Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa
2016-01-01
Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212
Grobarczyk, Benjamin; Franco, Bénédicte; Hanon, Kevin; Malgrange, Brigitte
2015-10-01
Genome engineering and human iPS cells are two powerful technologies, which can be combined to highlight phenotypic differences and identify pathological mechanisms of complex diseases by providing isogenic cellular material. However, very few data are available regarding precise gene correction in human iPS cells. Here, we describe an optimized stepwise protocol to deliver CRISPR/Cas9 plasmids in human iPS cells. We highlight technical issues especially those associated to human stem cell culture and to the correction of a point mutation to obtain isogenic iPS cell line, without inserting any resistance cassette. Based on a two-steps clonal isolation protocol (mechanical picking followed by enzymatic dissociation), we succeed to select and expand corrected human iPS cell line with a great efficiency (more than 2% of the sequenced colonies). This protocol can also be used to obtain knock-out cell line from healthy iPS cell line by the NHEJ pathway (with about 15% efficiency) and reproduce disease phenotype. In addition, we also provide protocols for functional validation tests after every critical step.
Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander
2011-01-01
SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703
Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.
Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M
2017-11-01
Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.
Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology.
Wu, Jianbo; Hunt, Samuel D; Xue, Haipeng; Liu, Ying; Darabi, Radbod
2016-03-01
Directed differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system. Here, we have generated a knock-in human iPS cell line for the early myogenic lineage specification gene of PAX7. By introduction of site-specific double-stranded breaks (DSB) in the genomic locus of PAX7 using CRISPR/Cas9 nickase pairs, a 2A-GFP reporter with selection markers has been incorporated before the stop codon of the PAX7 gene at the last exon. After positive and negative selection, single cell-derived human iPS clones have been isolated and sequenced for in-frame positioning of the reporter construct. Finally, by using a nuclease-dead Cas9 activator (dCas9-VP160) system, the promoter region of PAX7 has been targeted for transient gene induction to validate the GFP reporter activity. This was confirmed by flow cytometry analysis and immunostaining for PAX7 and GFP. This technical report provides a practical guideline for generation and validation of knock-in reporters using CRISPR/Cas9 system. Published by Elsevier B.V.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
ERP44 inhibits human lung cancer cell migration mainly via IP3R2.
Huang, Xue; Jin, Meng; Chen, Ying-Xiao; Wang, Jun; Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju
2016-06-01
Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.
ERP44 inhibits human lung cancer cell migration mainly via IP3R2
Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju
2016-01-01
Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway. PMID:27347718
Arriero, María del Mar; Ramis, Joana M.; Perelló, Joan; Monjo, Marta
2012-01-01
Background Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. Methodology/Principal Findings The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts. Conclusions/Significance Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis. PMID:22905230
Generation of iPS-derived model cells for analyses of hair shaft differentiation.
Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei
2017-09-01
Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells
Luo, Lan; Kawakatsu, Miho; Guo, Chao-Wan; Urata, Yoshishige; Huang, Wen-Jing; Ali, Haytham; Doi, Hanako; Kitajima, Yuriko; Tanaka, Takayuki; Goto, Shinji; Ono, Yusuke; Xin, Hong-Bo; Hamano, Kimikazu; Li, Tao-Sheng
2014-01-01
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem (iPS) cells were investigated with two human iPS cell lines (201B7 and 253G1). Cells used in this study were expanded from a single colony of each cell line with the addition of proprietary antioxidant supplement or homemade antioxidant cocktail in medium, and maintained in parallel for 2 months. The cells grew well in all culture conditions and kept “stemness”. Although antioxidants modestly decreased the levels of intracellular reactive oxygen species, there were no differences in the expression of 53BP1 and pATM, two critical molecules related with DNA damage and repair, under various culture conditions. CGH analysis showed that the events of genetic aberrations were decreased only in the 253G1 iPS cells with the addition of homemade antioxidant cocktail. Long-term culture will be necessary to confirm whether low dose antioxidants improve the quality and genomic stability of iPS cells. PMID:24445363
Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro
2017-11-01
The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.
Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J
2018-04-01
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Feng, Chen; Sun, Ping; Hu, Jing; Feng, Hua; Li, Mingqiu; Liu, Guibo; Pan, Yanming; Feng, Ying; Xu, Yongliang; Feng, Kejian; Feng, Yukuan
2017-06-01
MicroRNAs (miRNAs) play critical roles in tumorigenesis and metastasis by negatively regulating gene expression through complementary binding to the 3'-untranslated region of target mRNAs. The role of miRNAs in expression of the tumor suppressor DAB2IP in bladder cancer (BC) remains unknown. The aim of the present study was to identify miRNAs targeting DAB2IP and determine their expression and function in BC. We predicted candidate miRNAs targeting DAB2IP using TargetScan software. Dual-luciferase reporter assays confirmed that miRNA-556-3p directly regulated DAB2IP expression. Quantitative RT-PCR and RNase protection assays showed that endogenous miRNA-556-3p expression was significantly upregulated in clinical samples of BC patients and BC cell lines and western blot analysis indicated that DAB2IP expression in BC tissues and BC cell lines was concurrently downregulated. Gain or loss of function studies showed that upregulation of miRNA-556-3p promoted proliferation, invasion, migration and colony formation of BC cells, whereas downregulation resulted in opposite effects. Importantly, restoration of DAB2IP expression rescued the effects induced by miRNA-556-3p. Overexpression of miRNA-556-3p in BC cells not only decreased DAB2IP expression, but also markedly increased Ras GTPase activity and ERK1/2 phosphorylation level. These findings suggest that DAB2IP is a direct target of miRNA-556-3p, and endogenous miRNA-556-3p expression shows inverse correlation with simultaneous DAB2IP expression in BC tissues and cells. miRNA-556-3p functions as a tumor promoter in tumorigenesis and metastasis of BC by targeting DAB2IP. Moreover, miRNA-556-3p-mediated DAB2IP suppression plays an oncogenic role by partial activation of the Ras-ERK pathway.
Partridge, Thomas; Nicastri, Annalisa; Kliszczak, Anna E.; Yindom, Louis-Marie; Kessler, Benedikt M.; Ternette, Nicola; Borrow, Persephone
2018-01-01
Elucidation of novel peptides presented by human leukocyte antigen (HLA) class I alleles by immunopeptidomics constitutes a powerful approach that can inform the rational design of CD8+ T cell inducing vaccines to control infection with pathogens such as human immunodeficiency virus type 1 (HIV-1) or to combat tumors. Recent advances in the sensitivity of liquid chromatography tandem mass spectrometry instrumentation have facilitated the discovery of thousands of natural HLA-restricted peptides in a single measurement. However, the extent of contamination of class I-bound peptides identified using HLA immunoprecipitation (IP)-based immunopeptidomics approaches with peptides from other sources has not previously been evaluated in depth. Here, we investigated the specificity of the IP-based immunopeptidomics methodology using HLA class I- or II-deficient cell lines and membrane protein-specific antibody IPs. We demonstrate that the 721.221 B lymphoblastoid cell line, widely regarded to be HLA class Ia-deficient, actually expresses and presents peptides on HLA-C*01:02. Using this cell line and the C8166 (HLA class I- and II-expressing) cell line, we show that some HLA class II-bound peptides were co-purified non-specifically during HLA class I and membrane protein IPs. Furthermore, IPs of “irrelevant” membrane proteins from HIV-1-infected HLA class I- and/or II-expressing cells revealed that unusually long HIV-1-derived peptides previously reported by us and other immunopeptidomics studies as potentially novel CD8+ T cell epitopes were non-specifically co-isolated, and so constitute a source of contamination in HLA class I IPs. For example, a 16-mer (FLGKIWPSYKGRPGNF), which was detected in all samples studied represents the full p1 segment of the abundant intracellular or virion-associated proteolytically-processed HIV-1 Gag protein. This result is of importance, as these long co-purified HIV-1 Gag peptides may not elicit CD8+ T cell responses when incorporated into candidate vaccines. These results have wider implications for HLA epitope discovery from abundant or membrane-associated antigens by immunopeptidomics in the context of infectious diseases, cancer, and autoimmunity. PMID:29780384
Honda, Arata; Hatori, Masanori; Hirose, Michiko; Honda, Chizumi; Izu, Haruna; Inoue, Kimiko; Hirasawa, Ryutaro; Matoba, Shogo; Togayachi, Sumie; Miyoshi, Hiroyuki; Ogura, Atsuo
2013-01-01
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity. PMID:23880763
MLF1 interacting protein: a potential gene therapy target for human prostate cancer?
Zhang, Lei; Ji, Guoqing; Shao, Yuzhang; Qiao, Shaoyi; Jing, Yuming; Qin, Rongliang; Sun, Huiming; Shao, Chen
2015-02-01
Here, we investigated the role of one gene that has been previously associated with human prostate carcinoma cells-myelodysplasia/myeloid leukemia factor 1 interacting protein (MLF1IP)-in order to better ascertain its role in human prostate carcinogenesis. The prostate cancer cell line PC-3 was lentivirally transfected to silence endogenous MLF1IP gene expression, which was confirmed by real-time quantitative PCR (RT-qPCR). Cellomics ArrayScan VTI imaging and MTT assays were conducted to assess cell proliferation. Cell cycle phase arrest and apoptosis were assayed by flow cytometry. Colony formation was assessed by fluorescence microscopy. MLF1IP gene expression was also analyzed by RT-qPCR in sixteen prostate cancer tissue samples and six healthy control prostate tissue samples from human patients. Cell proliferation was significantly inhibited in MLF1IP-silenced cells relative to control cells. G1 phase, S and G2/M phase cell counts were not significantly changed in MLF1IP-silenced cells relative to control cells. Apoptosis was significantly increased in MLF1IP-silenced cells, while MLF1IP-silenced cells displayed a significantly reduced number of cell colonies, compared to control cells. The 16 human prostate cancer tissue samples revealed no clear upregulation or downregulation in MLF1IP gene expression. MLF1IP significantly promotes prostate cancer cell proliferation and colony formation and significantly inhibits apoptosis without affecting cell cycle phase arrest. Further study is required to conclusively determine whether MLF1IP is upregulated in human prostate cancer tumors and to determine the precise cellular mechanism(s) for MLF1IP in prostate carcinogenesis.
Winther, Sine V.; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B.
2016-01-01
The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca2+ dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca2+ ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca2+ concentration. Neither increasing nor decreasing intracellular Ca2+ concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2−/− heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca2+. Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185
Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F
2017-03-01
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.
[Progress and application prospect of pig induced pluripotent stem cells].
Yan, Yi-Bo; Zhang, Yan-Li; Qi, Wei-Wei; Wan, Yong-Jie; Fan, Yi-Xuan; Wang, Feng
2011-04-01
Pig has always been the focus of establishing a big ungulate animal ES cell lines because of its convenient source, genetic similarity with humans, and their importance in animal husbandry, but little development is achieved. Induced pluripotent stem cells technology creates a new method of reprogramming somatic cells to pluripotent state. As the pig iPS cells is established and perfected, pig ES cells will be established in the coming years. The pig iPS cells will give a hint on other livestock ES cells. On the other hand, pig iPS cells can be used to improve the efficiency of transgenic cloning pigs to conduct effective breeding and conservation of breeds. It is particularly important that the pig iPS cells can provide new model for human medical research, a new donor cells for human tissue and organ engineering, and have extensive and far-reaching impact on the biomedical field. Here, we briefly review the major progress of iPS cells, and emphasize current state of pig iPS cells and its application prospect in biomedicine and animal husbandry in order to provide a useful reference for researchers working in this area.
Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review
Malhotra, Neeraj
2016-01-01
iPS cells are derived from somatic cells via transduction and expression of selective transcription factors. Both viral-integrating (like retroviral) and non-integrating (like, mRNA or protein-based) techniques are available for the production of iPS cells. In the field of dentistry, iPS cells have been derived from stem cells of apical papilla, dental pulp stem cells, and stem cells from exfoliated deciduous teeth, gingival and periodontal ligament fibroblasts, and buccal mucosa fibroblasts. iPS cells have the potential to differentiate into all derivatives of the 3 primary germ layers i.e. ectoderm, endoderm, and mesoderm. They are autogeneically accessible, and can produce patient-specific or disease-specific cell lines without the issue of ethical controversy. They have been successfully tested to produce mesenchymal stem cells-like cells, neural crest-like cells, ameloblasts-like cells, odontoblasts-like cells, and osteoprogenitor cells. These cells can aid in regeneration of periodontal ligament, alveolar bone, cementum, dentin-pulp complex, as well as possible Biotooth formation. However certain key issues like, epigenetic memory of iPS cells, viral-transduction, tumorgenesis and teratoma formation need to be overcome, before they can be successfully used in clinical practice. The article discusses the sources, pros and cons, and current applications of iPS cells in dentistry with an emphasis on encountered challenges and their solutions. PMID:27572712
Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid.
Verma, R; Holland, M K; Temple-Smith, P; Verma, P J
2012-01-01
Induced pluripotency is a new approach to produce embryonic stem-like cells from somatic cells that provides a unique means to understand both pluripotency and lineage assignment. To investigate whether this technology could be applied to endangered species, where the limited availability of gametes makes production and research on embryonic stem cells difficult, we attempted generation of induced pluripotent stem (iPS) cells from snow leopard (Panthera uncia) fibroblasts by retroviral transfection with Moloney-based retroviral vectors (pMXs) encoding four factors (OCT4, SOX2, KLF4 and cMYC). This resulted in the formation of small colonies of cells, which could not be maintained beyond four passages (P4). However, addition of NANOG, to the transfection cocktail produced stable iPS cell colonies, which formed as early as D3. Colonies of cells were selected at D5 and expanded in vitro. The resulting cell line was positive for alkaline phosphatase (AP), OCT4, NANOG, and Stage-Specific embryonic Antigen-4 (SSEA-4) at P14. RT-PCR also confirmed that endogenous OCT4 and NANOG were expressed by snow leopard iPS cells from P4. All five human transgenes were transcribed at P4, but OCT4, SOX2 and NANOG transgenes were silenced as early as P14; therefore, reprogramming of the endogenous pluripotent genes had occurred. When injected into immune-deficient mice, snow leopard iPS cells formed teratomas containing tissues representative of the three germ layers. In conclusion, this was apparently the first derivation of iPS cells from the endangered snow leopard and the first report on induced pluripotency in felid species. Addition of NANOG to the reprogramming cocktail was essential for derivation of iPS lines in this felid. The iPS cells provided a unique source of pluripotent cells with utility in conservation through cryopreservation of genetics, as a source of reprogrammed donor cells for nuclear transfer or for directed differentiation to gametes in the future. Copyright © 2012 Elsevier Inc. All rights reserved.
Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.
Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras
2009-12-31
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.
Mechanism of cisplatin resistance in human urothelial carcinoma cells.
Yu, Hui-Min; Wang, Tsing-Cheng
2012-05-01
An isogenic pair of cisplatin-susceptible (NTUB1) and -resistant (NTUB1/P) human urothelial carcinoma cell lines was used to elucidate the mechanism of cisplatin resistance. The significantly lower intracellular platinum (IP) concentration, which resulted from the decreased cisplatin uptake, was found in NTUB1/P cells. The enhancement of IP concentration did not increase the susceptibility of NTUB1/P cells to cisplatin treatment. The reduction of IP concentration as well was unable to enhance the cisplatin-resistance in susceptible NTUB1 cells. This indicated that reduction of IP concentration was not the account for the development of cisplatin resistance here. Instead, the over expression of anti-apoptotic Bcl-2, anti-oxidative heme oxygenase-1 (HO-1) and cell cycle regulator p16INK4 seemed to be more important for the gaining of cisplatin in these human urothelial carcinoma cell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma.
Hanissian, Silva H; Teng, Bin; Akbar, Umar; Janjetovic, Zorica; Zhou, Qihong; Duntsch, Christopher; Robertson, Jon H
2005-06-14
The myelodysplasia/myeloid leukemia factor 1-interacting protein MLF1IP is a novel gene which encodes for a putative transcriptional repressor. It is localized to human chromosome 4q35.1 and is expressed in both the nuclei and cytoplasm of cells. Northern and Western blot analyses have revealed MLF1IP to be present at very low amounts in normal brain tissues, whereas a number of human and rat glioblastoma (GBM) cell lines demonstrated a high level expression of the MLF1IP protein. Immunohistochemical analysis of rat F98 and C6 GBM tumor models showed that MLF1IP was highly expressed in the tumor core where it was co-localized with MLF1 and nestin. Moreover, MLF1IP expression was elevated in the contralateral brain where no tumor cells were detected. These observations, together with previous data demonstrating a role for MLF1IP in erythroleukemias, suggest a possible function for this protein in glioma pathogenesis and potentially in other types of malignancies.
Chen, Yen-Chun; Kuo, Chang-Hung; Tsai, Ying-Ming; Lin, Yi-Ching; Hsiao, Hui-Pin; Chen, Bai-Hsiun; Chen, Yi-Ting; Wang, Shih-Ling; Hung, Chih-Hsing
2018-04-09
Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.
Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N.; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao
2015-01-01
Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10–50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692
Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L
2009-04-01
Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.
Javed, M Shahid; Yaqoob, Naeem; Iwamuro, Masaya; Kobayashi, Naoya; Fujiwara, Toshiyoshi
2014-02-01
To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. An experimental study. Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver-specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds.
Cryopreservation of Human Stem Cells for Clinical Application: A Review
Hunt, Charles J.
2011-01-01
Summary Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell. PMID:21566712
Cryopreservation of Human Stem Cells for Clinical Application: A Review.
Hunt, Charles J
2011-01-01
SUMMARY: Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.
Experimental arthritis and uveitis in rats associated with Mycobacterium butyricum.
Petty, R E; Hunt, D W; Mathers, D M; McCormick, A Q; Barker, H; Southwood, T R; Corson, L
1994-08-01
To determine if the anterior uveitis associated with adjuvant arthritis (AA) in the rat can be passively transferred with arthritis to syngeneic recipients using spleen cells or T cell lines prepared from animals given complete Freund's adjuvant (CFA) and Mycobacterium butyricum (M. butyricum) in incomplete Freund's adjuvant (IFA). Spleen cells from Lewis or Lewis SsN rats given IFA, CFA, type I collagen in IFA (CI-IFA), or type II collagen in IFA (CII-IFA) were administered to naive rats or rats treated with pertussis toxin or bacterial endotoxin. Three CD4+ T cell lines, propagated from CFA injected rats and maintained in vitro with M. butyricum (M-1), bovine proteoglycan (PR-1) or an extract of M. butyricum (MBE-1) were administered to naive or immunosuppressed rats. The arthritogenic and uveitogenic properties of these cell preparations and intradermal MBE-IFA, CII-IFA and intraperitoneal (ip) M. butyricum without adjuvant were evaluated. Uveitis was observed in 15/69 (22%) arthritic rats given CFA. Spleen cells prepared from CFA injected rats caused arthritis in 55 (82%) and uveitis in 2 (3%) of 67 cell recipients. Uveitis occurred in 2/6 cell recipients pretreated with bacterial endotoxin. Neither uveitis nor arthritis was observed in rats given IFA (0/6) or spleen cells prepared from rats given IFA (0/27), CI-IFA (0/6), or CII-IFA (0/28). CII-IFA produced polyarthritis in 5/6 rats, but no uveitis. CII-IFA induced arthritis associated uveitis in 1/15 animals receiving spleen cells from rats given CII-IFA, but not those given CI-IFA (0/3) or IFA (0/13). Uveitis was observed in one recipient of the M-1 T cell line and in 2 recipients of the PR-1 T cell line. Immunization with 400 micrograms of MBE-IFA induced uveitis but not arthritis in 3/11 animals. The MBE specific T cell line was neither arthritogenic nor uveitogenic. A high frequency (5/6) of uveitis accompanied arthritis in male Lewis rats given ip M. butyricum. Arthritis occurred in 4/10 female Lewis rats given ip M. butyricum and 2 arthritic animals also developed uveitis. Uveitis occurs infrequently in arthritic rats given spleen cells from CFA injected animals. The ip administration of M. butyricum constitutes a novel disease model in which the immunopathological relationships between arthritis and uveitis may be more reliably studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quong, J N; Knize, M G; Kulp, K S
2003-08-19
Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to study the localization of heterocyclic amines in MCF7 line of human breast cancer cells. The detection sensitivities of a model rodent mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were determined. Following an established criteria for the determination of status of freeze-fracture cells, the distribution of PhIP in the MCF7 cells are reported.
Fung, Ronald K F; Kerridge, Ian H
2013-02-01
The discovery of induced pluripotent stem (iPS) cells in 2006 was heralded as a major breakthrough in stem cell research. Since then, progress in iPS cell technology has paved the way towards clinical application, particularly cell replacement therapy, which has refueled debate on the ethics of stem cell research. However, much of the discourse has focused on questions of moral status and potentiality, overlooking the ethical issues which are introduced by the clinical testing of iPS cell replacement therapy. First-in-human trials, in particular, raise a number of ethical concerns including informed consent, subject recruitment and harm minimisation as well as the inherent uncertainty and risks which are involved in testing medical procedures on humans for the first time. These issues, while a feature of any human research, become more complex in the case of iPS cell therapy, given the seriousness of the potential risks, the unreliability of available animal models, the vulnerability of the target patient group, and the high stakes of such an intensely public area of science. Our paper will present a detailed case study of iPS cell replacement therapy for Parkinson's disease to highlight these broader ethical and epistemological concerns. If we accept that iPS cell technology is fraught with challenges which go far beyond merely refuting the potentiality of the stem cell line, we conclude that iPS cell research should not replace, but proceed alongside embryonic and adult somatic stem cell research to promote cross-fertilisation of knowledge and better clinical outcomes. © 2011 Blackwell Publishing Ltd.
Wang, Xuehai; Marcinkiewicz, Martin; Gatain, Yaned; Bouchard, Maxime; Mao, Jianning; Tremblay, Michel; Uetani, Noriko; Hanissian, Silva; Qi, Shijie; Wu, Jiangping; Luo, Hongyu
2013-01-01
Myeloid leukemia factor 1-interacting protein (MLF1-IP) has been found to exert functions in mitosis, although studies have been conducted only in cell lines up to now. To understand its roles during ontogeny and immunity, we analyzed its mRNA expression pattern by in situ hybridization and generated MLF1-IP gene knockout (KO) mice. MLF1-IP was expressed at elevated levels in most rudimentary tissues during the mid-gestation stage, between embryonic day 9.5 (e9.5) and e15.5. It declined afterwards in these tissues, but was very high in the testes and ovaries in adulthood. At post-natal day 10 (p10), the retina and cerebellum still expressed moderate MLF1-IP levels, although these tissues do not contain fast-proliferating cells at this stage. MLF1-IP expression in lymphoid organs, such as the thymus, lymph nodes, spleen and bone marrow, was high between e15.5 and p10, and decreased in adulthood. MLF1-IP KO embryos failed to develop beyond e6.5. On the other hand, MLF1-IP(+/-) mice were alive and fertile, with no obvious anomalies. Lymphoid organ size, weight, cellularity and cell sub-populations in MLF1-IP(+/-) mice were in the normal range. The functions of MLF1-IP(+/-) T cells and naïve CD4 cells, in terms of TCR-stimulated proliferation and Th1, Th17 and Treg cell differentiation in vitro, were comparable to those of wild type T cells. Our study demonstrates that MLF1-IP performs unique functions during mouse embryonic development, particularly around e6.5, when there was degeneration of epiblasts. However, the cells could proliferate dozens of rounds without MLF1-IP. MLF1-IP expression at about 50% of its normal level is sufficient to sustain mice life and the development of their immune system without apparent abnormalities. Our results also raise an intriguing question that MLF1-IP might have additional functions unrelated to cell proliferation.
Wang, Xuehai; Marcinkiewicz, Martin; Gatain, Yaned; Bouchard, Maxime; Mao, Jianning; Tremblay, Michel; Uetani, Noriko; Hanissian, Silva; Qi, Shijie; Wu, Jiangping; Luo, Hongyu
2013-01-01
Myeloid leukemia factor 1-interacting protein (MLF1-IP) has been found to exert functions in mitosis, although studies have been conducted only in cell lines up to now. To understand its roles during ontogeny and immunity, we analyzed its mRNA expression pattern by in situ hybridization and generated MLF1-IP gene knockout (KO) mice. MLF1-IP was expressed at elevated levels in most rudimentary tissues during the mid-gestation stage, between embryonic day 9.5 (e9.5) and e15.5. It declined afterwards in these tissues, but was very high in the testes and ovaries in adulthood. At post-natal day 10 (p10), the retina and cerebellum still expressed moderate MLF1-IP levels, although these tissues do not contain fast-proliferating cells at this stage. MLF1-IP expression in lymphoid organs, such as the thymus, lymph nodes, spleen and bone marrow, was high between e15.5 and p10, and decreased in adulthood. MLF1-IP KO embryos failed to develop beyond e6.5. On the other hand, MLF1-IP+/− mice were alive and fertile, with no obvious anomalies. Lymphoid organ size, weight, cellularity and cell sub-populations in MLF1-IP+/− mice were in the normal range. The functions of MLF1-IP+/− T cells and naïve CD4 cells, in terms of TCR-stimulated proliferation and Th1, Th17 and Treg cell differentiation in vitro, were comparable to those of wild type T cells. Our study demonstrates that MLF1-IP performs unique functions during mouse embryonic development, particularly around e6.5, when there was degeneration of epiblasts. However, the cells could proliferate dozens of rounds without MLF1-IP. MLF1-IP expression at about 50% of its normal level is sufficient to sustain mice life and the development of their immune system without apparent abnormalities. Our results also raise an intriguing question that MLF1-IP might have additional functions unrelated to cell proliferation. PMID:23724000
Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings. PMID:25785453
Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Epigenome analysis of pluripotent stem cells
Ricupero, Christopher L.; Swerdel, Mavis R.; Hart, Ronald P.
2015-01-01
Summary Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to isolate and enrich chromatin fragments using antibodies against specific chromatin modifications, such as DNA binding proteins or covalent histone modifications. Until recently, many ChIP protocols required millions of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis, that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain. PMID:23546758
Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J
2012-07-01
A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.
Unusual Father-to-Daughter Transmission of Incontinentia Pigmenti Due to Mosaicism in IP Males.
Fusco, Francesca; Conte, Matilde Immacolata; Diociaiuti, Andrea; Bigoni, Stefania; Branda, Maria Francesca; Ferlini, Alessandra; El Hachem, Maya; Ursini, Matilde Valeria
2017-09-01
Incontinentia pigmenti (IP; Online Mendelian Inheritance in Man catalog #308300) is an X-linked dominant ectodermal disorder caused by mutations of the inhibitor of κ polypeptide gene enchancer in B cells, kinase γ ( IKBKG )/ nuclear factor κB, essential modulator ( NEMO ) gene. Hemizygous IKBKG/NEMO loss-of-function (LoF) mutations are lethal in males, thus patients are female, and the disease is always transmitted from an IP-affected mother to her daughter. We present 2 families with father-to-daughter transmission of IP and provide for the first time molecular evidence that the combination of somatic and germ-line mosaicism for IKBKG/NEMO loss of function mutations in IP males resulted in the transmission of the disease to a female child. We searched for the IKBKG/NEMO mutant allele in blood, urine, skin, and sperm DNA and found that the 2 fathers were somatic and germ-line mosaics for the p.Gln132×mutation or the exon 4-10 deletion of IKBKG/NEMO , respectively. The highest level of IKBKG/NEMO mutant cells was detected in the sperm, which might explain the recurrence of the disease. We therefore recommend careful clinical evaluation in IP male cases and the genetic investigation in sperm DNA to ensure correct genetic counseling and prevent the risk of paternal transmission of IP. Copyright © 2017 by the American Academy of Pediatrics.
Lam, Ka-Pan; Chu, Yu-Te; Lee, Min-Sheng; Chen, Huan-Nan; Wang, Wei-Li; Tok, Teck-Siang; Chin, Yow-Yue; Chen, Solomon Chih-Cheng; Kuo, Chang-Hung; Hung, Chih-Hsing
2011-06-01
Short-acting β2-adrenoreceptor agonist (SABA) is the major asthma reliever as indicated in the GINA guidelines. Regulated on activation, normal T expressed and secreted (RANTES) is a chemokine that attracts eosinophils, mast cells, and basophils toward site of allergic inflammation. Interferon γ-inducible protein (IP)-10 is a Th1-related chemokine that is also important in asthmatic inflammation and also involved in our immune defense against pathogens. Bronchial epithelial cells are first-line barrier against invasive pathogen and also have immunomodulatory function. However, whether albuterol and fenoterol (two SABAs) have modulatory effects on RANTES and IP-10 expression in bronchial epithelial cells is unknown. The human bronchial epithelial cell lines, BEAS-2B cells, were pre-treated with different concentrations of albuterol, fenoterol or dibutyryl-cAMP (a cyclic AMP analog) before polyinosinic-polycytidylic acid (poly I:C) stimulation. In some condition, BEAS-2B cells were pre-treated with ICI-118551, a selective β2-adrenoreceptor antagonist, 30 min before albuterol or fenoterol treatment. The levels of RANTES and IP-10 were measured by ELISA. Intracellular signaling was investigated using cAMP assay, mitogen-activated protein kinase (MAPK) inhibitor, nuclear factor (NF)-κB inhibitor, and western blot. Albuterol and fenoterol suppressed poly I:C-induced RANTES and IP-10 expression of BEAS-2B cells. ICI-118551 could partly reverse the suppressive effects of albuterol and fenoterol on RANTES and IP-10 expression. Albuterol and fenoterol increased intracellular cAMP levels. Dibutyryl-cAMP conferred the similar effects of albuterol and fenoterol. Western blot revealed that albuterol suppressed p-ERK, p-JNK and pp38, and also their associated kinase expression. Albuterol had no effect on pp65 expression. Albuterol and fenoterol could suppress poly I:C-induced RANTES and IP-10 expression in human bronchial epithelial cells via at least partly the β2-adrenoreceptor-cAMP and the MAPK pathways, implicating that albuterol and fenoterol could exert anti-inflammatory effect and benefit asthmatic patients by suppressing RANTES and IP-10 expression. However, these suppressive effects of albuterol and fenoterol may inhibit the defense against viral infection. © 2010 John Wiley & Sons A/S.
Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian
2006-01-01
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098
Ecker, Jennifer L.; Dumitrescu, Olivia N.; Wong, Kwoon Y.; Alam, Nazia M.; Chen, Shih-Kuo; LeGates, Tara; Renna, Jordan M.; Prusky, Glen T.; Berson, David M.; Hattar, Samer
2010-01-01
Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically-organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray, and had measurable visual acuity. Thus, non-classical retinal photoreception occurs within diverse cell types, and influences circuits and functions encompassing luminance as well as spatial information. PMID:20624591
Focosi, Daniele; Amabile, Giovanni
2017-12-27
Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.
A mathematical model of calcium dynamics in HSY cells
Han, Jung Min; Tanimura, Akihiko; Kirk, Vivien; Sneyd, James
2017-01-01
Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+) plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3) concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP) or carbachol (CCh), they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations. PMID:28199326
Mirzaei, Hamed; Salehi, Hossein; Oskuee, Reza Kazemi; Mohammadpour, Ali; Mirzaei, Hamid Reza; Sharifi, Mohammad Reza; Salarinia, Reza; Darani, Hossein Yousofi; Mokhtari, Mojgan; Masoudifar, Aria; Sahebkar, Amirhossein; Salehi, Rasoul; Jaafari, Mahmoud Reza
2018-04-10
Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Kohei; Fujiki, Katsunori; Shirahige, Katsuhiko
Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressionsmore » are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.« less
Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells.
Lee, Han M; Zhang, Hui; Schulz, Vincent; Tuck, David P; Forget, Bernard G
2010-08-05
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expression profiling using microarrays and chromatin immunoprecipitation (ChIP)-chip. RNA expression profiling revealed that 465 gene transcripts were differentially expressed in KLS (c-Kit(+), Lin(-), Sca-1(+))-EML cells that overexpressed HOXB4 (KLS-EML-HOXB4) compared with control KLS-EML cells that were transduced with vector alone. In particular, erythroid-specific gene transcripts were observed to be highly down-regulated in KLS-EML-HOXB4 cells. ChIP-chip analysis revealed that the promoter region for 1910 genes, such as CD34, Sox4, and B220, were occupied by HOXB4 in KLS-EML-HOXB4 cells. Side-by-side comparison of the ChIP-chip and RNA expression profiling datasets provided correlative information and identified Gp49a and Laptm4b as candidate "stemness-related" genes. Both genes were highly ranked in both dataset lists and have been previously shown to be preferentially expressed in hematopoietic stem cells and down-regulated in mature hematopoietic cells, thus making them attractive candidates for future functional studies in hematopoietic cells.
Chang, Chia-Wei; Lai, Yi-Shin; Pawlik, Kevin M; Liu, Kaimao; Sun, Chiao-Wang; Li, Chao; Schoeb, Trenton R; Townes, Tim M
2009-05-01
We report the derivation of induced pluripotent stem (iPS) cells from adult skin fibroblasts using a single, polycistronic lentiviral vector encoding the reprogramming factors Oct4, Sox2, and Klf4. Porcine teschovirus-1 2A sequences that trigger ribosome skipping were inserted between human cDNAs for these factors, and the polycistron was subcloned downstream of the elongation factor 1 alpha promoter in a self-inactivating (SIN) lentiviral vector containing a loxP site in the truncated 3' long terminal repeat (LTR). Adult skin fibroblasts from a humanized mouse model of sickle cell disease were transduced with this single lentiviral vector, and iPS cell colonies were picked within 30 days. These cells expressed endogenous Oct4, Sox2, Nanog, alkaline phosphatase, stage-specific embryonic antigen-1, and other markers of pluripotency. The iPS cells produced teratomas containing tissue derived from all three germ layers after injection into immunocompromised mice and formed high-level chimeras after injection into murine blastocysts. iPS cell lines with as few as three lentiviral insertions were obtained. Expression of Cre recombinase in these iPS cells resulted in deletion of the lentiviral vector, and sequencing of insertion sites demonstrated that remnant 291-bp SIN LTRs containing a single loxP site did not interrupt coding sequences, promoters, or known regulatory elements. These results suggest that a single, polycistronic "hit and run" vector can safely and effectively reprogram adult dermal fibroblasts into iPS cells.
Huang, Ching-Ying; Ho, Ming-Ching; Lee, Jia-Jung; Hwang, Daw-Yang; Ko, Hui-Wen; Cheng, Yu-Che; Hsu, Yu-Hung; Lu, Huai-En; Chen, Hung-Chun; Hsieh, Patrick C H
2017-10-01
Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P
2010-01-01
Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528
Kato, Hiroyuki; Abe, Kota; Yokota, Shinpei; Matsuno, Rinta; Mikekado, Tsuyoshi; Yokoi, Hayato; Suzuki, Tohru
2015-01-01
The establishment of induced pluripotent stem (iPS) cell technology in fish could facilitate the establishment of novel cryopreservation techniques for storing selected aquaculture strains as frozen cells. In order to apply iPS cell technology to fish, we established a transgenic zebrafish line, Tg(Tru.oct4:EGFP), using green fluorescent protein (GFP) expression under the control of the oct4 gene promoter as a marker to evaluate multipotency in iPS cell preparations. We used the oct4 promoter from fugu (Takifugu rubripes) due to the compact nature of the fugu genome and to facilitate future applications of this technology in marine fishes. During embryogenesis, maternal GFP fluorescence was observed at the cleavage stage and zygotic GFP expression was observed from the start of the shield stage until approximately 24 h after fertilization. gfp messenger RNA (mRNA) was expressed by whole embryonic cells at the shield stage, and then restricted to the caudal neural tube in the latter stages of embryogenesis. These observations showed that GFP fluorescence and the regulation of gfp mRNA expression by the exogenous fugu oct4 promoter are well suited for monitoring endogenous oct4 mRNA expression in embryos. Bisulfite sequencing revealed that the rate of CpG methylation in the transgenic oct4 promoter was high in adult cells (98%) and low in embryonic cells (37%). These findings suggest that, as with the endogenous oct4 promoter, demethylation and methylation both take place normally in the transgenic oct4 promoter during embryogenesis. The embryonic cells harvested at the shield stage formed embryonic body-like cellular aggregates and maintained GFP fluorescence for 6 d when cultured on Transwell-COL Permeable Supports or a feeder layer of adult fin cells. Loss of GFP fluorescence by cultured cells was correlated with cellular differentiation. We consider that the Tg(Tru.oct4:EGFP) zebrafish line established here is well suited for monitoring multipotency in multipotent zebrafish cell cultures and for iPS cell preparation.
Podocalyxin Is a Glycoprotein Ligand of the Human Pluripotent Stem Cell-Specific Probe rBC2LCN
Tateno, Hiroaki; Matsushima, Asako; Hiemori, Keiko; Onuma, Yasuko; Ito, Yuzuru; Hasehira, Kayo; Nishimura, Ken; Ohtaka, Manami; Takayasu, Satoko; Nakanishi, Mahito; Ikehara, Yuzuru; Nakanishi, Mio; Ohnuma, Kiyoshi; Chan, Techuan; Toyoda, Masashi; Akutsu, Hidenori; Umezawa, Akihiro; Asashima, Makoto
2013-01-01
In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 104 M−1) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. PMID:23526252
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi
2016-06-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.
cChIP-seq: a robust small-scale method for investigation of histone modifications.
Valensisi, Cristina; Liao, Jo Ling; Andrus, Colin; Battle, Stephanie L; Hawkins, R David
2015-12-21
ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, is limited in its application by the large number of cells required. ChIP-seq involves extensive manipulation of sample material and multiple reactions with limited quality control at each step, therefore, scaling down the number of cells required has proven challenging. Recently, several methods have been proposed to overcome this limit but most of these methods require extensive optimization to tailor the protocol to the specific antibody used or number of cells being profiled. Here we describe a robust, yet facile method, which we named carrier ChIP-seq (cChIP-seq), for use on limited cell amounts. cChIP-seq employs a DNA-free histone carrier in order to maintain the working ChIP reaction scale, removing the need to tailor reactions to specific amounts of cells or histone modifications to be assayed. We have applied our method to three different histone modifications, H3K4me3, H3K4me1 and H3K27me3 in the K562 cell line, and H3K4me1 in H1 hESCs. We successfully obtained epigenomic maps for these histone modifications starting with as few as 10,000 cells. We compared cChIP-seq data to data generated as part of the ENCODE project. ENCODE data are the reference standard in the field and have been generated starting from tens of million of cells. Our results show that cChIP-seq successfully recapitulates bulk data. Furthermore, we showed that the differences observed between small-scale ChIP-seq data and ENCODE data are largely to be due to lab-to-lab variability rather than operating on a reduced scale. Data generated using cChIP-seq are equivalent to reference epigenomic maps from three orders of magnitude more cells. Our method offers a robust and straightforward approach to scale down ChIP-seq to as low as 10,000 cells. The underlying principle of our strategy makes it suitable for being applied to a vast range of chromatin modifications without requiring expensive optimization. Furthermore, our strategy of a DNA-free carrier can be adapted to most ChIP-seq protocols.
Lauber, Sandra N; Gooderham, Nigel J
2011-01-11
The cooked meat derived genotoxic carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces cancer of the colon, prostate and mammary gland when fed to rats. Epidemiology studies link these tumours to a Western diet and exposure to heterocyclic amines such as PhIP. We have shown that PhIP is also potently estrogenic and have proposed that this hormonal activity contributes to its target site carcinogenicity. We now postulate that the estrogenic properties of PhIP influence metastatic potential. We have used an in vitro assay for cell invasion based upon digestion and migration through a reconstituted basement membrane model. Zymography and immunoblotting were used to confirm PhIP-mediated changes associated with induction of the invasive phenotype. Treatment of the mammary cancer cell lines MCF-7 and T47D with PhIP induces cells to digest and migrate through a reconstituted basement membrane. The response was dose dependent, observed at sub-nanomolar concentrations of PhIP and was inhibited by the antiestrogen ICI 182,780. The PhIP-induced invasive phenotype was associated with expression of cathepsin D, cyclooxygenase-2 and matrix metalloproteinase activity. These findings emphasise the range and potency of the biological activities associated with this cooked meat product and mechanistically support the tissue-specific carcinogenicity of the chemical. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
2018-01-01
Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release. PMID:29756029
Crutzen, Hélène S G
2011-01-01
Embryonic stem cells and induced pluripotent stem (iPS) cells, which are embryonic stem-like cells derived from adult tissues, have the broadest differentiation potential. These cells are unique in their ability to self-renew, to be maintained in an undifferentiated state for long periods of culturing and to give rise to many different cell lineages including germ-line cells. They therefore represent an invaluable tool for facilitating research towards the realization of regenerative medicine. The recent developments in embryonic stem cell and iPS cell technology have allowed human cell models to be developed that will hopefully provide novel platforms for disease analysis not only at the basic science level, but also for drug discovery and screening, and other clinical applications. This 1-day conference, chaired by Professor Peter Andrews from the University of Sheffield, UK, and Dr Chris Denning from the University of Nottingham, UK, focused on generation of iPS cells, their differentiation into specific fates and applications to disease modeling. It consisted of 11 talks by UK-based and international researchers, and three posters; Ms Azra Fatima from Cologne University, Germany, won the competition for her poster on the derivation of iPS cells from a patient with arrhythmogenic right ventricular cardiomyopathy.
