters important for impacts on agriculture and water resource management, and is presented in a format compatible with the IPCC reports. Precipitation projections simulated by the regional model are quite consistent, with 75% or more ensemble members agreeing on the sign of the anomaly over vast regions of Africa and India. Over West Africa, where the regional model provides the greatest improvement over the AOGCMs in consistency of ensemble members, precipitation at the end of the century is generally projected to increase during May and decrease in June and July. Wetter conditions are simulated during August though October, with the exception of drying close to the Guinean Coast in August. In late summer, high rainfall rates are simulated more frequently in the future, indicating the possibility for increases in flooding events. The regional model's projections over India are in stark contrast to the AOGCM's, producing intense and generally widespread drying in August and September. The very promising method developed here is young and further potential developments are recognized, including the addition of ocean, vegetation, and dust models. Ensembles which employ other regional models, sets of parameterizations, and emissions scenarios should also be explored.
NASA Astrophysics Data System (ADS)
Eickenscheidt, T.; Heinichen, J.; Drösler, M.
2015-04-01
Drained organic soils are considered as hotspots for greenhouse gas (GHG) emissions. Particularly arable lands and intensively used grasslands have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered as peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a mollic Gleysol (named Cmedium) as well as on a sapric Histosol (named Chigh). The two soil types significantly differed in their SOC contents in the topsoil (Cmedium: 9.4-10.9% SOC; Chigh: 16.1-17.2% SOC). We determined GHG fluxes (CO2, N2O and methane (CH4)) over a period of 2 years. The daily and annual net ecosystem exchange (NEE) of CO2 was determined with the closed dynamic chamber technique and by modeling the ecosystem respiration (RECO) and the gross primary production (GPP). N2O and CH4 were determined by the close chamber technique. Estimated NEE of CO2 significantly differed between the two land-use types with lower NEE values (-6 to 1707 g CO2-C m-2 yr-1) at the arable sites and higher values (1354 to 1823 g CO2-C m-2 yr-1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23-0.86 g N m-2 yr-1) compared to the grassland sites (0.12-0.31 g N m-2 yr-1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time horizon of 100 years (GWP100) revealed a very high release of GHGs from all plots ranging from 1837 to 7095 g CO2 eq. m-2 yr-1. Calculated global warming potential (GWP) values did not differ between soil types and partly exceeded the IPCC default emission factors of the Tier 1 approach by far. However, despite being subject to high uncertainties, the results clearly highlight the importance to adjust the IPCC guidelines for organic soils not falling under the definition, to avoid a significant underestimation of GHG emissions in the corresponding sectors of the national climate reporting. Furthermore, the present results revealed that mainly the land-use including the management and not the SOC content is responsible for the height of GHG exchange from intensive farming on drained organic soils.
Stephen M. Ogle; Grant Domke; Werner A. Kurz; Marcelo T. Rocha; Ted Huffman; Amy Swan; James E. Smith; Christopher Woodall; Thelma Krug
2018-01-01
Land use and management activities have a substantial impact on carbon stocks and associated greenhouse gas emissions and removals. However, it is challenging to discriminate between anthropogenic and non-anthropogenic sources and sinks from land. To address this problem, the Intergovernmental Panel on Climate Change developed a managed land proxy to determine which...
Joseph Buongiorno; Shushuai Zhu; Ronald Raunikar; Jeffrey P. Prestemon
2012-01-01
Four RPA scenarios corresponding with scenarios from the Third and Fourth Assessments of the Intergovernmental Panel on Climate Change were simulated with the Global Forest Products Model to project forest area, volume, products demand and supply, international trade, prices, and value added up to 2060 for Africa, Asia, Europe, North America, Oceania, South America,...
John Moore; Ian Payton; Larry Burrows; Chris Goulding; Peter Beets; Paul Lane; Peter Stephens
2007-01-01
This article discusses the development of a monitoring system to estimate carbon sequestration in New Zealand's planted Kyoto forests, those forests that have been planted since January 1, 1990, on land that previously did not contain forest. The system must meet the Intergovernmental Panel on Climate Change good practice guidance and must be seen to be unbiased,...