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat
2015-08-13
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.
Amaar, Yousef G.; Tapia, Blanca; Chen, Shin-Tai; Baylink, David J.; Mohan, Subburaman
2010-01-01
Insulin-like growth factor binding protein-5 (IGFBP5) is a multifunctional protein, which acts not only as a traditional binding protein, but also functions as a growth factor independent of IGFs to stimulate bone formation. It has been predicted that the intrinsic growth factor action of IGFBP5 involves binding of IGFBP5 to a putative receptor to induce downstream signaling pathways and/or nuclear translocation of IGFBP5 to influence transcription of genes involved in osteoblast cell proliferation/differentiation. Our study indentified proteins that bound to IGFBP5 using IGFBP5 as bait in a yeast two-hybrid screen of the U2 human osteosarcoma cell cDNA library. One of the clones that interacted strongly with the bait under high-stringency conditions corresponded to a novel IGFBP5 interacting protein (IGFBP5-IP) encoded by a gene that resides in mouse chromosome 10. The interaction between IGFBP5-IP and IGFBP5 is confirmed by in vitro coimmunoprecipitation studies that used pFlag and IGFBP5 polyclonal antibody, and cell lysates overexpressing both IGFBP5-IP and IGFBP5. Northern blot and RT-PCR analysis showed that the IGFBP-IP is expressed in both untransformed normal human osteoblasts and in osteosarcoma cell lines, which are known to produce IGFBP5. To determine the roles of IGFBP5-IP, we evaluated the effect of blocking the expression of IGFBP5-IP on osteoblast proliferation. We found that using a IGFBP5-IP-specific small interfering-hairpin plasmid resulted in a decrease in both basal and IGFBP5-induced osteoblast cell proliferation. On the basis of these findings, we predict that IGFBP5-IP may act as intracellular mediator of growth promoting actions of IGFBP5 and perhaps other osteoregulatory agents in bone cells. PMID:16269403
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.
Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan
2017-04-01
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.
Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika
2013-01-01
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.
Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells
Rittelmeyer, Ina; Sharma, Amar Deep; Sgodda, Malte; Zaehres, Holm; Bleidißel, Martina; Greber, Boris; Gentile, Luca; Han, Dong Wook; Rudolph, Cornelia; Steinemann, Doris; Schambach, Axel; Ott, Michael; Schöler, Hans R.; Cantz, Tobias
2011-01-01
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH −/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH −/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH −/− iPS cell lines, we aggregated FAH −/−-iPS cells with tetraploid embryos and obtained entirely FAH −/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH −/− mice. Then, we transduced FAH cDNA into the FAH −/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models. PMID:21765802
ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.
Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J
2018-03-06
The human K562 chronic myeloid leukemia cell line has long served as an experimental paradigm for functional genomic studies. To systematically and functionally annotate the human genome, the ENCODE consortium generated hundreds of functional genomic data sets, such as chromatin immunoprecipitation coupled to sequencing (ChIP-seq). While ChIP-seq analyses have provided tremendous insights into gene regulation, spatiotemporal insights were limited by a resolution of several hundred base pairs. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq that overcomes this limitation by providing higher precision mapping of protein-DNA interactions. To study the interplay of transcription initiation and chromatin, we profiled the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, and the histone modification H3K4me3 using ChIP-seq and ChIP-exo. In this Data Descriptor, we present detailed information on parallel experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the occupancy of Pol II and nucleosome positions at near base pair resolution.
Zhu, Lin; Guo, Wei-Li; Deng, Su-Ping; Huang, De-Shuang
2016-01-01
In recent years, thanks to the efforts of individual scientists and research consortiums, a huge amount of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experimental data have been accumulated. Instead of investigating them independently, several recent studies have convincingly demonstrated that a wealth of scientific insights can be gained by integrative analysis of these ChIP-seq data. However, when used for the purpose of integrative analysis, a serious drawback of current ChIP-seq technique is that it is still expensive and time-consuming to generate ChIP-seq datasets of high standard. Most researchers are therefore unable to obtain complete ChIP-seq data for several TFs in a wide variety of cell lines, which considerably limits the understanding of transcriptional regulation pattern. In this paper, we propose a novel method called ChIP-PIT to overcome the aforementioned limitation. In ChIP-PIT, ChIP-seq data corresponding to a diverse collection of cell types, TFs and genes are fused together using the three-mode pair-wise interaction tensor (PIT) model, and the prediction of unperformed ChIP-seq experimental results is formulated as a tensor completion problem. Computationally, we propose efficient first-order method based on extensions of coordinate descent method to learn the optimal solution of ChIP-PIT, which makes it particularly suitable for the analysis of massive scale ChIP-seq data. Experimental evaluation the ENCODE data illustrate the usefulness of the proposed model.
Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts
Wu, Yuehong; Li, Ouyang; He, Chengwen; Li, Yong; Li, Min; Liu, Xiaoming; Wang, Yujiong; He, Yulong
2017-01-01
Induced pluripotent stem cells (iPS) represent an important tool to develop disease-modeling assays, drug testing assays and cell-based replacement therapies. The application of iPS in these fields requires the development of suitable animal models. Of the suitable species, guinea pigs are particularly important and offer significant advantages. Successful iPS generation has been accomplished in a number of species; however, it has not been reported in the guinea pig. The present study successfully generated iPS from guinea pigs (giPS) using single polycistronic virus transduction with mouse octamer-binding transcription factor 4 (Oct4), sex determining region Y-box 2 (Sox2), Kruppel-like factor 4 and c-Myc. The giPS cell lines were cultured in media containing leukemia inhibitory factor and guinea pig fibroblast cells were used as feeder cells. These cultures were expanded under feeder-free culture conditions using ESGRO Complete Plus Clonal Grade medium containing 15% fetal bovine serum on gelatin-coated dishes. The resultant cells had a normal karyotype, exhibited alkaline phosphatase activity and expressed the pluripotency markers Oct4, Sox2 and Nanog. The cells differentiated in vivo to form teratomas that contained all three germ layers of the tissue cells. The generation of giPS may facilitate future studies investigating the mechanisms underlying innate immunity, particularly for tuberculosis. These experiments provide proof of principle that iPS technology may be adapted to use the guinea pig as a model of human diseases. PMID:28393187
Megges, Matthias; Geissler, Sven; Duda, Georg N; Adjaye, James
2015-11-01
An induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Morphogenic Effect of hDAB2IP on Prostate Cancer and its Disease Correlation
2007-02-01
variety of or- gans and cell lines. By determining the promoter sequence from the 5’- flanking region of the mDab2ip gene in mouse prosta - tic epithelial...patient with de novo acute myeloid leukemia. Genes Chromo- somes Cancer 39, 324 –334. WANG, Z., TSENG, C.P., PONG, R.C., CHEN, H., MCCONNELL, J.D
Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts.
Wu, Yuehong; Li, Ouyang; He, Chengwen; Li, Yong; Li, Min; Liu, Xiaoming Liu; Wang, Yujiong; He, Yulong
2017-06-01
Induced pluripotent stem cells (iPS) represent an important tool to develop disease‑modeling assays, drug testing assays and cell‑based replacement therapies. The application of iPS in these fields requires the development of suitable animal models. Of the suitable species, guinea pigs are particularly important and offer significant advantages. Successful iPS generation has been accomplished in a number of species; however, it has not been reported in the guinea pig. The present study successfully generated iPS from guinea pigs (giPS) using single polycistronic virus transduction with mouse octamer‑binding transcription factor 4 (Oct4), sex determining region Y‑box 2 (Sox2), Kruppel‑like factor 4 and c‑Myc. The giPS cell lines were cultured in media containing leukemia inhibitory factor and guinea pig fibroblast cells were used as feeder cells. These cultures were expanded under feeder‑free culture conditions using ESGRO Complete Plus Clonal Grade medium containing 15% fetal bovine serum on gelatin‑coated dishes. The resultant cells had a normal karyotype, exhibited alkaline phosphatase activity and expressed the pluripotency markers Oct4, Sox2 and Nanog. The cells differentiated in vivo to form teratomas that contained all three germ layers of the tissue cells. The generation of giPS may facilitate future studies investigating the mechanisms underlying innate immunity, particularly for tuberculosis. These experiments provide proof of principle that iPS technology may be adapted to use the guinea pig as a model of human diseases.
The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer.
Zhu, Qinyi; Tang, Meiling; Wang, Xipeng
2017-04-03
Epithelial ovarian cancer (EOC) is the most common and lethal cancer-related death among females in the world. Asparaginyl endopeptidase (AEP) is a member of C13 family peptidases and expressed in the extracellular matrix and tumor cells. The aim of this article is to explore the function of asparaginyl endopeptidase in epithelial ovarian cancer. The expression of AEP was examined in 20 EOC samples, 3 EOC metastasis samples, 6 fallopian tube metastasis samples, 4 peritoneum metastasis samples and 20 benign ovarian tumor samples by immunohistochemistry. The expression of AEP was also evaluated in serum and ascites of EOC patients by elisa. And we used a lentiviral vector to overexpress AEP in human epithelial ovarian cancer cell lines SKOV3ip and detected the function of AEP-SKOV3ip cells both in vitro and in vivo. The growth of AEP-SKOV3ip cells was observed by MTT, migration and tube formation assays in vitro. Additionally, the subcutaneous mice model was used to identify the tumor growth and metastasis in vivo. Mice tumors were stained for CD31 to determine the microvessel density (MVD). We demonstrated that AEP was highly expressed in the EOC patient tissues and ascites. The AEP transfected SKOV3ip cells could both promote tumor growth in vitro and in vivo. The MVD in AEP-SKOV3ip group was higher than that in NC-SKOV3ip group. Therefore, our results demonstrated that AEP could induce EOC growth and progressionboth in vitro and in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira
2012-01-13
Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain largemore » amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.« less
The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?
Zacharias, David G.; Nelson, Timothy J.; Mueller, Paul S.; Hook, C. Christopher
2011-01-01
For over a decade, the field of stem cell research has advanced tremendously and gained new attention in light of novel insights and emerging developments for regenerative medicine. Invariably, multiple considerations come into play, and clinicians and researchers must weigh the benefits of certain stem cell platforms against the costs they incur. Notably, human embryonic stem (hES) cell research has been a source of continued debate, leading to differing policies and regulations worldwide. This article briefly reviews current stem cell platforms, looking specifically at the two existing pluripotent lines available for potential therapeutic applications: hES cells and induced pluripotent stem (iPS) cells. We submit iPS technology as a viable and possibly superior alternative for future medical and research endeavors as it obviates many ethical and resource-related concerns posed by hES cells while prospectively matching their potential for scientific use. However, while the clinical realities of iPS cells appear promising, we must recognize the current limitations of this technology, avoid hype, and articulate ethically acceptable medical and scientific goals. PMID:21719620
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake
2016-01-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691
Balghi, Haouaria; Sebille, Stéphane; Constantin, Bruno; Patri, Sylvie; Thoreau, Vincent; Mondin, Ludivine; Mok, Elise; Kitzis, Alain; Raymond, Guy; Cognard, Christian
2006-01-01
We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the perifusion of a solution containing a high potassium concentration, was higher in SolC1(−) than in SolD(+) myotubes. The analysis of amplitude and kinetics of the calcium increase in SolC1(−) and in SolD(+) myotubes during the exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) suggested the presence of two mechanisms of SR calcium release: (1) a fast SR calcium release that depended on ryanodine receptors and (2) a slow SR calcium release mediated by IP3 receptors. Detection analyses of mRNAs (reverse transcriptase [RT]-PCR) and proteins (Western blot and immunolocalization) demonstrated the presence of the three known isoforms of IP3 receptors in both SolC1(−) and SolD(+) myotubes. Furthermore, analysis of the kinetics of the rise in calcium revealed that the slow IP3-dependent release may be increased in the SolC1(−) as compared to the SolD(+), suggesting an inhibitory effect of mini-dystrophin in this signaling pathway. Upon incubation with pertussis toxin (PTX), an inhibitory effect similar to that of the IP3R inhibitor (2-APB) was observed on K+-evoked calcium release. This result suggests the involvement of a Gi protein upstream of the IP3 pathway in these stimulation conditions. A hypothetical model is depicted in which both Gi protein and IP3 production could be involved in K+-evoked calcium release as well as a possible interaction with mini-dystrophin. Our findings demonstrate the existence of a potential relationship between mini-dystrophin and SR calcium release as well as a regulatory role of mini-dystrophin on intracellular signaling. PMID:16446505
MacLean, Glenn A.; Menne, Tobias F.; Guo, Guoji; Sanchez, Danielle J.; Park, In-Hyun; Daley, George Q.; Orkin, Stuart H.
2012-01-01
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryionic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like, γ-globin expressing, definitive hematopoiesis, we found that trisomic cells of hES, iPS, or isogenic origins exhibited a two- to fivefold increase in a population of CD43+(Leukosialin)/CD235+(Glycophorin A) hematopoietic cells, accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage. PMID:23045682
Poulin, B; Rich, N; Mas, J L; Kordon, C; Enjalbert, A; Drouva, S V
1998-07-25
Exposure of the gonadotrope cells to gonadotropin-releasing hormone (GnRH) reduces their responsiveness to a new GnRH stimulation (homologous desensitization). The time frame as well as the mechanisms underlying this phenomenon are yet unclear. We studied in a gonadotrope cell line (alphaT3-1) the effects of short as well as long term GnRH pretreatments on the GnRH-induced phospholipases-C (PLC), -A2 (PLA2) and -D (PLD) activities, by measuring the production of IP3, total inositol phosphates (IPs), arachidonic acid (AA) and phosphatidylethanol (PEt) respectively. We demonstrated that although rapid desensitization of GnRH-induced IP3 formation did not occur in these cells, persistent stimulation of cells with GnRH or its analogue resulted in a time-dependent attenuation of GnRH-elicited IPs formation. GnRH-induced IPs desensitization was potentiated after direct activation of PKC by the phorbol ester TPA, suggesting the involvement of distinct mechanisms in the uncoupling exerted by either GnRH or TPA on GnRH-stimulated PI hydrolysis. The levels of individual phosphoinositides remained unchanged under any desensitization condition applied. Interestingly, while the GnRH-induced PLA2 activity was rapidly desensitized (2.5 min) after GnRH pretreatments, the neuropeptide-evoked PLD activation was affected at later times, indicating an important time-dependent contribution of these enzymatic activities in the sequential events underlying the GnRH-induced homologous desensitization processes in the gonadotropes. Under GnRH desensitization conditions, TPA was still able to induce PLD activation and to further potentiate the GnRH-evoked PLD activity. AlphaT3-1 cells possess several PKC isoforms which, except PKCzeta, were differentially down-regulated by TPA (PKCalpha, betaII, delta, epsilon, eta) or GnRH (PKCbetaII, delta, epsilon, eta). In spite of the presence of PKC inhibitors or down-regulation of PKC isoforms by TPA, the desensitizing effect of the neuropeptide on GnRH-induced IPs, AA and PEt formation remained unchanged. In conclusion, in alphaT3-1 cells the GnRH-induced homologous desensitization affects the GnRH coupling with PLC, PLA2 and PLD by mechanism(s) which do not implicate TPA-sensitive PKC isoforms, but likely reflect time-dependent modification(s) on the activation processes of the enzymes.
Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G
2006-07-01
Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.
Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats
Botcheva, Krassimira; McCorkle, Sean R.
2014-11-21
The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less
Wakayama, Sayaka; Wakayama, Teruhiko
2010-01-01
Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.
2016-01-01
Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064
Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L
2018-02-01
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K
2014-12-01
The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.
2015-12-01
quantifying their effect on the production of the prostate specific antigen (PSA) in prostate cancer cell lines (11). PSA is AR-regulated serine protease and... products . The hydroxylation products were observed in lesser amounts. The IV and IP serum profiles of VPC-13566 suggest that it could be administered IP...Glucocorticoid, mineralocorticoid, progesterone , and androgen receptors. Pharmacological Reviews. 2006;58:782-97. 2. Denmeade SR, Isaacs JT. A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analysesmore » of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.« less
NASA Astrophysics Data System (ADS)
Anderson, Alison M.; Kalimutho, Murugan; Harten, Sarah; Nanayakkara, Devathri M.; Khanna, Kum Kum; Ragan, Mark A.
2017-01-01
In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.
Yamamoto, Shohei; Otsu, Makoto; Matsuzaka, Emiko; Konishi, Chieko; Takagi, Haruna; Hanada, Sachiyo; Mochizuki, Shinji; Nakauchi, Hiromitsu; Imai, Kohzoh; Tsuji, Kohichiro; Ebihara, Yasuhiro
2015-01-01
Induced pluripotent stem (iPS) cells provide powerful tools for studying disease mechanisms and developing therapies for diseases. The 8p11 myeloproliferative syndrome (EMS) is an aggressive chronic myeloproliferative disorder (MPD) that is caused by constitutive activation of fibroblast growth factor receptor 1. EMS is rare and, consequently, effective treatment for this disease has not been established. Here, iPS cells were generated from an EMS patient (EMS-iPS cells) to assist the development of effective therapies for EMS. When iPS cells were co-cultured with murine embryonic stromal cells, EMS-iPS cells produced more hematopoietic progenitor and hematopoietic cells, and CD34+ cells derived from EMS-iPS cells exhibited 3.2-7.2-fold more macrophage and erythroid colony forming units (CFUs) than those derived from control iPS cells. These data indicate that EMS-iPS cells have an increased hematopoietic differentiation capacity, which is characteristic of MPDs. To determine whether a tyrosine kinase inhibitor (TKI) could suppress the increased number of CFUs formed by EMS-iPS-induced CD34+ cells, cells were treated with one of four TKIs (CHIR258, PKC 412, ponatinib, and imatinib). CHIR258, PKC 412, and ponatinib reduced the number of CFUs formed by EMS-iPS-induced CD34+ cells in a dose-dependent manner, whereas imatinib did not. Similar effects were observed on primary peripheral blood cells (more than 90% of which were blasts) isolated from the patient. This study provides evidence that the EMS-iPS cell line is a useful tool for the screening of drugs to treat EMS and to investigate the mechanism underlying this disease.
Carbachol-induced phosphoinositide turnover in NCB-20 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, D.M.; Dillon-Carter, O.
NCB-20 cells (fetal Chinese hamster brain cell x neuroblastoma hybrids) have been shown to contain a variety of neurotransmitter receptors. The authors now report that this cloned cell line also contains acetylcholne receptors which are linked to phospholipase C. Confluent cell cultures were preincubated with /sup 3/H-myo-inositol to label endogenous phosphoinositide (PI) and the accumulation of a PI metabolite, inositol monophosphate (IP/sub 1/), was measured in the presence of LiCl. Carbachol increased IP/sub 1/), accumulation be more than 400% with a EC/sub 50/ of about 50 ..mu..M. Acetylcholine and muscarine were also effective, whereas oxotremorine and McN-A-343 were weak inmore » both potency and efficacy. The carbachol-induced IP/sub 1/ accumulation was completely blocked by atropine (Ki approx. 0.6 nM) and pirenzepine (Ki approx. 15 nM). The presence of KCl was not required for the carbachol-induced effect. The formation of inositol bis- and triphosphate was also increased carbachol; these increases occurred earlier but were of much smaller magnitude. Pretreatment of cells with 4 ..beta..-phorbol dibutyrate or 4 ..beta..-phorbol myristate acetate was found to attenuate the carbachol-induced formation of IP/sub 1/ (IC/sub 50/ in the low nanomolar concentration ranges), however 4 ..beta..-phorbol, the biologically inactive phorbol ester, was ineffective in causing this attenuation. These results suggest a feedback inhibition of PI turnover in NCB-20 cells through the action of protein kinase C.« less
Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki
2011-01-01
Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062
The Role of NG2 Glial Cells in ALS Pathogenesis
2013-10-01
line of OPC differentiation from iPS cells. SHH, sonic hedgehog ; RA, retinoitic acid; bFGF, basic FGF; PDGF, platelet-derived growth factor; IGF...University School of Medicine, Baltimore, Maryland, USA. 3Department of Anatomy , Kitasato University School of Medicine, Sagamihara, Japan. 4Brain Science...6Present address: Shriners Hospital Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine
Origins and implications of pluripotent stem cell variability and heterogeneity
Cahan, Patrick; Daley, George Q.
2014-01-01
Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field. PMID:23673969
Nakazawa, Takanobu; Kikuchi, Masataka; Ishikawa, Mitsuru; Yamamori, Hidenaga; Nagayasu, Kazuki; Matsumoto, Takuya; Fujimoto, Michiko; Yasuda, Yuka; Fujiwara, Mikiya; Okada, Shota; Matsumura, Kensuke; Kasai, Atsushi; Hayata-Takano, Atsuko; Shintani, Norihito; Numata, Shusuke; Takuma, Kazuhiro; Akamatsu, Wado; Okano, Hideyuki; Nakaya, Akihiro; Hashimoto, Hitoshi; Hashimoto, Ryota
2017-03-01
Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A Functional High-Throughput Assay of Myelination in Vitro
2014-07-01
iPS cells derived from human astrocytes. These cell lines will serve as an excellent source of human cells from which our model systems may be...image the 3D rat dorsal root ganglion ( DRG ) cultures with sufficiently low background as to detect electrically-evoked depolarization events, as...stimulation and recording system specifically for this purpose. Further, we found that the limitations inherent in optimizing speed and FOV may
Ye, Risheng; Ni, Min; Wang, Miao; Luo, Shengzhan; Zhu, Genyuan; Chow, Robert H; Lee, Amy S
2011-08-01
The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca(2)(+) channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.
Park, Yu-Kyoung; Ramalingam, Mahesh; Kim, Shin; Jang, Byeong-Churl; Park, Jong Wook
2017-09-01
Sulforaphane (SFN) is a dietary isothiocyanate abundantly available in cruciferous vegetables and has been shown to possess anti-inflammatory and immunomodulatory activities. Chemokines are important mediators of inflammation and immune responses due to their ability to recruit and activate macrophages and leukocytes. To date, little is known about the SFN-mediated regulation of chemokine expression in pancreatic β-cells. In this study, we investigated the inhibitory effects and mechanisms of SFN on the interferon-γ (IFN-γ)-induced expression of a subset of chemokines, including monokine induced by IFN-γ (MIG), IFN-inducible protein of 10 kDa (IP-10) and IFN-inducible T‑cell alpha chemoattractant (I-TAC), in INS‑1 cells, a rat pancreatic β-cell line. Notably, IFN-γ treatment led to an increase in the mRNA expression levels of MIG, IP-10 and I-TAC in the INS‑1 cells. However, SFN strongly blocked the mRNA expressions of MIG, IP-10 and I-TAC induced by IFN-γ in INS‑1 cells. On the mechanistic level, SFN significanlty decreased not only the mRNA expression levels of interferon regulatory factor-1 (IRF-1), but also the phosphorylation levels of signal transducer and activator of transcription-1 (STAT-1) and protein kinase B (PKB) which were induced by IFN-γ in the INS‑1 cells. Pharmacological inhibition experiments further revealed that treatment with JAK inhibitor I weakly inhibited the IFN-γ-induced expression of IP-10, whereas it strongly suppressed the IFN-γ-induced expression of MIG and I-TAC in the INS‑1 cells. Moreover, treatment with LY294002, a PI3K/PKB inhibitor, was able to slightly repress IFN‑γ‑induced expressions of MIG and I-TAC, but not IP-10, in INS‑1 cells. Importantly, the IFN-γ-induced increase in the expression levels of MIG, IP-10 and I-TAC in the INS-1 cells was strongly inhibited by SFN, but not by other natural substances, such as curcumin, sanguinarine, resveratrol, triptolide and epigallocatechin gallate (EGCG), suggesting the specificity of SFN in downregulating the levels of these chemokines. To the best of our knowledge, these results collectively demonstrate for the first time that SFN strongly inhibits the IFN-γ-induced expression of MIG, IP-10 and I-TAC in INS‑1 cells and this inhibition is, at least in part, mediated through the reduced expression and phosphorylation levels of IRF-1, STAT-1 and PKB.
Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT.
Li, Fei; Cheng, Teng; Dong, Qingjian; Wei, Rui; Zhang, Zhenzhong; Luo, Danfeng; Ma, Xiangyi; Wang, Shixuan; Gao, Qinglei; Ma, Ding; Zhu, Xiaohua; Xi, Ling
2015-03-01
TMTP1 (NVVRQ) is a novel tumor-homing peptide, which specifically targets tumor metastases, even at the early stage of occult metastasis foci. Fusing TMTP1 to therapeutic peptides or proteins can increase its anti-cancer efficacy both in vivo and in vitro. Here, we labeled TMTP1 with (99m)Tc to evaluate its targeting properties in an ovarian cancer xenograft tumor mouse model and a gastric cancer xenograft mouse model. The invasion ability of SKOV3 and highly metastatic SKOV3.ip cell lines were performed by the Transwell Invasion Assays, and then Rhodamine-TMTP1 was used to detect its affinity to these two cells. Using the co-ligand ethylenediamine-N, N'-diacetic acid (EDDA) and the bifunctional chelator 6-hydrazinonicotinic acid (HYNIC), the TMTP1 peptide was labeled with (99m)Tc. A cell-binding assay was performed by incubating cancer cells with (99m)Tc-HYNIC-TMTP1 with or without an excess dose of cold HYNIC-TMTP1. To evaluate the probe in vivo, nude mice bearing SKOV3, SKOV3.ip and MNK-45 tumor cells were established and subjected to SPECT imaging after injection with (99m)Tc-HYNIC-TMTP1. Ex vivo γ-counting of dissected tissues from the mice was used to evaluate its biodistribution. (99m)Tc-HYNIC-TMTP1 was successfully synthesized. The radiotracer also exhibited high hydrophilicity and excellent stability in vitro and in vivo. It has strong affinity to highly metastatic cancer cell lines but not to poorly metastatic cell lines. After mice were injected with (99m)Tc-HYNIC-TMTP1, non-invasive SPECT imaging detected SKOV3.ip and MNK-45 xenograft tumors but not SKOV3 xenograft tumors. This result can be inhibited by excess HYNIC-TMTP1. The uptake of (99m)Tc-HYNIC-TMTP1 in SKOV3.ip xenograft tumors was 0.182±0.017% ID/g at 2h p.i. with high renal uptake (74.32±15.05% ID/g at 2h p.i.). (99m)Tc-HYNIC-TMTP1 biodistribution and SPECT imaging demonstrated its ability to target highly metastatic tumors. Therefore, metastasis can be non-invasively investigated by SPECT imaging using (99m)Tc-HYNIC-TMTP1. Meanwhile, this radiotracer has some shortages in the low % ID/g of tumors and high accumulation in the kidney. Copyright © 2014 Elsevier Inc. All rights reserved.
Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A
2016-01-01
A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.
Zhang, Yong; Zhao, Ming; Yano, Shuya; Uehara, Fuminari; Yamamoto, Mako; Hiroshima, Yukihiko; Toneri, Makoto; Bouvet, Michael; Matsubara, Hisahiro; Tsuchiya, Hiroyuki; Hoffman, Robert M.
2015-01-01
Peritoneal disseminated cancer is highly treatment resistant. We here report the efficacy of intraperitoneal (i.p.) administration of tumor-targeting Salmonella typhimurium A1-R in a nude mouse model of disseminated human ovarian cancer. The mouse model was established by intraperitoneal injection of the human ovarian cancer cell line SKOV3-GFP. Seven days after implantation, mice were treated with S. typhimurium A1-R via intravenous (i.v.) or i.p. administration at the same dose, 5×107 CFU, once per week. Both i.v. and i.p. treatments effected prolonged survival compared with the untreated control group (P=0.025 and P<0.001, respectively). However, i.p. treatment was less toxic than i.v. treatment. Tumor-specific targeting of S. typhimurium A1-R was confirmed with bacterial culture from tumors and various organs and tumor or organ colony formation after i.v. or i.p. injection. Selective tumor targeting was most effective with i.p. administration. The results of the present study show S. typhimurium A1-R has promising clinical potential for disseminated ovarian cancer, especially via i.p. administration. PMID:25957417
Mondragon-Gonzalez, Ricardo; Perlingeiro, Rita C R
2018-06-13
Myotonic Dystrophy 1 (DM1) is a multi-system disorder primarily affecting the central nervous system, heart and skeletal muscle. It is caused by an expansion of the CTG trinucleotide repeats in the 3' untranslated region of the DMPK gene. Although patient myoblasts have been used for studying the disease in vitro , the invasiveness as well as the low accessibility to muscle biopsies motivate the development of alternative reliable myogenic models. Here, we established two DM1 iPS cell lines from patient-derived fibroblasts, and using the PAX7 conditional expression system, differentiated these into myogenic progenitors, and subsequently, terminally differentiated myotubes. Both DM1 myogenic progenitors and myotubes were found to express the intranuclear RNA foci exhibiting sequestration of MBNL1. Moreover, we found the DM1-related mis-splicing, namely BIN1 exon 11 in DM1 myotubes. We use this model to test a specific therapy, antisense oligonucleotide treatment, and find that this efficiently abolished RNA foci and rescued BIN1 mis-splicing in DM1 iPS cell-derived myotubes. Together, our results demonstrate that myotubes derived from DM1 iPS cells recapitulate the critical molecular features of DM1 and are sensitive to ASO treatment, confirming that these cells can be used for in vitro disease modeling and candidate drug testing or screening. © 2018. Published by The Company of Biologists Ltd.
Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner
Rattan, R; Giri, S; Hartmann, LC; Shridhar, V
2011-01-01
Abstract Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)-activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express -α1, -β1, -γ1 and -γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo-responsive and -resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co-carboxylase (ACC) and enhanced β-oxidation of fatty acid and (4) attenuated mTOR-S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin-mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK-ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down-regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild-type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti-proliferative therapeutic that can act through both AMPK-dependent as well as AMPK-independent pathways. PMID:19874425
Chen, Yuchang; Ou, Zhanhui; Song, Bing; Xian, Yexing; Ouyang, Shuming; Xie, Yuhuan; Xue, Yanting; Sun, Xiaofang
2017-08-01
47, XXX syndrome is one of several sex-chromosomal aneuploidies, and it has an incidence of approximately 1/1000 in newborn females. Because of heterogeneity in X-inactivation, these patients may exhibit a variety of clinical symptoms. Here, we report the generation of an integration-free human induced pluripotent stem cell line (GZHMUi001-A) by using Sendai virus to reprogram peripheral blood mononuclear cells from a 47, XXX syndrome patient with premature ovarian failure. This 47, XXX iPS cell line has characteristics of pluripotent stem cells and is a useful tool for the investigation of this X chromosome aneuploid disease. Copyright © 2017. Published by Elsevier B.V.
Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.
2015-01-01
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment. PMID:26635867
Tumorigenic Potential of Transit Amplifying Prostate Cells
2012-06-01
by ChIP-Seq showed that in both the human prostate cell line LNCaP and in mouse prostate, NKX3.1 bound DNA fragments are significantly enriched in...progression. Cancer Cell. 2010;17(5):443–454. 29. Steadman DJ, Giuffrida D, Gelmann EP. DNA - binding sequence of the human prostate-specific...bind nucleosomal DNA and destabilize nucleosomes thereby allowing other transcription factors to access their sites (7),(8). BODY Aim 1: To
Spadaro, Francesca; Abalsamo, Laura; Pisanu, Maria Elena; Ricci, Alessandro; Cecchetti, Serena; Altabella, Luisa; Buoncervello, Maria; Lozneanu, Ludmila; Bagnoli, Marina; Ramoni, Carlo; Canevari, Silvana; Mezzanzanica, Delia
2017-01-01
Antagonizing the oncogenic effects of human epidermal growth factor receptor 2 (HER2) with current anti-HER2 agents has not yet yielded major progress in the treatment of advanced HER2-positive epithelial ovarian cancer (EOC). Using preclinical models to explore alternative molecular mechanisms affecting HER2 overexpression and oncogenicity may lead to new strategies for EOC patient treatment. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) exerts a pivotal role in regulating HER2 overexpression in breast cancer cells. The present study, conducted on two human HER2-overexpressing EOC cell lines - SKOV3 and its in vivo-passaged SKOV3.ip cell variant characterized by enhanced in vivo tumorigenicity - and on SKOV3.ip xenografts implanted in SCID mice, showed: a) about 2-fold higher PC-PLC and HER2 protein expression levels in SKOV3.ip compared to SKOV3 cells; b) physical association of PC-PLC with HER2 in non-raft domains; c) HER2 internalization and ca. 50% reduction of HER2 mRNA and protein expression levels in SKOV3.ip cells exposed to the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609); d) differential effects of D609 and trastuzumab on HER2 protein expression and cell proliferation; e) decreased in vivo tumor growth in SKOV3.ip xenografts during in vivo treatment with D609; f) potential use of in vivo magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters as biomarkers of EOC response to PC-PLC inhibition. Overall, these findings support the view that PC-PLC inhibition may represent an effective means to target the tumorigenic effects of HER2 overexpression in EOC and that in vivo MR approaches can efficiently monitor its effects. PMID:28903399
Functional Significance of VEGFR-2 on Ovarian Cancer Cells
Spannuth, Whitney A.; Nick, Alpa M.; Jennings, Nicholas B.; Armaiz-Pena, Guillermo N.; Mangala, Lingegowda S.; Danes, Christopher G.; Lin, Yvonne G.; Merritt, William M.; Thaker, Premal H.; Kamat, Aparna A.; Han, Liz Y.; Tonra, James R.; Coleman, Robert L.; Ellis, Lee M.; Sood, Anil K.
2009-01-01
Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of the current study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression while only 15% showed moderate to high VEGFR-1 expression. By immunofluorescence, little or no VEGFR-2 was detected in normal ovarian surface epithelial cells, whereas expression was detected in 75% of invasive ovarian cancer specimens. To differentiate between the effects of tumor versus host expression of VEGFR, nude mice were injected with SKOV3ip1 cells and treated with either human VEGFR-2 specific antibody (1121B), murine VEGFR-2 specific antibody (DC101), or the combination. Treatment with 1121B reduced SKOV3ip1 cell migration by 68% (p < 0.01) and invasion by 72% (p < 0.01), but exposure to VEGFR-1 antibody had no effect. Treatment with 1121B effectively blocked VEGF-induced phosphorylation of p130Cas. In vivo, treatment with either DC101 or 1121B significantly reduced tumor growth alone and in combination in the SKOV3ip1 and A2774 models. Decreased tumor burden after treatment with DC101 or 1121B correlated with increased tumor cell apoptosis, decreased proliferative index, and decreased microvessel density. These effects were significantly greater in the combination group (p<0.001). We show functionally active VEGFR-2 is present on most ovarian cancer cells. The observed anti-tumor activity of VEGF-targeted therapies may be mediated by both anti-angiogenic and direct anti-tumor effects. PMID:19058181
Nawaz, M I; Van Raemdonck, K; Mohammad, G; Kangave, D; Van Damme, J; Abu El-Asrar, A M; Struyf, S
2013-04-01
This study aimed at examining the presence and role of chemokines (angiogenic CCL2/MCP-1 and angiostatic CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10) in proliferative diabetic retinopathy (PDR). Regulated chemokine production in human retinal microvascular cells (HRMEC) and chemokine levels in vitreous samples from 40 PDR and 29 non-diabetic patients were analyzed. MCP-1, PF-4, Mig, IP-10 and VEGF levels in vitreous fluid from PDR patients were significantly higher than in controls. Except for IP-10, cytokine levels were significantly higher in PDR with active neovascularization and PDR without traction retinal detachment (TRD) than those in inactive PDR, PDR with TRD and control subjects. Exploratory regression analysis identified associations between higher levels of IP-10 and inactive PDR and PDR with TRD. VEGF levels correlated positively with MCP-1 and IP-10. Significant positive correlations were observed between MCP-1 and IP-10 levels. In line with these clinical findings Western blot analysis revealed increased PF-4 expression in diabetic rat retinas. HRMEC produced MCP-1, Mig and IP-10 after stimulation with IFN-γ, IL-1β or lipopolysaccharide. IFN-γ synergistically enhanced Mig and IP-10 production in response to IL-1β or lipopolysaccharide. MCP-1 was produced by HRMEC in response to VEGF treatment and activated HRMEC via the ERK and Akt/PKB pathway. On the other hand, phosphorylation of ERK induced by VEGF and MCP-1 was inhibited by PF-4, Mig and IP-10. In accordance with inhibition of angiogenic signal transduction pathways, PF-4 inhibited in vitro migration of HRMEC. Thus, regulatory roles for chemokines in PDR were demonstrated. In particular, IP-10 might be associated with the resolution of active PDR and the development of TRD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.
1996-01-01
We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.
Quemener, V; Quash, G; Moulinoux, J P; Penlap, V; Ripoll, H; Havouis, R; Doutheau, A; Goré, J
1989-01-01
4-amino-4-methyl-2-pentyne-1-al (AMPAL), a new irreversible inhibitor of aldehyde dehydrogenase (ALDH) has been assayed for its in vitro and in vivo antitumor activity. In vitro, AMPAL inhibits the proliferation and the ALDH activity of L1210 and RBL5 cell lines. In vivo, AMPAL significantly increases the mean survival time of mice i.p. grafted with leukemia (L1210, P815, MBL2, EL4, RBL5 cell lines) or carcinoma cells (Krebs cell line), without haematopoetic toxicity. No carcinostatic effect was observed against the P388 leukemia and the 3LL Lewis lung carcinoma. A possible relationship between the ALDH isoenzyme activity of the tumor and its sensitivity to AMPAL is discussed in the light of previous reports concerning the role of aldehydes in cell growth control.
Vervloessem, Tamara; Akl, Haidar; Tousseyn, Thomas; De Smedt, Humbert; Parys, Jan B.; Bultynck, Geert
2017-01-01
Bcl-2 is often upregulated in cancers to neutralize the BH3-only protein Bim at the mitochondria. BH3 mimetics (e.g. ABT-199 (venetoclax)) kill cancer cells by targeting Bcl-2’s hydrophobic cleft and disrupting Bcl-2/Bim complexes. Some cancers with elevated Bcl-2 display poor responses towards BH3 mimetics, suggesting an additional function for anti-apoptotic Bcl-2 in these cancers. Indeed, Bcl-2 via its BH4 domain prevents cytotoxic Ca2+ release from the endoplasmic reticulum (ER) by directly inhibiting the inositol 1,4,5-trisphosphate receptor (IP3R). The cell-permeable Bcl-2/IP3R disruptor-2 (BIRD-2) peptide can kill these Bcl-2-dependent cancers by targeting Bcl-2’s BH4 domain, unleashing pro-apoptotic Ca2+-release events. We compared eight “primed to death” diffuse large B-cell lymphoma cell lines (DLBCL) for their apoptotic sensitivity towards BIRD-2 and venetoclax. By determining their IC50 using cytometric cell-death analysis, we discovered a reciprocal sensitivity towards venetoclax versus BIRD-2. Using immunoblotting, we quantified the expression levels of IP3R2 and Bim in DLBCL cell lysates, revealing that BIRD-2 sensitivity correlated with IP3R2 levels but not with Bim levels. Moreover, the requirement of intracellular Ca2+ for BIRD-2- versus venetoclax-induced cell death was different. Indeed, BAPTA-AM suppressed BIRD-2-induced cell death, but promoted venetoclax-induced cell death in DLBCL cells. Finally, compared to single-agent treatments, combining BIRD-2 with venetoclax synergistically enhanced cell-death induction, correlating with a Ca2+-dependent upregulation of Bim after BIRD-2 treatment. Our findings suggest that some cancer cells require Bcl-2 proteins at the mitochondria, preventing Bax activation via its hydrophobic cleft, while others require Bcl-2 proteins at the ER, preventing cytotoxic Ca2+-signaling events via its BH4 domain. PMID:29340082
Vervloessem, Tamara; Akl, Haidar; Tousseyn, Thomas; De Smedt, Humbert; Parys, Jan B; Bultynck, Geert
2017-12-19
Bcl-2 is often upregulated in cancers to neutralize the BH3-only protein Bim at the mitochondria. BH3 mimetics (e.g. ABT-199 (venetoclax)) kill cancer cells by targeting Bcl-2's hydrophobic cleft and disrupting Bcl-2/Bim complexes. Some cancers with elevated Bcl-2 display poor responses towards BH3 mimetics, suggesting an additional function for anti-apoptotic Bcl-2 in these cancers. Indeed, Bcl-2 via its BH4 domain prevents cytotoxic Ca 2+ release from the endoplasmic reticulum (ER) by directly inhibiting the inositol 1,4,5-trisphosphate receptor (IP 3 R). The cell-permeable Bcl-2/IP 3 R disruptor-2 (BIRD-2) peptide can kill these Bcl-2-dependent cancers by targeting Bcl-2's BH4 domain, unleashing pro-apoptotic Ca 2+ -release events. We compared eight "primed to death" diffuse large B-cell lymphoma cell lines (DLBCL) for their apoptotic sensitivity towards BIRD-2 and venetoclax. By determining their IC 50 using cytometric cell-death analysis, we discovered a reciprocal sensitivity towards venetoclax versus BIRD-2. Using immunoblotting, we quantified the expression levels of IP 3 R2 and Bim in DLBCL cell lysates, revealing that BIRD-2 sensitivity correlated with IP 3 R2 levels but not with Bim levels. Moreover, the requirement of intracellular Ca 2+ for BIRD-2- versus venetoclax-induced cell death was different. Indeed, BAPTA-AM suppressed BIRD-2-induced cell death, but promoted venetoclax-induced cell death in DLBCL cells. Finally, compared to single-agent treatments, combining BIRD-2 with venetoclax synergistically enhanced cell-death induction, correlating with a Ca 2+ -dependent upregulation of Bim after BIRD-2 treatment. Our findings suggest that some cancer cells require Bcl-2 proteins at the mitochondria, preventing Bax activation via its hydrophobic cleft, while others require Bcl-2 proteins at the ER, preventing cytotoxic Ca 2+ -signaling events via its BH4 domain.
Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique
NASA Astrophysics Data System (ADS)
Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan
2014-06-01
Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.
A genome-wide interactome of DNA-associated proteins in the human liver.
Ramaker, Ryne C; Savic, Daniel; Hardigan, Andrew A; Newberry, Kimberly; Cooper, Gregory M; Myers, Richard M; Cooper, Sara J
2017-11-01
Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in important ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expression of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-related disruptions. © 2017 Ramaker et al.; Published by Cold Spring Harbor Laboratory Press.
Carothers, A M; Yuan, W; Hingerty, B E; Broyde, S; Grunberger, D; Snyderwine, E G
1994-01-01
Three experiments using 20 microM 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) were performed to induce mutations in the dihydrofolate reductase (DHFR) gene of a hemizygous Chinese hamster ovary (CHO) cell line (UA21). Metabolized forms of this chemical primarily bind at the C-8 position of guanine in DNA. In total, 21 independent induced mutants were isolated and 20 were characterized. DNA sequencing showed that the preferred mutation type found in 75% of the induced DHFR- clones was G.C-->T.A single and tandem double transversions. In addition to base substitutions, one mutant carried a-1 frameshift and another one had lost the entire locus by deletion. The induced changes affected purine targets on the nontranscribed strand of the gene in nearly all of the mutants sequenced (18/19). At the time that the first two experiments were performed, the initial adduct levels were quantitated in treated cells at the mutagenic dose by 32P-postlabeling. While the induced frequency of mutation was relatively low (approximately 5 x 10(-6), the adduct levels after a 1-h exposure of UA21 cells to 20 microM N-OH-PhIP were relatively high (13 adducts x 10(-6) nucleotides). This latter method was then employed to learn if the induced mutation frequency correlated with rapid overall genome repair of PhIP-DNA adducts. Total adduct levels, determined using DNA samples from treated cells collected after intervals of time, were reduced by about 50% after 6 h, and about 70% after 24 h. Since overall genome repair in CHO cells is relatively slow compared with preferential gene repair, the removal of dG-C8-PhIP adducts was apparently efficient. In order to better understand the mutational and repair results, we performed computational modeling to determine the lowest energy structure for the major dG-C8-PhIP adduct in a repetitively mutated duplex sequence opposite dA. Results of this analysis indicate that the PhIP-modified base resembles previous structural determinations of (deoxyguanosin-8-yl)-aminofluorene; the carcinogen is in the B-DNA minor groove and its adopts a syn conformation mispaired with an anti A. The implications of this conformational distortion in DNA structure for damage recognition by cellular repair enzymes are discussed.
Bradley, Amber; Zheng, Hui; Eblen, Scott T.
2014-01-01
The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer. PMID:24379240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Taisuke; Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012
2011-04-08
Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellularmore » response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.« less
DAB2IP-Coordinated miRNA Biogenesis
2015-09-01
been implicated to play a tumor suppressor role in nasal-type natural killer/T-cell lymphoma 11, hepatocellular carcinoma and colorectal cancer...the EMT process in several cancer cell lines including PCa, hepatocellular carcinoma and renal cancer (Fig. 1). Most importantly, we elucidated a...blood-2011-07- 364224 (2011). 12 Zhou, P. et al. MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular
ERIC Educational Resources Information Center
Panettieri, Joseph C.
2008-01-01
Despite the hype, IP convergence does not happen overnight. Navigating the IP convergence market is not easy. Some network equipment makers are taking traditional voice over IP (VoIP) product lines and rebranding them as unified communications offerings. But beware: While closely related, VoIP and UC are not the same. Generally speaking, VoIP…
Potential mechanisms of cytosolic calcium modulation in interferon-gamma treated U937 cells
NASA Technical Reports Server (NTRS)
Klein, Jon B.; Mcleish, Kenneth R.; Sonnenfeld, Gerald; Dean, William L.
1987-01-01
The ability of interferon-gamma (IFN-gamma) to alter cytoplasmic Ca(2+) content in the monocytelike cell line U937 was investigated, using a slow Ca-channel blocker, diltiazem. In addition, the Ca-ATPase and the Ca-uptake activities were measured in isolated U937 membranes, together with the effect of inositol trisphosphate (IP3) upon the Ca(2+) release from Ca-loaded membranes. The addition of 50 U/ml INF-gamma to U937 cultures was found to increase internal Ca(2+) by about 100 percent within 3 min. The increase was significantly reduced by incubation in Ca-free buffer or by the addition of diltiazem. A crude membrane preparation from U937 cells was found to contain significant amounts of Ca-ATPase activity and to sequester Ca(2+) to a level of 8 nmol/mg in 30 sec; the addition of IP3 induced release of a portion of the sequestered Ca(2+) which was then resequestered. The results suggest that IFN-gamma causes an increase of cytoplasmic Ca(2+), in part, by the IP3-induced release from the internal storage sites and, in part, from the entry of extracellular Ca through slow channels.
Anti-diabetic effects of rice hull smoke extract in alloxan-induced diabetic mice
USDA-ARS?s Scientific Manuscript database
We investigated the protective effect of a liquid rice hull smoke extract (RHSE) against diabetes in alloxan-induced diabetic mice. Anti-diabetic effects of RHSE were evaluated in both the rat insulinoma-1 cell line (INS-1) and diabetic ICR mice induced by inraperitoneal (ip) injection of alloxan. ...
Auerbach, Raymond K; Chen, Bin; Butte, Atul J
2013-08-01
Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.
The Receptor Tyrosine Kinase EphA2 Is a Direct Target Gene of Hypermethylated in Cancer 1 (HIC1)*
Foveau, Bénédicte; Boulay, Gaylor; Pinte, Sébastien; Van Rechem, Capucine; Rood, Brian R.; Leprince, Dominique
2012-01-01
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers. PMID:22184117
PD and PDT for hepatoblastoma? Preclinical considerations
NASA Astrophysics Data System (ADS)
Stepp, Herbert; Bergmann, Florian; Johansson, Ann; Heide, Michael; Metzger, Roman; Rolle, Udo; Till, Holger
2011-07-01
Objective: Provide preclinical data on the feasibility of 5-aminolevulinic acid (5-ALA) -based photodetection (PD) and Photodynamic Therapy (PDT) of early childhood tumors. Methods: Hepatoblastoma (HuH6), neuroblastoma (MHH-NB11) and N1-fibroblast cell lines were tested for their relative capacities to synthesize Protoporphyrin IX (PpIX) from 5-ALA and for their susceptibility to PDT in vitro. HuH6-cells were also inoculated in the peritoneum of rats. The pharmacokinetics of porphyrin accumulation was measured in 9 rats by laparoscopic spectroscopy. 5-ALA was applied by i.p. injection of 500 mg/kg bw. In another 21 animals, tumors (n=20), liver (n=5) and peritoneum (n=4) were treated by PDT laparoscopically. 48 h after irradiation, animals were again incubated with 5-ALA and then sacrificed and tissues were removed for further investigation. Results: Both tumor cell lines showed higher levels of porphyrin fluorescence than the fibroblasts. Cell viability testing proved the HuH6 cells to be most susceptible to PDT. Pharmacokinetic measurements of PpIX in xenografted tumors showed a peak at 80-200 min after i.p. injection of 5-ALA. Irradiation resulted in pronounced photobleaching at all irradiated sites and necrosis of tumor and liver tissue, whereas peritoneum appeared to remain unaffected. Necrosis induced by PDT could be seen in fluorescence microscopy due to the lack of porphyrin synthesis in necrotic tissue after the re-incubation with 5-ALA.
Peitz, Michael; Bechler, Tamara; Thiele, Catrin Cornelia; Veltel, Monika; Bloschies, Melanie; Fliessbach, Klaus; Ramirez, Alfredo; Brüstle, Oliver
2018-04-23
Alzheimer's disease (AD) is most the frequent neurodegenerative disease, and the APOE ε4 allele is the most prominent risk factor for late-onset AD. Here, we present an iPSC line generated from peripheral blood cells of a male AD patient employing Sendai virus vectors encoding the transcription factors OCT4, SOX2, KLF4 and c-MYC. The characterized iPSC line expresses typical human pluripotency markers and shows differentiation into all three germ layers, complete reprogramming vector clearance, a normal SNP genotype and maintenance of the APOE ε4/ε4 allele. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mizukami, Yoshihisa; Abe, Tomoyuki; Shibata, Hiroaki; Makimura, Yukitoshi; Fujishiro, Shuh-hei; Yanase, Kimihide; Hishikawa, Shuji; Kobayashi, Eiji; Hanazono, Yutaka
2014-01-01
Recent studies have revealed negligible immunogenicity of induced pluripotent stem (iPS) cells in syngeneic mice and in autologous monkeys. Therefore, human iPS cells would not elicit immune responses in the autologous setting. However, given that human leukocyte antigen (HLA)-matched allogeneic iPS cells would likely be used for medical applications, a more faithful model system is needed to reflect HLA-matched allogeneic settings. Here we examined whether iPS cells induce immune responses in the swine leukocyte antigen (SLA)-matched setting. iPS cells were generated from the SLA-defined C1 strain of Clawn miniature swine, which were confirmed to develop teratomas in mice, and transplanted into the testes (n = 4) and ovary (n = 1) of C1 pigs. No teratomas were found in pigs on 47 to 125 days after transplantation. A Mixed lymphocyte reaction revealed that T-cell responses to the transplanted MHC-matched (C1) iPS cells were significantly lower compared to allogeneic cells. The humoral immune responses were also attenuated in the C1-to-C1 setting. More importantly, even MHC-matched iPS cells were susceptible to innate immunity, NK cells and serum complement. iPS cells lacked the expression of SLA class I and sialic acids. The in vitro cytotoxic assay showed that C1 iPS cells were targeted by NK cells and serum complement of C1. In vivo, the C1 iPS cells developed larger teratomas in NK-deficient NOG (T-B-NK-) mice (n = 10) than in NK-competent NOD/SCID (T-B-NK+) mice (n = 8) (p<0.01). In addition, C1 iPS cell failed to form teratomas after incubation with the porcine complement-active serum. Taken together, MHC-matched iPS cells can attenuate cellular and humoral immune responses, but still susceptible to innate immunity in pigs.
Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.
Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E
2012-10-01
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.
Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.
2015-01-01
The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function. PMID:26245967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, R.L.; Adams, L.M.
1978-02-01
The effectiveness of Corynebacterium parvum in combination with local irradiation has been examined in the treatment of the murine line 1 lung carcinoma, a highly radioresistant, weakly immunogenic tumor that kills the host by means of metastatic spread. Sixteen-week-old, specific-pathogen-free female BABL/c mice were given 10/sup 6/ tumor cells im into the right thigh. Tumors were irradiated on Day 7 after transplant. Those receiving C. parvum treatment were given 0.1 mg either by the intralesional (il), ip, or iv route on Day 4 after transplant or by the il or ip route on Day 8. An additional group received C.more » parvum ip once a week for 4 weeks beginning on Day 8. The influence of the various treatments on local control and metastasis was assessed. To evaluate further the time course and incidence of metastases, cleared lungs were examined at 21, 28, and 35 days in groups given irradiation combined with C. parvum on day 8. C. parvum was more effective in facilitating local control and inhibiting metastatic spread when given after radiation exposure rather than before.« less
Morphological Analysis of Live Undifferentiated Cells Derived from Induced Pluripotent Stem Cells.
Osawa, Yukihiko; Miyamoto, Tomoyuki; Ohno, Setsuyo; Ohno, Eiji
2018-01-01
Induced pluripotent stem (iPS) cells possess pluripotency and self-renewal ability. Therefore, iPS cells are expected to be useful in regenerative medicine. However, iPS cells form malignant immature teratomas after transplantation into animals, even after differentiation induction. It has been suggested that undifferentiated cells expressing Nanog that remain after differentiation induction are responsible for teratoma formation. Various methods of removing these undifferentiated cells have therefore been investigated, but few methods involve morphological approaches, which may induce less cell damage. In addition, for cells derived from iPS cells to be applied in regenerative medicine, they must be alive. However, detailed morphological analysis of live undifferentiated cells has not been performed. For the above reasons, we assessed the morphological features of live undifferentiated cells remaining after differentiation induction as a basic investigation into the clinical application of iPS cells. As a result, live undifferentiated cells remaining after differentiation induction exhibited a round or oval cytoplasm about 12 μm in diameter and a nucleus. They exhibited nucleo-cytoplasmic (N/C) ratio of about 60% and eccentric nuclei, and they possessed partially granule-like structures in the cytoplasm and prominent nucleoli. Although they were similar to iPS cells, they were smaller than live iPS cells. Furthermore, very small cells were present among undifferentiated cells after differentiation induction. These results suggest that the removal of undifferentiated cells may be possible using the morphological features of live iPS cells and undifferentiated cells after differentiation induction. In addition, this study supports safe regenerative medicine using iPS cells.
NASA Astrophysics Data System (ADS)
Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei
2017-06-01
In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.
NANOG priming before full reprogramming may generate germ cell tumours.
Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A
2011-11-09
Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.
Chromatin Immunoprecipitation in Early Mouse Embryos.
García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel
2018-01-01
Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.
Katayama, Masafumi; Hirayama, Takashi; Tani, Tetsuya; Nishimori, Katsuhiko; Onuma, Manabu; Fukuda, Tomokazu
2018-02-01
Induced pluripotent stem (iPS) cell technology lead terminally differentiated cells into the pluripotent stem cells through the expression of defined reprogramming factors. Although, iPS cells have been established in a number of mammalian species, including mouse, human, and monkey, studies on iPS cells in avian species are still very limited. To establish chick iPS cells, six factors were used within the poly-cistronic reprogramming vector (PB-R6F), containing M3O (MyoD derived transactivation domain fused with Oct3/4), Sox2, Klf4, c-Myc, Lin28, and Nanog. The PB-R6F derived iPS cells were alkaline-phosphatase and SSEA-1 positive, which are markers of pluripotency. Elevated levels of endogenous Oct3/4 and Nanog genes were detected in the established iPS cells, suggesting the activation of the FGF signaling pathway is critical for the pluripotent status. Histological analysis of teratoma revealed that the established chick iPS cells have differentiation ability into three-germ-layer derived tissues. This is the first report of establishment of avian derived iPS cells with a single poly-cistronic transposon based expression system. The establishment of avian derived iPS cells could contribute to the genetic conservation and modification of avian species. © 2017 Wiley Periodicals, Inc.
Limitations and possibilities of low cell number ChIP-seq
2012-01-01
Background Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard methods require abundant starting material in the range of 1–20 million cells per immunoprecipitation, and remain a bottleneck to the acquisition of biologically relevant epigenetic data. Using a ChIP-seq protocol optimised for low cell numbers (down to 100,000 cells / IP), we examined the performance of the ChIP-seq technique on a series of decreasing cell numbers. Results We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance. PMID:23171294
Guillen-Ahlers, Hector; Rao, Prahlad K; Perumalla, Danu S; Montoya, Maria J; Jadhav, Avinash Y L; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael
2018-06-01
The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.
Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie
2015-05-12
Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.
Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells.
Bhanumathy, Cunnigaiper D; Nakao, Steven K; Joseph, Suresh K
2006-02-10
myo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs. Employing caspase-3 for IP3R cleavage, we show that Cch promotes polyubiquitination in the N-terminal domain and monoubiquitination in the C-terminal domain. The addition of extracellular Ca2+ to Ca2+-depleted Chinese hamster ovary (CHO) cells initiates IP3R degradation provided Cch is present. This effect is inhibited by thapsigargin. The data suggest that both a sustained elevation of IP3 and a minimal content of Ca2+ in the endoplasmic reticulum lumen is required to initiate IP3R degradation. Transient transfection of IP3R constructs into CHO cells indicated the selective degradation of only the SI+ splice variant of the type I IP3R. This was also the splice form present endogenously in these cells. A pore-defective, nonfunctional SI+ IP3R mutant (D2550A) was also degraded in Cch-stimulated cells. The Cch-mediated response in CHO cells provides a convenient model system to further analyze the Ca2+ dependence and structural requirements of the IP3R proteasomal degradation pathway.
Characterization of inositol phosphates in carrot (Daucus carota L. ) cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rincon, M.; Chen, Q.; Boss, W.F.
1989-01-01
We have shown previously that inositol-1,4,5-trisphosphate (IP{sub 3}) stimulates an efflux of {sup 45}Ca{sup 2+} from fusogenic carrot protoplasts. In light of these results, we suggested that IP{sub 3} might serve as a second messenger for the mobilization of intracellular Ca{sup 2+} in higher plant cells. To determine whether or not IP{sub 3} and other inositol phosphates were present in the carrot cells, the cells were labeled with myo-(2-{sup 3}H)inositol for 18 hours and extracted with ice-cold 10% trichloroacetic acid. The inositol metabolites were separated by anion exchange chromatography and by paper electrophoresis. We found that ({sup 3}H)inositol metabolites coelutedmore » with inositol bisphosphate (IP{sub 2}) and IP{sub 3} when separated by anion exchange chromatography. However, we could not detect IP{sub 2} or IP{sub 3} when the inositol metabolites were analyzed by paper electrophoresis even though the polyphosphoinositides, which are the source of IP{sub 2} and IP{sub 3}, were present in these cells. Thus, ({sup 3}H)inositol metabolites other than IP{sub 2} and IP{sub 3} had coeluted on the anion exchange columns. The data indicate that either IP{sub 3} is rapidly metabolized or that it is not present at a detectable level in the carrot cells.« less
Liu, Xinxiu; Chen, Jiayu; Liu, Wenchao; Li, Xiaogang; Chen, Qi; Liu, Tao; Gao, Shaorong; Deng, Min
2015-07-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons (MNs) and has no effective treatment. Mutations in the fused in sarcoma (FUS) gene and abnormal aggregation of FUS protein have been reported in ALS. However, the mechanisms involved in ALS are poorly understood. Clinical drug trails have failed due to a lack of appropriate disease models, including a lack of access to MNs from ALS patients. Induced pluripotent stem (iPS) cells derived from patients with ALS provide an indispensable resource for in vitro mechanistic studies and for future patient-specific cell-based therapies. Previous reports demonstrated that viral-based ALS-iPS cells generated from fibroblasts harvested from Caucasian populations are ideal for basic research; however, ALS-iPS cells are precluded from cell-based therapeutic applications because of the risks associated with the integration of viral sequences into the genome and inconvenience associated with dermal biopsies. To establish a model for use in clinical applications, using episomal vectors, we generated an integration-free iPS cell line from peripheral blood mononuclear cells (PBMCs) harvested from a familial ALS (FALS) patient carrying the FUS-P525L mutation and a healthy control. Furthermore, we successfully differentiated ALS patient-specific iPS cells into MNs and subsequently detected cytoplasmic mislocalization and formation of FUS protein aggregates in MNs due to the FUS-P525L mutation. Our findings offer a cell-based disease model for use in further elucidating ALS pathogenesis and provide a tool for exploring gene repair coupled with cell replacement therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying, E-mail: ying.chen@hc.msu.edu; Wang, Kai; Chandramouli, Gadisetti V.R.
Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomesmore » a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.« less
Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos
2015-01-01
Background The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems – press-on metal (PoM) ceramic versus a conventional veneering system – subjected to static compressive loading. Material and Methods Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Results Fracture resistance values showed statistically significant differences (Student’s t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Conclusions Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope. PMID:26155346
Takizawa, Hajime
2013-01-01
Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression. Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed. Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells. Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774
SraTailor: graphical user interface software for processing and visualizing ChIP-seq data.
Oki, Shinya; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Meno, Chikara
2014-12-01
Raw data from ChIP-seq (chromatin immunoprecipitation combined with massively parallel DNA sequencing) experiments are deposited in public databases as SRAs (Sequence Read Archives) that are publically available to all researchers. However, to graphically visualize ChIP-seq data of interest, the corresponding SRAs must be downloaded and converted into BigWig format, a process that involves complicated command-line processing. This task requires users to possess skill with script languages and sequence data processing, a requirement that prevents a wide range of biologists from exploiting SRAs. To address these challenges, we developed SraTailor, a GUI (Graphical User Interface) software package that automatically converts an SRA into a BigWig-formatted file. Simplicity of use is one of the most notable features of SraTailor: entering an accession number of an SRA and clicking the mouse are the only steps required to obtain BigWig-formatted files and to graphically visualize the extents of reads at given loci. SraTailor is also able to make peak calls, generate files of other formats, process users' own data, and accept various command-line-like options. Therefore, this software makes ChIP-seq data fully exploitable by a wide range of biologists. SraTailor is freely available at http://www.devbio.med.kyushu-u.ac.jp/sra_tailor/, and runs on both Mac and Windows machines. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C.
Moreau, David; Lefort, Claire; Pas, Jolien; Bardet, Sylvia M; Leveque, Philippe; O'Connor, Rodney P
2018-02-01
The influence of infrared laser pulses on intracellular Ca 2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca 2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca 2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC 50 of around 58 J.cm -2 ). For both type of cells, the source of the infrared-induced Ca 2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP 3 -induced Ca 2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP 3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phillips, Mariana; Romeo, Francesca; Bitsaktsis, Constantine; Sabatino, David
2016-09-01
The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The immunostimulatory effects of IPs on the NK cells was assessed by the production of TNF-α alone as IFN-γ was undetectable. In a cell death assay, the IPs were found to be nontoxic, without any observable evidence of early or late stage apoptosis within the NK92-MI cells. Taking these findings together, this novel class of synthetic peptides may prove to be a promising lead in the development of a peptide-based immunotherapy approach, especially against B7H6 expressing tumors. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 658-672, 2016. © 2016 Wiley Periodicals, Inc.
Return of results in translational iPS cell research: considerations for donor informed consent
2013-01-01
Efforts have emerged internationally to recruit donors with specific disease indications and to derive induced pluripotent cell lines. These disease-specific induced pluripotent stem cell lines have the potential to accelerate translational goals such as drug discovery and testing. One consideration for donor recruitment and informed consent is the possibility that research will result in findings that are clinically relevant to the cell donor. Management protocols for such findings should be developed a priori and disclosed during the informed consent process. The California Institute for Regenerative Medicine has developed recommendations for informing donors in sponsored research. These recommendations include obtaining consent to recontact tissue donors for a range of scientific, medical and ethical considerations. This article reviews the basis for these recommendations and suggests conditions that may be appropriate when reporting findings to donors. PMID:23336317
Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system.
Li, Hongmei Lisa; Gee, Peter; Ishida, Kentaro; Hotta, Akitsu
2016-05-15
Precise gene correction using the CRISPR-Cas9 system in human iPS cells holds great promise for various applications, such as the study of gene functions, disease modeling, and gene therapy. In this review article, we summarize methods for effective editing of genomic sequences of iPS cells based on our experiences correcting dystrophin gene mutations with the CRISPR-Cas9 system. Designing specific sgRNAs as well as having efficient transfection methods and proper detection assays to assess genomic cleavage activities are critical for successful genome editing in iPS cells. In addition, because iPS cells are fragile by nature when dissociated into single cells, a step-by-step confirmation during the cell recovery process is recommended to obtain an adequate number of genome-edited iPS cell clones. We hope that the techniques described here will be useful for researchers from diverse backgrounds who would like to perform genome editing in iPS cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Molecular Mechanisms of Induced Pluripotency
Muchkaeva, I.A.; Dashinimaev, E.B.; Terskikh, V.V.; Sukhanov, Y.V.; Vasiliev, A.V.
2012-01-01
In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered. PMID:22708059
Sexton, Timothy J; Bleckert, Adam; Turner, Maxwell H; Van Gelder, Russell N
2015-06-21
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose melanopsin expression in development. These cells constitute a unique morphologic and physiologic class of ipRGCs functioning early in postnatal development.
McCullough, Shaun D; On, Doan M; Bowers, Emma C
2017-05-02
Histone modifications work in concert with DNA methylation to regulate cellular structure, function, and response to environmental stimuli. More than 130 unique histone modifications have been described to date, and chromatin immunoprecipitation (ChIP) allows for the exploration of their associations with the regulatory regions of target genes and other DNA/chromatin-associated proteins across the genome. Many variations of ChIP have been developed in the 30 years since its earliest version came into use, which makes it challenging for users to integrate the procedure into their research programs. Furthermore, the differences in ChIP protocols can confound efforts to increase reproducibility across studies. The streamlined ChIP procedure presented here can be readily applied to samples from a wide range of in vitro studies (cell lines and primary cells) and clinical samples (peripheral leukocytes) in toxicology. We also provide detailed guidance on the optimization of critical protocol parameters, such as chromatin fixation, fragmentation, and immunoprecipitation, to increase efficiency and improve reproducibility. Expanding toxicoepigenetic studies to more readily include histone modifications will facilitate a more comprehensive understanding of the role of the epigenome in environmental exposure effects and the integration of epigenetic data in mechanistic toxicology, adverse outcome pathways, and risk assessment. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Generation and Characterization of Induced Pluripotent Stem Cells from Aid-Deficient Mice
Shimamoto, Ren; Amano, Naoki; Ichisaka, Tomoko; Watanabe, Akira; Yamanaka, Shinya; Okita, Keisuke
2014-01-01
It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda) is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid −/−) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid −/− mice. Their induction efficiency was similar to that of wild-type (Aid +/+) iPS cells. The Aid −/− iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid +/+ and Aid −/− iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation. PMID:24718089
Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1
Rao, Feng; Xu, Jing; Fu, Chenglai; Cha, Jiyoung Y.; Gadalla, Moataz M.; Xu, Risheng; Barrow, James C.; Snyder, Solomon H.
2015-01-01
The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell–cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy. PMID:25617365
Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential
Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J
2011-01-01
Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527
Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences
Yu, Junying; Hu, Kejin; Smuga-Otto, Kim; Tian, Shulan; Stewart, Ron; Slukvin, Igor I.; Thomson, James A.
2009-01-01
Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. Here we describe the derivation of human iPS cells using non-integrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one obstacle to the clinical application of human iPS cells. PMID:19325077
Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang
2015-09-01
Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.
Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A; French, Deborah; Podsakoff, Gregory M; Bessler, Monica; Mason, Philip J
2015-01-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.
Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A.; French, Deborah; Podsakoff, Gregory M.; Bessler, Monica; Mason, Philip J.
2015-01-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis. PMID:25992652
2010-01-01
Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF) partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2) were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM). A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study) and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes) and targeted TFs (25% of common TFs). The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to further study the underlying mechanisms in breast cancer cells or other human diseases. PMID:21167036
Chan, Siu-Lung; Yeung, John H K
2006-05-01
Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been shown to restore the immunological effects against cyclophosphamide-induced immuno-suppression, although the mechanism(s) involved remain uncertain. This study investigated the PSP-cyclophosphamide interaction by studying the effects of PSP on the pharmacokinetic of cyclophosphamide in the rat and the effect of PSP on the cytotoxic effects of cyclophosphamide on a cancer cell line (HepG2 cells). In the pharmacokinetic studies in the rat, acute pre-treatment of PSP (4 micromol/kg/day, i.p.) decreased the clearance (CL) of cyclophosphamide by 31%, with a concomitant increase in the area under concentration-time curve (AUC) by 44%, and prolongation of the plasma half-life (T(1/2)) by 43%. Sub-chronic pre-treatment of PSP (2 micromol/kg/day, i.p., 3 days) decreased the CL of cyclophosphamide by 33%, with a concomitant increase in the AUC by 50%, and prolongation of the plasma T(1/2) by 34%. In cytotoxicity studies using HepG2 cells, non-toxic dose of PSP (1-10 microM) enhanced the cytotoxicity of cyclophosphamide. PSP at 10 microM further decreased HepG2 cell viability by 22% compared to when cyclophosphamide was present alone. In summary, PSP enhanced the cytotoxic effect of cyclophosphamide on a cancer cell line in vitro and altered the pharmacokinetics of cyclophosphamide in vivo in the rat. Both of these effects may be beneficial in the use of PSP as an adjunct to cyclophosphamide treatment.
Protection against cancer by dietary IP6 and inositol.
Vucenik, Ivana; Shamsuddin, AbulKalam M
2006-01-01
Inositol hexaphosphate (IP(6)) is a naturally occurring polyphosphorylated carbohydrate, abundantly present in many plant sources and in certain high-fiber diets, such as cereals and legumes. In addition to being found in plants, IP(6) is contained in almost all mammalian cells, although in much smaller amounts, where it is important in regulating vital cellular functions such as signal transduction, cell proliferation, and differentiation. For a long time IP(6) has been recognized as a natural antioxidant. Recently IP(6) has received much attention for its role in cancer prevention and control of experimental tumor growth, progression, and metastasis. In addition, IP(6) possesses other significant benefits for human health, such as the ability to enhance immune system, prevent pathological calcification and kidney stone formation, lower elevated serum cholesterol, and reduce pathological platelet activity. In this review we show the efficacy and discuss some of the molecular mechanisms that govern the action of this dietary agent. Exogenously administered IP(6) is rapidly taken up into cells and dephosphorylated to lower inositol phosphates, which further affect signal transduction pathways resulting in cell cycle arrest. A striking anticancer action of IP(6) was demonstrated in different experimental models. In addition to reducing cell proliferation, IP(6) also induces differentiation of malignant cells. Enhanced immunity and antioxidant properties also contribute to tumor cell destruction. Preliminary studies in humans show that IP(6) and inositol, the precursor molecule of IP(6), appear to enhance the anticancer effect of conventional chemotherapy, control cancer metastases, and improve quality of life. Because it is abundantly present in regular diet, efficiently absorbed from the gastrointestinal tract, and safe, IP(6) + inositol holds great promise in our strategies for cancer prevention and therapy. There is clearly enough evidence to justify the initiation of full-scale clinical trials in humans.
HSP90 regulates cell survival via inositol hexakisphosphate kinase-2
Chakraborty, Anutosh; Koldobskiy, Michael A.; Sixt, Katherine M.; Juluri, Krishna R.; Mustafa, Asif K.; Snowman, Adele M.; van Rossum, Damian B.; Patterson, Randen L.; Snyder, Solomon H.
2008-01-01
Heat-shock proteins (HSPs) are abundant, inducible proteins best known for their ability to maintain the conformation of proteins and to refold damaged proteins. Some HSPs, especially HSP90, can be antiapoptotic and the targets of anticancer drugs. Inositol hexakisphosphate kinase-2 (IP6K2), one of a family of enzymes generating the inositol pyrophosphate IP7 [diphosphoinositol pentakisphosphate (5-PP-IP5)], mediates apoptosis. Increased IP6K2 activity sensitizes cancer cells to stressors, whereas its depletion blocks cell death. We now show that HSP90 physiologically binds IP6K2 and inhibits its catalytic activity. Drugs and selective mutations that abolish HSP90–IP6K2 binding elicit activation of IP6K2, leading to cell death. Thus, the prosurvival actions of HSP90 reflect the inhibition of IP6K2, suggesting that selectively blocking this interaction could provide effective and safer modes of chemotherapy. PMID:18195352
Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roel; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M
2017-01-01
New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and therefore do not raise ethical concerns. Proper characterization of iPS-derived osteoblasts is important for future development of safe clinical applications of these cells. For this reason, we differentiated mouse ES and iPS cells toward osteoblasts using osteogenic medium and compared their functionality. Immunocytochemical analysis showed significant expression of bone markers (osteocalcin and collagen type I) in osteoblasts differentiated from ES and iPS cells on days 7 and 30. An in vitro mineralization assay confirmed the functionality of osteogenically differentiated ES and iPS cells. Gene expression arrays focusing on osteogenic differentiation were performed in order to compare the gene expression pattern in both differentiated and undifferentiated ES cells and iPS cells. We observed a significant upregulation of osteogenesis-related genes such as Runx2, osteopontin, collagen type I, Tnfsf11, Csf1, and alkaline phosphatase upon osteogenic differentiation of the ES and iPS cells. We further validated the expression of key osteogenic genes Runx2, osteopontin, osteocalcin, collagen type I, and osterix in both differentiated and undifferentiated ES and iPS cells by means of quantified real-time polymerase chain reaction. We conclude that ES and iPS cells are similar in their osteogenic differentiation capacities, as well as in their gene expression patterns.
Vuong, Helen E.; Hardi, Claudia N.; Barnes, Steven
2015-01-01
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst2A and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH–RFP mice and M1 ipRGCs in OPN4–EGFP mice. SRIF increases K+ currents, decreases Ca2+ currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst2A agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4′-piperidine]-1′-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N2-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-l-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain. SIGNIFICANCE STATEMENT Amacrine cells form multiple microcircuits in the inner retina to mediate visual processing, although their organization and function remain incompletely understood. The somatostatin [somatotropin release inhibiting factor (SRIF)]- and dopamine (DA)-releasing amacrine cells act globally, and, in this study, they are shown to interact and modulate the light response of intrinsically photosensitive retinal ganglion cells (ipRGCs). SRIF amacrine cells target both DA amacrine cells and M1 ipRGCs for inhibition. The parallel actions of SRIF may serve to compensate for the loss of DA-mediated inhibition of M1 ipRGCs. This inhibitory tuning is of particular importance because the DA system mediates a broad range of light adaptational actions in the retina and M1 ipRGCs project to brain areas that influence sleep, mood, cognition, circadian entrainment, and pupillary reflexes. PMID:26631476
Baumgart, Meike; Luder, Kerstin; Grover, Shipra; Gätgens, Cornelia; Besra, Gurdyal S; Frunzke, Julia
2013-12-30
The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development.
[Embryonic stem cells - a scientific by-product of the assisted reproduction technology?].
Sterthaus, Oliver; Zhang, Hong; De Geyter, Christian
2009-12-01
The differentiation potential of embryonic stem (ES) cells seems to be higher when compared to adult stem cells, which mainly differentiate into certain tissue types only. ES cells have the potential to play an important role in regenerative medicine as demonstrated with murine ES cells. However, with human embryonic stem cells (hESC) several obstacles still have to be overcome, when these are to be used in clinical applications. The expansion of hESC, safety issues as well as the immune-tolerance after transplantation are all problems that still have to be solved. Since 2005 the derivation of hESC lines from super-numerous embryos has become permitted in Switzerland, albeit under strictly restrictive guidelines. In 2008 the Basler hESC laboratory was successful in derivating the first hESC line with a normal chromosome complement in Switzerland (CHES2). Now, new applications allow the personalized establishment of immune-tolerant stem cells, which lead to the replacement of therapeutic cloning by induced pluripotent stem cells (iPS).
Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo
2015-03-01
Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.
Characteristics of cell lines established from human colorectal carcinoma.
Park, J G; Oie, H K; Sugarbaker, P H; Henslee, J G; Chen, T R; Johnson, B E; Gazdar, A
1987-12-15
We have characterized 14 human colorectal carcinoma cell lines established from primary and metastatic sites by us during the years 1982 to 1985. Five lines were established in fully defined ACL-4 medium and 9 in serum supplemented R10 medium. However, after establishment, cultures could be grown interchangeably in either medium. The lines grew as floating cell aggregates in ACL-4 medium, while most demonstrated substrate adherence in R10 medium. The lines had relatively long doubling times and low cloning efficiencies. Twelve were tumorigenic in athymic nude mice when injected s.c., and two grew i.p. as well. Based on culture, xenograft, and ultrastructural morphologies, the 14 lines could be subtyped as follows: 4 were well differentiated; 5 were moderately differentiated; 4 were poorly differentiated; and 1 was a mucinous carcinoma. Membrane associated antigens characteristic for gastrointestinal cells (carcinoembryonic antigen, CA 19-9, and TAG-72 antigens) were expressed by 50-71% of the lines. Lines expressing carcinoembryonic antigen and CA 19-9 actively secreted these antigens into the supernatant fluids while TAG-72 antigen was not secreted. Surprisingly, 5 of 7 of the original tumor samples tested and 13 of 14 cultured lines expressed L-dopa decarboxylase activity, which is a characteristic enzyme marker of neuroendocrine cells and tumors. In addition, one poorly differentiated cell line contained dense core granules, characteristic of endocrine secretion. Preliminary cytogenetic analyses indicated that 9 of 11 lines examined contained double minute chromosomes. In addition, 3 of the 9 lines with double minutes also had homogeneously staining regions. These findings indicate a high incidence of amplification of one or more as yet unidentified genes.
Pradip, De; Bouzyk, Mark; Dey, Nandini; Leyland-Jones, Brian
2013-01-01
Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.
Ambrosini, Giovanna; Dreos, René; Kumar, Sunil; Bucher, Philipp
2016-11-18
ChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for access, visualization and itegrative analysis of such data. Here we present the ChIP-Seq command line tools and web server, implementing basic algorithms for ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by running several tools in a cascade. The various ChIP-Seq command line tools and web services either complement or compare favorably to related bioinformatics resources in terms of computational efficiency, ease of access to public data and interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/ .
Modeling human neurological disorders with induced pluripotent stem cells.
Imaizumi, Yoichi; Okano, Hideyuki
2014-05-01
Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained knowledge in the form of actual examples. © 2013 International Society for Neurochemistry.
Madhu Krishna, B; Chaudhary, Sanjib; Mishra, Dipti Ranjan; Naik, Sanoj K; Suklabaidya, S; Adhya, A K; Mishra, Sandip K
2018-05-30
Breast cancer (BC) is highly heterogeneous with ~ 60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes. Here, we investigated the possible role and clinicopathological importance of ERRβ in breast cancer. Estrogen related receptor β (ERRβ) expression was examined using tissue microarray slides (TMA) of Breast Carcinoma patients with adjacent normal by immunohistochemistry and in breast cancer cell lines. In order to investigate whether ERRβ is a direct target of ERα, we investigated the expression of ERRβ in short hairpin ribonucleic acid knockdown of ERα breast cancer cells by western blot, qRT-PCR and RT-PCR. We further confirmed the binding of ERα by electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), Re-ChIP and luciferase assays. Fluorescence-activated cell sorting analysis (FACS) was performed to elucidate the role of ERRβ in cell cycle regulation. A Kaplan-Meier Survival analysis of GEO dataset was performed to correlate the expression of ERRβ with survival in breast cancer patients. Tissue microarray (TMA) analysis showed that ERRβ is significantly down-regulated in breast carcinoma tissue samples compared to adjacent normal. ER + ve breast tumors and cell lines showed a significant expression of ERRβ compared to ER-ve tumors and cell lines. Estrogen treatment significantly induced the expression of ERRβ and it was ERα dependent. Mechanistic analyses indicate that ERα directly targets ERRβ through estrogen response element and ERRβ also mediates cell cycle regulation through p18, p21 cip and cyclin D1 in breast cancer cells. Our results also showed the up-regulation of ERRβ promoter activity in ectopically co-expressed ERα and ERRβ breast cancer cell lines. Fluorescence-activated cell sorting analysis (FACS) showed increased G0/G1 phase cell population in ERRβ overexpressed MCF7 cells. Furthermore, ERRβ expression was inversely correlated with overall survival in breast cancer. Collectively our results suggest cell cycle and tumor suppressor role of ERRβ in breast cancer cells which provide a potential avenue to target ERRβ signaling pathway in breast cancer. Our results indicate that ERRβ is a negative regulator of cell cycle and a possible tumor suppressor in breast cancer. ERRβ could be therapeutic target for the treatment of breast cancer.
2013-01-01
Background The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Results Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. Conclusions This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development. PMID:24377418
Sułkowski, Maciej; Konieczny, Paweł; Chlebanowska, Paula; Majka, Marcin
2018-01-09
Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase ( HSV-TK ). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.
Intra-Peritoneal Hyperthermia Combining α-Galactosylceramide in the Treatment of Ovarian Cancer
Hsu, Yun-Ting; Huang, Jung-Tang; Wu, T. -C; Hung, Chien-Fu; Yang, Yuh-Cheng; Chang, Chih-Long
2013-01-01
The purpose of this study was to investigate the anti-tumor effect and potential mechanisms of i.p. hyperthermia in combination with α-galactosylceramide (α-GalCer) for the treatment of ovarian cancer. In this study, immuno-competent tumor models were established using murine ovarian cancer cell lines and treated with i.p. hyperthermia combining α-GalCer. Th1/Th2 cytokine expression profiles in the serum, NK cell cytotoxicity and phagocytic activities of dendritic cells (DCs) were assayed. We also analyzed the number of CD8+/IFN-γ+ tumor specific cytotoxic T cells, as well as the tumor growth based on depletion of lymphocyte sub-population. Therapeutic effect on those ovarian tumors was monitored by a non-invasive luminescent imaging system. Intra-peritoneal hyperthermia induced significant pro-inflammatory cytokines expression, and sustained the response of NK and DCs induced by α-GalCer treatment. The combination treatment enhanced the cytotoxic T lymphocyte (CTL) immune response in two mouse ovarian cancer models. This novel treatment modality by combination of hyperthermia and glycolipid provides a pronounced anti-tumor immune response and better survival. In conclusion, intra-peritoneal hyperthermia enhanced the pro-inflammatory cytokine secretion and phagocytic activity of DCs stimulated by α-GalCer. The subsequent CTL immune response induced by α-GalCer was further strengthened by combining with i.p. hyperthermia. Both innate and adaptive immunities were involved and resulted in a superior therapeutic effect in treating the ovarian cancer. PMID:23935988
Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.
Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah
2016-01-01
Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.
Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan
2016-03-01
The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Maurya, Mano Ram; Subramaniam, Shankar
2007-01-01
Calcium (Ca2+) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-β (PLC-β) activation, inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca2+ concentration for various doses of C5a under different initial conditions. The optimized parameters for IP3R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations. PMID:17483174
Li, Shang; Zhai, Junyu; Liu, Jiansheng; Hong, Yan; Zhao, Weixiu; Zhao, Aimin; Sun, Kang; Du, Yanzhi; Chen, Zi-Jiang
2017-01-01
The underlying mechanism about rhythms and epigenetics leading to aberrant trophoblast migration and invasion in recurrent spontaneous abortion (RSA) remains unknown. Brain and muscle ARNT-like protein 1 (BMAL1) is considered as a crucial role in fertility, and polymorphism of BMAL1 gene has been reported to be associated with risk of miscarriage. However, the functional role of BMAL1 in RSA is not fully understood. Previous study shows the descended expression of DNA 5′-cytosine-methyltransferases 1 (DNMT1) in the villous of early pregnancy loss. Thus, understanding of the regulation of DNMT1 expression may be of significance for the elucidation of the process of RSA. Using HTR-8/SVneo and JEG-3 cell lines, we certified the induction of specificity protein 1 (SP1) to DNMT1 and DAB2 interaction protein (DAB2IP), respectively, both of which further activated matrix metallo-proteinase 2/9 (MMP2/9), bringing out changes in trophoblast migration and invasion. Notably, BMAL1 functioned as a positive upstream factor of SP1 only in HTR-8/SVneo cells but not in JEG-3 cells, inducing SP1-DNMT1/DAB2IP pathway and facilitating migration and invasion of trophoblasts. In addition, progesterone might restore the down-regulation of BMAL1 and downstream pathway in a dose-dependent manner. Last but not least, the decreased abundance of BMAL1 was correlated positively with that of SP1, DNMT1, DAB2IP, MMP2 and MMP9 in human villous specimens of RSA. Our results demonstrate that the induction of BMAL1 to SP1 contributes to the expression of DNMT1 and DAB2IP, respectively, activating trophoblast migration and invasion. The deregulation of the BMAL1-mediated pathway in RSA can be rescued by progesterone. PMID:29163762
Investigation of the pathogenesis of autoimmune diseases by iPS cells.
Natsumoto, Bunki; Shoda, Hirofumi; Fujio, Keishi; Otsu, Makoto; Yamamoto, Kazuhiko
2017-01-01
The pluripotent stem cells have a self-renewal ability and can be differentiated into theoretically all of cell types. The induced pluripotent stem (iPS) cells overcame the ethical problems of the human embryonic stem (ES) cell, and enable pathologic analysis of intractable diseases and drug discovery. The in vitro disease model using disease-specific iPS cells enables repeated analyses of human cells without influence of environment factors. Even though autoimmune diseases are polygenic diseases, autoimmune disease-specific iPS cells are thought to be a promising tool for analyzing the pathogenesis of the diseases and drug discovery in future.
Lian, Qizhou; Chow, Yenyen; Esteban, Miguel Angel; Pei, Duanqing; Tse, Hung-Fat
2010-07-01
Recent advances in stem cell biology have transformed the understanding of cell physiology and developmental biology such that it can now play a more prominent role in the clinical application of stem cell and regenerative medicine. Success in the generation of human induced pluripotent stem cells (iPS) as well as related emerging technology on the iPS platform provide great promise in the development of regenerative medicine. Human iPS cells show almost identical properties to human embryonic stem cells (ESC) in pluripotency, but avoid many of their limitations of use. In addition, investigations into reprogramming of somatic cells to pluripotent stem cells facilitate a deeper understanding of human stem cell biology. The iPS cell technology has offered a unique platform for studying the pathogenesis of human disease, pharmacological and toxicological testing, and cell-based therapy. Nevertheless, significant challenges remain to be overcome before the promise of human iPS cell technology can be realised.
Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi
2016-01-01
Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.
Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C
2017-11-01
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.
Fukatsu, Kazumi; Bannai, Hiroko; Inoue, Takafumi; Mikoshiba, Katsuhiko
2010-09-01
Inositol 1,4,5-trisphosphate receptor type 1 (IP(3) R1) is an intracellular Ca(2+) release channel that plays crucial roles in the functions of Purkinje cells. The dynamics of IP(3) R1 on the endoplasmic reticulum membrane and the distribution of IP(3) R1 in neurons are thought to be important for the spatial regulation of Ca(2+) release. In this study, we analyzed the lateral diffusion of IP(3) R1 in Purkinje cells in cerebellar slice cultures using fluorescence recovery after photobleaching. In the dendrites of Purkinje cells, IP(3) R1 showed lateral diffusion with an effective diffusion constant of approximately 0.30 μm(2) /s, and the diffusion of IP(3) R1 was negatively regulated by actin filaments. We found that actin filaments were also involved in the regulation of IP(3) R1 diffusion in the spine of Purkinje cells. Glutamate or quisqualic acid stimulation, which activates glutamate receptors and leads to a Ca(2+) transient in Purkinje cells, decreased the diffusion of IP(3) R1 and increased the density of actin in spines. These findings indicate that the neuronal activity-dependent augmentation of actin contributes to the stabilization of IP(3) R1 in spines. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.
Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła
2015-01-01
Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.
LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.
Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan
2018-06-01
This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.
Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji
2017-04-29
Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs. Copyright © 2017 Elsevier Inc. All rights reserved.
Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.
Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart
2014-01-15
High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter
Macrophages induce differentiation of plasma cells through CXCL10/IP-10
Joo, HyeMee; Clayton, Sandra; Dullaers, Melissa; Herve, Marie-Cecile; Blankenship, Derek; De La Morena, Maria Teresa; Balderas, Robert; Picard, Capucine; Casanova, Jean-Laurent; Pascual, Virginia; Oh, SangKon; Banchereau, Jacques
2012-01-01
In tonsils, CD138+ plasma cells (PCs) are surrounded by CD163+ resident macrophages (Mϕs). We show here that human Mϕs (isolated from tonsils or generated from monocytes in vitro) drive activated B cells to differentiate into CD138+CD38++ PCs through secreted CXCL10/IP-10 and VCAM-1 contact. IP-10 production by Mϕs is induced by B cell–derived IL-6 and depends on STAT3 phosphorylation. Furthermore, IP-10 amplifies the production of IL-6 by B cells, which sustains the STAT3 signals that lead to PC differentiation. IP-10–deficient mice challenged with NP-Ficoll show a decreased frequency of NP-specific PCs and lower titers of antibodies. Thus, our results reveal a novel dialog between Mϕs and B cells, in which IP-10 acts as a PC differentiation factor. PMID:22987802
MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.
Wang, Shenqi; Lau, On Sun
2018-01-01
In multicellular organisms, the initiation and maintenance of specific cell types often require the activity of cell type-specific transcriptional regulators. Understanding their roles in gene regulation is crucial but probing their DNA targets in vivo, especially in a genome-wide manner, remains a technical challenge with their limited expression. To improve the sensitivity of chromatin immunoprecipitation (ChIP) for detecting the cell type-specific signals, we have developed the Maximized Objects for Better Enrichment (MOBE)-ChIP, where ChIP is performed at a substantially larger experimental scale and under low background conditions. Here, we describe the procedure in the study of transcription factors in the model plant Arabidopsis. However, with some modifications, the technique should also be implemented in other systems. Besides cell type-specific studies, MOBE-ChIP can also be used as a general strategy to improve ChIP signals.
Megha; Hasan, Gaiti
2017-04-15
Successful completion of animal development is fundamentally reliant on nutritional cues. Surviving periods of nutritional insufficiency requires adaptations that are coordinated, in part, by neural circuits. As neuropeptides secreted by neuroendocrine (NE) cells modulate neural circuits, we investigated NE cell function during development under nutrient stress. Starved Drosophila larvae exhibited reduced pupariation if either insulin signaling or IP 3 /Ca 2+ signaling were downregulated in NE cells. Moreover, an IP 3 R (inositol 1,4,5-trisphosphate receptor) loss-of-function mutant displayed reduced protein synthesis, which was rescued by overexpression of either InR (insulin receptor) or IP 3 R in NE cells of the mutant, suggesting that the two signaling pathways might be functionally compensatory. Furthermore, cultured IP 3 R mutant NE cells, but not neurons, exhibited reduced protein translation. Thus cell-specific regulation of protein synthesis by IP 3 R in NE cells influences protein metabolism. We propose that this regulation helps developing animals survive in poor nutritional conditions. © 2017. Published by The Company of Biologists Ltd.
2017-08-30
stained cells in five randomly selected fields for each slide. ELISA Conditioned media from cell lines or mice sera diluted in carbonate coating buffer... ELISA . Our results showed that Pter/SAHA combination treat- ment was more effective in suppressing VEGF- c and IL- 1β circulating levels compared to...3) SAHA (50 mg/kg; n = 5), and (4) Pter + SAHA (10 mg/kg and 50 mg/kg; n = 7) by i.p. injections for 10 weeks were quantitatively analyzed by ELISA
Targeting Src in Mucinous Ovarian Carcinoma
Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.
2014-01-01
PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505
Kim, Ji-Yeon; Lee, Dong-Hyung; Joo, Jong-Kil; Jin, Jun-O; Wang, Ji-Won; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup
2009-09-01
Intraperitoneal immuno-inflammatory changes may be associated with the pathogenesis of endometriosis. We evaluated the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the release of interferon-gamma-induced protein-10 (IP-10/CXCL10) and interleukin-8 (IL-8/CXCL8) by neutrophils, CD4(+) T cells, and monocytes. Neutrophils, CD4(+) T cells, and monocytes were cultured with ePF and the chemokine levels in the supernatants were then measured using enzyme-linked immunosorbent assay. The addition of ePF to cultures of CD4(+) T cells led to a significant increase in the release of IP-10 when compared with control PF without endometriosis (cPF). There was a positive correlation between the levels of IL-8 and IP-10 in ePF (R = 0.89, P = 0.041), but not between the levels of IP-10 and IL-8 released by neutrophils, CD4(+) T cells, and monocytes. The levels of IP-10 in ePF were positively correlated with the release of IP-10 by ePF-treated neutrophils (R = 0.89, P < 0.001), CD4(+) T cells (R = 0.93, P < 0.001), and monocytes (R = 0.70, P = 0.01). Moreover, the addition of ePF significantly enhanced the interferon-gamma-induced release of IP-10 by nuetrophils and CD4(+) T cells. These findings suggest that neutrophils and T cells release differential levels of IP-10 and IL-8 in response to stimulation with ePF, and that these cells are a major source of IP-10 in the PF of endometriosis patients.
Lim, Su Jun; Boyle, Patrick J.; Chinen, Madoka; Dale, Ryan K.; Lei, Elissa P.
2013-01-01
Chromatin insulators are functionally conserved DNA–protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3′ to 5′ RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs′, which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome. PMID:23358822
Lu, Chien-Hsing; Chang, Yen-Hou; Lee, Wai-Hou; Chang, Yi; Peng, Chia-Wen; Chuang, Chi-Mu
2016-01-01
The superiority of frontline intraperitoneal (IP) over intravenous (IV) chemotherapy is well established in the treatment of epithelial ovarian cancer. However, the role of IP chemotherapy in the second-line setting has rarely been investigated. Consecutive patients diagnosed with recurrent epithelial, tubal and peritoneal cancers between January 2000 and December 2012 were recruited using a propensity score-matching technique to adjust relevant risk factors. In total, 310 patients were included in the final analysis (94 for platinum-refractory/resistant disease and 216 for platinum-sensitive disease). IP chemotherapy demonstrated significantly longer median progression-free survival than IV chemotherapy (4.9 vs. 2.4 months, p < 0.001, for platinum-refractory/resistant disease, and 9.8 vs. 6.9 months, p < 0.001, for platinum-sensitive disease). Second-line IP chemotherapy confers longer progression-free survival than IV chemotherapy. Large-scale clinical trials should be conducted to validate the true efficacy. © 2016 S. Karger AG, Basel.
Induction of pluripotency by defined factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, Keisuke, E-mail: okita@cira.kyoto-u.ac.jp; Yamanaka, Shinya; Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507
2010-10-01
Somatic cells can be reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors. The induced pluripotent stem (iPS) cells from a patient's somatic cells could be useful source of cells for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into host genomes and may increase the risk of tumor formation. Studies of the mechanisms underlying the reprogramming and establishment of non-integration methods contribute evidence to resolve the safety concerns associated with iPS cells. On the other hand, patient-specificmore » iPS cells have already been established and used for recapitulating disease pathology.« less
IP-10 protects while MIP-2 promotes experimental anesthetic hapten - induced hepatitis
Njoku, Dolores B.; Li, Zhaoxia; Mellerson, Jenelle L; Sharma, Rajni; Talor, Monica V.; Barat, Nicole; Rose, Noel R.
2009-01-01
MIP-2 and IFN-γ inducible protein-10 (IP-10) and their respective receptors, CXCR2 and CXCR3, modulate tissue inflammation by recruiting neutrophils or T cells from the spleen or bone marrow. Yet, how these chemokines modulate diseases such as immune-mediated drug-induced liver injury (DILI) is essentially unknown. To investigate how chemokines modulate experimental DILI in our model we used susceptible BALB/c (WT) and IL-4−/− (KO) mice that develop significantly reduced hepatitis and splenic T cell priming to anesthetic haptens and self proteins following TFA-S100 immunizations. We detected CXCR2+ splenic granulocytes in all mice two weeks following immunizations; by 3 weeks, MIP-2 levels (p<0.001) and GR1+ cells were elevated in WT livers, suggesting MIP-2-recruited granulocytes. Elevated splenic CXCR3+ CD4+T cells were identified after 2 weeks in KO mice indicating elevated IP-10 levels which were confirmed during T cell priming. This result suggested that IP-10 reduced T cell priming to critical DILI antigens. Increased T cell proliferation following co-culture of TFA-S100-primed WT splenocytes with anti-IP-10 (p<0.05) confirmed that IP-10 reduced T cell priming to CYP2E1 and TFA. We propose that MIP-2 promotes and IP-10 protects against the development of hepatitis and T cell priming in this murine model. PMID:19131211
Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi
2012-01-01
The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis. PMID:22416217
Tucker, E B
1988-06-01
pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.
Functional myogenic engraftment from mouse iPS cells.
Darabi, Radbod; Pan, Weihong; Bosnakovski, Darko; Baik, June; Kyba, Michael; Perlingeiro, Rita C R
2011-11-01
Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies.
The role of DAB2IP in androgen receptor activation during prostate cancer progression.
Wu, K; Liu, J; Tseng, S-F; Gore, C; Ning, Z; Sharifi, N; Fazli, L; Gleave, M; Kapur, P; Xiao, G; Sun, X; Oz, O K; Min, W; Alexandrakis, G; Yang, C-R; Hsieh, C-L; Wu, H-C; He, D; Xie, D; Hsieh, J-T
2014-04-10
Altered androgen-receptor (AR) expression and/or constitutively active AR are commonly associated with prostate cancer (PCa) progression. Targeting AR remains a focal point for designing new strategy of PCa therapy. Here, we have shown that DAB2IP, a novel tumor suppressor in PCa, can inhibit AR-mediated cell growth and gene activation in PCa cells via distinct mechanisms. DAB2IP inhibits the genomic pathway by preventing AR nuclear translocation or phosphorylation and suppresses the non-genomic pathway via its unique functional domain to inactivate c-Src. Also, DAB2IP is capable of suppressing AR activation in an androgen-independent manner. In addition, DAB2IP can inhibit several AR splice variants showing constitutive activity in PCa cells. In DAB2IP(-/-) mice, the prostate gland exhibits hyperplastic epithelia, in which AR becomes more active. Consistently, DAB2IP expression inversely correlates with AR activation status particularly in recurrent or metastatic PCa patients. Taken together, DAB2IP is a unique intrinsic AR modulator in normal cells, and likely can be further developed into a therapeutic agent for PCa.
Zhang, Qi; Zeng, Xin; Younkin, Sam; Kawli, Trupti; Snyder, Michael P; Keleş, Sündüz
2016-02-24
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing technologies allow these experiments to be carried out with short (36-50 bps), long (75-100 bps), single-end, or paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different classes of genomic features, peak identification, and allele-specific binding detection. We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific binding detection. Our work elucidates the effect of design on the downstream analysis and provides insights to investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in such studies.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon
2011-01-01
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693
Ng, Kai Yu; Wong, Yung Hou; Wise, Helen
2011-07-01
Isolated cells from adult rat dorsal root ganglia (DRG) are frequently used as a model system to study responses of primary sensory neurons to nociceptor sensitizing agents such as prostaglandin E(2) and prostacyclin, which are presumed to act only on the neurons in typical mixed cell cultures. In the present study, we evaluated the expression of prostaglandin E(2) (EP(4)) and prostacyclin (IP) receptors in cultures of mixed DRG cells and in purified DRG glia. We show here that EP(4) and IP receptor agonists stimulated adenylyl cyclase activity in both mixed DRG cells and in purified DRG glia, and that these responses were specifically inhibited by EP(4) and IP receptor antagonists, respectively. The presence of EP(4) and IP receptors in DRG glia was further confirmed by the expression of EP(4) and IP receptor immunoreactivity and mRNA. With the increasing awareness of neuron-glial interactions within intact DRG and the use of isolated DRG cells in the study of mechanisms underlying nociception, it will be essential to consider the role played by EP(4) and IP receptor-expressing glial cells when evaluating prostanoid-induced sensitization of DRG neurons. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Ting; Kelaini, Sophia; Cochrane, Amy; Guha, Shaunta T.; Hu, Yanhua; Stitt, Alan W.; Xu, Qingbo
2015-01-01
Abstract Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalized medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation toward ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration. Methods and Results: In this study, we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen‐coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR‐199b is involved in EC differentiation. A step‐wise increase in expression of miR‐199 was detected during EC differentiation. Notably, miR‐199b targeted the Notch ligand JAG1, resulting in vascular endothelial growth factor (VEGF) transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA‐mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR‐199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR‐199b‐mediated inhibition of iPS cell differentiation toward smooth muscle markers. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR‐199b also regulated VEGF expression and angiogenesis. Conclusions: This study indicates a novel role for miR‐199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses. Stem Cells 2015;33:1405–1418 PMID:25535084
Feng, Gege; Zhang, Tianjiao; Liu, Jinqin; Ma, Xiaotang; Li, Bing; Yang, Lin; Zhang, Yue; Xu, Zefeng; Qin, Tiejun; Zhou, Jiaxi; Huang, Gang; Shi, Lihong; Xiao, Zhijian
2017-03-01
Myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1IP) appears to be an erythroid lineage-specific gene in mice; however, its role in normal erythropoiesis and erythropoietic disorders have not yet been elucidated. Here, we found that MLF1IP is abundantly expressed in human erythroid progenitor cells and that MLF1IP-deficiency reduces cell proliferation resulting from cell cycle arrest. Moreover, MLF1IP expression is exclusively elevated in CFU-E cells from polycythemia vera (PV) patients, and MLF1IP transgenic mice develop a PV-like disorder. Further analyses revealed that the erythroid progenitors and early-stage erythroblasts from these transgenic mice expand by up-regulating cyclin D2 and down-regulating p27 and p21. Thus, our data demonstrate that MLF1IP promotes erythroid proliferation and is involved in the pathogenesis of PV, suggesting that it might be a novel molecular target for erythropoietic disorders. © 2017 Federation of European Biochemical Societies.
Efficient Generation of iPS Cells from Skeletal Muscle Stem Cells
Tan, Kah Yong; Eminli, Sarah; Hettmer, Simone; Hochedlinger, Konrad; Wagers, Amy J.
2011-01-01
Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that “epigenetic memory” significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle. PMID:22028872
Song, Peipei; Inagaki, Yoshinori; Sugawara, Yasuhiko; Kokudo, Norihiro
2013-06-01
A research project involving sheets of retinal pigment epithelium constructed from iPS cells derived from patients with age-related maculopathy is one step closer to being approved for clinical trials by the Japanese Government. Now is the time to make therapies using iPS cells clinically available.
Lei, Fengyang; Zhao, Baohua; Haque, Rizwanul; Xiong, Xiaofang; Budgeon, Lynn; Christensen, Neil D; Wu, Yuzhang; Song, Jianxun
2011-07-15
Adoptive T-cell immunotherapy has garnered wide attention, but its effective use is limited by the need of multiple ex vivo manipulations and infusions that are complex and expensive. In this study, we show how highly reactive antigen (Ag)-specific CTLs can be generated from induced pluripotent stem (iPS) cells to provide an unlimited source of functional CTLs for adoptive immunotherapy. iPS cell-derived T cells can offer the advantages of avoiding possible immune rejection and circumventing ethical and practical issues associated with other stem cell types. iPS cells can be differentiated into progenitor T cells in vitro by stimulation with the Notch ligand Delta-like 1 (DL1) overexpressed on bone marrow stromal cells, with complete maturation occurring upon adoptive transfer into Rag1-deficient mice. Here, we report that these iPS cells can be differentiated in vivo into functional CTLs after overexpression of MHC I-restricted Ag-specific T-cell receptors (TCR). In this study, we generated murine iPS cells genetically modified with ovalbumin (OVA)-specific and MHC-I restricted TCR (OT-I) by retrovirus-mediated transduction. After their adoptive transfer into recipient mice, the majority of OT-I/iPS cells underwent differentiation into CD8+ CTLs. TCR-transduced iPS cells developed in vivo responded in vitro to peptide stimulation by secreting interleukin 2 and IFN-γ. Most importantly, adoptive transfer of TCR-transduced iPS cells triggered infiltration of OVA-reactive CTLs into tumor tissues and protected animals from tumor challenge. Taken together, our findings offer proof of concept for a potentially more efficient approach to generate Ag-specific T lymphocytes for adoptive immunotherapy. ©2011 AACR.
Bradykinin-related compounds as new drugs for cancer and inflammation.
Stewart, John M; Gera, Lajos; Chan, Daniel C; Bunn, Paul A; York, Eunice J; Simkeviciene, Vitalija; Helfrich, Barbara
2002-04-01
Bradykinin (BK) (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) is an important growth factor for small-cell lung cancer (SCLC) and prostate cancer (PC). These cancers have cells of neuroendocrine origin and express receptors for a variety of neuropeptides. BK receptors are expressed on almost all lung cancer cell lines and on many PC cells. Our very potent BK antagonist B9430 (D-Arg-Arg-Pro-Hyp-Gly-lgl-Ser-D-Igl-Oic-Arg) (Hyp, trans-4-hydroxy-L-proline; Ig1, alpha-2-indanylglycine; Oic, octahydroindole-2-carboxylic acid) is a candidate anti-inflammatory drug but does not inhibit growth of SCLC or PC. When B9430 is dimerized by N-terminal cross-linking with a suberimide linker, the product B9870 is a potent growth inhibitor for SCLC both in vitro and in vivo in athymic nude mice. Daily i.p. injection at 5 mg x kg(-1) day(-1) beginning on day 8 after SCLC SHP-77 cell implantation gave 65% inhibition of tumor growth. B9870 stimulates apoptosis in SCLC by a novel "biased agonist" action. We have also developed new small mimetic antagonists. BKM-570 (F5C-OC2Y-Atmp) (F5C, pentafluorocinnamic acid; OC2Y, O-2,6-dichlorobenzyl tyrosine; Atmp, 4-amino-2,2,6,6-tetramethylpiperidine) is very potent for inhibition of SHP-77 growth in nude mice. When injected daily i.p. at 5 mg x kg(-1), M-570 gave 90% suppression of tumor growth. M-570 is more potent than the well-known anticancer drug cisPlatin (60% inhibition) or the recently developed SU5416 (40% inhibition) in this model. M-570 also showed activity against various other cancer cell lines in vitro (SCLC, non-SCLC, lung, prostate, colon, cervix) and inhibited growth of prostate cell line PC3 in nude mice. M-570 and related compounds evidently act in vivo through pathways other than BK receptors. These compounds have clinical potential for treatment of human lung and prostate cancers.
Human induced pluripotent stem cells: a review of the US patent landscape.
Georgieva, Bilyana P; Love, Jane M
2010-07-01
Human induced pluripotent stem (iPS) cells and human embryonic stem cells are cells that have the ability to differentiate into a variety of cell types. Embryonic stem cells are derived from human embryos; however, by contrast, human iPS cells can be obtained from somatic cells that have undergone a process of 'reprogramming' via genetic manipulation such that they develop pluripotency. Since iPS cells are not derived from human embryos, they are a less complicated source of human pluripotent cells and are considered valuable research tools and potentially useful in therapeutic applications in regenerative medicine. Worldwide, there are only three issued patents concerning iPS cells. Therefore, the patent landscape in this field is largely undefined. This article provides an overview of the issued patents as well as the pending published patent applications in the field.
Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko
2015-09-01
The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells. ©AlphaMed Press.
2012-07-01
compared between wild type and mutant plants via chromatin immunoprecipitation (ChIP). Additionally, differences in centromere structure between wild...specific focus on non-CpG contexts. The proposed work is ongoing, and so far the major accomplishments include creation of relevant plant lines...laboratories that study topics related to breast cancer and epigenetics 1. Monthly journal club meetings at the Center for Vertebrate Genomics (CVG) which
Novel Array-Based Target Identification for Synergistic Sensitization of Breast Cancer to Herceptin
2010-05-01
cancer cell lines and expressed in human breast tumors. Oncotarget, (submitted). Abstract Farah Rahmatpanah, Zhenyu Jia, Tatsuya Azum, Eileen Adamson...Michael McClelland, Eileen Adamson, Dan Mercola. Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by...ChIP on chip. Genome Biology 2008, 9:R166 [Epub ahead of print]. Jun Hayakawa, Shalu Mittal, Yipeng Wang, Kemal Korkmaz, Mashide Ohmichi, Eileen
Disruption of Type I Interferon Induction by HIV Infection of T Cells
Sanchez, David Jesse; Miranda, Daniel; Marsden, Matthew D.; Dizon, Thomas Michael A.; Bontemps, Johnny R.; Davila, Sergio J.; Del Mundo, Lara E.; Ha, Thai; Senaati, Ashkon; Zack, Jerome A.; Cheng, Genhong
2015-01-01
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host. PMID:26375588
Disruption of Type I Interferon Induction by HIV Infection of T Cells.
Sanchez, David Jesse; Miranda, Daniel; Marsden, Matthew D; Dizon, Thomas Michael A; Bontemps, Johnny R; Davila, Sergio J; Del Mundo, Lara E; Ha, Thai; Senaati, Ashkon; Zack, Jerome A; Cheng, Genhong
2015-01-01
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.
Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells
Mungenast, Alison E.; Siegert, Sandra; Tsai, Li-Huei
2018-01-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer’s disease (AD) have been often failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. PMID:26657644
Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells.
Mungenast, Alison E; Siegert, Sandra; Tsai, Li-Huei
2016-06-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.
Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels
Gu, Chunfang; Wilson, Miranda S. C.; Jessen, Henning J.; Saiardi, Adolfo; Shears, Stephen B.
2016-01-01
The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophosphates’ (PP-InsPs)—highly ‘energetic’ and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function. PMID:27788189
Wang, J X; Li, P; Zhang, X T; Ye, L X
2017-09-01
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.
Li, Yan; Pelah, Avishay; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu
2014-01-01
Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O) and 2-(1-methylethenyl)oxirane (IP-3,4-O), both of which can be further metabolized to 2-methyl-2,2'-bioxirane (MBO). MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2) and human leukemia (HL60) cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM), although at low concentrations (≤200 μM) IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5-4 h) in L02 cells were different from each other: IP-1,2-O and MBO (200 μM) exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.
RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells
Walker, Marquis T.; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D.; Sheng, Wenlong; Weng, Shijun; Berson, David M.; Hattar, Samer; Montell, Craig
2015-01-01
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2−/− mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2−/− were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2−/− mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. PMID:26269578
ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data.
Wu, Song; Wang, Jianmin; Zhao, Wei; Pounds, Stanley; Cheng, Cheng
2010-06-03
ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application. Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method. In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.
Manukyan, Maria; Singh, Prim B
2012-05-01
Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Gourdeau, Henriette; McAlpine, James B; Ranger, Maxime; Simard, Bryan; Berger, Francois; Beaudry, Francis; Farnet, Chris M; Falardeau, Pierre
2008-05-01
ECO-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER technology, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity in the low micromolar range when tested in the NCI 60 cell line panel. In the work presented here, ECO-4601 was further evaluated against brain tumor cell lines. Preliminary mechanistic studies as well as in vivo antitumor evaluation were performed. Since ECO-4601 has a benzodiazepinone moiety, we first investigated if it binds the central and/or peripheral benzodiazepine receptors. ECO-4601 was tested in radioligand binding assays on benzodiazepine receptors obtained from rat hearts. The ability of ECO-4601 to inhibit the growth of CNS cancers was evaluated on a panel of mouse, rat and human glioma cell lines using a standard MTT assay. Antitumor efficacy studies were performed on gliomas (rat and human), human breast and human prostate mouse tumor xenografts. Antitumor activity and pharmacokinetic analysis of ECO-4601 was evaluated following intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) bolus administrations. ECO-4601 was shown to bind the peripheral but not the central benzodiazepine receptor and inhibited the growth of CNS tumor cell lines. Bolus s.c. and i.p. administration gave rise to low but sustained drug exposure, and resulted in moderate to significant antitumor activity at doses that were well tolerated. In a rat glioma (C6) xenograft model, ECO-4601 produced up to 70% tumor growth inhibition (TGI) while in a human glioma (U-87MG) xenograft, TGI was 34%. Antitumor activity was highly significant in both human hormone-independent breast (MDA-MB-231) and prostate (PC-3) xenografts, resulting in TGI of 72 and 100%, respectively. On the other hand, i.v. dosing was followed by rapid elimination of the drug and was ineffective. Antitumor efficacy of ECO-4601 appears to be associated with the exposure parameter AUC and/or sustained drug levels rather than C (max). These in vivo data constitute a rationale for clinical studies testing prolonged continuous administration of ECO-4601.
Gillotin, Sébastien; Guillemot, François
2016-06-20
Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is an important strategy to study gene regulation. When availability of cells is limited, however, it can be useful to focus on specific genes to investigate in depth the role of transcription factors or histone marks. Unfortunately, performing ChIP experiments to study transcription factors' binding to DNA can be difficult when biological material is restricted. This protocol describes a robust method to perform μChIP for over-expressed or endogenous transcription factors using ~100,000 cells per ChIP experiment (Masserdotti et al ., 2015). We also describe optimization steps, which we think are critical for this protocol to work and which can be used to further reduce the number of cells.
Ishida, Sachiko; Matsu-ura, Toru; Fukami, Kiyoko; Michikawa, Takayuki; Mikoshiba, Katsuhiko
2014-01-01
A uniform extracellular stimulus triggers cell-specific patterns of Ca2+ signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3) concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca2+ oscillations in terms of the time constant of Ca2+ spike amplitude decay and the Ca2+ oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca2+ signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca2+ signals. RT-PCR and western blot analyses showed that phospholipase C (PLC)-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca2+ oscillations, such as the time constant of the temporal changes in the Ca2+ spike amplitude and the Ca2+ oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca2+ release, can cause cell-to-cell variability in the patterns of Ca2+ signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PMID:24475116
Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R
2006-03-01
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.
Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.
Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi
2018-01-01
It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.
Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi
2016-01-01
Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie
2018-01-01
Abstract With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. PMID:29126285
Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G
2008-02-01
The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.
Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C
2016-01-01
The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.
Harada, Masako; Pokrovskaja-Tamm, Katja; Söderhäll, Stefan; Heyman, Mats; Grander, Dan; Corcoran, Martin
2012-10-01
Analysis of the microRNA transcriptome following dexa- methasone treatment of the acute lymphocytic leukemia (ALL) cell line RS4;11 showed a global down-regulation of microRNA levels. MIR17HG was rapidly down-regulated following treatment, with chromatin immunoprecipitation (ChIP) analysis demonstrating the promoter to be a direct target of glucocorticoid (GC)-transcriptional repression and revealing the miR17-92 cluster as a prime target for dexamethasone-induced repression. The loss of miR17 family expression and concomitant increases in the miR17 target Bim occurred in an additional ALL cell line SUP-B15 but not in the dexamethasone-resistant REH. Alteration of miR17 levels through up-regulation or inhibition resulted in an decrease and increase, respectively, in Bim protein levels and dexamethasone-induced cell death. Primary ex vivo ALL cells that underwent apoptosis induced by dexamethasone also down-regulated miR17 levels. Thus, down-regulation of miR17 plays an important role in glucocorticoid-induced cell death suggesting that targeting miR17 may improve the current ALL combination therapy.
Jaffar, Zeina; Ferrini, Maria E.; Shaw, Pamela K.; FitzGerald, Garret A.; Roberts, Kevan
2011-01-01
γδ T cells rapidly produce cytokines and represent a first line of defence against microbes and other environmental insults at mucosal tissues and are thus thought to play a local immunoregulatory role. We show that allergic airway inflammation was associated with an increase in innate IL-17-producing γδ T (γδ-17) cells that expressed the αEβ7 integrin and were closely associated with the airway epithelium. Importantly, prostaglandin (PG)I2 and its receptor IP, which downregulated airway eosinophilic inflammation, promoted the emergence of these intraepithelial γδ-17 cells into the airways by enhancing IL-6 production by lung eosinophils and dendritic cells. Accordingly, a pronounced reduction of γδ-17 cells was observed in the thymus of naïve mice lacking the PGI2 receptor IP, as well as in the lungs during allergic inflammation, implying a critical role for PGI2 in the programming of “natural” γδ-17 cells. Conversely, iloprost, a stable analog of PGI2, augmented IL-17 production by γδ T cells but significantly reduced the airway inflammation. Together, these findings suggest that PGI2 plays a key immunoregulatory role by promoting the development of innate intraepithelial γδ-17 cells through an IL-6-dependent mechanism. By enhancing γδ-17 cell responses, stable analogs of PGI2 may be exploited in the development of new immunotherapeutic approaches. PMID:21976777
Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2.
Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert
2017-06-01
Previous work revealed that intracellular Ca 2+ signals and the inositol 1,4,5-trisphosphate (IP 3 ) receptors (IP 3 R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP 3 Rs and Ca 2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca 2+ -chelating agent. To elucidate the IP 3 R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP 3 R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP 3 R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca 2+ or by knocking out IP 3 Rs. Finally, we investigated whether resveratrol by itself induced Ca 2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca 2+ ATPase (SERCA) activity nor the IP 3 -induced Ca 2+ release nor the basal Ca 2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP 3 -induced Ca 2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca 2+ signals by itself, it acutely decreased the ER Ca 2+ -store content irrespective of the presence or absence of IP 3 Rs, leading to a dampened agonist-induced Ca 2+ signaling. In conclusion, these results reveal that IP 3 Rs and cytosolic Ca 2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-07-01
type and mutant plants via chromatin immunoprecipitation (ChIP). Additionally, differences in centromere structure between wild-type and VIM1 RING...contexts. The proposed work is ongoing, and so far the major accomplishments include creation of relevant plant lines and development of in vitro assays...a comparative proteomics approach in wild-type plants and RING domain mutants (Months 1 - 18) This work is in early stages, with the main
Abnormalities in human pluripotent cells due to reprogramming mechanisms
Ma, Hong; Morey, Robert; O’Neil, Ryan C.; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D.; Hariharan, Manoj; Nery, Joseph R.; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D.; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P.; Ecker, Joseph R.; Laurent, Louise C.; Mitalipov, Shoukhrat
2016-01-01
Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies. PMID:25008523
Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid.
Li, Lujia; Fu, Qingxue; Xia, Mengxin; Xin, Lei; Shen, Hongyi; Li, Guowen; Ji, Guang; Meng, Qianchao; Xie, Yan
2018-01-31
Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10 -5 cm/s in the control group to (3.39 ± 0.417) × 10 -5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, S.A.; Trilivas, I.; Brown, J.H.
Carbachol and guanine nucleotides stimulate formation of the (/sup 3/H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with (/sup 3/H) inositol. Carbachol alone has little effect on formation of the (/sup 3/H) inositol phosphates (IPs), but GTP..gamma..S causes synergistic accumulation of (/sup 3/H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTP..gamma..S all support formation of the (/sup 3/H)IPs, with or without hormone, but GTP..gamma..S is the most effective. In the presence of GTP..gamma..S, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the (/sup 3/H)IPs occur at approx. 5 ..mu..M andmore » approx. 100 ..mu..M carbachol, respectively; values close to those seen in intact cells. GTP..gamma..S alone stimulates formation of the (/sup 3/H)IPs after a brief lag time. The combination of GTP..gamma..S and carbachol both increases the rate of, and decreases the lag in, formation of the (/sup 3/H)IPs. LiCl increases (/sup 3/H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of (/sup 3/H)IP3. GTP..gamma..S and carbachol cause formation of (/sup 3/H)IPs in the absence of Ca/sup + +/, but formation induced by GTP..gamma..S with or without carbachol is Ca/sup + +/-sensitive over a range of physiological concentrations. Although carbachol, Ca/sup + +/, and GTP..gamma..S all have effects on formation of (/sup 3/H)IPs, GTP..gamma..S appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell.« less
Yang, Jian-Hua; Li, Jun-Hao; Jiang, Shan; Zhou, Hui; Qu, Liang-Hu
2013-01-01
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Ishikawa, Masaaki; Ohnishi, Hiroe; Skerleva, Desislava; Sakamoto, Tatsunori; Yamamoto, Norio; Hotta, Akitsu; Ito, Juichi; Nakagawa, Takayuki
2017-06-01
The present study examined the efficacy of a neural induction method for human induced pluripotent stem (iPS) cells to eliminate undifferentiated cells and to determine the feasibility of transplanting neurally induced cells into guinea-pig cochleae for replacement of spiral ganglion neurons (SGNs). A stepwise method for differentiation of human iPS cells into neurons was used. First, a neural induction method was established on Matrigel-coated plates; characteristics of cell populations at each differentiation step were assessed. Second, neural stem cells were differentiated into neurons on a three-dimensional (3D) collagen matrix, using the same protocol of culture on Matrigel-coated plates; neuron subtypes in differentiated cells on a 3D collagen matrix were examined. Then, human iPS cell-derived neurons cultured on a 3D collagen matrix were transplanted into intact guinea-pig cochleae, followed by histological analysis. In vitro analyses revealed successful induction of neural stem cells from human iPS cells, with no retention of undifferentiated cells expressing OCT3/4. After the neural differentiation of neural stem cells, approximately 70% of cells expressed a neuronal marker, 90% of which were positive for vesicular glutamate transporter 1 (VGLUT1). The expression pattern of neuron subtypes in differentiated cells on a 3D collagen matrix was identical to that of the differentiated cells on Matrigel-coated plates. In addition, the survival of transplant-derived neurons was achieved when inflammatory responses were appropriately controlled. Our preparation method for human iPS cell-derived neurons efficiently eliminated undifferentiated cells and contributed to the settlement of transplant-derived neurons expressing VGLUT1 in guinea-pig cochleae. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Saleem, Huma; Tovey, Stephen C.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.
2013-01-01
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels. Most animal cells express mixtures of the three IP3R subtypes encoded by vertebrate genomes. Adenophostin A (AdA) is the most potent naturally occurring agonist of IP3R and it shares with IP3 the essential features of all IP3R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-hydroxyl of IP3. The two essential phosphate groups contribute to closure of the clam-like IP3-binding core (IBC), and thereby IP3R activation, by binding to each of its sides (the α- and β-domains). Regulation of the three subtypes of IP3R by AdA and its analogues has not been examined in cells expressing defined homogenous populations of IP3R. We measured Ca2+ release evoked by synthetic adenophostin A (AdA) and its analogues in permeabilized DT40 cells devoid of native IP3R and stably expressing single subtypes of mammalian IP3R. The determinants of high-affinity binding of AdA and its analogues were indistinguishable for each IP3R subtype. The results are consistent with a cation-π interaction between the adenine of AdA and a conserved arginine within the IBC α-domain contributing to closure of the IBC. The two complementary contacts between AdA and the α-domain (cation-π interaction and 3″-phosphate) allow activation of IP3R by an analogue of AdA (3″-dephospho-AdA) that lacks a phosphate group equivalent to the essential 5-phosphate of IP3. These data provide the first structure-activity analyses of key AdA analogues using homogenous populations of all mammalian IP3R subtypes. They demonstrate that differences in the Ca2+ signals evoked by AdA analogues are unlikely to be due to selective regulation of IP3R subtypes. PMID:23469136
Wang, Xuan; Zhang, Fang-Cheng; Zhao, Hong-Yang; Lu, Xiao-Ling; Sun, Yun; Xiong, Zhi-Yong; Jiang, Xiao-Bing
2014-08-01
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.
Sontag, Stephanie; Förster, Malrun; Qin, Jie; Wanek, Paul; Mitzka, Saskia; Schüler, Herdit M; Koschmieder, Steffen; Rose-John, Stefan; Seré, Kristin; Zenke, Martin
2017-04-01
Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Unraveling the biology of bipolar disorder using induced pluripotent stem-derived neurons.
Miller, Nathaniel D; Kelsoe, John R
2017-11-01
Bipolar disorder has been studied from numerous angles, from pathological studies to large-scale genomic studies, overall making moderate gains toward an understanding of the disorder. With the advancement of induced pluripotent stem (iPS) cell technology, in vitro models based on patient samples are now available that inherently incorporate the complex genetic variants that largely are the basis for this disorder. A number of groups are starting to apply iPS technology to the study of bipolar disorder. We selectively reviewed the literature related to understanding bipolar disorder based on using neurons derived from iPS cells. So far, most work has used the prototypical iPS cells. However, others have been able to transdifferentiate fibroblasts directly to neurons. Others still have utilized olfactory epithelium tissue as a source of neural-like cells that do not need reprogramming. In general, iPS and related cells can be used for studies of disease pathology, drug discovery, or stem cell therapy. Published studies have primarily focused on understanding bipolar disorder pathology, but initial work is also being done to use iPS technology for drug discovery. In terms of disease pathology, some evidence is pointing toward a differentiation defect with more ventral cell types being prominent. Additionally, there is evidence for a calcium signaling defect, a finding that builds on the genome-wide association study results. Continued work with iPS cells will certainly help us understand bipolar disorder and provide a way forward for improved treatments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
You, Yuanyuan; Peng, Bo; Ben, Songbin; Hou, Weijian; Sun, Liguang; Jiang, Wei
2018-07-01
Lead (Pb 2+ ) is a well-known type of neurotoxin and chronic exposure to Pb 2+ induces cognition dysfunction. In this work, the potential role of early growth response gene 1 (EGR1) in the linkage of Pb 2+ exposure and disrupted in scherophernia-1 (DISC1) activity was investigated. Human neuroblastoma cell line SH-SY5Y was subjected to different concentrations of lead acetate (PbAc) to determine the effect of Pb 2+ exposure on the cell viability, apoptosis, and activity of EGR1 and DISC1. Then the expression of EGR1 in SH-SY5Y cells was knocked down with specific siRNA to assess the function of EGR1 in Pb 2+ induced activation of DISC1. The interaction between EGR1 and DISC1 was further validated with dual luciferase assay, Supershift electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP)-PCR. Administration of PbAc decreased cell viability and induced apoptosis in SH-SY5Y cells in a dose-dependent manner. Additionally, exposure to PbAc also up-regulated expression of EGR1 and DISC1 at all concentrations. Knockdown of EGR1 blocked the effect of PbAc on SH-SY5Y cells, indicating the central role of EGR1 in the function of Pb 2+ on activity of DISC1. Based on the results of dual luciferase assay, Supershift EMSA, and ChIP-PCR, EGR1 mediated the effect of Pb 2+ on DISC1 by directly bound to the promoter region of DISC1 gene. The current study elaborated the mechanism involved in the effect of Pb 2+ exposure on expression of DISC1 for the first time: EGR1 activated by Pb 2+ substitution of zinc triggered the transcription of DISC1 gene by directly binding to its promoter.
2005-09-01
information dominance . This thesis provides recommended line items for injection into the IP IQ in the appropriate format with discussions and definitions that address the specific line items. The thesis also provides further recommendations for the continuing improvement and refinement of the IP qualification process, especially in the area of
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps.
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K; Ernst, Jason; Kellis, Manolis; Hardison, Ross C; Myers, Richard M; Wold, Barbara J
2013-12-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity.
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K.; Ernst, Jason; Kellis, Manolis; Hardison, Ross C.; Myers, Richard M.; Wold, Barbara J.
2013-01-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity. PMID:24170599
Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?
de Lázaro, Irene; Yilmazer, Açelya; Kostarelos, Kostas
2014-07-10
The generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of defined transcription factors has provided the regenerative medicine field with a new tool for cell replacement strategies. The advantages that these pluripotent cells can offer in comparison to other sources of stem cells include the generation of patient-derived cells and the lack of embryonic tissue while maintaining a versatile differentiation potential. The promise of iPS cell derivatives for therapeutic applications is encouraging albeit very early in development, with the first clinical study currently ongoing in Japan. Many challenges are yet to be circumvented before this technology can be clinically translated widely though. The delivery and expression of the reprogramming factors, the genomic instability, epigenetic memory and impact of cell propagation in culture are only some of the concerns. This article aims to critically discuss the potential of iPS cells as a new source of cell therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.
Wei, Tingyi; Chen, Wen; Wang, Xiukun; Zhang, Man; Chen, Jiayu; Zhu, Songcheng; Chen, Long; Yang, Dandan; Wang, Guiying; Jia, Wenwen; Yu, Yangyang; Duan, Tao; Wu, Minjuan; Liu, Houqi; Gao, Shaorong; Kang, Jiuhong
2015-01-01
The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding and DNA demethylation at the promoters of iPS cell maturation-related genes during the transition of pre-iPS cells to a fully reprogrammed state. We also found that HDAC2 competed with TET1 in the binding of the RbAp46 protein at the promoters of maturation genes and knockdown of TET1 markedly prevented the activation of these genes. Collectively, our data not only demonstrated a novel intrinsic mechanism that the HDAC2-TET1 switch critically regulates iPS cell maturation, but also revealed an underlying mechanism of the interplay between histone acetylation and DNA demethylation in gene regulation. PMID:25934799
Bourdeau, M L; Laplante, I; Laurent, C E; Lacaille, J-C
2011-03-10
Neuronal A-type K(+) channels regulate action potential waveform, back-propagation and firing frequency. In hippocampal CA1 interneurons located at the stratum lacunosum-moleculare/radiatum junction (LM/RAD), Kv4.3 mediates A-type K(+) currents and a Kv4 β-subunit of the Kv channel interacting protein (KChIP) family, KChIP1, appears specifically expressed in these cells. However, the functional role of this accessory subunit in A-type K(+) currents and interneuron excitability remains largely unknown. Thus, first we studied KChIP1 and Kv4.3 channel interactions in human embryonic kidney 293 (HEK293) cells and determined that KChIP1 coexpression modulated the biophysical properties of Kv4.3 A-type currents (faster recovery from inactivation, leftward shift of activation curve, faster rise time and slower decay) and this modulation was selectively prevented by KChIP1 short interfering RNA (siRNA) knockdown. Next, we evaluated the effects of KChIP1 down-regulation by siRNA on A-type K(+) currents in LM/RAD interneurons in slice cultures. Recovery from inactivation of A-type K(+) currents was slower after KChIP1 down-regulation but other properties were unchanged. In addition, down-regulation of KChIP1 levels did not affect action potential waveform and firing, but increased firing frequency during suprathreshold depolarizations, indicating that KChIP1 regulates interneuron excitability. The effects of KChIP1 down-regulation were cell-specific since CA1 pyramidal cells that do not express KChIP1 were unaffected. Overall, our findings suggest that KChIP1 interacts with Kv4.3 in LM/RAD interneurons, enabling faster recovery from inactivation of A-type currents and thus promoting stronger inhibitory control of firing during sustained activity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Bähring, R; Dannenberg, J; Peters, H C; Leicher, T; Pongs, O; Isbrandt, D
2001-06-29
Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.
Yeh, Chiuan-Ren; Ou, Zheng-Yu; Xiao, Guang-Qian; Guancial, Elizabeth; Yeh, Shuyuan
2015-12-29
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.
García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto
2012-01-01
During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293
Preparation of pancreatic β-cells from human iPS cells with small molecules
2012-01-01
Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed. PMID:22722666
Running TCP/IP over ATM Networks.
ERIC Educational Resources Information Center
Witt, Michael
1995-01-01
Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)
Zhao, Bo; Zou, James; Wang, Hongfang; Johannsen, Eric; Peng, Chih-wen; Quackenbush, John; Mar, Jessica C; Morton, Cynthia Casson; Freedman, Matthew L; Blacklow, Stephen C; Aster, Jon C; Bernstein, Bradley E; Kieff, Elliott
2011-09-06
Epstein-Barr virus nuclear antigen 2 (EBNA2) regulation of transcription through the cell transcription factor RBPJ is essential for resting B-lymphocyte (RBL) conversion to immortal lymphoblast cell lines (LCLs). ChIP-seq of EBNA2 and RBPJ sites in LCL DNA found EBNA2 at 5,151 and RBPJ at 10,529 sites. EBNA2 sites were enriched for RBPJ (78%), early B-cell factor (EBF, 39%), RUNX (43%), ETS (39%), NFκB (22%), and PU.1 (22%) motifs. These motif associations were confirmed by LCL RBPJ ChIP-seq finding 72% RBPJ occupancy and Encyclopedia Of DNA Elements LCL ChIP-seq finding EBF, NFκB RELA, and PU.1 at 54%, 31%, and 17% of EBNA2 sites. EBNA2 and RBPJ were predominantly at intergene and intron sites and only 14% at promoter sites. K-means clustering of EBNA2 site transcription factors identified RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and repressive RUNX clusters, which ranked from highest to lowest in H3K4me1 signals and nucleosome depletion, indicative of active chromatin. Surprisingly, although quantitatively less, the same genome sites in RBLs exhibited similar high-level H3K4me1 signals and nucleosome depletion. The EBV genome also had an LMP1 promoter EBF site, which proved critical for EBNA2 activation. LCL HiC data mapped intergenic EBNA2 sites to EBNA2 up-regulated genes. FISH and chromatin conformation capture linked EBNA2/RBPJ enhancers 428 kb 5' of MYC to MYC. These data indicate that EBNA2 evolved to target RBL H3K4me1 modified, nucleosome-depleted, nonpromoter sites to drive B-lymphocyte proliferation in primary human infection. The primed RBL program likely supports antigen-induced proliferation.
Specific receptor for inositol-1,4,5-trisphosphate in permeabilized rabbit neutrophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradford, P.G.; Spat, A.; Rubin, R.P.
1986-03-05
Neutrophil chemotaxis and degranulation are resultant, in part, from the mobilization of intracellular calcium by inositol-1,4,5-trisphosphate ((1,4,5)IP/sub 3/), one of the products of chemoattractant-stimulated phospholipase C activity. High specific activity (ca. 40 Ci/mmol) (/sup 32/P)(1,4,5)IP/sub 3/ was prepared from (..gamma..-/sup 32/P)ATP-labeled human erythrocyte ghosts and was used in binding assays with saponin-permeabilized rabbit peritoneal neutrophils. At 4/sup 0/C and in the presence of inhibitors of the IP/sub 3/ 5-phosphomonoesterase, (/sup 32/P)(1,4,5)IP/sub 3/ rapidly associated with a specific binding component which saturated within 60s. Nonspecific binding, taken as the residual binding in the presence of 10 ..mu..M (1,4,5)IP/sub 3/, was 15%more » of the total. No specific binding was detected using intact cells. The specific binding to permeable cells was reversible (t/sup 1/2/ approx. 60s) and could be inhibited in a dose-dependent manner by (1,4,5)IP/sub 3/ (EC/sub 50/ = 30 nM) and by other calcium mobilizing inositol phosphates ((2,4,5)IP/sub 3/) but not by inactive analogs ((1,4)IP/sub 2/, (4,5)IP/sub 2/, (1)IP). The dose-responses of (1,4,5)IP/sub 3/ and (2,4,5)IP/sub 3/ in inhibiting (/sup 32/P)(1,4,5)IP/sub 3/ specific binding correlated well with their abilities to release Ca/sup 2 +/ from nonmitochondrial vesicular stores in the same preparation of cells, suggesting that the authors have identified the physiological receptor for (1,4,5)IP/sub 3/.« less
Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki
2015-07-10
Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei
2017-07-01
Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rao, Feng; Cha, Jiyoung; Xu, Jing; Xu, Risheng; Vandiver, M. Scott; Tyagi, Richa; Tokhunts, Robert; Koldobskiy, Michael A.; Fu, Chenglai; Barrow, Roxanne; Wu, Mingxuan; Fiedler, Dorothea; Barrow, James C.; Snyder, Solomon H.
2014-01-01
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) co-chaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks) of which IP6K2 has been implicated in p53-associated cell death. In the present study we report a novel apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine-15 to activate the cell death program in human cancer cells and in murine B cells. PMID:24657168
Induced pluripotent stem cells for regenerative medicine.
Hirschi, Karen K; Li, Song; Roy, Krishnendu
2014-07-11
With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.
This invention describes the discovery that specific p53 isoform increase the number of inducible pluripotent stem cells (iPS). It is known that the activity of p53 regulates the self-renewal and pluripotency of normal and cancer stem cells, and also affects re-programming efficiency of iPS cells. This p53 isoform-based technology provides a more natural process of increasing iPS cell production than previous methods of decreasing p53. NCI seeks licensees for this technology.
Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun
2016-11-22
Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.
Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants.
Tucker, E. B.; Boss, W. F.
1996-06-01
The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations.
Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants.
Tucker, E. B.; Boss, W. F.
1996-01-01
The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations. PMID:12226302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, M.; Field, J.B.
Thyrotropin (TSH) and carbachol stimulated in a dose-dependent manner the accumulation of 3H-glycerophosphoinositol (GPI), 3H-inositol monophosphate (IP1), 3H-inositol bisphosphate (IP2) and 3H-inositol trisphosphate (IP3) in primary cultures of dog thyroid cells prelabeled with myo-(2-3H)inositol. TSH, 250 mU/mL, stimulated 3H-IP3 level after a 10-minute incubation while 10 mU/mL TSH increased it during a 60-minute incubation. The effect of carbachol was more rapid and greater than that of TSH. Carbachol, 100 mumol/L, elevated 3H-IP3 after a 2-minute incubation and 3H-IP3 formation was increased by as little as 1 mumol/L carbachol. TSH stimulation was observed only if the cells were deprived of TSHmore » for 5 days before being labeled with 3H-inositol. Prolongation of the labeling period or addition of TSH, (Bu)2cAMP or carbachol during the labeling increased 3H-inositol incorporation into polyphoinositides (PIPs). When the cells were labeled without any other addition, control and TSH-stimulated 3H-IP3 levels increased in parallel with 3H-PIP levels. However, TSH or carbachol-stimulated 3H-IP3 levels did not increase in proportion to 3H-PIPs level when the cells were labeled with TSH or (Bu)2cAMP. Thus, the ratio of 3H-IP3/3H-PIPs (both control and TSH or carbachol-stimulated) decreased in the cells labeled with TSH or (Bu)2cAMP, which might reflect TSH stimulation of 3H-inositol incorporation into PIPs pool(s) that do not participate in hormone-induced hydrolysis of PIPs.« less
The UNITAID Patent Pool Initiative: Bringing Patents Together for the Common Good.
Bermudez, Jorge; 't Hoen, Ellen
2010-01-19
Developing and delivering appropriate, affordable, well-adapted medicines for HIV/AIDS remains an urgent challenge: as first-line therapies fail, increasing numbers of people require costly second-line therapy; one-third of ARVs are not available in pediatric formulations; and certain key first- and second-line triple fixed-dose combinations do not exist or sufficient suppliers are lacking. UNITAID aims to help solve these problems through an innovative initiative for the collective management of intellectual property (IP) rights - a patent pool for HIV medicines. The idea behind a patent pool is that patent holders - companies, governments, researchers or universities - voluntarily offer, under certain conditions, the IP related to their inventions to the patent pool. Any company that wants to use the IP to produce or develop medicines can seek a license from the pool against the payment of royalties, and may then produce the medicines for use in developing countries (conditional upon meeting agreed quality standards). The patent pool will be a voluntary mechanism, meaning its success will largely depend on the willingness of pharmaceutical companies to participate and commit their IP to the pool. Generic producers must also be willing to cooperate. The pool has the potential to provide benefits to all.
An Impact Assessment Model for Distributed Adaptive Security Situation Assessment
2005-01-01
the cargo manifest can be either a 56K modem-based TCP/IP connection (the oval labeled internet) or a 40K wireless modem connection ( cell phone ) that...via a UDP connection on the 40K wireless modem ( cell phone ). For each resource, either alternative may be used to achieve the same goal, but some...Manifests Comm-in Comp- power Comm- out JTF Internet (TCP-IP) Cell phone (TCP-IP) Internet (UDP) Cell phone (UDP) Manual Computer 4
Hur, Yong Suk; Yoo, Seung Hyun
2015-01-01
The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.
Chromatin Immunoprecipitation (ChIP) Protocol for Low-abundance Embryonic Samples.
Rehimi, Rizwan; Bartusel, Michaela; Solinas, Francesca; Altmüller, Janine; Rada-Iglesias, Alvaro
2017-08-29
Chromatin immunoprecipitation (ChIP) is a widely-used technique for mapping the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes at a given locus or on a genome-wide scale. The combination of ChIP assays with next-generation sequencing (i.e., ChIP-Seq) is a powerful approach to globally uncover gene regulatory networks and to improve the functional annotation of genomes, especially of non-coding regulatory sequences. ChIP protocols normally require large amounts of cellular material, thus precluding the applicability of this method to investigating rare cell types or small tissue biopsies. In order to make the ChIP assay compatible with the amount of biological material that can typically be obtained in vivo during early vertebrate embryogenesis, we describe here a simplified ChIP protocol in which the number of steps required to complete the assay were reduced to minimize sample loss. This ChIP protocol has been successfully used to investigate different histone modifications in various embryonic chicken and adult mouse tissues using low to medium cell numbers (5 x 10 4 - 5 x 10 5 cells). Importantly, this protocol is compatible with ChIP-seq technology using standard library preparation methods, thus providing global epigenomic maps in highly relevant embryonic tissues.
Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Saito, Shinobu; Takeda, Nobuakira; Yamada, Hisashi; Horiguchi-Yamada, Junko
2007-01-01
The myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1LP, also called KLIP1 and CENP-50) is reported to localize in both the nucleus and the cytoplasm. To investigate the functions of MLF1IP, its subnuclear localization was studied. MLF1IP was tagged with green fluorescent protein (EGFP). Fibrillarin was tagged with red fluorescent protein (DsRed). EGFP-tagged MLF1IP deletion vectors were also constructed. Plasmid-constructs were transfected into human cervical adenocarcinoma HeLa cells or monkey kidney fibroblast COS-7 cells, and the localization was studied by either confocal fluorescence microscopy or fluorescence microscopy. Ectopically expressed MLF1IP was localized mainly in the nucleolus. In some cells, small dot-like particles of MLF1IP fluorescence were observed in the nucleoplasm. Co-staining of fibrillarin disclosed that MLF1IP was co-localized with fibrillarin in the nucleolus. Deletion mutants of MLF1IP revealed that the N-terminal bipartite nuclear localization signal (NLS) was responsible for nucleolar targeting. MLF1IP was localized mainly in the nucleolus through the N-terminal bipartite NLS and partly in the nucleoplasm featuring small dot-like particles. These findings suggest that MLF1IP may have multi-functions and its different localizations may contribute to carcinogenesis.
Zhang, Yongchun; Wang, Ying; Zhang, Fang; Wang, Kaiming; Liu, Guangpu; Yang, Min; Luan, Yuxia; Zhao, Zhongxi; Zhang, Jianqiang; Cao, Xinke; Zhang, Daizhou
2015-07-01
Garlic and its active constituents have shown versatile medicinal activities in the prevention and treatment of various disorders. Allyl methyl disulfide (AMDS) was identified as one of the major bioactive components in an effective inhalation fork remedy using fresh garlic paste in our previous study. In this work, we investigated the immunological properties of AMDS to elucidate the underlying mechanisms of the fork inhalation treatment using fresh garlic. The inhibition effect of AMDS on TNF-α-induced IL-8 and IP-10 production in intestinal epithelial cell lines HT-29 and Caco-2 was first evaluated. Pretreatment of the cells with AMDS attenuated IL-8 and IP-10 secretion induced by TNF-α in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 150 μM. Mechanistic studies revealed that AMDS suppressed the accumulation of IL-8 mRNA and inhibited IкBα degradation and NF-кB p65 translocation into the nucleus at both the transcriptional and translational levels, suggesting that the attenuation effort of AMDS on cytokine IL-8 secretion might at least be partially related to the NF-κB signaling pathway. These results suggest that AMDS may be a promising phytochemical agent in the treatment of immunological disorders, such as ulcerative colitis, Crohn's disease, intestinal inflammatory diseases and others. In addition, the mechanistic study data indicated that immune modulation could be one of the therapeutic mechanisms of the effective fork treatment containing AMDS as one of the major components. Copyright © 2015 Elsevier B.V. All rights reserved.
2016-01-06
of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department
Friedrichs, Stephanie; Malan, Daniela; Voss, Yvonne; Sasse, Philipp
2015-01-08
Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.
Single-cell imaging techniques for the real-time detection of IP₃ in live cells.
Nelson, Carl P
2013-01-01
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous second messenger, derived from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) by enzymes of the phospholipase C (PLC) family. Binding of IP(3) to its cognate receptor in the endoplasmic reticulum membrane leads to release of Ca(2+) into the cytoplasm, which is involved in the regulation of an array of cellular functions. Traditional techniques for the detection of IP(3) have required the extraction of a large number of cells, with limitations in the time resolution of changes in IP(3) and an inability to obtain detailed information on the dynamics of this second messenger in single cells. Recent progress in this field has led to the development of a number of genetically encoded fluorescent biosensors, which upon recombinant expression are able selectively to detect real-time changes in IP(3) in single live cells. In this chapter, I detail protocols for the expression, visualization (by confocol or fluorescence microscopy), and interpretation of data obtained with such biosensors expressed in mammalian cells.
Okubo, Yohei; Kakizawa, Sho; Hirose, Kenzo; Iino, Masamitsu
2004-10-27
In many excitatory glutamatergic synapses, both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are closely distributed on the postsynaptic membrane. However, the functional significance of the close distribution of the two types of glutamate receptors has not been fully clarified. In this study, we examined the functional interaction between iGluR and mGluR at parallel fiber (PF)--> Purkinje cell synapses in the generation of inositol 1,4,5-trisphosphate (IP3), a key second messenger that regulates many important cellular functions. We visualized local IP3 dynamics in Purkinje cells using the green fluorescent protein-tagged pleckstrin homology domain (GFP-PHD) as a fluorescent IP3 probe. Purkinje cells were transduced with Sindbis virus encoding GFP-PHD and imaged with a two-photon laser scanning microscope. Translocation of GFP-PHD from the plasma membrane to the cytoplasm attributable to an increase in IP3 concentration was observed on PF stimulation in fine dendrites of Purkinje cells. Surprisingly, this PF-induced IP3 production was blocked not only by the group I mGluR antagonist but also by the AMPA receptor (AMPAR) antagonist. The PF-induced IP3 production was blocked by either the inhibition of G-protein activation by GDP-betaS or intracellular Ca2+ buffering by BAPTA. These results show that IP3 production is mediated cooperatively by group I mGluR and AMPAR through G-protein activation and Ca2+ influx at PF--> Purkinje cell synapses, identifying the robust cross talk between iGluR and mGluR for the generation of IP3 signals.
Mizutani, Naoki; Omori, Yukari; Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi; Suzuki, Motoshi; Kyogashima, Mamoru; Nakamura, Mitsuhiro; Tamiya-Koizumi, Keiko; Nozawa, Yoshinori; Murate, Takashi
2016-02-19
Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5'-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Chavira-Suárez, Erika; Sandoval, Alejandro; Felix, Ricardo; Lamas, Mónica
2011-01-14
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy. Copyright © 2010 Elsevier Inc. All rights reserved.
RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.
Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig
2015-10-15
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Cavazzana, Ilaria; Fredi, Micaela; Ceribelli, Angela; Mordenti, Cristina; Ferrari, Fabio; Carabellese, Nice; Tincani, Angela; Satoh, Minoru; Franceschini, Franco
2016-06-01
To analyze the performance of a line blot assay for the identification of autoantibodies in sera of patients affected by myositis, compared with immunoprecipitation (IP) as gold standard. 66 sera of patients with myositis (23 polymyositis, 8 anti-synthetase syndromes, 29 dermatomyositis and 6 overlap syndromes) were tested by commercial LB (Euroimmun, Lubeck, Germany); 57 sera were analyzed also by IP of K562 cell extract radiolabeled with (35)S-methionine. Inter-rater agreement was calculated with Cohen's k coefficient. Myositis-specific antibodies (MSA) were detected in 36/57 sera (63%) by IP and in 39/66 sera (59%) by LB. The most frequent MSA found by LB were anti-Jo1 and anti-Mi2 found in 15% (10/66) of sera, followed by anti-NXP2 and anti-SRP detected in 106% (7/66) of sera. Anti-TIF1gamma and anti-MDA5 were found in 6 (9%) and 5 sera (7.6%), respectively. A good agreement between methods was found only for anti-TIF1γ, anti-MDA5 and anti-NXP-2 antibodies, while a moderate agreement was estimated for anti-Mi2 and anti-EJ. By contrast, a high discordance rate for the detection of anti-Jo1 antibodies was evident (k: 0.3). Multiple positivity for MSA were found in 11/66 (17%) by LB and 0/57 by IP (p: 0001). Comparing the clinical features of these 11 sera, we found total discrepancies between assays in 3 sera (27.3%), a relative discrepancy due to the occurrence of one discordant autoantibody (not confirmed by IP) in 5 cases (45.5%) and a total discrepancy between LB and IP results, but with a relative concordance with clinical features were found in other 3 sera (27.3%). The semiquantitative results do not support the interpretation of the data. The use of LB assay allowed the detection of new MSA, such as anti-MDA5, anti-MJ and anti-TIF1gamma antibodies, previously not found with routine methods. However, the high prevalence of multiple positivities and the high discondant rate of anti-Jo1 antibodies could create some misinterpretation of the results from the clinical point of view. These data should be confirmed by enlarging the number of myositis cases. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, K H; Husain, S; Akhtar, R A; Isales, C M; Abdel-Latif, A A
1997-09-01
The effects of carbachol (CCh) on inositol 1,4,5-trisphosphate (IP3) production and intracellular calcium ([Ca2+]i) mobilization, and their regulation by cAMP-elevating agents were investigated in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. CCh produced time- and dose-dependent increases in IP3 production; the t1/2 and EC50 values were 68 s and 0.5 microM, respectively. The muscarinic agonist provoked a transient increase in [Ca2+]i which reached maximum within 77 s, and increased [Ca2+]i mobilization in a concentration-dependent manner with an EC50 of 1.4 microM. Thapsigargin, a Ca(2+)-pump inhibitor, caused a rapid rise in [Ca2+]i and subsequent addition of CCh was without effect. Both CCh-induced IP3 production and CCh-induced [Ca2+]i mobilization were more potently antagonized by 4-DAMP, an M3 muscarinic receptor antagonist, than by pirenzepine, an M1 receptor antagonist, suggesting that both responses are mediated through the M3 receptor subtype. Treatment of the cells with U73122, a phospholipase C (PLC) inhibitor, resulted in a concentration-dependent decrease in both CCh-stimulated IP3 production and [Ca2+]i mobilization. These data indicate close correlation between enhanced IP3 production and [Ca2+]i mobilization in these smooth muscle cells and suggest that the CCh-stimulated increase in [Ca2+]i could be mediated through increased IP3 production. Isoproterenol (ISO) inhibited CCh-induced IP3 production (IC50 = 80 nM) and [Ca2+]i mobilization (IC50 = 0.17 microM) in a concentration-dependent manner. Microsomal fractions isolated from SV-CISM-2 cells contained phospholipase C (PLC) which was stimulated by CCh (10 microM) and GTP gamma S (0.1 microM). Pretreatment of the cells with ISO or forskolin, 5 microM each, produced membrane fractions in which CCh-stimulated PLC activity was significantly attenuated. Furthermore, when microsomal fractions isolated from SV-CISM-2 cells were phosphorylated with Protein kinase A (PKA), the CCh- and GTP gamma S-stimulated IP3 production were significantly inhibited. It can be concluded from these studies that in SV-CISM-2 cells, activation of M3 muscarinic receptors results in stimulation of PLC-mediated PIP2 hydrolysis, generating IP3 which mobilizes [Ca2+]i. Furthermore, elevation of cAMP may inhibit IP3 production and [Ca2+]i mobilization through mechanisms involving PKA-dependent phosphorylation of PLC, G-proteins, IP3 receptor and/or IP3 metabolizing enzymes.
Casado, María; de Lecuona, Itziar
2013-01-01
This paper identifies problems and analyzes those conflicts posed by the evaluation of research projects involving the collection and use of human induced pluripotent stem cells (iPS) in Spain. Current legislation is causing problems of interpretation, circular and unnecessary referrals, legal uncertainty and undue delays. Actually, this situation may cause a lack of control and monitoring, and even some paralysis in regenerative medicine and cell therapy research, that is a priority nowadays. The analysis of the current legislation and its bioethical implications, led us to conclude that the review of iPS research projects cannot be assimilated to the evaluation of research projects that involve human embryonic stem cell (hESC). In this context, our proposal is based on the review by the Research Ethics Committees and the checkout by the Spanish Comission of Guarantees for Donation and Use of Human Cells and Tissues (CGDUCTH) of human iPS cells research projects. Moreover, this article claims for a more transparent research system, by effectively articulating the Registry on Research Projects. Finally, a model of verification protocol (checklist) for checking out biomedical research projects involving human iPS cells is suggested.
Horii, Takuro; Tamura, Daiki; Morita, Sumiyo; Kimura, Mika; Hatada, Izuho
2013-09-30
Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.
The inositol trisphosphate receptor in the control of autophagy.
Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido
2007-01-01
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-01-01
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A; Munusamy, Murugan A; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-03-23
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
Bielen, F V; Glitsch, H G; Verdonck, F
1991-01-01
1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that the apparent affinity of the Na(+)-K+ pump towards K+ in cardiac Purkinje cells depends on both the membrane potential and the extracellular Na+ concentration. 11. The region of negative slope of the Ip-V curve observed in cells which were superfused with media containing low concentrations of K+ or its congeners strongly suggests the existence of at least two voltage-sensitive steps in the cardiac Na(+)-K+ pump cycle.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1665855
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie; Mathelier, Anthony; Ballester, Benoit
2018-01-04
With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zangen, David; Kaufman, Yotam; Zeligson, Sharon; Perlberg, Shira; Fridman, Hila; Kanaan, Moein; Abdulhadi-Atwan, Maha; Abu Libdeh, Abdulsalam; Gussow, Ayal; Kisslov, Irit; Carmel, Liran; Renbaum, Paul; Levy-Lahad, Ephrat
2011-10-07
XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads. Most cases are unexplained but thought to be autosomal recessive. We elucidated the genetic basis of XX-GD in a highly consanguineous Palestinian family by using homozygosity mapping and candidate-gene and whole-exome sequencing. Affected females were homozygous for a 3 bp deletion (NM_016556.2, c.600_602del) in the PSMC3IP gene, leading to deletion of a glutamic acid residue (p.Glu201del) in the highly conserved C-terminal acidic domain. Proteasome 26S subunit, ATPase, 3-Interacting Protein (PSMC3IP)/Tat Binding Protein Interacting Protein (TBPIP) is a nuclear, tissue-specific protein with multiple functions. It is critical for meiotic recombination as indicated by the known role of its yeast ortholog, Hop2. Through the C terminus (not present in yeast), PSMC3IP also coactivates ligand-driven transcription mediated by estrogen, androgen, glucocorticoid, progesterone, and thyroid nuclear receptors. In cell lines, the p.Glu201del mutation abolished PSMC3IP activation of estrogen-driven transcription. Impaired estrogenic signaling can lead to ovarian dysgenesis both by affecting the size of the follicular pool created during fetal development and by failing to counteract follicular atresia during puberty. PSMC3IP joins previous genes known to be mutated in XX-GD, the FSH receptor, and BMP15, highlighting the importance of hormonal signaling in ovarian development and maintenance and suggesting a common pathway perturbed in isolated XX-GD. By analogy to other XX-GD genes, PSMC3IP is also a candidate gene for premature ovarian failure, and its role in folliculogenesis should be further investigated. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko
2014-02-01
Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.
Borrmann, Claudia; Stricker, Rolf; Reiser, Georg
2011-11-01
The mainly neuronally expressed protein p42(IP4) (centaurin α1; ADAP1), which interacts with the metalloendopeptidase nardilysin (NRD) was found to be localized in neuritic plaques in Alzheimer disease (AD) brains. NRD was shown to enhance the cleavage of the amyloid precursor protein (APP) by α-secretases, thereby increasing the release of neuroprotective sAPPα. We here investigated in vitro the biochemical interaction of p42(IP4) and NRD and studied the physiological interaction in SH-SY5Y cells. NRD is a member of the M16 family of metalloendopeptidases. Some members of this M16 family act bi-functionally, as protease and as non-enzymatic scaffold protein. Here, we show that p42(IP4) enhances the enzymatic activity of NRD 3-4 times. However, p42(IP4) is not a substrate for NRD. Furthermore, we report that differentiation of SH-SY5Y cells by stimulation with 10μM retinoic acid (RA) results in upregulation of NRD protein levels, with a 6-fold rise after 15 days. NRD is expressed in the neurites of RA-stimulated SH-SY5Y cells, and localized in vesicular structures. Since p42(IP4) is not expressed in untreated SH-SY5Y cells, we could use this cell system as a model to find out, whether there is a functional interaction. Interestingly, SH-SY5Y cells, which we stably transfected with GFP-tagged-p42(IP4) showed an enhanced NRD protein expression already at an earlier time point after RA stimulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data.
Teng, Mingxiang; Irizarry, Rafael A
2017-11-01
The main application of ChIP-seq technology is the detection of genomic regions that bind to a protein of interest. A large part of functional genomics' public catalogs is based on ChIP-seq data. These catalogs rely on peak calling algorithms that infer protein-binding sites by detecting genomic regions associated with more mapped reads (coverage) than expected by chance, as a result of the experimental protocol's lack of perfect specificity. We find that GC-content bias accounts for substantial variability in the observed coverage for ChIP-seq experiments and that this variability leads to false-positive peak calls. More concerning is that the GC effect varies across experiments, with the effect strong enough to result in a substantial number of peaks called differently when different laboratories perform experiments on the same cell line. However, accounting for GC content bias in ChIP-seq is challenging because the binding sites of interest tend to be more common in high GC-content regions, which confounds real biological signals with unwanted variability. To account for this challenge, we introduce a statistical approach that accounts for GC effects on both nonspecific noise and signal induced by the binding site. The method can be used to account for this bias in binding quantification as well to improve existing peak calling algorithms. We use this approach to show a reduction in false-positive peaks as well as improved consistency across laboratories. © 2017 Teng and Irizarry; Published by Cold Spring Harbor Laboratory Press.
Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu
2017-01-04
The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Li, Hongyan; Zhang, Zhijing; Kiyama, Takae; Panda, Satchidananda; Hattar, Samer; Ribelayga, Christophe P.; Mills, Stephen L.
2014-01-01
Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4. PMID:25253855
Inositol trisphosphate metabolism in carrot (Daucus carota L. ) cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memon, A.R.; Rincon, M.; Boss, W.F.
1989-10-01
The metabolism of exogenously added D-myo-(1-{sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}) has been examined in microsomal membrane and soluble fractions of carrot cells grown in suspension culture. When ({sup 3}H)IP{sub 3} was added to a microsomal membrane fraction, ({sup 3}H)IP{sub 2} was the primary metabolite consisting of approximately 83% of the total recovered ({sup 3}H) by electrophoresis. ({sup 3}H)IP was only 6% of the ({sup 3}H) recovered, and 10% of the ({sup 3}H)IP{sub 3} was not further metabolized. In contrast, when ({sup 3}H)IP{sub 3} was added to the soluble fraction, approximately equal amounts of ({sup 3}H)IP{sub 2} and ({sup 3}H)IP weremore » recovered. Ca{sup 2+} (100 micromolar) tended to enhance IP{sub 3} dephosphorylation but inhibited the IP{sub 2} dephosphorylation in the soluble fraction by about 20%. MoO{sub 4}{sup 2{minus}} (1 millimolar) inhibited the dephosphorylation of IP{sub 3} by the microsomal fraction and the dephosphorylation of IP{sub 2} by the soluble fraction. MoO{sub 4}{sup 2{minus}}, however, did not inhibit the dephosphorylation of IP{sub 3} by the soluble fraction. Li{sup +} (10 and 50 millimolar) had no effect on IP{sub 3} metabolism in either the soluble or membrane fraction; however, Li{sup +} (50 millimolar) inhibited IP{sub 2} dephosphorylation in the soluble fraction about 25%.« less
The directed differentiation of human iPS cells into kidney podocytes.
Song, Bi; Smink, Alexandra M; Jones, Christina V; Callaghan, Judy M; Firth, Stephen D; Bernard, Claude A; Laslett, Andrew L; Kerr, Peter G; Ricardo, Sharon D
2012-01-01
The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm's tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.
Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development.
Uchida, Keiko; Nakazawa, Maki; Yamagishi, Chihiro; Mikoshiba, Katsuhiko; Yamagishi, Hiroyuki
2016-10-01
The embryonic-maternal interface of the placental labyrinth, allantois, and yolk sac are vital during embryogenesis; however, the precise mechanism underlying the vascularization of these structures remains unknown. Herein we focus on the role of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), which are intracellular Ca(2+) release channels, in placentation. Double knockout (DKO) of type 1 and 3 IP3Rs (IP3R1 and IP3R3, respectively) in mice resulted in embryonic lethality around embryonic day (E) 11.5. Because IP3R1 and IP3R3 were co-expressed in endothelial cells in the labyrinth, allantois, and yolk sac, we investigated extra-embryonic vascular development in IP3R1- and IP3R3-DKO mice. The formation of chorionic plates and yolk sac vessels seemed dysregulated around the timing of the chorio-allantoic attachment, immediately followed by the disorganization of allantoic vessels, the decreased expression of the spongiotrophoblast cell marker Tpbpa and the growth retardation of the embryos in DKO mice. Fluorescent immunohistochemistry demonstrated downregulation of a vascular endothelial marker, CD31, in labyrinth embryonic vessels and poor elongation of extra-embryonic mesoderm into the labyrinth layer in DKO placenta, whereas the branching of the DKO chorionic trophoblast was initiated. In addition, allantoic and yolk sac vessels in extra-embryonic tissues were less remodeled in DKO mice. In vitro endothelial cord formation and migration activities of cultured vascular endothelial cells derived from human umbilical vein were downregulated under the inhibition of IP3R. Our results suggest that IP3R1 and IP3R3 are required for extra-embryonic vascularization in the placenta, allantois, and yolk sac. This is the first demonstration of the essential role of IP3/IP3Rs signaling in the development of the vasculature at the embryonic-maternal interface. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.B.; Smith, L.; Higgins, B.L.
1985-11-25
Inositol 1,4,5-trisphosphate (IP3) rapidly increased UVCaS efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked UVCaS release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked UVCaS release. IP3 strongly stimulated UVCaS efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced UVCaS efflux suggests that IP3 activated a CaS channel, rather than a carrier, bymore » a ligand-binding, rather than a metabolic, reaction.« less
Menendez, Javier A; Alarcón, Tomás; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin, Ángel G; Vellon, Luciano
2014-01-01
In the science-fiction thriller film Minority Report, a specialized police department called “PreCrime” apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called “PreCogs”. We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized “stemotoxic” cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge “chromosome therapies” aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a “reprogramming cure” for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research. PMID:24406535
Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.
Menendez, Javier A; Alarcón, Tomás; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin, Angel G; Vellon, Luciano
2014-01-01
In the science-fiction thriller film Minority Report, a specialized police department called "PreCrime" apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called "PreCogs". We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized "stemotoxic" cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge "chromosome therapies" aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a "reprogramming cure" for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research.
Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick
2008-11-01
The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further conclude that Tc proteins from Y. pseudotuberculosis and Y. pestis display differential mammalian cell specificity in their toxicity.
Epigenetic features of human telomeres.
Cubiles, María D; Barroso, Sonia; Vaquero-Sedas, María I; Enguix, Alicia; Aguilera, Andrés; Vega-Palas, Miguel A
2018-03-16
Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres.
Epigenetic features of human telomeres
Cubiles, María D; Barroso, Sonia; Vaquero-Sedas, María I; Enguix, Alicia; Aguilera, Andrés; Vega-Palas, Miguel A
2018-01-01
Abstract Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres. PMID:29361030
Reprogramming of human cancer cells to pluripotency for models of cancer progression
Kim, Jungsun; Zaret, Kenneth S
2015-01-01
The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212
Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells.
Huh, Yang Hoon; Yoo, Jie Ae; Bahk, Sook Jin; Yoo, Seung Hyun
2005-05-09
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.
Friedrichs, Stephanie; Malan, Daniela; Voss, Yvonne; Sasse, Philipp
2015-01-01
Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening. PMID:26237021
Identification of Epigenetic Changes in Prostate Cancer using Induced Pluripotent Stem Cells
2014-04-01
somatic cells in human iPS cells. Nat Cell Bioi, 13: 541, 2011 5. Polo, J. M., Liu, S., Figueroa , M. E. et al.: Cell type of origin influences the...human iPS cells. Nat Cell Bioi 13: 5•1 \\ - 5•19. 18. Poloj:\\ə, Lu S, Figueroa ME, Kulalert W, Eminli S, ct a!. (20 10) Cell type of origin
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2005-01-01
Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…
A General Purpose Connections type CTI Server Based on SIP Protocol and Its Implementation
NASA Astrophysics Data System (ADS)
Watanabe, Toru; Koizumi, Hisao
In this paper, we propose a general purpose connections type CTI (Computer Telephony Integration) server that provides various CTI services such as voice logging where the CTI server communicates with IP-PBX using the SIP (Session Initiation Protocol), and accumulates voice packets of external line telephone call flowing between an IP telephone for extension and a VoIP gateway connected to outside line networks. The CTI server realizes CTI services such as voice logging, telephone conference, or IVR (interactive voice response) with accumulating and processing voice packets sampled. Furthermore, the CTI server incorporates a web server function which can provide various CTI services such as a Web telephone directory via a Web browser to PCs, cellular telephones or smart-phones in mobile environments.
Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.
Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G
2008-06-01
Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako
2012-03-30
Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT{sub 1}R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT{sub 1}R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.« less
The UNITAID Patent Pool Initiative: Bringing Patents Together for the Common Good
Bermudez, Jorge; 't Hoen, Ellen
2010-01-01
Developing and delivering appropriate, affordable, well-adapted medicines for HIV/AIDS remains an urgent challenge: as first-line therapies fail, increasing numbers of people require costly second-line therapy; one-third of ARVs are not available in pediatric formulations; and certain key first- and second-line triple fixed-dose combinations do not exist or sufficient suppliers are lacking. UNITAID aims to help solve these problems through an innovative initiative for the collective management of intellectual property (IP) rights – a patent pool for HIV medicines. The idea behind a patent pool is that patent holders - companies, governments, researchers or universities - voluntarily offer, under certain conditions, the IP related to their inventions to the patent pool. Any company that wants to use the IP to produce or develop medicines can seek a license from the pool against the payment of royalties, and may then produce the medicines for use in developing countries (conditional upon meeting agreed quality standards). The patent pool will be a voluntary mechanism, meaning its success will largely depend on the willingness of pharmaceutical companies to participate and commit their IP to the pool. Generic producers must also be willing to cooperate. The pool has the potential to provide benefits to all. PMID:20309404
Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin
2016-08-01
Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action
Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...
2016-11-08
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less
Wang, Min; Li, Yan-Qing; Zhong, Ning; Chen, Jian; Xu, Xiao-Qun; Yuan, Meng-Biao
2005-03-30
To study the induction of expression of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A in colon cancer cells by sulforaphane (SFN) and its possible mechanism. Human colon cancer cells of the line Caco-2 were cultured and added with SFN of different terminal concentrations, all below the concentration of IC(50). RT-PCR was used to examine the expression of UGT1A mRNA induced by SFN. Western blotting was used to detect the expression of UGT1A protein. The glucuronidation rate of N-hydroxy-PhIP was measured by high performance liquid chromatography (HPLC). The nuclear localization of transcription factor Nrf2 was observed by confocal laser microscopy. (1) Expression of UGT1A mRNA was observed in the Cac0-2 cells induced by SFN of the concentrations of 10 micromol/L approximately 35 micromol/L in a dose-independent manner (P < 0.05). Sulforaphane of the concentration of 25 micromol/L induced the UGT1A mRNA expression time-dependently. The levels of UGT1A1, UGT1A8, and UGT1A10 mRNA expression were significantly increased in the cells treated with 25 micromol/L sulforaphane compared to that in the controls (P = 0.006, P = 0.017, and P = 0.008 respectively). (2) The UGT1A protein band intensity increased significantly in the Coco-2 cells treated with sulforaphane of the concentrations 10 micromol/L approximately 30 micromol/L for 24 h in comparison with the control cells. (3) When the microsomes from the untreated Caco-2 cells were incubated with N-hydroxy-PhIP there was a minor HPLC peak at the expected retention time for N-hydroxy-PhIP-N2-glucuronide. This peak was dramatically increased in the sulforaphane-treated cells, suggesting higher activities of glucuronidation of N-hydroxy-PhIP. (4) Cytoplasmic labeling of NF-E2-related factor 2 (Nrf2), a transcription factor, with no nuclear staining was observed in the non-stimulated cells, whereas an intense nuclear labeling was observed in the sulforaphane-treated cells, indicating the induction of nuclear translocation of Nrf2 by sulforaphane. (1) Low dose sulforaphane induces the expression of UGT1A, UGT1A1, UGT1A A8, and UGT1A A10 mRNA significantly. These changes are accompanied by an increase in UGT1A1 protein and increase in heterocyclic aromatic amine glucuronidation. (2) The induction of the phase II enzyme activity by SFN occurs at the transcriptional level and is regulated by Nrf2.
Bachmann, M; Huber, J L; Liao, P C; Gage, D A; Huber, S C
1996-06-03
The inhibitor protein (IP) that inactivates spinach leaf NADH:nitrate reductase (NR) has been identified for the first time as a member of the eukaryotic 14-3-3 protein family based on three lines of evidence. First, the sequence of an eight amino acid tryptic peptide, obtained from immunopurified IP, matched that of a highly conserved region of the 14-3-3 proteins. Second, an authentic member of the 14-3-3 family, recombinant Arabidopsis GF14omega, caused inactivation of phospho-NR in a magnesium-dependent manner identical to IP. Third, an anti-GF14 monoclonal antibody cross-reacted with IP and anti-IP monoclonal antibodies cross-reacted with GF14omega.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, A.H.
1989-01-01
Ganglioside GM3 was extracted from human placentae and tested for neuritogenic properties towards the mouse neuroblastoma cell line Neuro-2A. GM3 (2.5 {mu}M) was found to inhibit cell growth when added exogenously to the cell culture. ({sup 3}H)Thymidine incorporation was inhibited by 49% within 6 hr. Neuritogenesis was evident within 24 hr evidenced by an increase in the number and length of neurites produced compared to control cells. An enzymatic assay for protein kinase C activity was employed to study effects of GM3 on the subcellular localization of the enzyme. Ganglioside GM3 was found to alter the subcellular localization of themore » phospholipid- and calcium-dependent protein kinase C. These results were confirmed using a binding assay employing the labeled phorbol ester ({sup 3}H)phorbol-12,13-dibutyrate. Finally, GM3-modulation of IP{sub 3} formation and cytosolic calcium in the Neuro-2A cells was investigated. GM3 did not alter the phosphoinositol metabolism as evidenced by IP{sub 3} formation in these cells. However, the addition of GM3 (16 {mu}M) to cells loaded with the photoprotein, aequorin, induced an increase in the intracellular calcium concentration within 2 min, which was sustained for 10 min. Removal of external calcium by chelation did not abrogate the response to GM3, indicating that calcium was being released from internal stores. The calcium influx was temporally correlated with the translocation of protein kinase C, providing a rationale whereby GM3 may induce the enzyme to translocate.« less
Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda
2017-03-01
Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P < 0.05) at IP for some markers were observed at cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.
Euskirchen, Ghia M.; Rozowsky, Joel S.; Wei, Chia-Lin; Lee, Wah Heng; Zhang, Zhengdong D.; Hartman, Stephen; Emanuelsson, Olof; Stolc, Viktor; Weissman, Sherman; Gerstein, Mark B.; Ruan, Yijun; Snyder, Michael
2007-01-01
Recent progress in mapping transcription factor (TF) binding regions can largely be credited to chromatin immunoprecipitation (ChIP) technologies. We compared strategies for mapping TF binding regions in mammalian cells using two different ChIP schemes: ChIP with DNA microarray analysis (ChIP-chip) and ChIP with DNA sequencing (ChIP-PET). We first investigated parameters central to obtaining robust ChIP-chip data sets by analyzing STAT1 targets in the ENCODE regions of the human genome, and then compared ChIP-chip to ChIP-PET. We devised methods for scoring and comparing results among various tiling arrays and examined parameters such as DNA microarray format, oligonucleotide length, hybridization conditions, and the use of competitor Cot-1 DNA. The best performance was achieved with high-density oligonucleotide arrays, oligonucleotides ≥50 bases (b), the presence of competitor Cot-1 DNA and hybridizations conducted in microfluidics stations. When target identification was evaluated as a function of array number, 80%–86% of targets were identified with three or more arrays. Comparison of ChIP-chip with ChIP-PET revealed strong agreement for the highest ranked targets with less overlap for the low ranked targets. With advantages and disadvantages unique to each approach, we found that ChIP-chip and ChIP-PET are frequently complementary in their relative abilities to detect STAT1 targets for the lower ranked targets; each method detected validated targets that were missed by the other method. The most comprehensive list of STAT1 binding regions is obtained by merging results from ChIP-chip and ChIP-sequencing. Overall, this study provides information for robust identification, scoring, and validation of TF targets using ChIP-based technologies. PMID:17568005
NASA Astrophysics Data System (ADS)
Nicoletti, Sarah E.
With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further investigations into both epigenetic modifications and transcription factor interactions will help gain a better understanding of what characteristics make a higher producing CHO cell line. Discovery of these characteristics will aid in better genetic engineering strategies for future recombinant cell lines, improving productivity and shortening the clonal selection process.
Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma
Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.
2011-01-01
Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177
Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus
Langel, Jennifer L.; Smale, Laura; Esquiva, Gema; Hannibal, Jens
2015-01-01
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical. PMID:26236201
Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus.
Langel, Jennifer L; Smale, Laura; Esquiva, Gema; Hannibal, Jens
2015-01-01
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.
Qiao, Liang; Tasian, Gregory E.; Zhang, Haiyang; Cao, Mei; Ferretti, Max; Cunha, Gerald R.; Baskin, Laurence S.
2012-01-01
INTRODUCTION ZEB1 is overexpressed in patients with severe hypospadias. We examined the interaction between ZeB1 and the androgen receptor (AR) in vitro and the expression of AR in boys with hypospadias. RESULTS ZEB1 and AR colocalize to the nucleus. Estrogen upregulated ZEB1 and AR expression. Chromatin immunoprecipitation (ChIP) demonstrated that ZEB1 binds to an E-box sequence in the AR gene promoter. AR expression is higher in subjects with severe hypospadias than those with mild hypospadias and control subjects (P < 0.05). ZEB1 physically interacts with AR in human foreskin cells. DISCUSSION AR is overexpressed in patients with severe hypospadias. Environmental estrogenic compounds may increase the risk of hypospadias by facilitating the interaction between ZEB1 and AR. METHODS Hs68 cells, a fibroblast cell line derived from neonatal human foreskin, were exposed to 0, 10, and 100 nmol/l of estrogen, after which the cellular localization of ZEB1 and AR was assessed using immunocytochemistry. To determine if ZEB1 interacted with the AR gene, ChIP was performed using ZEB1 antibody and polymerase chain reaction (PCR) for AR. Second, AR expression was quantified using real-time PcR and western blot in normal subjects (n = 32), and subjects with mild (n = 16) and severe hypospadia (n = 16). PMID:22391641
Ho, Ming-Fen; Lummertz da Rocha, Edroaldo; Zhang, Cheng; Ingle, James N; Goss, Paul E; Shepherd, Lois E; Kubo, Michiaki; Wang, Liewei; Li, Hu; Weinshilboum, Richard M
2018-06-01
T-cell leukemia 1A ( TCL1A ) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E 2 ) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be "reversed" by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E 2 -dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E 2 in a SNP-dependent fashion. Even more striking, nuclear factor- κ B (NF- κ B) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E 2 -dependent fashion-a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF- κ B p65, an important immune system transcription factor. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J
2017-01-11
Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Pecenin, Mateus Fila; Borges-Pereira, Lucas; Levano-Garcia, Julio; Budu, Alexandre; Alves, Eduardo; Mikoshiba, Katsuhiko; Thomas, Andrew; Garcia, Celia R S
2018-03-14
Inositol 1,4,5 trisphosphate (IP 3 ) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP 3 elicits Ca 2+ release from intracellular Ca 2+ stores, even though no IP 3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP 3 -dependent Ca 2+ signal. The melatonin-induced cytosolic Ca 2+ ([Ca 2+ ] cyt ) increase and malaria cell cycle can be blocked by the IP 3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca 2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca 2+ ] cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP 3 receptor like IP 3 -sponge and an IP 3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP 3 -induced Ca 2+ release in intraerythrocytic stage of P. falciparum. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Martinez-Fernandez, Almudena; Nelson, Timothy J.; Ikeda, Yasuhiro; Terzic, Andre
2010-01-01
Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, 4-factor c-MYC dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct-4 and Fgf4 genes and repressed cardiac differentiation. In contrast, 3-factor c-MYC-less iPS clones efficiently up-regulated pre-cardiac (CXCR4, Flk-1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and Myocardin) gene expression patterns. In fact, 3-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential. PMID:20221419
Irigoín, Florencia; Ferreira, Fernando; Fernández, Cecilia; Sim, Robert B; Díaz, Alvaro
2002-01-01
myo-Inositol hexakisphosphate (IP(6)) is an abundant intracellular component of animal cells. In this study we describe the presence of extracellular IP(6) in the hydatid cyst wall (HCW) of the larval stage of the cestode parasite Echinococcus granulosus. The HCW comprises an inner cellular layer and an outer, acellular (laminated) layer up to 2 mm in thickness that protects the parasite from host immune cells. A compound, subsequently identified as IP(6), was detected in and purified from an HCW extract on the basis of its capacity to inhibit complement activation. The identification of the isolated compound was carried out by a combination of NMR, MS and TLC. The majority of IP(6) in the HCW was found in the acellular layer, with only a small fraction of the compound being extracted from cells. In the laminated layer, IP(6) was present in association with calcium, and accounted for up to 15% of the total dry mass of the HCW. IP(6) was not detected in any other structures or stages of the parasite. Our results imply that IP(6) is secreted by the larval stage of the parasite in a polarized fashion towards the interface with the host. This is the first report of the secretion of IP(6), and the possible implications beyond the biology of E. granulosus are discussed. PMID:11853537
Zhu, Jian-Ning; Wu, Kai-Jie; Guan, Zhen-Feng; Liu, Li-Xia; Ning, Zhong-Yun; Zhou, Jian-Cheng; Wang, Xin-Yang; Fan, Jin-Hai
2014-07-01
To investigate the expression of DAB2IP in bladder transitional cell carcinoma (BTCC) and its correlation with clinical characteristics and prognosis of BTCC patients. Immunohistochemical staining was applied to detect DAB2IP protein level in 79 cases of TCCB tissues and 11 cases of normal bladder tissues, and the relationships of the staining results with pathological grade, stage, lymph node metastasis, gender, age and the 3-year survival rate of the patients were analyzed. The expression of DAB2IP in BTCC tissues was significantly lower than that in normal bladder epithelium, and the expression score and rate of DAB2IP in the high-grade, invasive and metastatic BTCC were significantly lower than those in low-grade, superficial and non-metastatic BTCC (P < 0.05). The 3-year survival rate of the patients with high DAB2IP expression was significantly higher than that of the patients with low DAB2IP expression. DAB2IP may be one of the important inhibitory factors during the occurrence and progression of BTCC.
Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew
2012-04-01
The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.
Allende, Maria L.; Cook, Emily K.; Larman, Bridget C.; Nugent, Adrienne; Brady, Jacqueline M.; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J.
2018-01-01
Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses. PMID:29358305
Allende, Maria L; Cook, Emily K; Larman, Bridget C; Nugent, Adrienne; Brady, Jacqueline M; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J; Proia, Richard L
2018-03-01
Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB -corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB -corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB -corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.
miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2.
Nelson, Charles; Ambros, Victor; Baehrecke, Eric H
2014-11-06
Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada
2017-06-01
The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.
Tokumoto, Yasuhito; Ogawa, Shinichiro; Nagamune, Teruyuki; Miyake, Jun
2010-06-01
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg
2016-01-01
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846
Copete-Pertuz, Ledys S; Plácido, Jersson; Serna-Galvis, Efraím A; Torres-Palma, Ricardo A; Mora, Amanda
2018-07-15
In this work, Leptosphaerulina sp. (a Colombian native fungus) significantly removed three Isoxazolyl-Penicillin antibiotics (IP): oxacillin (OXA, 16000 μg L -1 ), cloxacillin (CLX, 17500 μg L -1 ) and dicloxacillin (DCX, 19000 μg L -1 ) from water. The biological treatment was performed at pH 5.6, 28 °C, and 160 rpm for 15 days. The biotransformation process and lack of toxicity of the final solutions (antibacterial activity (AA) and cytotoxicity) were tested. The role of enzymes in IP removal was analysed through in vitro studies with enzymatic extracts (crude and pre-purified) from Leptosphaerulina sp., commercial enzymes and enzymatic inhibitors. Furthermore, the applicability of mycoremediation process to a complex matrix (simulated hospital wastewater) was evaluated. IP were considerably abated by the fungus, OXA was the fastest degraded (day 6), followed by CLX (day 7) and DCX (day 8). Antibiotics biodegradation was associated to laccase and versatile peroxidase action. Assays using commercial enzymes (i.e. laccase from Trametes versicolor and horseradish peroxidase) and inhibitors (EDTA, NaCl, sodium acetate, manganese (II) ions) confirmed the significant role of enzymatic transformation. Whereas, biomass sorption was not an important process in the antibiotics elimination. Evaluation of AA against Staphylococcus aureus ATCC 6538 revealed that Leptosphaerulina sp. also eliminated the AA. In addition, the cytotoxicity assay (MTT) on the HepG2 cell line demonstrated that the IP final solutions were non-toxic. Finally, Leptosphaerulina sp. eliminated OXA and its AA from synthetic hospital wastewater at 6 days. All these results evidenced the potential of Leptosphaerulina sp. mycoremediation as a novel environmentally friendly process for the removal of IP from aqueous systems. Copyright © 2018 Elsevier B.V. All rights reserved.
The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup
NASA Astrophysics Data System (ADS)
Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.
2013-10-01
Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Hayes, Sidney; Horbay, Monique A.; Hayes, Connie
2012-01-01
Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence. PMID:22590552
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-04-01
The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
van der Deen, Margaretha; Hassan, Mohammad Q; Pratap, Jitesh; Teplyuk, Nadiya M; Young, Daniel W; Javed, Amjad; Zaidi, Sayyed K; Lian, Jane B; Montecino, Martin; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J
2008-01-01
Normal cell growth and differentiation of bone cells requires the sequential expression of cell type specific genes to permit lineage specification and development of cellular phenotypes. Transcriptional activation and repression of distinct sets of genes support the anabolic functions of osteoblasts and the catabolic properties of osteoclasts. Furthermore, metastasis of tumors to the bone environment is controlled by transcriptional mechanisms. Insights into the transcriptional regulation of genes in bone cells may provide a conceptual basis for improved therapeutic approaches to treat bone fractures, genetic osteopathologies, and/or cancer metastases to bone. Chromatin immunoprecipitation (ChIP) is a powerful technique to establish in vivo binding of transcription factors to the promoters of genes that are either activated or repressed in bone cells. Combining ChIP with genomic microarray analysis, colloquially referred to as "ChIP-on-chip," has become a valuable method for analysis of endogenous protein/DNA interactions. This technique permits assessment of chromosomal binding sites for transcription factors or the location of histone modifications at a genomic scale. This chapter discusses protocols for performing chromatin immunoprecipitation experiments, with a focus on ChIP-on-chip analysis. The information presented is based on the authors' experience with defining interactions of Runt-related (RUNX) transcription factors with bone-related genes within the context of the native nucleosomal organization of intact osteoblastic cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki
2007-08-10
Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TR{alpha}-1, but also that T{sub 3} and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TR{alpha}-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T{sub 3} and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T{sub 3} and U0126 induces TR{alpha}-1-RXR binding to GLUT5-TREmore » on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T{sub 3}-induced GLUT5 gene expression in Caco-2 cells through increasing TR{alpha}-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TR{alpha}-1.« less
Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.
Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro
2015-10-06
The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.
Generation of transgene-free induced pluripotent stem cells with non-viral methods.
Wang, Tao; Zhao, Hua-shan; Zhang, Qiu-ling; Xu, Chang-lin; Liu, Chang-bai
2013-03-01
Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly reproduced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic potential in animal models of sickle cell anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches, transfection of mRNA, and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages, disadvantages, efficiency, and safety of these methods.
Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure
NASA Technical Reports Server (NTRS)
Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige
1990-01-01
The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.
Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M
2017-01-01
Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Smith, Stephen E P; Bida, Anya T; Davis, Tessa R; Sicotte, Hugues; Patterson, Steven E; Gil, Diana; Schrum, Adam G
2012-01-01
Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.
Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy.
Sachamitr, Patty; Hackett, Simon; Fairchild, Paul Jonathan
2014-01-01
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8(+) T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141(+)XCR1(+) DC, capable of cross presenting TAA to naïve CD8(+) T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Shi, Feng; Liu, Yumei; Zhi, Wei; Xiao, Dongqin; Li, Hongyu; Duan, Ke; Qu, Shuxin; Weng, Jie
2017-06-06
Microstructure and chemical constitution are important factors affecting the biological activity of biomaterials. This study aimed to fabricate hydroxyapatite (HAp) particles with both micro/nanohybrid structure and Cu 2+ doping to promote osteogenic differentiation and antibacterial property. In the presence of inositol hexakisphosphate (IP6), micro/nano-structured and Cu 2+ -doped HAp (HAp-IP6-Cu) microspheres were successfully fabricated via hydrothermal method. Morphological observation showed that HAp-IP6-Cu microspheres with a diameter of 3.1-4.1 μm were chrysanthemum-like and composed of nano-flakes approximately 50 nm in thickness. Compared with the HAp micro-rods or IP6 modified HAp (HAp-IP6) microspheres, HAp-IP6-Cu microspheres had a larger specific surface area, better hydrophilicity and stronger ability to adsorb bovine serum albumin. To evaluate the synergistic effects of micro/nanohybrid structure and Cu 2+ on cell behavior, rat calvarial osteoblasts (RCOs) were cultured on HAp-IP6-Cu, HAp-IP6 and HAp layers as well as their extracts, respectively. Results demonstrated that HAp-IP6-Cu layer promoted the adhesion, proliferation and osteogenic differentiation of RCOs. The cells grew on HAp-IP6-Cu and HAp-IP6 layers exhibited greater spreading than those on HAp layer. In addition, quantitative test by the agar disk diffusion technique found that HAp-IP6-Cu microspheres were effectively against S taphylococcus aureus and E scherichia coli. These results demonstrated that HAp-IP6-Cu microspheres may be a potential candidate as a bioactive and anti-infective biomaterial for bone regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.S.
1964-06-15
A series of three experimental tests was conducted on the operation and adequacy of the K-Reactors` third, or last-ditch, cooling system. The first test showed considerable line corrosion the second test was performed directly after line cleaning, and the third test showed a significant amount of additional line corrosion after only nine months of service. The present cooling adequacy of this last-ditch system at the KE and KW reactors is summarized these show the power levels for which we have adequate last-ditch cooling as a function of the crosstie coolant temperature. These figures include the effects of increasing the numbermore » of pumps that remain in operation at the other K-Reactor, and various other operating or emergency conditions. These curves are for diesel pump speeds of 750 rpm which are planned for June of this year. In these figures the crosstie temperature is assumed to be a conservative 5{degrees}C above the process water inlet temperature.« less
Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi
2018-01-01
DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542
Wakame, Koji; Okawa, Hiroshi; Komatsu, Ken-Ich; Nakata, Akifumi; Sato, Keisuke; Ingawa, Hiroyuki; Kohchi, Chie; Nishizawa, Takashi; Soma, Gen-Ichiro
2016-07-01
The lipopolysaccharide (LPS)-like compound derived from Pantoea agglomerans (immunopotentiator from Pantoea agglomerans 1 (IP-PA1)) has been used not only as dietary supplement or cosmetic for humans, but also by Japanese veterinarians as an anti-tumor, anti-allergy, "keep a fine coat of fur" and hair growth-promoting functional food for dogs and cats. In the present study, we focused on the hair growth-promoting effects of IP-PA1 on a hair-shaved animal model and its mechanism of action. We also investigated its potential on gene expression after stimulating human dermal papilla cells with IP-PA1. The hair on the back of a C3H/HeN mouse was shaved and IP-PA1 was orally administered or applied to the skin. The status of hair growth was observed and recorded for 14 days. Skin was collected and histological tissue examination was performed with respect to hair growth status using hematoxylin and eosin staining. After IP-PA1 administration (2 and 10 μg/ml) to human dermal papilla cell culture system for 24 h, fibroblast growth factor-7 (FGF-7) and vascular endothelial growth factor (VEGF) mRNA expression were measured using real-time polymerase chain reaction (PCR) analysis. IP-PA1, when given orally, showed a tendency to promote hair growth in mice. In addition, skin application also significantly promoted hair growth, while histopathological examinations further demonstrated hair elongation from dermal papilla cells. In the human dermal papilla cell culture system, significant FGF-7 and VEGF mRNA expressions were observed (p<0.05). An underlying mechanism of gene expression by which IP-PA1 promotes hair growth was suggested to be different from that of medicine and traditional hair tonics, such as minoxidil and adenosine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer
Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.
2013-01-01
Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489
Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming
2013-01-01
Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108
Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo
Feuerecker, Benedikt; Pirsig, Sabine; Seidl, Christof; Aichler, Michaela; Feuchtinger, Annette; Bruchelt, Gernot; Senekowitsch-Schmidtke, Reingard
2012-01-01
Cancer cells convert glucose preferentially to lactate even in the presence of oxygen (aerobic glycolysis–Warburg effect). New concepts in cancer treatment aim at inhibition of aerobic glycolysis. Pyruvate dehydrogenase converts pyruvate to acetylCoA thus preventing lactate formation. Therefore, the aim of this study was to evaluate compounds that could activate pyruvate dehydrogenase in cancer cells. We investigated the effects of (R)-(+)-α-lipoic acid (LPA) and dichloroacetate (DCA), possible activators of pyruvate dehydrogenase, on suppression of aerobic glycolysis and induction of cell death. The neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and the breast cancer cell line SkBr3 were incubated with different concentrations (0.1–30 mM) of LPA and DCA. The effects of both compounds on cell viability/proliferation (WST-1 assay), [18F]-FDG uptake, lactate production and induction of apoptosis (flow cytometric detection of caspase-3) were evaluated. Furthermore, NMRI nu/nu mice that had been inoculated s.c. with SkBr3 cells were treated daily for four weeks with LPA (i.p, 18.5 mg/kg) starting at day 7 p.i.. Tumor development was measured with a sliding calliper and monitored via [18F]-FDG-PET. Residual tumors after therapy were examined histopathologically. These data suggests that LPA can reduce (1) cell viability/proliferation, (2) uptake of [18F]-FDG and (3) lactate production and increase apoptosis in all investigated cell lines. In contrast, DCA was almost ineffective. In the mouse xenograft model with s.c. SkBr3 cells, daily treatment with LPA retarded tumor progression. Therefore, LPA seems to be a promising compound for cancer treatment. PMID:22954700
Governing stem cell banks and registries: emerging issues.
Isasi, Rosario M; Knoppers, Bartha M
2009-01-01
The expansion of national and international research efforts in stem cell research is increasingly paired with the trend of establishing stem cell banks and registries. In jurisdictions crossing the spectrum of restrictive to liberal stem cell policies, banks and registries are emerging as an essential resource for transnational access to quality-controlled and ethically sourced stem cell lines. In this study, we report the preliminary findings of a survey of stem cell banks participating in the International Stem Cell Forum's International Stem Cell Banking Initiative (ISCBI). The questionnaire circulated to all ISCBI members addressed both general issues surrounding research policies (e.g., national policies regulating the permissibility of conducting embryonic stem cell research (hESCR)) and, more specifically, issues relating to the governance of stem cell banking projects. The results of the questionnaire were complemented by scholarly research conducted by the authors. This article provides an overview of the current international hESC banking landscape (I). For this purpose, the policy and governance approaches adopted in the surveyed stem cell banks at the national level will be analyzed and areas of convergence and variance will be identified (II). It is beyond the scope of this paper to provide a comprehensive analysis of the wide range of possible governance approaches, policy responses, and their implications. However, we want to provide a starting point for discussion surrounding key questions and challenges as concerns provenance, access, and deposit of hESC lines (III). Finally, while our analysis is focused on research grade hESCs, the lessons to be gleaned from this examination will encourage further thought, analysis, and research into the issues raised in the banking and governance of other sources of stem cell lines (e.g., SCNT, parthenogenesis, iPs) (IV).
Chokeshaiusaha, Kaj; Puthier, Denis; Nguyen, Catherine; Sananmuang, Thanida
2018-06-01
Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions (Fold-change≥2, FDR≤0.01) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 ( CRABP1 ), growth differentiation factor 10 ( GDF10 ), and gremlin 1 ( GREM1 ) gene explorations. The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes- CRABP1 , GDF10 , and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data analysis in the future.
Abdel-Latif, A A; Ding, K H; Akhtar, R A; Yousufzai, S Y
1996-09-01
In both immortalized cat iris sphincter smooth muscle cells (SV-CISM-2 cells) and cat iris sphincter, endothelin-1 (ET-1) markedly increased the activities of phospholipase A2 (PLA2), as measured by the release of arachidonic acid (AA), phospholipase C (PLC), as measured by the production of inositol trisphosphate (IP3), and phospholipase D (PLD), as measured by the formation of phosphatidylethanol (PEt). In SV-CISM-2 cells, ET-1 induced AA release, IP3 production and PEt formation in a dose- and time-dependent manner. The dose-response studies showed that the peptide is more potent in activating PLD (EC50 = 1.2 nM) than in activating PLC (EC50 = 1.5 nM) or PLA2 (EC50 = 1.7 nM). The time course studies revealed that ET-1 activated the phospholipases in a temporal sequence in which PLA2 was stimulated first (t1/2 = 12 s), followed by PLC (t1/2 = 48 s) and lastly PLD (t1/2 = 106 s). In SV-CISM-2 cells, in contrast to the intact iris sphincter, sarafotoxin-c, an ETB receptor agonist, had no effect on the phospholipases, and indomethacin, a cyclooxygenase inhibitor, had no effect on the stimulatory effect of ET-1 on the phospholipases. These results suggest that in this smooth muscle cell line, ET-1 interacts with the ETA receptor subtype to activate, via G proteins, phospholipases A2, C and D in a temporal sequence.
Facilitation techniques as predictors of crew participation in LOFT debriefings
NASA Technical Reports Server (NTRS)
McDonnell, L. K.
1996-01-01
Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-01-01
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353
Induced pluripotent stem cells in hematology: current and future applications
Focosi, D; Amabile, G; Di Ruscio, A; Quaranta, P; Tenen, D G; Pistello, M
2014-01-01
Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation. PMID:24813079
Mach, François; Sauty, Alain; Iarossi, Albert S.; Sukhova, Galina K.; Neote, Kuldeep; Libby, Peter; Luster, Andrew D.
1999-01-01
Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-γ, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-γ–inducible CXC chemokines — IFN-inducible protein 10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α chemoattractant (I-TAC) — by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MØ) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MØ, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1β, TNF-α, and CD40 ligand potentiated IP-10 expression from IFN-γ–stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-γ induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis. PMID:10525042
[Stem cell research and science and technology policy in Japan].
Yashiro, Yoshimi
2011-12-01
In this paper I review the present condition of the regeneration medicine research using pluripotency and a somatic stem cell, and I describe the subject of the science and technology policy in Japan towards realization of regeneration medicine. The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) supported research promotion by the prompt action in 2007 when establishment of the iPS cell was reported by Shinya Yamanaka. Although the hospitable support of the Japanese government to an iPS cell is continued still now, there are some problems in respect of the support to other stem cell researches, and industrialization of regeneration medicine. In order to win a place in highly competitive area of investigation, MEXT needs to change policy so that funds may be widely supplied also to stem cell researches other than iPS cell research.
RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93
Cheng, Yin; Yang, Haiyan; Sun, Yang; Zhang, Hongkai; Yu, Shuangni; Lu, Zhaohui; Chen, Jie
2017-01-01
Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that mediates specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs), is also overexpressed in several solid human cancers, and correlated with tumor progression. However, the expression and function of RUNX1 in pancreatic ductal adenocarcinoma were still unclear. Here, we show that RUNX1 is highly expressed in pancreatic adenocarcinoma tissues and knocking down of RUNX1 attenuated aggressiveness in pancreatic cell lines. Moreover, we found that RUNX1 could negatively regulate the expression of miR-93. Bioinformatics method showed that there are two binding sites in the the promotor region of miR-93 precursor and through ChIP-qPCR and firefly luciferase reporter assay, we vertified that these two binding sites each have transcriptive activity in one pancreatic cell lines. This result supported our presumption that RUNX1 regulate miR-93 through binding to the promotor region of miR-93. Besides, the expression and function of miR-93 is quite the opposite, miR-93 overexpression suppresses migration and invasiveness in pancreatic cell lines supporting that RUNX1 negatively regulated miR-93. Our findings provided evidence regarding the role of RUNX1 as an oncogene through the inhibition of miR-93. Targeting RUNX1 can be a potential therapeutic strategy in pancreatic cancer. PMID:29245924
Mazloom, Amin R.; Dannenfelser, Ruth; Clark, Neil R.; Grigoryan, Arsen V.; Linder, Kathryn M.; Cardozo, Timothy J.; Bond, Julia C.; Boran, Aislyn D. W.; Iyengar, Ravi; Malovannaya, Anna; Lanz, Rainer B.; Ma'ayan, Avi
2011-01-01
Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/. PMID:22219718
NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class
Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar
2016-01-01
ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874
Silva, Amélia M; Miranda, Andreia; Fernandes, Elisabete; Santos, Susana; Fraga, Irene; Santos, Dario L; Dias, Albino A; Bezerra, Rui M
2013-03-01
Fungi have been used for medicinal purposes for long time by Asian countries, being a putative source of powerful new phytopharmaceuticals such as polysaccharides. The aim of this study was to extract endopolysaccharides (IPS) from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor, grown under submerged culture, to compare crude IPS production, total carbohydrate, and protein yield, and to study the effect of these IPS on HepG2 cells proliferation rate. Total biomass produced by G. resinaceum, P. rufa, and T. versicolor was (in gram per liter) 3.32 ± 0.80, 5.42 ± 0.58, and 4.2 ± 1.29 and the IPS yield (as the biomass percent) was 9.9 ± 0.05, 29.0 ± 6.3, and 9.1 ± 3.1 %, respectively. Characterization of IPS has shown different proportion between total sugar and protein being, on average 6.04, 10.74, and 22.62, for G. resinaceum, T. versicolor, and P. rufa, respectively. The IPS effect, at 50, 100, and 200 μg mL(-1) on HepG2 cell growth and viability was negligible for G. resinaceum and P. rufa but, in the case of T. versicolor, 200 μg mL(-1) of IPS evoked 40 % reduction on cell growth. The results suggest that the intracellular polysaccharides from T. versicolor are a potential source for bioactive molecules with anti-proliferative properties.
Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology.
Bolduc, Nathalie; Lehman, Alisa P; Farmer, Andrew
2016-10-10
Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) has become the gold standard for mapping of transcription factors and histone modifications throughout the genome. However, for ChIP experiments involving few cells or targeting low-abundance transcription factors, the small amount of DNA recovered makes ligation of adapters very challenging. In this unit, we describe a ChIP-seq workflow that can be applied to small cell numbers, including a robust single-tube and ligation-free method for preparation of sequencing libraries from sub-nanogram amounts of ChIP DNA. An example ChIP protocol is first presented, resulting in selective enrichment of DNA-binding proteins and cross-linked DNA fragments immobilized on beads via an antibody bridge. This is followed by a protocol for fast and easy cross-linking reversal and DNA recovery. Finally, we describe a fast, ligation-free library preparation protocol, featuring DNA SMART technology, resulting in samples ready for Illumina sequencing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Induced pluripotent stem cells: advances to applications
Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre
2010-01-01
Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156
cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP.
Hanissian, Silva H; Akbar, Umar; Teng, Bin; Janjetovic, Zorica; Hoffmann, Anne; Hitzler, Johann K; Iscove, Norman; Hamre, Kristin; Du, Xiaoping; Tong, Yiai; Mukatira, Suraj; Robertson, Jon H; Morris, Stephan W
2004-04-29
Myelodysplasia/acute myeloid leukemia (MDS/AML) is characterized by a t(3;5)(q25.1;q34) chromosomal translocation that forms a fusion gene between nucleophosmin (NPM) and MDS/myeloid leukemia factor 1 (MLF1). We identified a novel protein, MLF1-interacting protein (MLF1IP), that specifically associates with MLF1 by yeast two-hybrid analysis and in pulldown assays, and colocalizes with it in both the nuclei and cytoplasm of cells. The MLF1IP gene locus is at chromosome 4q35.1 and is composed of 14 exons spanning 75.8 kb of genomic DNA. The MLF1IP cDNA encodes a 46-kDa protein that contains two bipartite and two classical nuclear localization signals, two nuclear receptor-binding motifs (LXXLL), two leucine zippers, two PEST residues and several potential phosphorylation sites. MLF1IP transcripts are expressed in a variety of tissues (e.g. fetal liver, bone marrow, thymus and testis). MLF1IP appears to be a lineage-specific gene whose expression is confined exclusively to the CFU-E erythroid precursor cells, but not in mature erythrocytes. These observations, together with previous data demonstrating a role for MLF1 in suppressing red cell maturation, suggest a possible role for MLF1IP and MLF1 deregulation in the genesis of erythroleukemias.
The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release
Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.
2010-01-01
Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640
Stem cells in pharmaceutical biotechnology.
Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef
2011-11-01
Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All together, the applications of various cell types derived from patient specific pluripotent stem cells may lead to targeted drug and cellular therapies for certain individuals.
Franco-Echevarría, Elsa; Sanz-Aparicio, Julia; Brearley, Charles A.; González-Rubio, Juana M.; González, Beatriz
2017-01-01
Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) are part of a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana is a zinc metallo-enzyme, including two separated lobes (the N- and C-lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N- and C-lobes is conserved with A. thaliana IP5 2-K. A helical scaffold in the C-lobe constitutes the inositol phosphate-binding site, which, along with the participation of the N-lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologues from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity. PMID:28450399
Patton, W F; Alexander, J S; Dodge, A B; Patton, R J; Hechtman, H B; Shepro, D
1991-07-01
Cell-cell apposition in bovine pulmonary endothelial cell monolayers was modulated by inducing transient increases in intracellular adenosine 3':5'-cyclic monophosphate (cAMP) and 1,4,5-inositol triphosphate (IP3). This was accomplished by mercury-arc flash photolysis of o-nitrobenzyl derivatives of the second messengers (caged compounds). Second messenger release by the mercury-arc lamp was determined by radioimmunoassay of cAMP to have a t1/2 of approximately 8 min. Each second messenger induced the phosphorylation of a distinct subset of cytoskeletal proteins; however, both IP3 and cAMP increased vimentin phosphorylation. Actin isoform patterns were not altered by the second messengers. Intracellular pulses of IP3 in pulmonary endothelial cells caused disruption of endothelial monolayer integrity as determined by phase-contrast microscopy and by visualization of actin stress fibers with rhodamine-phalloidin. Intracellular pulses of cAMP increased cell-cell contact, cell surface area, and apposition. IP3 appeared to have its greatest effect on the actin peripheral band. In silicone rubber contractility assays this agent caused contraction of pulmonary microvascular endothelial cells as visualized by an increase in wrinkles beneath the cells. On the other hand, cAMP appeared to effect both the peripheral band and centralized actin domains. Caged cAMP caused relaxation of endothelial cells as visualized by a disappearance of wrinkles beneath the cells.
Hamano, Sayuri; Tomokiyo, Atsushi; Hasegawa, Daigaku; Yoshida, Shinichiro; Sugii, Hideki; Mitarai, Hiromi; Fujino, Shoko; Wada, Naohisa; Maeda, Hidefumi
2018-01-15
The periodontal ligament (PDL) plays an important role in anchoring teeth in the bone socket. Damage to the PDL, such as after severe inflammation, can be treated with a therapeutic strategy that uses stem cells derived from PDL tissue (PDLSCs), a strategy that has received intense scrutiny over the past decade. However, there is an insufficient number of PDLSCs within the PDL for treating such damage. Therefore, we sought to induce the differentiation of induced pluripotent stem (iPS) cells into PDLSCs as an initial step toward PDL therapy. To this end, we first induced iPS cells into neural crest (NC)-like cells. We then captured the p75 neurotrophic receptor-positive cells (iPS-NC cells) and cultured them on an extracellular matrix (ECM) produced by human PDL cells (iPS-NC-PDL cells). These iPS-NC-PDL cells showed reduced expression of embryonic stem cell and NC cell markers as compared with iPS and iPS-NC cells, and enrichment of mesenchymal stem cell markers. The cells also had a higher proliferative capacity, multipotency, and elevated expression of PDL-related markers than iPS-NC cells cultured on fibronectin and laminin (iPS-NC-FL cells) or ECM produced by human skin fibroblast cells (iPS-NC-SF cells). Overall, we present a culture method to produce high number of PDLSC-like cells from iPS cells as a first step toward a strategy for PDL regeneration.
Cistrome of the aldosterone-activated mineralocorticoid receptor in human renal cells.
Le Billan, Florian; Khan, Junaid A; Lamribet, Khadija; Viengchareun, Say; Bouligand, Jérôme; Fagart, Jérôme; Lombès, Marc
2015-09-01
Aldosterone exerts its effects mainly by activating the mineralocorticoid receptor (MR), a transcription factor that regulates gene expression through complex and dynamic interactions with coregulators and transcriptional machinery, leading to fine-tuned control of vectorial ionic transport in the distal nephron. To identify genome-wide aldosterone-regulated MR targets in human renal cells, we set up a chromatin immunoprecipitation (ChIP) assay by using a specific anti-MR antibody in a differentiated human renal cell line expressing green fluorescent protein (GFP)-MR. This approach, coupled with high-throughput sequencing, allowed identification of 974 genomic MR targets. Computational analysis identified an MR response element (MRE) including single or multiple half-sites and palindromic motifs in which the AGtACAgxatGTtCt sequence was the most prevalent motif. Most genomic MR-binding sites (MBSs) are located >10 kb from the transcriptional start sites of target genes (84%). Specific aldosterone-induced recruitment of MR on the first most relevant genomic sequences was further validated by ChIP-quantitative (q)PCR and correlated with concomitant and positive aldosterone-activated transcriptional regulation of the corresponding gene, as assayed by RT-qPCR. It was notable that most MBSs lacked MREs but harbored DNA recognition motifs for other transcription factors (FOX, EGR1, AP1, PAX5) suggesting functional interaction. This work provides new insights into aldosterone MR-mediated renal signaling and opens relevant perspectives for mineralocorticoid-related pathophysiology. © FASEB.
Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G
1996-03-01
1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.
Sun, Ying; Tan, Yu-jun; Lu, Zhan-zhao; Li, Bing-bing; Sun, Cheng-hong; Li, Tao; Zhao, Li-li; Liu, Zhong; Zhang, Gui-min; Yao, Jing-chun; Li, Jie
2018-01-01
Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography–mass spectrometry (LC–MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth. PMID:29636686
Sun, Ying; Tan, Yu-Jun; Lu, Zhan-Zhao; Li, Bing-Bing; Sun, Cheng-Hong; Li, Tao; Zhao, Li-Li; Liu, Zhong; Zhang, Gui-Min; Yao, Jing-Chun; Li, Jie
2018-01-01
Burdock ( Arctium lappa ) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro . Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC 50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα , and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.
Akl, Haidar; Vervloessem, Tamara; Kiviluoto, Santeri; Bittremieux, Mart; Parys, Jan B; De Smedt, Humbert; Bultynck, Geert
2014-10-01
Anti-apoptotic Bcl-2 contributes to cancer formation and progression by promoting the survival of altered cells. Hence, it is a prime target for novel specific anti-cancer therapeutics. In addition to its canonical anti-apoptotic role, Bcl-2 has an inhibitory effect on cell-cycle progression. Bcl-2 acts at two different intracellular compartments, the mitochondria and the endoplasmic reticulum (ER). At the mitochondria, Bcl-2 via its hydrophobic cleft scaffolds the Bcl-2-homology (BH) domain 3 (BH3) of pro-apoptotic Bcl-2-family members. Small molecules (like BH3 mimetics) can disrupt this interaction, resulting in apoptotic cell death in cancer cells. At the ER, Bcl-2 modulates Ca(2+) signaling, thereby promoting proliferation while increasing resistance to apoptosis. Bcl-2 at the ER acts via its N-terminal BH4 domain, which directly binds and inhibits the inositol 1,4,5-trisphosphate receptor (IP3R), the main intracellular Ca(2+)-release channel. Tools targeting the BH4 domain of Bcl-2 reverse Bcl-2's inhibitory action on IP3Rs and trigger pro-apoptotic Ca(2+) signaling in cancer B-cells, including chronic lymphocytic leukemia (CLL) cells and diffuse large B-cell lymphoma (DLBCL) cells. The sensitivity of DLBCL cells to BH4-domain targeting tools strongly correlated with the expression levels of the IP3R2 channel, the IP3R isoform with the highest affinity for IP3. Interestingly, bio-informatic analysis of a database of primary CLL patient cells also revealed a transcriptional upregulation of IP3R2. Finally, this review proposes a model, in which cancer cell survival depends on Bcl-2 at the mitochondria and/or the ER. This dependence likely will have an impact on their responses to BH3-mimetic drugs and BH4-domain targeting tools. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau. Copyright © 2014 Elsevier B.V. All rights reserved.
Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos
Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi
2013-01-01
Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras. PMID:23626746
Chicken Induced Pluripotent Stem Cells: Establishment and Characterization.
Fuet, Aurelie; Pain, Bertrand
2017-01-01
In mammals, the introduction of the OSKM (Oct4, Sox2, Klf4, and c-Myc) genes into somatic cells has allowed generating induced pluripotent stem (iPS) cells. So far, this process has been only clearly demonstrated in mammals. Here, using chicken as an avian model, we describe a set of protocols allowing the establishment, characterization, maintenance, differentiation, and injection of putative reprogrammed chicken Induced Pluripotent Stem (iPS) cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizutani, Naoki; College of Life and Health Sciences, Chubu University, Kasugai; Omori, Yukari
2016-02-19
Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increasedmore » by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.« less
Bonneau, Benjamin; Nougarède, Adrien; Prudent, Julien; Popgeorgiev, Nikolay; Peyriéras, Nadine; Rimokh, Ruth; Gillet, Germain
2014-02-11
Members of the Bcl-2 protein family regulate mitochondrial membrane permeability and also localize to the endoplasmic reticulum where they control Ca(2+) homeostasis by interacting with inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs). In zebrafish, Bcl-2-like 10 (Nrz) is required for Ca(2+) signaling during epiboly and gastrulation. We characterized the mechanism by which Nrz controls IP3-mediated Ca(2+) release during this process. We showed that Nrz was phosphorylated during early epiboly, and that in embryos in which Nrz was knocked down, reconstitution with Nrz bearing mutations designed to prevent its phosphorylation disrupted cyclic Ca(2+) transients and the assembly of the actin-myosin ring and led to epiboly arrest. In cultured cells, wild-type Nrz, but not Nrz with phosphomimetic mutations, interacted with the IP3 binding domain of IP3R1, inhibited binding of IP3 to IP3R1, and prevented histamine-induced increases in cytosolic Ca(2+). Collectively, these data suggest that Nrz phosphorylation is necessary for the generation of IP3-mediated Ca(2+) transients and the formation of circumferential actin-myosin cables required for epiboly. Thus, in addition to their role in apoptosis, by tightly regulating Ca(2+) signaling, Bcl-2 family members participate in the cellular events associated with early vertebrate development, including cytoskeletal dynamics and cell movement.
Menegola, Milena; Trimmer, James S
2006-11-22
Kv4 family voltage-gated potassium channel alpha subunits and Kv channel-interacting protein (KChIP) and dipeptidyl aminopeptidase-like protein subunits comprise somatodendritic A-type channels in mammalian neurons. Recently, a mouse was generated with a targeted deletion of Kv4.2, a Kv4 alpha subunit expressed in many but not all mammalian brain neurons. Kv4.2-/- mice are grossly indistinguishable from wild-type (WT) littermates. Here we used immunohistochemistry to analyze expression of component Kv4 and KChIP subunits of A-type channels in WT and Kv4.2-/- brains. We found that the expression level, and cellular and subcellular distribution of the other prominent brain Kv4 family member Kv4.3, was indistinguishable between WT and Kv4.2-/- samples. However, we found unanticipated regional and cell-specific decreases in expression of KChIPs. The degree of altered expression of individual KChIP isoforms in different regions and neurons precisely follows the level of Kv4.2 normally found at those sites and presumably their extent of association of these KChIPs with Kv4.2. The dramatic effects of Kv4.2 deletion on KChIP expression suggest that, in addition to previously characterized effects of KChIPs on the functional properties, trafficking, and turnover rate of Kv4 channels, Kv4:KChIP association may confer reciprocal Kv4.2-dependent effects on KChIPs. The impact of Kv4.2 deletion on KChIP expression also supports the major role of KChIPs as auxiliary subunits of Kv4 channels.
Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures
NASA Astrophysics Data System (ADS)
Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon
2013-09-01
We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.
Cell Penetrating Peptides and Cationic Antibacterial Peptides
Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel
2014-01-01
Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763
Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals
Dargan, Sheila L; Parker, Ian
2003-01-01
Ca2+ liberation through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a universal role in cell regulation, and specificity of cell signalling is achieved through the spatiotemporal patterning of Ca2+ signals. IP3Rs display Ca2+-induced Ca2+ release (CICR), but are grouped in clusters so that regenerative Ca2+ signals may remain localized to individual clusters, or propagate globally between clusters by successive cycles of Ca2+ diffusion and CICR. We used confocal microscopy and photoreleased IP3 in Xenopus oocytes to study how these properties are modulated by mobile cytosolic Ca2+ buffers. EGTA (a buffer with slow ‘on-rate’) speeded Ca2+ signals and ‘balkanized’ Ca2+ waves by dissociating them into local signals. In contrast, BAPTA (a fast buffer with similar affinity) slowed Ca2+ responses and promoted ‘globalization’ of spatially uniform Ca2+ signals. These actions are likely to arise through differential effects on Ca2+ feedback within and between IP3R clusters, because Ca2+ signals evoked by influx through voltage-gated channels were little affected. We propose that cell-specific expression of Ca2+-binding proteins with distinct kinetics may shape the time course and spatial distribution of IP3-evoked Ca2+ signals for specific physiological roles. PMID:14555715
Plevin, R; Wakelam, M J
1992-08-01
The kinetics of vasopressin-stimulated PtdIns(4,5)P2 and phosphatidylcholine (PtdCho) hydrolysis in relation to sustained diacylglycerol (DAG) formation was investigated in A10 vascular-smooth-muscle cells in culture. Vasopressin stimulated a transient increase in Ins(1,4,5)P3 mass formation, which was mirrored by a decrease in PtdIns(4,5)P2 mass levels. Vasopressin stimulated sustained accumulation of total [3H]inositol phosphates ([3H]IP) in the presence of Li+; however, this was significantly decreased by adding a vasopressin-receptor antagonist at different times after initial stimulation. Vasopressin-stimulated phospholipase D (PLD) activity was found to be a transient phenomenon lasting approx. 2 min. Experiments involving agonist preincubation with subsequent addition of butanol confirmed that vasopressin-stimulated PLD activity was desensitized. Vasopressin stimulated an increase in formation of choline, but not of phosphocholine, suggesting that PLD was the major catalytic route of PtdCho hydrolysis in this cell line. The roles of choline and inositol phospholipid hydrolysis in the prolonged phase of DAG formation was examined by comparing vasopressin-stimulated changes in DAG levels in the presence of butanol, the protein kinase C inhibitor Ro-31-8220 or a V1a-receptor antagonist. Vasopressin-stimulated DAG formation was decreased by 40-50% in the presence of butanol between 1 and 10 min; however, during more prolonged stimulation butanol was without significant effect. In cells pretreated with Ro-31-8220, vasopressin-stimulated DAG formation was decreased by approx. 30% at 2 min, but was significantly potentiated at later times. This coincided with an enhancement of vasopressin-stimulated [3H]IP accumulation. In cells exposed to the V1a-receptor antagonist 5 min after addition of vasopressin, subsequent DAG formation was significantly decreased, indicating that sustained formation of DAG, like [3H]IP accumulation, was dependent on continual agonist receptor activation. The results are discussed in terms of different phospholipid-hydrolytic pathways providing DAG generation.
Wang, Wan-Chen; Cheng, Chau-Fu; Tsaur, Meei-Ling
2015-03-01
Subthreshold A-type K(+) currents (ISA s) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISA s. It has been proposed that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits, K(+) channel-interacting proteins (KChIPs), and dipeptidyl peptidase-like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin- and somatostatin-positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA -expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo. © 2014 Wiley Periodicals, Inc.
O'Duibhir, Eoghan; Carragher, Neil O; Pollard, Steven M
2017-04-01
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Takada, Silvia Honda; Ikebara, Juliane Midori; de Sousa, Erica; Cardoso, Débora Sterzeck; Resende, Rodrigo Ribeiro; Ulrich, Henning; Rückl, Martin; Rüdiger, Sten; Kihara, Alexandre Hiroaki
2017-11-01
It is well known that calcium (Ca 2+ ) is involved in the triggering of neuronal death. Ca 2+ cytosolic levels are regulated by Ca 2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca 2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca 2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca 2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca 2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca 2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Interfacing the Controllogics PLC over Ethernet/IP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasemir, K. U.; Dalesio, L. R.
2001-01-01
The Allen-Bradley ControlLogix [1] line of programmable logic controllers (PLCs) offers several interfaces: Ethernet, ControlNet, DeviceNet, RS-232 and others. The ControlLogix Ethernet interface module 1756-ENET uses EtherNet/IP, the ControlNet protocol [2], encapsulated in Ethernet packages, with specific service codes [3]. A driver for the Experimental Physics and Industrial Control System (EPICS) has been developed that utilizes this EtherNet/IP protocol for controllers running the vxWorks RTOS as well as a Win32 and Unix/Linux test program. Features, performance and limitations of this interface are presented.
Bahreini, Amir; Li, Zheqi; Wang, Peilu; Levine, Kevin M; Tasdemir, Nilgun; Cao, Lan; Weir, Hazel M; Puhalla, Shannon L; Davidson, Nancy E; Stern, Andrew M; Chu, David; Park, Ben Ho; Lee, Adrian V; Oesterreich, Steffi
2017-05-23
Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.
Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni
2016-11-01
The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.
Hisatsune, Chihiro; Miyamoto, Hiroyuki; Hirono, Moritoshi; Yamaguchi, Naohide; Sugawara, Takeyuki; Ogawa, Naoko; Ebisui, Etsuko; Ohshima, Toshio; Yamada, Masahisa; Hensch, Takao K.; Hattori, Mitsuharu; Mikoshiba, Katsuhiko
2013-01-01
The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway. PMID:24109434
Genome wide approaches to identify protein-DNA interactions.
Ma, Tao; Ye, Zhenqing; Wang, Liguo
2018-05-29
Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cieślar-Pobuda, Artur; Knoflach, Viktoria; Ringh, Mikael V; Stark, Joachim; Likus, Wirginia; Siemianowicz, Krzysztof; Ghavami, Saeid; Hudecki, Andrzej; Green, Jason L; Łos, Marek J
2017-07-01
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J
2015-07-01
The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy. Copyright © 2015. Published by Elsevier B.V.
Regulatory effect and mechanism of gastrin and its antagonists on colorectal carcinoma
He, Shuang-Wu; Shen, Kang-Qiang; He, Yu-Jun; Xie, Bin; Zhao, Yan-Ming
1999-01-01
AIM: To explore the effect and mechanism of gastrin and its an tagonists proglumide and somatostatin on colorectal carcinoma and their clinical significance. METHODS: A model of transplanted human colonic carcinoma was established from SW480 cell line in gymnomouse body. The volume and weight of transplanted carcinoma was observed under the effect of pentagatrin (PG), proglumide (PGL) and octapeptide somotostatin (SMS201-995, SMS). The cAMP content of carcinoma cell was determined by radioimmunoassay and the DNA, protein content and cell cycle were determined by flow-cytometry. The amount of viable cells was determined by MTT colorimetric analysis, IP3 content was determined by radioimmuno assay, Ca2+ concentration in cell by fluorometry and PKC activity by isotopic enzymolysis. The expression of gastrin, c-myc, c-fos and rasP21 in 48 case s of colorectal carcinoma tissue was detected by the immuno-cytochemistry SP method. Argyrophilia nucleolar organizer regions was determined with argyrophilia stain. RESULTS: The volume, weight, cAMP, DNA and protein content in carcinoma cell, cell amount and proliferation index of S and G2M phase in PG group were all significantly higher than those of control group. When PG was at the concentration of 25 mg/L, the amount of viable cells, IP3 content and Ca2+ concentration in cell and membrane PKC activity in PG group were significantly higher than those in control group; when PGL was at a concentration of 32 mg/L, they dropped to the lowest level in PG (25 mg/L) + PGL group, but without significant difference from the control group. The positive expression rate of gastrin, c-myc, c-fos and rasP21 in carcinoma tissue was 39.6%, 54.2%, 47.9% and 54.2% respectively and significantly higher than that in mucosa 3 cm and 6 cm adjacent to carcinoma tissue and normal colorectal mucosa. The positive expression rate of gastrin of highly-differentiated adenocarcinoma group was significantly higher than that of poorly-differentiated and mucinous adenoc arcinoma groups. The AgNORs count of carcinoma tissue was significantly higher than that in mucosa 3 cm and 6 cm adjacent to carcinoma tissue and norm al colorectal mucosa; and the positive expression of c-myc and c-fos and the A gNORs count in gastrin-positive group was significantly higher than those in gastrin-negative group. CONCLUSION: Pentagastrin has a promoting effect on the growth of transplanted human colonic carcinoma from SW480 cell line. PGL has no obvious effect on the growth of human colonic carcinoma SW480 cell line, but could inhibit the growth promoting effect of PG on transplanted carcinoma. Somatostatin can not only inhibit the growth of transplanted human colonic carcinoma from SW480 cell line directly but also depress the growth-promoting effect of gastrin on the transplanted carcinoma. Some colorectal carcinoma cells can produce and secrete gastrin through autocrine, highly-differentiated adenocarcinoma express the highest level gastrin. Endogenous gastrin can stimulate the cell division and proliferation of carcinoma cell and promote the growth of colorectal carcinoma regulating the expression of oncogene c-myc, c-fos. Our study has provided experimental basis for the adjuvant treatment using gastrin antagonist such as PGL, so matostatin of patients with colorectal carcinoma. PMID:11819478
Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.
Barruet, Emilie; Hsiao, Edward C
2016-01-01
Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.
Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.
2016-01-01
The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539
Measuring Sister Chromatid Cohesion Protein Genome Occupancy in Drosophila melanogaster by ChIP-seq.
Dorsett, Dale; Misulovin, Ziva
2017-01-01
This chapter presents methods to conduct and analyze genome-wide chromatin immunoprecipitation of the cohesin complex and the Nipped-B cohesin loading factor in Drosophila cells using high-throughput DNA sequencing (ChIP-seq). Procedures for isolation of chromatin, immunoprecipitation, and construction of sequencing libraries for the Ion Torrent Proton high throughput sequencer are detailed, and computational methods to calculate occupancy as input-normalized fold-enrichment are described. The results obtained by ChIP-seq are compared to those obtained by ChIP-chip (genomic ChIP using tiling microarrays), and the effects of sequencing depth on the accuracy are analyzed. ChIP-seq provides similar sensitivity and reproducibility as ChIP-chip, and identifies the same broad regions of occupancy. The locations of enrichment peaks, however, can differ between ChIP-chip and ChIP-seq, and low sequencing depth can splinter broad regions of occupancy into distinct peaks.
Science spin: iPS cell research in the news.
Caulfield, T; Rachul, C
2011-05-01
Big scientific developments have always been spun to meet particular social agendas. We have seen it in the context of global warming, nuclear power, and genetically modified organisms. But few stories illustrate the phenomenon of spin as well as the reaction, and concomitant media coverage, that surrounded the November 2007 announcement regarding the reprogramming of skin cells to produce cells with qualities comparable to those of human embryonic stem cells (hESCs) known as induced pluripotent stem (iPS) cells.
Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB.
Wu, Jian; Wang, Qiao; Dai, Wei; Wang, Wei; Yue, Ming; Wang, Jinke
2018-04-13
Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by the in vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation. Copyright © 2018 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Implementation of NATO Guidelines on Intellectual Property Rights. Revision
1979-01-01
RECOMMENDED CHANGES IN DoD POLICY .............. ................ 3- 1 Recommendations for NATO IP Policy ..... ........... . 3- 1 Recommendation 1’ Commit...4- 6 Effects of Recommended IP Policy ......... .. .. 4- 9 5. RECOMMENDED CHANGES IN THE ASPR/DAR ..... ......... ...... .... 5- 1 APPENDICES I... changes to the guide- lines for re-presentation to CNAD, but no important modifications are antici- pated. Accordingly, we have assumed that the guidelines
Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu
2014-05-01
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya
2015-01-01
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide
2015-07-15
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Geng, Wei; Lo, Chung-Mau; Ng, Kevin T.P.; Ling, Chang-Chun; Qi, Xiang; Li, Chang-Xian; Zhai, Yuan; Liu, Xiao-Bing; Ma, Yuen-Yuen; Man, Kwan
2015-01-01
Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment. PMID:26336986
Valente, Anthony J.; Yoshida, Tadashi; Izadpanah, Reza; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani
2013-01-01
We investigated the role of TRAF3 interacting protein 2 (TRAF3IP2), a redox-sensitive adapter protein and an upstream regulator of IKK and JNK in interleukin (IL)-18 induced smooth muscle cell migration, and the mechanism of its inhibition by simvastatin. The pleiotropic cytokine IL-18 induced human coronary artery SMC migration through the induction of TRAF3IP2. IL-18 induced Nox1-dependent ROS generation, TRAF3IP2 expression, and IKK/NF-κB and JNK/AP-1 activation. IL-18 induced its own expression and that of its receptor subunit IL-18Rα. Using co-IP/IB and GST pull-down assays, we show for the first time that the subunits of the IL-18R heterodimer physically associate with Nox1 under basal conditions, and IL-18 appears to enhance their binding. Importantly, the HMG-coA reductase inhibitor simvastatin attenuated IL-18-induced TRAF3IP2 induction. These inhibitory effects were reversed by mevalonate and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Interestingly, simvastatin, GGPP, FPP, or Rac1 inhibition did not modulate ectopically expressed TRAF3IP2. The promigratory effects of IL-18 are mediated through TRAF3IP2 in a redox-sensitive manner, and this may involve IL-18R/Nox1 physical association. Further, Simvastatin inhibits inducible, but not ectopically-expressed TRAF3IP2. Targeting TRAF3IP2 may blunt progression of hyperplastic vascular diseases in vivo. PMID:23541442
Specific c-Jun target genes in malignant melanoma.
Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie
2016-05-03
A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.
Jones, Olcay Y; Gok, Faysal; Rushing, Elisabeth J; Horkayne-Szakaly, Iren; Ahmed, Atif A
2011-01-01
Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v.) versus intraperitoneal (i.p.), and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10-12 weeks) or long (62 weeks) posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize transplant conditions and tailor protocols that may in part be guided by fat and endothelial biomarkers. Furthermore, the role of liver chimerism in disease control and the nature of cellular communication among donor hematopoietic and mesenchymal stem cells in a chimeric host merit further investigation.
Ho, Thai H.; Nateras, Rafael Nunez; Yan, Huihuang; Park, Jin G.; Jensen, Sally; Borges, Chad; Lee, Jeong Heon; Champion, Mia D.; Tibes, Raoul; Bryce, Alan H.; Carballido, Estrella M.; Todd, Mark A.; Joseph, Richard W.; Wong, William W.; Parker, Alexander S.; Stanton, Melissa L.; Castle, Erik P.
2015-01-01
To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes. PMID:26181416
Predes, Fabricia de Souza; Diamante, M A S; Foglio, M A; Dolder, H
2016-10-01
The protective role of Arctium lappa (AL) on the testes of rats acutely exposed to cadmium (Cd) was tested. The rats were randomly divided into a control group (C-group) and three major experimental groups, which were further subdivided into minor groups (n = 6) according to the experimental period (7 or 56 days). The C-group was subdivided into C-7 and C-56 [receiving a single saline solution, intraperitoneal (i.p.), on the first day]; the AL-group, AL-7, and AL-56, received AL extract (300 mg/kg/daily); the Cd group, Cd-7 and Cd-56, received a single i.p. dose of CdCl2 (1.2 mg/kg body weight (BW)) on the first day; the CdAL group, CdAL-7 and CdAL-56, received the same Cd dose, followed by AL extract. Water or AL extract was administered daily by gavage. After either 7 or 56 days, the testis and accessory glands were removed after whole-body perfusion. Exposure to Cd and CdAL decreased the weight of the testis and epididymis, the gonadosomatic index, seminiferous tubular (ST) diameter, and ST volumetric proportion, and increased the volumetric proportion of interstitium after 56 days. In the epididymis caput, the tubular volumetric proportion decreased along with an increase of interstitial volumetric proportion and epithelium height after 56 days. The alterations observed were less severe only after 7 days. A progressive testicular damage resulted mainly in tubules lined only by Sertoli cells. The sperm number and cell debris decreased in the epididymis. We demonstrated that the testicular damage induced by single acute i.p. exposure to Cd occurred despite the daily oral intake of AL extract.
NASA Astrophysics Data System (ADS)
Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin
2018-03-01
Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (<30 Ω-m) and high normalized chargeability (>0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.
NASA Astrophysics Data System (ADS)
Diambra, Luis; Marchant, Jonathan S.
2009-09-01
Inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals display great spatiotemporal malleability. This malleability depends on diversity in both the cellular organization and in situ functionality of IP3 receptors (IP3Rs) that regulate Ca2+ release from the endoplasmic reticulum (ER). Recent experimental data imply that these considerations are not independent, such that—as with other ion channels—the local organization of IP3Rs impacts their functionality, and reciprocally IP3R activity impacts their organization within native ER membranes. Here, we (i) review experimental data that lead to our understanding of the "functional architecture" of IP3Rs within the ER, (ii) propose an updated terminology to span the organizational hierarchy of IP3Rs observed in intact cells, and (iii) speculate on the physiological significance of IP3R socialization in Ca2+ dynamics, and consequently the emerging need for modeling studies to move beyond gridded, planar, and static simulations of IP3R clustering even over short experimental timescales.
Bahmad, Hisham; Hadadeh, Ola; Chamaa, Farah; Cheaito, Katia; Darwish, Batoul; Makkawi, Ahmad-Kareem; Abou-Kheir, Wassim
2017-01-01
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro . The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.
Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2017-09-01
Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.
Non-solenoidal Plasma Startup in the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Sontag, Aaron
2008-11-01
Non-solenoidal (NS) startup will simplify the design of future tokamaks by eliminating need for a central solenoid and is required for an ST based CTF. In Pegasus, washer-stack current sources (plasma guns) are used to initiate NS discharges via point-source DC helicity injection. Current injected parallel to the helical vacuum field can relax into a tokamak-like configuration with toroidally-averaged closed flux and tokamak-like confinement. This requires no modification of the vacuum vessel and is scalable to fusion grade systems with proper geometry. Guns in the divertor region create discharges with Ip up to 50 kA, 3 times the vacuum windup. Nonlinear 3D simulation with NIMROD shows excitation of a line-tied kink, producing poloidal flux amplification. Evidence of flux amplification includes: reversal of edge poloidal magnetic flux; Ip increase over vacuum geometric windup; plasma position subject to radial force balance; and persistence of Ip after gun shut-off. Equilibria show high edge current (li = 0.2) and elevated q (qmin> 6), allowing access to high IN (IN> 12). Guns at the outboard midplane produce Ip up to 7 times the vacuum windup with large n=1 activity when edge q passes through rational surfaces. Line averaged density up to 2x10^19 m-3 after relaxation shows an increase in particle confinement over non-relaxed cases. Maximum Ip is determined by helicity and radial force balance, tokamak stability, and Taylor relaxation. Coupling midplane gun discharges to other CD is straightforward due to Ip decay times >3 ms. Poloidal field induction has been used to create NS discharges up to 80 kA and gun plasmas with Ip of 60 kA have been ramped to over 100 kA by including OH drive. Present research is aimed at understanding the physics of this technique in order to form NS targets in excess of 200 kA and design NS startup systems for larger devices.
Chiang, Yun; Tsai, Cheng-Hong; Kuo, Sung-Hsin; Liu, Chieh-Yu; Yao, Ming; Li, Chi-Cheng; Huang, Shang-Yi; Ko, Bor-Sheng; Lin, Chien-Ting; Hou, Hsin-An; Chou, Wen-Chien; Liu, Jia-Hau; Lin, Chien-Chin; Wu, Shang-Ju; Hsu, Szu-Chun; Chen, Yao-Chang; Lin, Kai-Hsin; Lin, Dong-Tsamn; Chou, Hsien-Tang; Lu, Meng-Yu; Yang, Yung-Li; Chang, Hsiu-Hao; Liu, Ming-Chih; Liao, Xiu-Wen; Wu, Jian-Kuen; Chou, Sheng-Chieh; Cheng, Chieh-Lung; Chen, Chien-Yuan; Tsay, Woei; Tien, Hwei-Fang; Tang, Jih-Luh; Chen, Yu-Hsuan
2016-11-10
Allogeneic hematopoietic stem cell transplantation is a curative-intent treatment for patients with high-risk hematologic diseases. However, interstitial pneumonitis (IP) and other toxicities remain major concerns after total body irradiation (TBI). We have proposed using linear accelerators with rice-bag compensators for intensity modulation (IM-TBI), as an alternative to the traditional cobalt-60 teletherapy with lung-shielding technique (Co-TBI). Patients who received a TBI-based myeloablative conditioning regimen between 1995 and 2014 were recruited consecutively. Before March 2007, TBI was delivered using Co-TBI (n = 181); afterward, TBI was administered using IM-TBI (n = 126). Forty-four patients developed IP; of these cases, 19 were idiopathic. The IP-related mortality rate was 50% in the total IP cohort and 63% in the idiopathic subgroup. The 1-year cumulative incidences of IP and idiopathic IP were 16.5% and 7.4%, respectively; both rates were significantly higher in the Co-TBI group than in the IM-TBI group. Multivariate analysis revealed that Co-TBI was an independent prognostic factor for both total and idiopathic IP. In the acute myeloid leukemia subgroup, patients with different TBI techniques had similar outcomes for both overall and relapse-free survival. In conclusion, IM-TBI is an easy and effective TBI technique that could substantially reduce the complication rate of IP without compromising treatment efficacy.
Jalilvand, Somayeh; Saidi, Masoumeh; Shoja, Zabihollah; Ghavami, Nastaran; Hamkar, Rasool
2016-03-01
Inverted papilloma (IP) is an uncommon disease which arises in the mucosal membrane of the nasal cavity and paranasal sinus. It has been proposed that human papillomavirus (HPV) is the causal agent in the pathogenesis of IP and plays a key role in the progression from benign IP to malignancy. As there are no prior studies that focus on an Iranian population, this study intended to characterize the prevalence of HPV types in benign and malignant forms of IP. In this retrospective study, we included a total of 40 IP patients [37 benign IP and 3 IP/squamous cell carcinoma (SCC)] who were referred to Amiralam Hospital in Tehran from 2004-2006. HPV was detected in 18.9% and 100% of IP and IP/SCC cases, respectively. In all HPV positive cases of IP and IP/SCC cases, HPV6/11 and HPV16/18 were detected, respectively. Therefore, HPV types were different between the IP and IP/SCC patients, and this difference was statistically significant (p = 0.002). This study suggests that HPV6 and 11 may be involved in the development of IP, but HPV16 and 18 likely play an important role in the progression from benign to malignant form of IP. Copyright © 2015. Published by Elsevier Taiwan LLC.
Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu
2012-05-01
Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.
Impact of Environmental Exposures on the Mutagenicity/Carcinogenicity of Heterocyclic Amines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felton, J S; Knize, M G; Bennett, L M
2003-12-19
Carcinogenic heterocyclic amines are produced from overcooked foods and are highly mutagenic in most short-term test systems. One of the most abundant of these amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), induces breast, colon and prostate tumors in rats. Human dietary epidemiology studies suggest a strong correlation between either meat consumption or well-done muscle meat consumption and cancers of the colon, breast, stomach, lung and esophagus. For over 20 years our laboratory has helped define the human exposure to these dietary carcinogens. In this report we describe how various environmental exposures may modulate the risk from exposure to heterocyclic amines, especially PhIP. To assessmore » the impact of foods on PhIP metabolism in humans, we developed an LC/MS/MS method to analyze the four major PhIP urinary metabolites following the consumption of a single portion of grilled chicken. Adding broccoli to the volunteers' diet altered the kinetics of PhIP metabolism. At the cellular level we have found that PhIP itself stimulates a significant estrogenic response in MCF-7 cells, but even more interestingly, co-incubation of the cells with herbal teas appear to enhance the response. Numerous environmental chemicals found in food or the atmosphere can impact the exposure, metabolism, and cell proliferation response of heterocyclic amines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecay, T.W.; Valentich, J.D.
1991-03-01
Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less
Schwarz, Frank; John, Gordon; Becker, Jürgen
2017-09-01
The objective of the study was to assess the influence of implantoplasty (IP) on the diameter, chemical surface composition, and biocompatibility of titanium implants in vitro. Twenty soft tissue-level (TL; machined transmucosal-M and rough endosseous part-SLA) and 20 bone-level (BL; SLA) implants were allocated to IP covering 3 or 6 mm of the structured surface (SLA) area. The samples were subjected to diameter, energy-dispersive X-ray spectroscopy (EDX), and cell viability (ginigval fibroblasts, 6 days) assessments. Median diameter reductions varied between 0.1 (TL 3 mm) and 0.2 mm (TL 6 mm). EDX analysis revealed that IP and M surfaces were characterized by a comparable quantity (Wt%) of elements C, O, Na, Cl, K, and Si, but a significantly different quantity of elements Ti and Al. When compared to SLA surfaces, significant differences were noted for elements C, O, Na, Ti, and Al. At BL implants, the extension of IP (i.e., 3 to 6 mm) was associated with a significant increase in cell viability. IP applied to SLA implants was associated with (i) a minimal diameter reduction, (ii) an undisturbed cell viability, and (iii) a chemical elemental composition comparable to M surfaces. This specific IP procedure appears to be suitable for the management of exposed SLA implant surfaces.
Substance P receptor desensitization requires receptor activation but not phospholipase C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiya, Hiroshi; Putney, J.W. Jr.
1988-08-01
Previous studies have shown that exposure of parotid acinar cells to substance P at 37{degree}C results in activation of phospholipase C, formation of ({sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to {approximately}20% of control values, IP{sub 3} formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to {approximately}5% of control values, and both IP{sub 3} formation and desensitization were blocked. A series of substance P-related peptides increased themore » formation of ({sup 3}H)IP{sub 3} and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, (D-Pro{sup 2}, D-Try{sup 7,9})-substance P, inhibited substance P-induced IP{sub 3} formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP{sub 3} formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.« less
IP3R deficit underlies loss of salivary fluid secretion in Sjögren’s Syndrome
Teos, Leyla Y.; Zhang, Yu; Cotrim, Ana P.; Swaim, William; Won, Jon H.; Ambrus, Julian; Shen, Long; Bebris, Lolita; Grisius, Margaret; Jang, Shyh-Ing; Yule, David I.; Ambudkar, Indu S.; Alevizos, Ilias
2015-01-01
The autoimmune exocrinopathy, Sjögren’s syndrome (SS), is associated with secretory defects in patients, including individuals with mild lymphocytic infiltration and minimal glandular damage. The mechanism(s) underlying the secretory dysfunction is not known. We have used minor salivary gland biopsies from SS patients and healthy individuals to assess acinar cell function in morphologically intact glandular areas. We report that agonist-regulated intracellular Ca2+ release, critically required for Ca2+ entry and fluid secretion, is defective in acini from SS patients. Importantly, these acini displayed reduction in IP3R2 and IP3R3, but not AQP5 or STIM1. Similar decreases in IP3R and carbachol (CCh)-stimulated [Ca2+]i elevation were detected in acinar cells from lymphotoxin-alpha (LTα) transgenic (TG) mice, a model for (SS). Treatment of salivary glands from healthy individuals with LT α, a cytokine linked to disease progression in SS and IL14α mice, reduced Ca2+ signaling. Together, our findings reveal novel IP3R deficits in acinar cells that underlie secretory dysfunction in SS patients. PMID:26365984
Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan
2018-06-29
Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.
Cigarette Smoke–Induced CXCR3 Receptor Up-Regulation Mediates Endothelial Apoptosis
Green, Linden A.; Petrusca, Daniela; Rajashekhar, Gangaraju; Gianaris, Tom; Schweitzer, Kelly S.; Wang, Liang; Justice, Matthew J.; Petrache, Irina
2012-01-01
Endothelial monocyte–activating polypeptide II (EMAP II) and interferon-inducible protein (IP)–10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke–exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke–induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II–induced and IP-10–induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II–induced and IP-10–induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II–induced and IP-10–induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II–induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema. PMID:22936405
Induced Pluripotent Stem Cells from Nonhuman Primates.
Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J
2016-01-01
Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.
Hsu, Yun-Wei A.; Tempest, Lynne; Quina, Lely A.; Wei, Aguan D.; Zeng, Hongkui
2013-01-01
The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an “accessory” subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5GFP, to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5GFP is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5GFP is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5GFP neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5GFP neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5GFP IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5GFP neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714
Park, Chul-Yong; Kim, Jungeun; Kweon, Jiyeon; Son, Jeong Sang; Lee, Jae Souk; Yoo, Jeong-Eun; Cho, Sung-Rae; Kim, Jong-Hoon; Kim, Jin-Soo; Kim, Dong-Wook
2014-06-24
Hemophilia A, one of the most common genetic bleeding disorders, is caused by various mutations in the blood coagulation factor VIII (F8) gene. Among the genotypes that result in hemophilia A, two different types of chromosomal inversions that involve a portion of the F8 gene are most frequent, accounting for almost half of all severe hemophilia A cases. In this study, we used a transcription activator-like effector nuclease (TALEN) pair to invert a 140-kbp chromosomal segment that spans the portion of the F8 gene in human induced pluripotent stem cells (iPSCs) to create a hemophilia A model cell line. In addition, we reverted the inverted segment back to its normal orientation in the hemophilia model iPSCs using the same TALEN pair. Importantly, we detected the F8 mRNA in cells derived from the reverted iPSCs lines, but not in those derived from the clones with the inverted segment. Thus, we showed that TALENs can be used both for creating disease models associated with chromosomal rearrangements in iPSCs and for correcting genetic defects caused by chromosomal inversions. This strategy provides an iPSC-based novel therapeutic option for the treatment of hemophilia A and other genetic diseases caused by chromosomal inversions.
Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors.
Du, Xuguang; Feng, Tao; Yu, Dawei; Wu, Yuanyuan; Zou, Huiying; Ma, Shuangyu; Feng, Chong; Huang, Yongye; Ouyang, Hongsheng; Hu, Xiaoxiang; Pan, Dengke; Li, Ning; Wu, Sen
2015-11-01
To date no authentic embryonic stem cell (ESC) line or germline-competent-induced pluripotent stem cell (iPSC) line has been established for large animals. Despite this fact, there is an impression in the field that large animal ESCs or iPSCs are as good as mouse counterparts. Clarification of this issue is important for a healthy advancement of the stem cell field. Elucidation of the causes of this failure in obtaining high quality iPSCs/ESCs may offer essential clues for eventual establishment of authentic ESCs for large animals including humans. To this end, we first generated porcine iPSCs using nonintegrating replicating episomal plasmids. Although these porcine iPSCs met most pluripotency criteria, they could neither generate cloned piglets through nuclear transfer, nor contribute to later stage chimeras through morula injections or aggregations. We found that the reprogramming genes in iPSCs could not be removed even under negative selection, indicating they are required to maintain self-renewal. The persistent expression of these genes in porcine iPSCs in turn caused differentiation defects in vivo. Therefore, incomplete reprogramming manifested by a reliance on sustained expression of exogenous-reprogramming factors appears to be the main reason for the inability of porcine iPSCs to form iPSC-derived piglets. © 2015 AlphaMed Press.
NASA Astrophysics Data System (ADS)
Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.
2016-02-01
Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.
O'Callaghan, Dermott W; Hasdemir, Burcu; Leighton, Mark; Burgoyne, Robert D
2003-12-01
KChIPs (K+ channel interacting proteins) regulate the function of A-type Kv4 potassium channels by modifying channel properties and by increasing their cell surface expression. We have explored factors affecting the localisation of Kv4.2 and the targeting of KChIP1 and other NCS proteins by using GFP-variant fusion proteins expressed in HeLa cells. ECFP-Kv4.2 expressed alone was not retained in the ER but reached the Golgi complex. In cells co-expressing ECFP-Kv4.2 and KChIP1-EYFP, the two proteins were co-localised and were mainly present on the plasma membrane. When KChIP1-EYFP was expressed alone it was instead targeted to punctate structures. This was distinct from the localisation of the NCS proteins NCS-1 and hippocalcin, which were targeted to the trans-Golgi network (TGN) and plasma membrane. The membrane localisation of each NCS protein required myristoylation and minimal myristoylation motifs of hippocalcin or KChIP1 were sufficient to target fusion proteins to either TGN/plasma membrane or to punctate structures. The existence of targeting information within the N-terminal motifs was confirmed by mutagenesis of residues corresponding to three conserved basic amino acids in hippocalcin and NCS-1 at positions 3, 7 and 9. Residues at these positions determined intracellular targeting to the different organelles. Myristoylation and correct targeting of KChIP1 was required for the efficient traffic of ECFP-Kv4.2 to the plasma membrane. Expression of KChIP1(1-11)-EYFP resulted in the formation of enlarged structures that were positive for ERGIC-53 and beta-COP. ECFP-Kv4.2 was also accumulated in these structures suggesting that KChIP1(1-11)-EYFP inhibited traffic out of the ERGIC. We suggest that KChIP1 is targeted by its myristoylation motif to post-ER transport vesicles where it could interact with and regulate the traffic of Kv4 channels to the plasma membrane under the influence of localised Ca2+ signals.
Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer
Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.
2010-01-01
Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, J.N.; Saha, A.K.; Glew, R.H.
1987-05-01
Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP3) was explored. When neutrophil phosphoinositides were labeled with TSP, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP2) over 2 h. Treatment of (TH)inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP2. Following fMLPmore » stimulation, the fractional reduction in PIP2 and the fractional increase in IP3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP3 was reduced by ACP pre-treatment. The reduction in IP3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP2 available for hydrolysis. However, some loss of IP3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP2, the prognitor of IP3, and by hydrolyzing IP3 itself.« less
Rao, Feng; Xu, Jing; Khan, A. Basit; Gadalla, Moataz M.; Cha, Jiyoung Y.; Xu, Risheng; Tyagi, Richa; Dang, Yongjun; Chakraborty, Anutosh; Snyder, Solomon H.
2014-01-01
Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1–3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN–CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4–CSN complex, thereby regulating nucleotide excision repair and cell death. PMID:25349427
IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rincon, M.; Boss, W.F.
1986-04-01
Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/supmore » + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.« less
Hoepfner, Jeannine; Kleinsorge, Mandy; Papp, Oliver; Alfken, Susanne; Heiringhoff, Robin; Pich, Andreas; Sauer, Vanessa; Zibert, Andree; Göhring, Gudrun; Schmidt, Hartmut; Sgodda, Malte; Cantz, Tobias
2017-07-26
The transthyretin protein is thermodynamically destabilised by mutations in the transthyretin gene, promoting the formation of amyloid fibrils in various tissues. Consequently, impaired autonomic organ function is observed in patients suffering from transthyretin-related familial amyloidotic polyneuropathy (FAP). The influence of individual genetic backgrounds on fibril formation as a potential cause of genotype-phenotype variations needs to be investigated in order to ensure efficient patient-specific therapies. We reprogrammed FAP patient fibroblasts to induced pluripotent stem (iPS) cells and differentiated these cells into transthyretin-expressing hepatocyte-like cells (HLCs). HLCs differentiated from FAP iPS cells and healthy control iPS cells secreted the transthyretin protein in similar concentrations. Mass spectrometry revealed the presence of mutant transthyretin protein in FAP HLC supernatants. In comparison to healthy control iPS cells, we demonstrated the formation of transthyretin amyloid fibril-like structures in FAP HLC supernatants using the amyloid-specific dyes Congo red and thioflavin T. These dyes were also applicable for the quantitative determination of in vitro formed transthyretin fibril-like structures. Moreover, we confirmed the inhibition of fibril formation by the TTR kinetic stabiliser diclofenac. Thioflavin T fluorescence intensity measurements even allowed the quantification of amyloid fibril-like structures in 96-well plate formats as a prerequisite for patient-specific drug screening approaches.
Massumi, Mohammad; Hoveizi, Elham; Baktash, Parvaneh; Hooti, Abdollah; Ghazizadeh, Leili; Nadri, Samad; Pourasgari, Farzaneh; Hajarizadeh, Athena; Soleimani, Masoud; Nabiuni, Mohammad; Khorramizadeh, Mohammad R
2014-03-10
Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1. Copyright © 2014 Elsevier Inc. All rights reserved.
Melanopsin tristability for sustained and broadband phototransduction.
Emanuel, Alan Joseph; Do, Michael Tri Hoang
2015-03-04
Mammals rely upon three ocular photoreceptors to sense light: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). Rods and cones resolve details in the visual scene. Conversely, ipRGCs integrate over time and space, primarily to support "non-image" vision. The integrative mechanisms of ipRGCs are enigmatic, particularly since these cells use a phototransduction motif that allows invertebrates like Drosophila to parse light with exceptional temporal resolution. Here, we provide evidence for a single mechanism that allows ipRGCs to integrate over both time and wavelength. Light distributes the visual pigment, melanopsin, across three states, two silent and one signaling. Photoequilibration among states maintains pigment availability for sustained signaling, stability of the signaling state permits minutes-long temporal summation, and modest spectral separation of the silent states promotes uniform activation across wavelengths. By broadening the tuning of ipRGCs in both temporal and chromatic domains, melanopsin tristability produces signal integration for physiology and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Schlatzer, Daniela M.; Dazard, Jean-Eudes; Ewing, Rob M.; Ilchenko, Serguei; Tomcheko, Sara E.; Eid, Saada; Ho, Vincent; Yanik, Greg; Chance, Mark R.; Cooke, Kenneth R.
2012-01-01
Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy. PMID:22337588
NASA Astrophysics Data System (ADS)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-01
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.
Yu, Bin; Dai, Cong-qi; Jiang, Zhen-you; Li, En-qing; Chen, Chen; Wu, Xian-lin; Chen, Jia; Liu, Qian; Zhao, Chang-lin; He, Jin-xiong; Ju, Da-hong; Chen, Xiao-yin
2014-07-01
To observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1. Leukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR). The optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05). The RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.
Wang, Qian-Fei; Lauring, Josh; Schlissel, Mark S.
2000-01-01
The RAG-2 gene encodes a component of the V(D)J recombinase which is essential for the assembly of antigen receptor genes in B and T lymphocytes. Previously, we reported that the transcription factor BSAP (PAX-5) regulates the murine RAG-2 promoter in B-cell lines. A partially overlapping but distinct region of the proximal RAG-2 promoter was also identified as an important element for promoter activity in T cells; however, the responsible factor was unknown. In this report, we present data demonstrating that c-Myb binds to a Myb consensus site within the proximal promoter and is critical for its activity in T-lineage cells. We show that c-Myb can transactivate a RAG-2 promoter-reporter construct in cotransfection assays and that this transactivation depends on the proximal promoter Myb consensus site. By using a chromatin immunoprecipitation (ChIP) strategy, fractionation of chromatin with anti-c-Myb antibody specifically enriched endogenous RAG-2 promoter DNA sequences. DNase I genomic footprinting revealed that the c-Myb site is occupied in a tissue-specific fashion in vivo. Furthermore, an integrated RAG-2 promoter construct with mutations at the c-Myb site was not enriched in the ChIP assay, while a wild-type integrated promoter construct was enriched. Finally, this lack of binding of c-Myb to a chromosomally integrated mutant RAG-2 promoter construct in vivo was associated with a striking decrease in promoter activity. We conclude that c-Myb regulates the RAG-2 promoter in T cells by binding to this consensus c-Myb binding site. PMID:11094072
Peng, Wei; Luo, Pengcheng; Gui, Dingwen; Jiang, Weidong; Wu, Haixia; Zhang, Jie
2018-01-01
In spite of the technological innovation in the biomedical science, cancer remains a critical disease. In this study, we designed a gallic acid/cadmium sulfide (GA/CdS) nanocomposite fabricated on the reduced graphene oxide (GA/CdS-rGO) nanosheets for the treatment system of human kidney cancer cells. The GA/CdS-rGO nanosheets have been prepared using gallic acid as a reducing agent. The characterization of nanocomposites was studied using UV-Vis spectroscope, FT-IR, XRD, SEM and TEM. The microscopic images showed the spherical shape and nano-scaled CdS nanoparticles on the sheet like rGO nanomaterials. These structural and morphology investigations show that excellent properties of as-prepared GA/CdS-rGO has ability to treat the human glomerular mesangial (IP15) cancer cells at 50μg/ml as an IC 50 value, without affecting the epithelial proximal (HK-2) normal cells. In vitro cytotoxicity results showed that the variability of toxic effects after CdS exposure was strongly associated to the cellular Cd content. Release of Cd 2+ from nanocomposites depended to solubility and particle degradation of CdS nanoparticles were considered to be the main cause of these cytotoxicity. The in vitro analysis results indicated that heterogeneity of Cd and gallic acid toxicity that was highly dependent on the physico-chemical properties of the nanocomposites. The cytotoxicity results suggested that the prepared nanomaterials were toxic and inhibitory efficiency to human kidney cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Cardioprotective role of tadalafil against cisplatin-induced cardiovascular damage in rats.
Saleh, Rasha M; Awadin, Walaa F; El-Shafei, Reham A; Elseady, Yousef Y; Wehaish, Faheim E; Elshal, Mohamed F
2015-10-15
The present study investigated the possible cardioprotective effect of tadalafil (Tad) on cisplatin (CDDP)-induced cardiac and vascular damages in rats. A total number of seventy two healthy male albino rats initially weighting between 200 and 220 g were used and randomly divided into four groups,18 rats in each. The control group received no treatment; CDDP group received a single dose of CDDP (4 mg/kg) intraperitoneal (i.p.) per week for 4 weeks the duration of the experiment; Tad group received 0.4 mg/kg BW Tad i.p. daily and Tad +CDDP group received 0.4 mg/kg BW Tad i.p. +4 mg/kg BW CDDP i.p. The results showed that Tad was able to decrease blood pressure, heart rate, levels of serum cardiac troponin (cTn-I), malondialdehyde (MDA) and increased levels of reduced glutathione (GSH) and nitric oxide (NO) in the heart homogenate sample from CDDP treated rats. Semi-quantitative analysis showed that Tad was able to decrease the histopathological scores of cardiac muscular hyalinzation and fibrosis in three sacrifices in CDDP treated rats. CDDP treated rats showed significantly increased thickening in wall of aorta with an irregular luminal layer of endothelial cell linings in three sacrifices when it was compared to other groups. Moreover, immunohistochemical labeling of α- smooth muscle actin (α-SMA) in aorta revealed significant lower scores in Tad +CDDP group when they were compared to CDDP group. In conclusion, Tad alone did not induce any harmful effects on blood pressure, selective antioxidant, peroxidation markers or cardiac histology, in addition, Tad has a cardio-protective role against CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.
ALEA: a toolbox for allele-specific epigenomics analysis.
Younesy, Hamid; Möller, Torsten; Heravi-Moussavi, Alireza; Cheng, Jeffrey B; Costello, Joseph F; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M
2014-04-15
The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals
Kumar, Dharmendra; Talluri, Thirumala R; Anand, Taruna; Kues, Wilfried A
2015-01-01
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals. PMID:25815117
Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H
2008-10-15
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina
2008-10-15
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of {sup 14}C-PhIP (2 {mu}M) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 {+-} 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of {sup 14}C-PhIP from maternal to fetal circulation (FM ratio 0.90 {+-} 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 {+-}more » 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of {sup 14}C-PhIP (R = - 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: - 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of {sup 14}C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.« less
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Veum, T L; Raboy, V
2016-03-01
A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in aP. Therefore, LPA barley, especially M955 with 95% aP, will reduce the use of iP in swine diets, reduce P pollution from swine manure, and support the goal of achieving global P sustainability.
PAR-2 receptor-induced effects on human eccrine sweat gland cells.
L Bovell, Douglas; Kofler, Barbara; Lang, Roland
2009-01-01
Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.
Joutsijoki, Henry; Haponen, Markus; Rasku, Jyrki; Aalto-Setälä, Katriina; Juhola, Martti
2016-01-01
The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies.
Feng, Si-Qi; Wang, Guang-Ji; Zhang, Jing-Wei; Xie, Yuan; Sun, Run-Bin; Fei, Fei; Huang, Jing-Qiu; Wang, Ying; Aa, Ji-Ye; Zhou, Fang
2018-05-17
Apatinib, a small-molecule inhibitor of VEGFR-2, has attracted much attention due to its encouraging anticancer activity in third-line clinical treatment for many malignancies, including non-small cell lung cancer (NSCLC). Its usage in second-line therapy with chemotherapeutic drugs is still under exploration. In this study we investigated the antitumor effect of apatinib combined with docetaxel against NSCLC and its cellular pharmacokinetic basis. A549 xenograft nude mice were treated with apatinib (100 mg/kg every day for 20 days) combined with docetaxel (8 mg/kg, ip, every four days for 5 times). Apatinib significantly enhanced the antitumor effect of docetaxel and alleviated docetaxel-induced liver damage as well as decreased serum transaminases (ALT and AST). LC-MS/MS analysis revealed that apatinib treatment significantly increased the docetaxel concentration in tumors (up to 1.77 times) without enhancing the docetaxel concentration in the serum, heart, liver, lung and kidney. Furthermore, apatinib decreased docetaxel-induced upregulation of P-glycoprotein in tumors. The effects of apatinib on the uptake, efflux and subcellular distribution of docetaxel were investigated in A549 and A549/DTX (docetaxel-resistant) cells in vitro. A cellular pharmacokinetic study revealed that apatinib significantly increased cellular/subcellular accumulation (especially in the cytosol) and decreased the efflux of docetaxel in A549/DTX cells through P-gp, while apatinib exerted no significant effect on the cellular pharmacokinetics of docetaxel in A549 cells. Consequently, the IC 50 value of docetaxel in A549/DTX cells was more significantly decreased by apatinib than that in A549 cells. These results demonstrate that apatinib has potential for application in second-line therapy combined with docetaxel for NSCLC patients, especially for docetaxel-resistant or multidrug-resistant patients.
Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor
2009-05-01
The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.
Kelsen, Steven G.; Aksoy, Mark O.; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, XiuXia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor
2009-01-01
Rationale: The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. Objectives: We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. Methods: CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1–4) by immunohistochemistry. Measurements and Main Results: CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3–4 (P < 0.01 for GOLD 3–4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV1 (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. Conclusions: These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells. PMID:19218194
Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes
López Sanjurjo, Cristina I.; Tovey, Stephen C.; Taylor, Colin W.
2014-01-01
Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways. PMID:25337829
Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.
López Sanjurjo, Cristina I; Tovey, Stephen C; Taylor, Colin W
2014-01-01
Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.
Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion.
Yamamoto, Yasunori; Yoshida, Asuka; Miyazaki, Naoyuki; Iwasaki, Kenji; Sakisaka, Toshiaki
2014-02-15
The ER (endoplasmic reticulum) consists of the nuclear envelope and a peripheral network of membrane sheets and tubules. Two classes of the evolutionarily conserved ER membrane proteins, reticulons and REEPs (receptor expression-enhancing proteins)/DP1 (deleted in polyposis locus 1)/Yop1 (YIP 1 partner), shape high-curvature ER tubules. In mammals, four members of the reticulon family and six members of the REEP family have been identified so far. In the present paper we report that Arl6IP1(ADP-ribosylation factor-like 6 interacting protein 1), an anti-apoptotic protein specific to multicellular organisms, is a potential player in shaping the ER tubules in mammalian cells. Arl6IP1, which does not share an overall primary sequence homology with reticulons, harbours reticulon-like short hairpin transmembrane domains and binds to atlastin, a GTPase that mediates the formation of the tubular ER network. Overexpression of Arl6IP1 induced extensive tubular structures of the ER and excluded a luminal protein. Furthermore, overexpression of Arl6IP1 stabilized the ER tubules, allowing the cells to maintain the ER tubules even in the absence of microtubules. Arl6IP1 constricted liposomes into tubules. The short hairpin structures of the transmembrane domains were required for the membrane-shaping activity of Arl6IP1. The results of the present study indicate that Arl6IP1 has the ability to shape high-curvature ER tubules in a reticulon-like fashion.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S
2017-09-01
Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L.; Pratt, Rachel N.; Trump, Donald L.; Johnson, Candace S.
2017-01-01
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using “wound” healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level. PMID:28947955
iPS-cell derived dendritic cells and macrophages for cancer therapy.
Senju, Satoru
2016-08-01
Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.
Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Hannibal, Jens
2010-05-01
The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression of locomotor activity (masking), and pupillary light reflex. Two neurotransmitters have been identified in ipRGCs, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). To date, little is known about their release and interplay. Here, we describe the presence and co-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably released from the same nerve terminals. Furthermore, we conclude that VGLUT2 is the preferred subtype of vesicular transporter used by these cells.
Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.
Cheng, Jingwei; Park, Donglim Esther; Berrios, Christian; White, Elizabeth A; Arora, Reety; Yoon, Rosa; Branigan, Timothy; Xiao, Tengfei; Westerling, Thomas; Federation, Alexander; Zeid, Rhamy; Strober, Benjamin; Swanson, Selene K; Florens, Laurence; Bradner, James E; Brown, Myles; Howley, Peter M; Padi, Megha; Washburn, Michael P; DeCaprio, James A
2017-10-01
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.
Varol, Seda; Kulak-Özkan, Yasemin
2015-07-01
To compare marginal and internal fit between 3- and 4-unit press-on-metal (PoM) ceramic, zirconia-supported, and conventional metal ceramic fixed partial dentures (FPDs) before and after veneering. Ten pieces for each 3- and 4-unit MC, IPS InLine PoM, and IPS e.max ZirCAD/Zir Press FPDs were produced. Cross-sections from silicone replicas were examined and measured with a light microscope. Occlusal, axial, intermarginal, and marginal mean adaptation scores of cross-sectioned replicas and means of measurements obtained from 4 sites were calculated independently. Mean values for molars were 78.44 ± 32.01 μm (MC), 89.84 ± 29.20 μm (PoM), and 85.17 ± 28.49 μm (Zir). Premolar values were 76.08 ± 27.92 μm (MC), 89.94 ± 23.49 μm (PoM), and 87.18 ± 28.25 μm (Zir). No difference existed between the means of 3- and 4-unit FPDs except the molar-intermarginal region. The mean value of 4-unit FPDs (93.88 ± 25.41 μm) was less than the 3-unit FPDs (103.68 ± 24.55 μm) at the molar-inter marginal region. A gap increase was observed in all sites except the molar-axio-occlusal region after veneering. According to the mean difference, gap increases at the molar-marginal, molar-intermarginal, and premolar-intermarginal regions were statistically significant. A statistical difference was found at the molar-marginal region for 4-unit MCR (p = 0.041) and 4-unit PoM FPDs (p = 0.042) before and after veneering. Gap increase after veneering of 4-unit metal ceramics at molar-intermarginal, premolar-marginal, and premolar-intermarginal regions (p = 0.020; p = 0.015; p = 0.004) was significant. The gap measurements of the IPS InLine PoM and IPS e.max ZirCAD/Zir Press groups were all clinically acceptable. No studies on marginal and internal fit in the IPS InLine PoM system have been published to date. This study should be supported with future studies. No significant increase was observed after press-veneering the IPS e.max ZirCAD frameworks with an IPS e.max ZirPress material; therefore, we recommend the use of this combination. © 2014 by the American College of Prosthodontists.
Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide
2016-06-01
We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei
2016-10-01
The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.
Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M
2017-12-15
Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Active Generation and Propagation of Ca2+ Signals within Tunneling Membrane Nanotubes
Smith, Ian F.; Shuai, Jianwei; Parker, Ian
2011-01-01
A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca2+ signaling; however, our simulations indicate that passive diffusion of Ca2+ ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP3)-evoked Ca2+ signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca2+ signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP3 receptors along the TNT. We propose that IP3 receptors may actively propagate intercellular Ca2+ signals along TNTs via Ca2+-induced Ca2+ release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials. PMID:21504718
Moriguchi, Yu; Lee, Dae-Sung; Thamina, Khair; Masuda, Kazuto; Itsuki, Dai; Yoshikawa, Hideki; Hamaguchi, Satoshi; Myoui, Akira
2018-01-01
In the physiochemical sciences, plasma is used to describe an ionized gas. Previous studies have implicated plasma surface treatment in the enhancement of hydrophilicity of implanted musculoskeletal reconstructive materials. Hydroxyapatite (HA) ceramics, widely used in bone tissue regeneration, have made great advancements to skeletal surgery. In the present study, we investigate the impact of low-pressure plasma on the interconnected porous calcium hydroxyapatite (IP-CHA) both in vitro and in vivo. Our results indicate that dielectric barrier discharge (DBD) plasma, when used with oxygen, can augment the hydrophilicity of non-porous HA surfaces and the osteoconductivity of the IP-CHA disc via increased water penetration of inner porous structures, as demonstrated through microfocus computed tomography (μCT) assay. In vivo implantation of plasma-treated IP-CHA displayed superior bone ingrowth than untreated IP-CHA. Though plasma-treated IP-CHA did not alter osteoblast cell proliferation, it accelerated osteogenic differentiation of seeded marrow mesenchymal stem cells. In vitro X-ray photoelectron spectroscopy (XPS) revealed that this plasma treatment increases levels of oxygen, rather than nitrogen, on the plasma-treated IP-CHA surface. These findings suggest that plasma treatment, an easy and simple processing, can significantly improve the osteoconductive potential of commonly used artificial bones such as IP-CHA. Further optimization of plasma treatment and longer-term follow-up of in vivo application are required toward its clinical application. PMID:29538457
Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses.
Teste, Bruno; Champ, Jerome; Londono-Vallejo, Arturo; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Draskovic, Irena; Mottet, Guillaume
2017-01-31
Genetic organization is governed by the interaction of DNA with histone proteins, and differential modifications of these proteins is a fundamental mechanism of gene regulation. Histone modifications are primarily studied through chromatin immunoprecipitation (ChIP) assays, however conventional ChIP procedures are time consuming, laborious and require a large number of cells. Here we report for the first time the development of ChIP in droplets based on a microfluidic platform combining nanoliter droplets, magnetic beads (MB) and magnetic tweezers (MT). The droplet approach enabled compartmentalization and improved mixing, while reducing the consumption of samples and reagents in an integrated workflow. Anti-histone antibodies grafted to MB were used as a solid support to capture and transfer the target chromatin from droplets to droplets in order to perform chromatin immunoprecipitation, washing, elution and purification of DNA. We designed a new ChIP protocol to investigate four different types of modified histones with known roles in gene activation or repression. We evaluated the performances of this new ChIP in droplet assay in comparison with conventional methods. The proposed technology dramatically reduces analytical time from a few days to 7 hours, simplifies the ChIP protocol and decreases the number of cells required by 100 fold while maintaining a high degree of sensitivity and specificity. Therefore this droplet-based ChIP assay represents a new, highly advantageous and convenient approach to epigenetic analyses.
NASA Technical Reports Server (NTRS)
Frantz, Brian D.; Ivancic, William D.
2001-01-01
Asynchronous Transfer Mode (ATM) Quality of Service (QoS) experiments using the Transmission Control Protocol/Internet Protocol (TCP/IP) were performed for various link delays. The link delay was set to emulate a Wide Area Network (WAN) and a Satellite Link. The purpose of these experiments was to evaluate the ATM QoS requirements for applications that utilize advance TCP/IP protocols implemented with large windows and Selective ACKnowledgements (SACK). The effects of cell error, cell loss, and random bit errors on throughput were reported. The detailed test plan and test results are presented herein.
Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide
2013-01-01
Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13highCD133+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development. PMID:23935837
Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide
2013-01-01
Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(high)CD133(+) cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.
Murine cytomegalovirus: detection of latent infection by nucleic acid hybridization technique.
Cheung, K S; Huang, E S; Lang, D J
1980-01-01
The technique of nucleic acid hybridization was used to detect the presence of murine cytomegalovirus (MCMV)-specific deoxyribonucleic acid (DNA) in cell cultures and salivary gland tissues. The presence of approximately 4.5 and 0.2 genome equivalents per cell of MCMV-specific DNA was identified in cultures of salivary (ISG2) and prostate gland (IP) cells, respectively. These cells, derived from animals with experimentally induced latent infections, were negative for virus-specific antigens by immunofluorescence and on electron microscopy revealed no visible evidence of the presence of herpesviruses. A cell line derived from the salivary gland of an uninoculated animal (NSG2) was also found to possess MCMV-specific DNA (0.2 genome equivalents per cell). For this reason, salivary gland tissues from uninoculated animals supplied as "specific pathogen-free" mice by three commercial sources were tested upon arrival for the presence of MCMC-specific DNA. MCMV-specific DNA was detectable in pooled salivary gland extracts from uninoculated animals derived from two commercial sources. All of these animals were seronegative and virus negative by conventional infectivity assays. PMID:6247281
Hashimoto, Muneaki; Enomoto, Masahiro; Morales, Jorge; Kurebayashi, Nagomi; Sakurai, Takashi; Hashimoto, Tetsuo; Nara, Takeshi; Mikoshiba, Katsuhiko
2013-03-01
In animals, inositol 1,4,5-trisphosphate receptors (IP3 Rs) are ion channels that play a pivotal role in many biological processes by mediating Ca(2+) release from the endoplasmic reticulum. Here, we report the identification and characterization of a novel IP3 R in the parasitic protist, Trypanosoma cruzi, the pathogen responsible for Chagas disease. DT40 cells lacking endogenous IP3 R genes expressing T. cruzi IP3 R (TcIP3 R) exhibited IP3 -mediated Ca(2+) release from the ER, and demonstrated receptor binding to IP3 . TcIP3 R was expressed throughout the parasite life cycle but the expression level was much lower in bloodstream trypomastigotes than in intracellular amastigotes or epimastigotes. Disruption of two of the three TcIP3 R gene loci led to the death of the parasite, suggesting that IP3 R is essential for T. cruzi. Parasites expressing reduced or increased levels of TcIP3 R displayed defects in growth, transformation and infectivity, indicating that TcIP3 R is an important regulator of the parasite's life cycle. Furthermore, mice infected with T. cruzi expressing reduced levels of TcIP3 R exhibited a reduction of disease symptoms, indicating that TcIP3 R is an important virulence factor. Combined with the fact that the primary structure of TcIP3 R has low similarity to that of mammalian IP3 Rs, TcIP3 R is a promising drug target for Chagas disease. © 2013 Blackwell Publishing Ltd.
Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols
Chen, Liang
2017-01-01
Diabetes mellitus is a chronic disease that threatens human health. The disease is caused by a metabolic disorder of the endocrine system, and long-term illness can lead to tissue and organ damage to the cardiovascular, endocrine, nervous, and urinary systems. Currently, the disease prevalence is 11.4%, the treatment rate is 48.2%, and the mortality rate is 2.7% worldwide. Comprehensive and effective control of diabetes, as well as the use of insulin, requires further study to develop additional treatment options. Here, we reviewed the current reprogramming of somatic cells using specific factors to induced pluripotent stem (iPS) cells capable of repairing islet β cell damage in diabetes patients to treat patients with type 1 diabetes mellitus. We also discuss the shortcomings associated with clinical use of iPS cells. Additionally, certain polyphenols found in spices might improve glucose homeostasis and insulin resistance in diabetes patients, thereby constituting promising options for the treatment of type 2 diabetes. PMID:28758131
Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols.
Ge, Qi; Chen, Liang; Chen, Keping
2017-01-01
Diabetes mellitus is a chronic disease that threatens human health. The disease is caused by a metabolic disorder of the endocrine system, and long-term illness can lead to tissue and organ damage to the cardiovascular, endocrine, nervous, and urinary systems. Currently, the disease prevalence is 11.4%, the treatment rate is 48.2%, and the mortality rate is 2.7% worldwide. Comprehensive and effective control of diabetes, as well as the use of insulin, requires further study to develop additional treatment options. Here, we reviewed the current reprogramming of somatic cells using specific factors to induced pluripotent stem (iPS) cells capable of repairing islet β cell damage in diabetes patients to treat patients with type 1 diabetes mellitus. We also discuss the shortcomings associated with clinical use of iPS cells. Additionally, certain polyphenols found in spices might improve glucose homeostasis and insulin resistance in diabetes patients, thereby constituting promising options for the treatment of type 2 diabetes.
Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA
Loh, Yuin-Han; Yang, Jimmy Chen; De Los Angeles, Alejandro; Guo, Chunguang; Cherry, Anne; Rossi, Derrick J.; Park, In-Hyun; Daley, George Q.
2012-01-01
The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy, in vitro modeling of human disease, and drug screening. To date, most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively, transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This report describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector, which includes the coding sequences of human OCT4, SOX2, KLF4, and cMYC linked with picornaviral 2A plasmids. Moreover, after reprogramming has been achieved, this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells. PMID:22605648
Generation of male differentiated germ cells from various types of stem cells.
Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping
2014-06-01
Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.
NASA Technical Reports Server (NTRS)
Szkody, Paula
1987-01-01
IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.
Imaizumi, Keitaro; Iha, Momoe; Nishishita, Naoki; Kawamata, Shin; Nishikawa, Shinichi; Akuta, Teruo
2016-01-01
Protocols available for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells are very inefficient and laborious compared to those for the cryopreservation of murine ES/iPS cells or other general cell lines. While the vitrification method may be adequate when working with small numbers of human ES/iPS cells, it requires special skills and is unsuitable when working with large cell numbers. Here, we describe a simple and efficient method for the cryopreservation of hES/hiPS cells that is based on a conventional slow freezing method that uses a combination of Pronase/EDTA for Stem™ and CP-5E™ [final concentrations: 6 % hydroxyethyl starch, 5 % DMSO, and 5 % ethylene glycol in saline]. CP-5E™ is highly effective for the cryopreservation of small cell clumps produced by hES/hiPS colony detachment in the presence of Pronase and EDTA (Pronase/EDTA for Stem™, a formulation containing multiple digestive enzymes from Streptomyces griseus). This novel method would be quite useful for large-scale hES/iPS cell banking for use in clinical applications.
Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules
2015-01-01
Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca2+) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca2+ concentration within the injected cell initiating the propagation of a Ca2+ wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca2+ wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research. PMID:24877558
Pace, Elisabetta; Ferraro, Maria; Siena, Liboria; Melis, Mario; Montalbano, Angela M; Johnson, Malcolm; Bonsignore, Maria R; Bonsignore, Giovanni; Gjomarkaj, Mark
2008-01-01
Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke. The main goal of this study was to explore the effects of cigarette smoke extracts (CSE) on Toll-like receptor (TLR) expression and activation in a human bronchial epithelial cell line (16-HBE). The CSE increased the expression of TLR4 and the lipopolysaccharide (LPS) binding, the nuclear factor-κB (NF-κB) activation, the release of interleukin-8 (IL-8) and the chemotactic activity toward neutrophils. It did not induce TLR2 expression or extracellular signal-regulated signal kinase 1/2 (ERK1/2) activation. The LPS increased the expression of TLR4 and induced both NF-κB and ERK1/2 activation. The combined exposure of 16-HBE to CSE and LPS was associated with ERK activation rather than NF-κB activation and with a further increase of IL-8 release and of chemotactic activity toward neutrophils. Furthermore, CSE decreased the constitutive interferon-inducible protein-10 (IP-10) release and counteracted the effect of LPS in inducing both the IP-10 release and the chemotactic activity toward lymphocytes. In conclusion, cigarette smoke, by altering the expression and the activation of TLR4 via the preferential release of IL-8, may contribute to the accumulation of neutrophils within the airways of smokers. PMID:18217953
Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.
Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo
2015-11-17
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.
von Schillde, Marie-Anne; Hörmannsperger, Gabriele; Weiher, Monika; Alpert, Carl-Alfred; Hahne, Hannes; Bäuerl, Christine; van Huynegem, Karolien; Steidler, Lothar; Hrncir, Tomas; Pérez-Martínez, Gaspar; Kuster, Bernhard; Haller, Dirk
2012-04-19
The intestinal microbiota has been linked to inflammatory bowel diseases (IBD), and oral treatment with specific bacteria can ameliorate IBD. One bacterial mixture, VSL#3, containing Lactobacillus, Bifidobacterium, and Streptococcus, was clinically shown to reduce inflammation in IBD patients and normalize intestinal levels of IP-10, a lymphocyte-recruiting chemokine, in a murine colitis model. We identified Lactobacillus paracasei prtP-encoded lactocepin as a protease that selectively degrades secreted, cell-associated, and tissue-distributed IP-10, resulting in significantly reduced lymphocyte recruitment after intraperitoneal injection in an ileitis model. A human Lactobacillus casei isolate was also found to encode lactocepin and degrade IP-10. L. casei feeding studies in a murine colitis model (T cell transferred Rag2(-/-) mice) revealed that a prtP-disruption mutant was significantly less potent in reducing IP-10 levels, T cell infiltration and inflammation in cecal tissue compared to the isogenic wild-type strain. Thus, lactocepin-based therapies may be effective treatments for chemokine-mediated diseases like IBD. Copyright © 2012 Elsevier Inc. All rights reserved.
2014-10-01
Briefly, 10 million cells were used per IP. Cells were fixed with 1% formaldehyde solution. DNA was sonicated and subjected to immunoprecipitation with... formaldehyde solution. Total chromatin and RNAs were sonicated and subjected to immunoprecipitation with the same AR and Med1 antibodies used in ChIP...were fixed with 1% formaldehyde . Cell pellets were lysed and resuspended in restriction buffer for BstY1 and 0.1% SDS for 10 min at 65 °C. Triton X
2014-10-01
Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism and autism spectrum disorders (ASD) are complex neurodevelopmental ...1. INTRODUCTION: Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect about 1% of children in the...and neurons. 2. KEYWORDS: Autism spectrum disorder, ASD, neurodevelopmental disease, disease modeling, induced pluripotent stem cell, iPS
Mahé, M A; Fumoleau, P; Fabbro, M; Guastalla, J P; Faurous, P; Chauvot, P; Chetanoud, L; Classe, J M; Rouanet, P; Chatal, J F
1999-10-01
Standard treatment of advanced ovarian cancer is a combination of surgery and chemotherapy. Additional therapies using the i.p. route are considered as a potential means of improving the locoregional control rate. This Phase II study evaluated the efficacy of i.p. radioimmunotherapy (RIT) in patients with minimal residual ovarian adenocarcinoma after primary treatment with surgery and chemotherapy. Between February 1995 and March 1996, six patients with residual macroscopic (<5 mm) or microscopic disease as demonstrated by laparotomy and multiple biopsies received i.p. RIT. All had initial stage III epithelial carcinoma and were treated with debulking surgery and one line (four patients) or two lines (two patients) of chemotherapy. RIT was performed with 60 mg of OC 125 F(ab')2 monoclonal antibody labeled with 4.44 GBq (120 mCi) of 131I injected 5-10 days after the surgical procedure. Systematic laparoscopy or laparotomy with multiple biopsies performed 3 months after RIT in five patients (clinical progression was seen in one patient) showed no change in three patients and progression in two patients. Toxicity was mainly hematological, with grade III neutropenia and thrombocytopenia in two patients. Human antimouse antibody production was demonstrated in all six patients. This study showed little therapeutic benefit from i.p. RIT in patients with residual ovarian carcinoma.
Human cord blood applications in cell therapy: looking back and look ahead.
Zhou, Hongyan; Chang, Stephen; Rao, Mahendra
2012-08-01
Human umbilical cord blood (UCB) has been used as a reliable source of stem cells for blood-borne diseases and disorders. Recent advances in cell reprogramming technology to produce induced pluripotent stem (iPS) cells, which can be differentiated to multiple adult cell types, has further expanded the potential of cord blood cell therapy for treatment of non-blood-borne diseases. However, in order to harness this breakthrough technology and to provide clinical-grade cells for the patient, standardization of iPS production and differentiation, and good manufacturing practice (GMP) need to be employed. UCB is an ethical source of stem cells and has been used to treat diseases including leukemia, cancer and blood disorders. The development of iPS cell technology could potentially greatly increase the application of cord blood cells as a treatment for a broader range of diseases, UCB-iPS banks could, therefore, be a valuable complementary source of clinical-grade cells for cell therapy. The current applicability of GMP to UCB and UCB-iPS cell-based cell therapy will be discussed. Although cord blood stem cell therapies have been practiced for decades, UCB-iPS cell therapies are a new innovation currently in development. Successful clinical applications of such novel cell therapies will depend on the production of GMP-compliant cells and the establishment of cell banks.
In vivo anticancer activity of vanillin semicarbazone
Ali, Shaikh M Mohsin; Azad, M Abul Kalam; Jesmin, Mele; Ahsan, Shamim; Rahman, M Mijanur; Khanam, Jahan Ara; Islam, M Nazrul; Shahriar, Sha M Shahan
2012-01-01
Objective To evaluate the anticancer activity of vanillin semicarbazone (VSC) against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Methods The compound VSC at three doses (5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight, enhancement of survival time as well as the changes in depleted hematological parameters. All such parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg (i.p.). Results Among the doses studied, 10 mg/kg (i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg (i.p.). The host toxic effects of VSC was found to be negligible. Conclusions It can be concluded that VSC can therefore be considered as potent anticancer agent. PMID:23569946
Khan, Samir A; Rossi, Ana M; Riley, Andrew M; Potter, Barry V L; Taylor, Colin W
2013-04-15
IP(3)R (IP(3) [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca(2+) channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP(3)R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP(3)-evoked Ca(2+) release via IP(3)R1 and IP(3)R2, but inhibited IP(3)R3. Activation of IP(3)R is initiated by IP(3) binding to the IBC (IP(3)-binding core; residues 224-604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1-223). Thimerosal (100 μM) stimulated IP(3) binding to the isolated NT (N-terminal; residues 1-604) of IP(3)R1 and IP(3)R2, but not to that of IP(3)R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP(3)) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP(3)R activation. IP(3) binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP(3)R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP(3) binding to the chimaeric NT and IP(3)-evoked Ca(2+) release from the chimaeric IP(3)R. This is the first systematic analysis of the effects of a thiol reagent on each IP(3)R subtype. We conclude that thimerosal selectively sensitizes IP(3)R1 and IP(3)R2 to IP(3) by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor.