Kammers, Kai; Taub, Margaret A.; Ruczinski, Ingo; Martin, Joshua; Yanek, Lisa R.; Frazee, Alyssa; Gao, Yongxing; Hoyle, Dixie; Faraday, Nauder; Becker, Diane M.; Cheng, Linzhao; Wang, Zack Z.; Leek, Jeff T.; Becker, Lewis C.; Mathias, Rasika A.
2017-01-01
Previously, we have described our feeder-free, xeno-free approach to generate megakaryocytes (MKs) in culture from human induced pluripotent stem cells (iPSCs). Here, we focus specifically on the integrity of these MKs using: (1) genotype discordance between parent cell DNA to iPSC cell DNA and onward to the differentiated MK DNA; (2) genomic structural integrity using copy number variation (CNV); and (3) transcriptomic signatures of the derived MK lines compared to the iPSC lines. We detected a very low rate of genotype discordance; estimates were 0.0001%-0.01%, well below the genotyping error rate for our assay (0.37%). No CNVs were generated in the iPSCs that were subsequently passed on to the MKs. Finally, we observed highly biologically relevant gene sets as being upregulated in MKs relative to the iPSCs: platelet activation, blood coagulation, megakaryocyte development, platelet formation, platelet degranulation, and platelet aggregation. These data strongly support the integrity of the derived MK lines. PMID:28107356
Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas
2017-05-01
We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 28year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi005-A. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Martins, Soraia; Yigit, Hatice; Bohndorf, Martina; Graffmann, Nina; Fiszl, Aurelian Robert; Wruck, Wasco; Sleegers, Kristel; Van Broeckhoven, Christine; Adjaye, James
2018-06-01
Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.940. Copyright © 2018. Published by Elsevier B.V.
Cheng, Linzhao; Hansen, Nancy F.; Zhao, Ling; Du, Yutao; Zou, Chunlin; Donovan, Frank X.; Chou, Bin-Kuan; Zhou, Guangyu; Li, Shijie; Dowey, Sarah N.; Ye, Zhaohui; Chandrasekharappa, Settara C.; Yang, Huanming; Mullikin, James C.; Liu, P. Paul
2012-01-01
Summary The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1058–1808 heterozygous single nucleotide variants (SNVs), but no copy number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction. PMID:22385660
Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines.
Barrett, Robert; Ornelas, Loren; Yeager, Nicole; Mandefro, Berhan; Sahabian, Anais; Lenaeus, Lindsay; Targan, Stephan R; Svendsen, Clive N; Sareen, Dhruv
2014-12-01
Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for many applications, including disease modeling to elucidate mechanisms involved in disease pathogenesis, drug screening, and ultimately regenerative medicine therapies. A frequently used starting source of cells for reprogramming has been dermal fibroblasts isolated from skin biopsies. However, numerous repositories containing lymphoblastoid cell lines (LCLs) generated from a wide array of patients also exist in abundance. To date, this rich bioresource has been severely underused for iPSC generation. We first attempted to create iPSCs from LCLs using two existing methods but were unsuccessful. Here we report a new and more reliable method for LCL reprogramming using episomal plasmids expressing pluripotency factors and p53 shRNA in combination with small molecules. The LCL-derived iPSCs (LCL-iPSCs) exhibited identical characteristics to fibroblast-derived iPSCs (fib-iPSCs), wherein they retained their genotype, exhibited a normal pluripotency profile, and readily differentiated into all three germ-layer cell types. As expected, they also maintained rearrangement of the heavy chain immunoglobulin locus. Importantly, we also show efficient iPSC generation from LCLs of patients with spinal muscular atrophy and inflammatory bowel disease. These LCL-iPSCs retained the disease mutation and could differentiate into neurons, spinal motor neurons, and intestinal organoids, all of which were virtually indistinguishable from differentiated cells derived from fib-iPSCs. This method for reliably deriving iPSCs from patient LCLs paves the way for using invaluable worldwide LCL repositories to generate new human iPSC lines, thus providing an enormous bioresource for disease modeling, drug discovery, and regenerative medicine applications. ©AlphaMed Press.
Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells
2016-10-01
lentiviral knockdown, and CRISPR /Cas9 genome editing in embryonic stem cells (ESCs). We have characterized the iPSCs extensively and found that they display...induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) reprogramming CRISPR /Cas9 genome editing neural stem cells (NSCs) neural crest... CRISPR /cas9 in two additional human pluripotent stem cell lines (WA07 (H7) – female cell line registry #0061; and a control male iPSC lines generated
Translational Control in Bone Marrow Failure
2016-07-01
been made in using new tools to model granulopoiesis, including generation of patient-derived iPSC and CRISPR -Cas9 genome-editing technology to...in cell lines in patient-derived iPSC gene models, including using CRISPR genome editing, as overall described in Tidwell et al. 2014 and Nayak et...proxy for neutropenia in this cellular model system. 3h. Use patient-derived iPSC models and CRISPR /Cas9 genome-editing to generate a range of ELANE
Hasegawa, Daigo; Ochiai-Shino, Hiromi; Onodera, Shoko; Nakamura, Takashi; Saito, Akiko; Onda, Takeshi; Watanabe, Katsuhito; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Kosaki, Kenjiro; Yamaguchi, Akira; Shibahara, Takahiko; Azuma, Toshifumi
2017-01-01
Gorlin syndrome is an autosomal dominant inherited syndrome that predisposes a patient to the formation of basal cell carcinomas, odontogenic keratocysts, and skeletal anomalies. Causative mutations in several genes associated with the sonic hedgehog (SHH) signaling pathway, including PTCH1, have been identified in Gorlin syndrome patients. However, no definitive genotype-phenotype correlations are evident in these patients, and their clinical presentation varies greatly, often leading to delayed diagnosis and treatment. We generated iPSCs from four unrelated Gorlin syndrome patients with loss-of-function mutations in PTCH1 using the Sendai virus vector (SeVdp(KOSM)302). The patient-derived iPSCs exhibited basic iPSC features, including stem cell marker expression, totipotency, and the ability to form teratomas. GLI1 expression levels were greater in fibroblasts and patient-derived iPSCs than in the corresponding control cells. Patient-derived iPSCs expressed lower basal levels than control iPSCs of the genes encoding the Hh ligands Indian Hedgehog (IHH) and SHH, the Hh acetyltransferase HHAT, Wnt proteins, BMP4, and BMP6. Most of these genes were upregulated in patient-derived iPSCs grown in osteoblast differentiation medium (OBM) and downregulated in control iPSCs cultured in OBM. The expression of GLI1 and GLI2 substantially decreased in both control and patient-derived iPSCs cultured in OBM, whereas GLI3, SHH, and IHH were upregulated in patient-derived iPSCs and downregulated in control iPSCs grown in OBM. Activation of Smoothened by SAG in cells grown in OBM significantly enhanced alkaline phosphatase activity in patient-derived iPSCs compared with control iPSC lines. In summary, patient-derived iPSCs expressed lower basal levels than the control iPSCs of the genes encoding Hh, Wnt, and bone morphogenetic proteins, but their expression of these genes strongly increased under osteogenic conditions. These findings indicate that patient-derived iPSCs are hypersensitive to osteogenic induction. We propose that Hh signaling is constituently active in iPSCs from Gorlin syndrome patients, enhancing their response to osteogenic induction and contributing to disease-associated abnormalities.
Ishikawa, Tetsuya
2017-05-26
To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing. Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer ( OCT3/4 , SOX2 , and KLF4 ). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer. In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2 , TTN , ULK4 , TSSK1B , FLT4 , STK19 , STK31 , TRRAP , WNK1 , PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells. The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne
2014-06-01
The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications. ©AlphaMed Press.
Analysis of Induced Pluripotent Stem Cells from a BRCA1 Mutant Family
Soyombo, Abigail A.; Wu, Yipin; Kolski, Lauren; Rios, Jonathan J.; Rakheja, Dinesh; Chen, Alice; Kehler, James; Hampel, Heather; Coughran, Alanna; Ross, Theodora S.
2013-01-01
Summary Understanding BRCA1 mutant cancers is hampered by difficulties in obtaining primary cells from patients. We therefore generated and characterized 24 induced pluripotent stem cell (iPSC) lines from fibroblasts of eight individuals from a BRCA1 5382insC mutant family. All BRCA1 5382insC heterozygous fibroblasts, iPSCs, and teratomas maintained equivalent expression of both wild-type and mutant BRCA1 transcripts. Although no difference in differentiation capacity was observed between BRCA1 wild-type and mutant iPSCs, there was elevated protein kinase C-theta (PKC-theta) in BRCA1 mutant iPSCs. Cancer cell lines with BRCA1 mutations and hormone-receptor-negative breast cancers also displayed elevated PKC-theta. Genome sequencing of the 24 iPSC lines showed a similar frequency of reprogramming-associated de novo mutations in BRCA1 mutant and wild-type iPSCs. These data indicate that iPSC lines can be derived from BRCA1 mutant fibroblasts to study the effects of the mutation on gene expression and genome stability. PMID:24319668
Ritthaphai, Alisa; Wattanapanitch, Methichit; Pithukpakorn, Manop; Heepchantree, Worapa; Soi-Ampornkul, Rungtip; Mahaisavariya, Panchalee; Triwongwaranat, Daranporn; Pattanapanyasat, Kovit; Vatanashevanopakorn, Chinnavuth
2018-05-21
Dermal fibroblasts were obtained from a 48-year-old female patient with spinocerebellar ataxia type 3 (SCA3). Fibroblasts were reprogrammed by nucleofection with episomal plasmids, carrying L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1 and shRNA against p53. The SCA3 patient-specific iPSC line, MUSIi004-A, was characterized by immunofluorescence staining to verify the expression of pluripotent markers. The iPSC line exhibited an ability to differentiate into three germ layers by embryoid body (EB) formation. Karyotypic analysis of the MUSIi004-A line was normal. The mutant allele was still present in the iPSC line. This iPSC line represents a useful tool for studying neurodegeneration in SCA3. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells.
D'Antonio, Matteo; Woodruff, Grace; Nathanson, Jason L; D'Antonio-Chronowska, Agnieszka; Arias, Angelo; Matsui, Hiroko; Williams, Roy; Herrera, Cheryl; Reyna, Sol M; Yeo, Gene W; Goldstein, Lawrence S B; Panopoulos, Athanasia D; Frazer, Kelly A
2017-04-11
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) offers the possibility of studying the molecular mechanisms underlying human diseases in cell types difficult to extract from living patients, such as neurons and cardiomyocytes. To date, studies have been published that use small panels of iPSC-derived cell lines to study monogenic diseases. However, to study complex diseases, where the genetic variation underlying the disorder is unknown, a sizable number of patient-specific iPSC lines and controls need to be generated. Currently the methods for deriving and characterizing iPSCs are time consuming, expensive, and, in some cases, descriptive but not quantitative. Here we set out to develop a set of simple methods that reduce cost and increase throughput in the characterization of iPSC lines. Specifically, we outline methods for high-throughput quantification of surface markers, gene expression analysis of in vitro differentiation potential, and evaluation of karyotype with markedly reduced cost. Published by Elsevier Inc.
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa
2017-01-20
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors.
Du, Xuguang; Feng, Tao; Yu, Dawei; Wu, Yuanyuan; Zou, Huiying; Ma, Shuangyu; Feng, Chong; Huang, Yongye; Ouyang, Hongsheng; Hu, Xiaoxiang; Pan, Dengke; Li, Ning; Wu, Sen
2015-11-01
To date no authentic embryonic stem cell (ESC) line or germline-competent-induced pluripotent stem cell (iPSC) line has been established for large animals. Despite this fact, there is an impression in the field that large animal ESCs or iPSCs are as good as mouse counterparts. Clarification of this issue is important for a healthy advancement of the stem cell field. Elucidation of the causes of this failure in obtaining high quality iPSCs/ESCs may offer essential clues for eventual establishment of authentic ESCs for large animals including humans. To this end, we first generated porcine iPSCs using nonintegrating replicating episomal plasmids. Although these porcine iPSCs met most pluripotency criteria, they could neither generate cloned piglets through nuclear transfer, nor contribute to later stage chimeras through morula injections or aggregations. We found that the reprogramming genes in iPSCs could not be removed even under negative selection, indicating they are required to maintain self-renewal. The persistent expression of these genes in porcine iPSCs in turn caused differentiation defects in vivo. Therefore, incomplete reprogramming manifested by a reliance on sustained expression of exogenous-reprogramming factors appears to be the main reason for the inability of porcine iPSCs to form iPSC-derived piglets. © 2015 AlphaMed Press.
Wen, Yan; Wani, Prachi; Zhou, Lu; Baer, Tom; Phadnis, Smruti Madan; Reijo Pera, Renee A; Chen, Bertha
2013-02-01
We aimed to derive induced pluripotent stem cell (iPSC) lines from vaginal fibroblasts from older women with pelvic organ prolapse. We examined the effect of donor age on iPSCs and on the cells redifferentiated from these iPSCs. Vaginal fibroblasts were isolated from younger and older subjects for reprogramming. iPSCs were generated simultaneously using an excisable polycistronic lentiviral vector expressing Oct4, Klf4, Sox2, and cMyc. The pluripotent markers of iPSCs were confirmed by immunocytochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Spectral karyotyping was performed. The ability of the iPSCs to differentiate into three germ layers was confirmed by embryoid body and teratoma formation. Senescence marker (p21, p53, and Bax) expressions were determined by qRT-PCR and Western blot. The iPSCs were redifferentiated to fibroblasts and were evaluated with senescence-associated β-galactosidase (SA) activity and mitotic index using time-lapse dark-field microscopy. iPSCs derived from both the younger and older subjects expressed pluripotency markers and showed normal karyotype and positive teratoma assays. There was no significant difference in expression of senescence and apoptosis markers (p21, p53, and Bax) in iPSCs derived from the younger subject compared with the older subject. Furthermore, fibroblasts redifferentiated from these iPSCs did not differ in SA activity or mitotic index. We report successful derivation of iPSCs from women with pelvic organ prolapse. Older age did not interfere with successful reprogramming. Donor age differences were not observed in these iPSCs using standard senescence markers, and donor age did not appear to affect cell mitotic activity in fibroblasts redifferentiated from iPSCs.
Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts
Breton, Amandine; Sharma, Ruchi; Diaz, Andrea Catalina; Parham, Alea Gillian; Graham, Audrey; Neil, Claire; Whitelaw, Christopher Bruce; Milne, Elspeth
2013-01-01
Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine. PMID:22897112
Common genetic variation drives molecular heterogeneity in human iPSCs
Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard
2017-01-01
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815
Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas
2016-03-01
We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 30 year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC-line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.
2014-07-01
after manipulation of the cells prohibited this approach. 2. Differentiation into oligoprecursor cells ( OPCs ) and oligodendrocytes As we have...Jing Bian, PhD and Birgitt Schuele, MD 18 Development of expandable OPCs from human iPSC derived...Neri et al., 2010) + + + + Human iPSC derived OPCs and Oligos (Wang et al., 2013) + + + + mEpsc derived OPCs and Oligos (Najm et al
Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav
2015-01-01
Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI: http://dx.doi.org/10.7554/eLife.07103.001 PMID:26102527
M Lee, Young; Zampieri, Bruna L; Scott-McKean, Jonah J; Johnson, Mark W; Costa, Alberto C S
2017-06-01
Down syndrome (DS) is a genetic disorder caused by trisomy 21 (T21). Over the past two decades, the use of mouse models has led to significant advances in the understanding of mechanisms underlying various phenotypic features and comorbidities secondary to T21 and even informed the design of clinical trials aimed at enhancing the cognitive abilities of persons with DS. In spite of its success, this approach has been plagued by all the typical limitations of rodent modeling of human disorders and diseases. Recently, several laboratories have succeeded in producing T21 human induced pluripotent stem cells (T21-iPSCs) from individuals with DS, which is emerging as a promising complementary tool for the study of DS. Here, we describe the method by which we generated 10 T21-iPSC lines from epithelial cells in urine samples, presumably from kidney epithelial origin, using nonintegrating episomal vectors. We also show that these iPSCs maintain chromosomal stability for well over 20 passages and are more sensitive to proteotoxic stress than euploid iPSCs. Furthermore, these iPSC lines can be differentiated into glutamatergic neurons and cardiomyocytes. By culturing urine-derived cells and maximizing the efficiency of episomal vector transfection, we have been able to generate iPSCs noninvasively and effectively from participants with DS in an ongoing clinical trial, and thus address most shortcomings of previously generated T21-iPSC lines. These techniques should extend the application of iPSCs in modeling DS and other neurodevelopmental and neurodegenerative disorders, and may lead to future human cell-based platforms for high-throughput drug screening. Stem Cells Translational Medicine 2017;6:1465-1476. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook
2012-03-31
The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.
Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao
2017-01-01
Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
2013-11-01
clones . Western blot analysis will be used to detect the protein expression after selection. 2. Differentiation into oligoprecursor cells (OPCs... monkey and mouse which will be tested in iPSC derived neurons aged with progerin. 13 Key Research Accomplishments: • Milestone 1 (month 1-2...iPSC clones with drug-inducible progerin construct we established the plasmid transfection for iPSC induced neural stem cells, the retroviral
Bamba, Yohei; Nonaka, Masahiro; Sasaki, Natsu; Shofuda, Tomoko; Kanematsu, Daisuke; Suemizu, Hiroshi; Higuchi, Yuichiro; Pooh, Ritsuko K; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami
2017-12-01
We established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods. We aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use. SBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues. Fibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology. We successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology. We successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa.
Fujimori, Koki; Tezuka, Toshiki; Ishiura, Hiroyuki; Mitsui, Jun; Doi, Koichiro; Yoshimura, Jun; Tada, Hirobumi; Matsumoto, Takuya; Isoda, Miho; Hashimoto, Ryota; Hattori, Nubutaka; Takahashi, Takuya; Morishita, Shinichi; Tsuji, Shoji; Akamatsu, Wado; Okano, Hideyuki
2016-10-03
Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs. However, it remains unclear whether patient's LCL-derived iPSCs (LiPSCs) can function as a disease model. Therefore, we generated Parkinson's disease patient-specific LiPSCs and evaluated their utility as tools for modeling neurological diseases. We established iPSCs from two LCL clones, which were derived from a healthy donor and a patient carrying PARK2 mutations, by using existing non-integrating episomal protocols. Whole genome sequencing (WGS) and comparative genomic hybridization (CGH) analyses showed that the appearance of somatic variations in the genomes of the iPSCs did not vary substantially according to the original cell types (LCLs, T-cells and fibroblasts). Furthermore, LiPSCs could be differentiated into functional neurons by using the direct neurosphere conversion method (dNS method), and they showed several Parkinson's disease phenotypes that were similar to those of DF-iPSCs. These data indicate that the global LCL repositories can be used as a resource for generating iPSCs and disease models. Thus, LCLs are the powerful tools for generating iPSCs and modeling neurological diseases.
Li, Yang; Cang, Ming; Lee, Andrew Stephen; Zhang, Kehua; Liu, Dongjun
2011-01-01
Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes. PMID:21253598
Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai
2017-07-01
Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET +/- and RET -/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Sackett, S.D.; Brown, M.E.; Tremmel, D.M.; Ellis, T.; Burlingham, W.J.; Odorico, J.S.
2016-01-01
Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. PMID:26970668
Sackett, S D; Brown, M E; Tremmel, D M; Ellis, T; Burlingham, W J; Odorico, J S
2016-04-01
Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs. autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.
Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity.
Tousley, Adelaide; Kegel-Gleason, Kimberly B
2016-06-28
Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington's disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.
Mattis, Virginia B.; Tom, Colton; Akimov, Sergey; Saeedian, Jasmine; Østergaard, Michael E.; Southwell, Amber L.; Doty, Crystal N.; Ornelas, Loren; Sahabian, Anais; Lenaeus, Lindsay; Mandefro, Berhan; Sareen, Dhruv; Arjomand, Jamshid; Hayden, Michael R.; Ross, Christopher A.; Svendsen, Clive N.
2015-01-01
Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of ‘persistent’ neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics. PMID:25740845
Ohnishi, Hiroe; Kawasaki, Takashi; Deguchi, Tomonori; Yuba, Shunsuke
2015-08-01
Xeroderma pigmentosum group A (XP-A) is a genetic disorder in which there is an abnormality in nucleotide excision repair that causes hypersensitivity to sunlight and multiple skin cancers. The development of central and peripheral neurological disorders not correlated to ultraviolet light exposure is associated with XP-A. The genes responsible for XP-A have been identified and a XPA knockout mouse has been generated. These knockout mice exhibit cutaneous symptoms, but they do not show neurological disorders. The mechanism of pathogenesis of neurological disorders is still unclear and therapeutic methods have not been established. Therefore, we generated XP-A patient-derived human induced pluripotent stem cells (XPA-iPSCs) to produce in vitro models of neurological disorders. We obtained iPSC lines from fibroblasts of two patients carrying different mutations. Drugs screened using XPA-iPSC lines can be helpful for treating XP-A patients in Japan. Additionally, we revealed that these iPSCs have the potential to differentiate into neural lineage cells, including dopaminergic neurons, which decrease in XP-A patients. Our results indicate that expression of the normal XPA gene without mutations is not required for generation of iPSCs and differentiation of iPSCs into neural lineage cells. XPA-iPSCs may become useful models that clarify our understanding of neurological pathogenesis and help to establish therapeutic methods.
Age Is Relative-Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality.
Strässler, Elisabeth Tamara; Aalto-Setälä, Katriina; Kiamehr, Mostafa; Landmesser, Ulf; Kränkel, Nicolle
2018-01-01
Induced pluripotent stem cells (iPSCs) avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor's clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne's muscular dystrophy) and organ replacement in age-related diseases (e.g., end-stage heart or renal failure), especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual's somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do iPSC-derived cells from older donors suffer early senescence or show functional impairments when compared with those from younger donors. Thus, the data would suggest that donor age does not limit iPSC application for modelling genetic diseases nor regenerative therapies. However, open questions remain, e.g., regarding the potential tumourigenicity of iPSC-derived cells and the impact of epigenetic pattern retention.
Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang
2015-05-01
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
Park, Chul-Yong; Kim, Jungeun; Kweon, Jiyeon; Son, Jeong Sang; Lee, Jae Souk; Yoo, Jeong-Eun; Cho, Sung-Rae; Kim, Jong-Hoon; Kim, Jin-Soo; Kim, Dong-Wook
2014-06-24
Hemophilia A, one of the most common genetic bleeding disorders, is caused by various mutations in the blood coagulation factor VIII (F8) gene. Among the genotypes that result in hemophilia A, two different types of chromosomal inversions that involve a portion of the F8 gene are most frequent, accounting for almost half of all severe hemophilia A cases. In this study, we used a transcription activator-like effector nuclease (TALEN) pair to invert a 140-kbp chromosomal segment that spans the portion of the F8 gene in human induced pluripotent stem cells (iPSCs) to create a hemophilia A model cell line. In addition, we reverted the inverted segment back to its normal orientation in the hemophilia model iPSCs using the same TALEN pair. Importantly, we detected the F8 mRNA in cells derived from the reverted iPSCs lines, but not in those derived from the clones with the inverted segment. Thus, we showed that TALENs can be used both for creating disease models associated with chromosomal rearrangements in iPSCs and for correcting genetic defects caused by chromosomal inversions. This strategy provides an iPSC-based novel therapeutic option for the treatment of hemophilia A and other genetic diseases caused by chromosomal inversions.
Zheng, Weiyan; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan
2013-04-25
Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics. Copyright © 2013 Elsevier B.V. All rights reserved.
Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines.
Miquel-Serra, L; Duarri, A; Muñoz, Y; Kuebler, B; Aran, B; Costa, C; Martí, M; Comabella, M; Malhotra, S; Montalban, X; Veiga, A; Raya, A
2017-10-01
Multiple sclerosis (MS) is considered a chronic autoimmune disease of the central nervous system that leads to gliosis, demyelination, axonal damage and neuronal death. The MS disease aetiology is unknown, though a polymorphism of the TNFRSF1A gene, rs1800693, is known to confer an increased risk for MS. Using retroviral delivery of reprogramming transgenes, we generated six MS patient-specific iPSC lines with two distinct genotypes, CC or TT, of the polymorphism rs1800693. iPSC lines had normal karyotype, expressed pluripotency genes and differentiated into the three germ layers. These lines offer a good tool to study MS pathomechanisms and for drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Folmes, Clifford D L; Martinez-Fernandez, Almudena; Perales-Clemente, Ester; Li, Xing; McDonald, Amber; Oglesbee, Devin; Hrstka, Sybil C; Perez-Terzic, Carmen; Terzic, Andre; Nelson, Timothy J
2013-07-01
Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases. Copyright © 2013 AlphaMed Press.
Generation of Functional Human Hepatic Endoderm from Human iPS cells
Sullivan, Gareth J.; Hay, David C.; Park, In-Hyun; Fletcher, Judy; Hannoun, Zara; Payne, Catherine M.; Dalgetty, Donna; Black, James R.; Ross, James A.; Samuel, Kay; Wang, Gang; Daley, George Q.; Lee, Je-Hyuk; Church, George M.; Forbes, Stuart J.; Iredale, John P.; Wilmut, Ian
2009-01-01
With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation of defined lineage, such as hepatic endoderm (HE). iPSC would revolutionise the way we study human liver biology and generate efficient “off the shelf” models of human liver disease. Here we show the `proof of concept' that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70–90%, using a method mimicking a physiological condition. iPSC-derived HE exhibited hepatic morphology, and expressed the hepatic markers, Albumin and E-Cadherin as assessed by immuno-histochemistry. They also expressed alpha fetal protein (AFP), HNF4a, and a metabolic marker, Cyp7A1, demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin (TTR) and AFP, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and 3A4 metabolism, which is essential for drug and toxicology testing. Conclusion This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSC that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSC from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionise predictive drug toxicology assays and allow the creation of in vitro hepatic disease models. PMID:19877180
Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives.
Itakura, Go; Kawabata, Soya; Ando, Miki; Nishiyama, Yuichiro; Sugai, Keiko; Ozaki, Masahiro; Iida, Tsuyoshi; Ookubo, Toshiki; Kojima, Kota; Kashiwagi, Rei; Yasutake, Kaori; Nakauchi, Hiromitsu; Miyoshi, Hiroyuki; Nagoshi, Narihito; Kohyama, Jun; Iwanami, Akio; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki
2017-03-14
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H.; Mills, Jason A.; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M.; Podsakoff, Gregory M.; Gadue, Paul; French, Deborah L.; Mason, Philip J.; Bessler, Monica
2013-01-01
Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the “safe harbor” AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells. PMID:23744582
Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J
2013-08-08
Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.
Mattis, Virginia B; Tom, Colton; Akimov, Sergey; Saeedian, Jasmine; Østergaard, Michael E; Southwell, Amber L; Doty, Crystal N; Ornelas, Loren; Sahabian, Anais; Lenaeus, Lindsay; Mandefro, Berhan; Sareen, Dhruv; Arjomand, Jamshid; Hayden, Michael R; Ross, Christopher A; Svendsen, Clive N
2015-06-01
Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Toustrup, Lise Bols; Zhou, Yan; Kvistgaard, Helene; Gregersen, Niels; Rittig, Søren; Aagaard, Lars; Corydon, Thomas Juhl; Luo, Yonglun; Christensen, Jane H
2017-03-01
Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Peitz, Michael; Bechler, Tamara; Thiele, Catrin Cornelia; Veltel, Monika; Bloschies, Melanie; Fliessbach, Klaus; Ramirez, Alfredo; Brüstle, Oliver
2018-04-23
Alzheimer's disease (AD) is most the frequent neurodegenerative disease, and the APOE ε4 allele is the most prominent risk factor for late-onset AD. Here, we present an iPSC line generated from peripheral blood cells of a male AD patient employing Sendai virus vectors encoding the transcription factors OCT4, SOX2, KLF4 and c-MYC. The characterized iPSC line expresses typical human pluripotency markers and shows differentiation into all three germ layers, complete reprogramming vector clearance, a normal SNP genotype and maintenance of the APOE ε4/ε4 allele. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Induced pluripotent stem cells and their implication for regenerative medicine.
Csobonyeiova, Maria; Polak, Stefan; Koller, Jan; Danisovic, Lubos
2015-06-01
In 2006 Yamanaka's group showed that stem cells with properties similar to embryonic stem cells could be generated from mouse fibroblasts by introducing four genes. These cells were termed induced pluripotent stem cells (iPSCs). Because iPSCs avoid many of ethical concerns associated with the use of embryonic material, they have great potential in cell-based regenerative medicine. They are suitable also for other various purposes, including disease modelling, personalized cell therapy, drug or toxicity screening and basic research. Moreover, in the future, there might become possible to generate organs for human transplantation. Despite these progresses, several studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to immunogenicity of some cells differentiated from iPSCs. Recent methodological improvements are increasing the ease and efficacy of reprogramming, and reducing the genomic modification. However, to minimize or eliminate genetic alternations in the derived iPSC line creation, factor-free human iPSCs are necessary. In this review we discuss recent possibilities of using iPSCs for clinical applications and new advances in field of their reprogramming methods. The main goal of present article was to review the current knowledge about iPSCs and to discuss their potential for regenerative medicine.
Liu, Yanying; Qiao, Fangfang; Leiferman, Patricia C; Ross, Alan; Schlenker, Evelyn H; Wang, Hongmin
2017-11-15
Although it has been speculated that proteasome dysfunction may contribute to the pathogenesis of Huntington's disease (HD), a devastating neurodegenerative disorder, how proteasome activity is regulated in HD affected stem cells and somatic cells remains largely unclear. To better understand the pathogenesis of HD, we analyzed proteasome activity and the expression of FOXO transcription factors in three wild-type (WT) and three HD induced-pluripotent stem cell (iPSC) lines. HD iPSCs exhibited elevated proteasome activity and higher levels of FOXO1 and FOXO4 proteins. Knockdown of FOXO4 but not FOXO1 expression decreased proteasome activity. Following neural differentiation, the HD-iPSC-derived neural progenitor cells (NPCs) demonstrated lower levels of proteasome activity and FOXO expressions than their WT counterparts. More importantly, overexpression of FOXO4 but not FOXO1 in HD NPCs dramatically enhanced proteasome activity. When HD NPCs were further differentiated into DARPP32-positive neurons, these HD neurons were more susceptible to death than WT neurons and formed Htt aggregates under the condition of oxidative stress. Similar to HD NPCs, HD-iPSC-derived neurons showed reduced proteasome activity and diminished FOXO4 expression compared to WT-iPSC-derived neurons. Furthermore, HD iPSCs had lower AKT activities than WT iPSCs, whereas the neurons derived from HD iPSC had higher AKT activities than their WT counterparts. Inhibiting AKT activity increased both FOXO4 level and proteasome activity, indicating a potential role of AKT in regulating FOXO levels. These data suggest that FOXOs modulate proteasome activity, and thus represents a potentially valuable therapeutic target for HD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A call for standardized naming and reporting of human ESC and iPSC lines.
Luong, Mai X; Auerbach, Jonathan; Crook, Jeremy M; Daheron, Laurence; Hei, Derek; Lomax, Geoffrey; Loring, Jeanne F; Ludwig, Tenneille; Schlaeger, Thorsten M; Smith, Kelly P; Stacey, Glyn; Xu, Ren-He; Zeng, Fanyi
2011-04-08
Human embryonic and induced pluripotent stem cell lines are being generated at a rapid pace and now number in the thousands. We propose a standard nomenclature and suggest the use of a centralized database for all cell line names and a minimum set of information for reporting new derivations. Copyright © 2011 Elsevier Inc. All rights reserved.
Gene correction in patient-specific iPSCs for therapy development and disease modeling
Jang, Yoon-Young
2018-01-01
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field. PMID:27256364
Comparison of two different culture conditions for derivation of early hiPSC.
Hey, Caroline A B; Saltõkova, Katarina B; Bisgaard, Hanne C; Møller, Lisbeth B
2018-03-30
Different culture-systems for derivation of induced pluripotent stem cells (iPSC) in vitro from human fibroblasts have been established. Here, we compared the efficacy of two different feeder-free culture-systems; Matrigel-coated surfaces in combination with mTeSR1 medium versus Vitronectin-coated surfaces in combination with Essential 8 (E8) medium. The comparison was performed by counting the number of emerging iPSC-looking colonies of re-programmed fibroblasts. The fibroblasts were re-programmed using episomal plasmids expressing OCT3/4, SOX2, KLF4, L-MYC, LIN28, and a p53 knock down shP53. Three different fibroblast lines, K40 and K48 from healthy controls and BBS1 from a patient with Bardet-Biedl syndrome, were used in two independent setups. The BBS1 line was used in both setups in combination with K40 and K48 respectively. In all four re-programming experiments, we observed a significantly higher number of emerging colonies with the combination Matrigel/mTeSR1 as compared to the combination Vitronectin/E8. The presence of iPSC was verified by alkaline phosphatase and Tra-1-60 staining. Furthermore, a higher expression of the pluripotency-associated markers NANOG and SOX2 in cells under Matrigel/mTeSR1 conditions compared with Vitronectin/E8 supported the higher proportion of iPSC on Matrigel/mTeSR1 plates. In conclusion, the combination Matrigel/mTeSR1 is more efficient for derivation of iPSC compared to the Vitronectin/E8 combination. © 2018 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.
Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro
2015-12-01
Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective and reproducible method of generating functional vascular smooth muscle cells. ©AlphaMed Press.
Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I
2015-12-15
The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.
Dzhoyashvili, Nina A; Shen, Sanbing; Rochev, Yury A
2015-11-18
Induced pluripotent stem cells (iPSCs) have attracted considerable attention from the public, clinicians, and scientists since their discovery in 2006, and raised huge expectations for regenerative medicine. One of the distinctive features of iPSCs is their propensity to differentiate into the cells of three germ lines in vitro and in vivo. The human iPSCs can be used to study the mechanisms underlying a disease and to monitor the disease progression, for testing drugs in vitro, and for cell therapy, avoiding many ethical and immunologic concerns. This technology offers the potential to take an individual approach to each patient and allows a more accurate diagnosis and specific treatment. However, there are several obstacles that impede the use of iPSCs. The derivation of fully reprogrammed iPSCs is expensive, time-consuming, and demands meticulous attention to many details. The use of biomaterials could increase the efficacy and safety while decreasing the cost of tissue engineering. The choice of a substrate utilized for iPSC culture is also important because cell-substrate contacts influence cellular behavior such as self-renewal, expansion, and differentiation. This Progress Report aims to summarize the advantages and drawbacks of natural and synthetic biomaterials, and to evaluate their role for maintenance and differentiation of iPSCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geti, Imbisaat; Ormiston, Mark L; Rouhani, Foad; Toshner, Mark; Movassagh, Mehregan; Nichols, Jennifer; Mansfield, William; Southwood, Mark; Bradley, Allan; Rana, Amer Ahmed; Vallier, Ludovic; Morrell, Nicholas W
2012-12-01
Induced pluripotent stem cells (iPSCs) have the potential to generate patient-specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late-outgrowth endothelial progenitor cells (L-EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L-EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof-of-principle for clinical applications we generated EPC-iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L-EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L-EPC reprogramming allowed for the reliable generation of iPSCs in a 96-well format, which is compatible with high-throughput platforms. Array comparative genome hybridization analysis of L-EPCs versus donor-matched circulating monocytes demonstrated that L-EPCs have normal karyotypes compared with their subject's reference genome. In addition, >80% of EPC-iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L-EPC line. This work identifies L-EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.
Application of biomaterials to advance induced pluripotent stem cell research and therapy
Tong, Zhixiang; Solanki, Aniruddh; Hamilos, Allison; Levy, Oren; Wen, Kendall; Yin, Xiaolei; Karp, Jeffrey M
2015-01-01
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation. PMID:25766254
Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns.
Dunaway, Keith; Goorha, Sarita; Matelski, Lauren; Urraca, Nora; Lein, Pamela J; Korf, Ian; Reiter, Lawrence T; LaSalle, Janine M
2017-04-01
Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum-containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI-NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH-SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2-q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981-988. © 2016 AlphaMed Press.
Tidball, Andrew M; Dang, Louis T; Glenn, Trevor W; Kilbane, Emma G; Klarr, Daniel J; Margolis, Joshua L; Uhler, Michael D; Parent, Jack M
2017-09-12
Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel
2017-12-01
Skin biopsies were obtained from two male patients with X-linked Alport syndrome (XLAS) with hemizygous COL4A5 mutations in exon 41 or exon 46. Dermal fibroblasts were extracted and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53 shRNA. The generated induced Pluripotent Stem Cell (iPSC) lines AS-FiPS2-Ep6F-28 and AS-FiPS3-Ep6F-9 were free of genomically integrated reprogramming genes, had the specific mutations, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. These iPSC lines offer a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fong, Helen; Wang, Chengzhong; Knoferle, Johanna; Walker, David; Balestra, Maureen E; Tong, Leslie M; Leung, Laura; Ring, Karen L; Seeley, William W; Karydas, Anna; Kshirsagar, Mihir A; Boxer, Adam L; Kosik, Kenneth S; Miller, Bruce L; Huang, Yadong
2013-01-01
Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.
Sebastiano, Vittorio; Maeder, Morgan L; Angstman, James F; Haddad, Bahareh; Khayter, Cyd; Yeo, Dana T; Goodwin, Mathew J; Hawkins, John S; Ramirez, Cherie L; Batista, Luis F Z; Artandi, Steven E; Wernig, Marius; Joung, J Keith
2011-11-01
The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications. Copyright © 2011 AlphaMed Press.
Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi
2017-05-01
Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.
Huang, Xiaosong; Wang, Ying; Yan, Wei; Smith, Cory; Ye, Zhaohui; Wang, Jing; Gao, Yongxing; Mendelsohn, Laurel; Cheng, Linzhao
2015-05-01
Human induced pluripotent stem cells (iPSCs) and genome editing provide a precise way to generate gene-corrected cells for disease modeling and cell therapies. Human iPSCs generated from sickle cell disease (SCD) patients have a homozygous missense point mutation in the HBB gene encoding adult β-globin proteins, and are used as a model system to improve strategies of human gene therapy. We demonstrate that the CRISPR/Cas9 system designer nuclease is much more efficient in stimulating gene targeting of the endogenous HBB locus near the SCD point mutation in human iPSCs than zinc finger nucleases and TALENs. Using a specific guide RNA and Cas9, we readily corrected one allele of the SCD HBB gene in human iPSCs by homologous recombination with a donor DNA template containing the wild-type HBB DNA and a selection cassette that was subsequently removed to avoid possible interference of HBB transcription and translation. We chose targeted iPSC clones that have one corrected and one disrupted SCD allele for erythroid differentiation assays, using an improved xeno-free and feeder-free culture condition we recently established. Erythrocytes from either the corrected or its parental (uncorrected) iPSC line were generated with similar efficiencies. Currently ∼6%-10% of these differentiated erythrocytes indeed lacked nuclei, characteristic of further matured erythrocytes called reticulocytes. We also detected the 16-kDa β-globin protein expressed from the corrected HBB allele in the erythrocytes differentiated from genome-edited iPSCs. Our results represent a significant step toward the clinical applications of genome editing using patient-derived iPSCs to generate disease-free cells for cell and gene therapies. Stem Cells 2015;33:1470-1479. © 2015 AlphaMed Press.
Zapata-Linares, Natalia; Rodriguez, Saray; Mazo, Manuel; Abizanda, Gloria; Andreu, Enrique J; Barajas, Miguel; Prosper, Felipe; Rodriguez-Madoz, Juan R
2016-01-01
In this work, mesenchymal stem cells derived from adipose tissue (ADSCs) were used for the generation of the human-induced pluripotent stem cell line G15.AO. Cell reprogramming was performed using retroviral vectors containing the Yamanaka factors, and the generated G15.AO hiPSC line showed normal karyotype, silencing of the exogenous reprogramming factors, induction of the typical pluripotency-associated markers, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation ability to the three germ layers. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics.
Sheng, Yang; Filichia, Emily; Shick, Elizabeth; Preston, Kenzie L; Phillips, Karran A; Cooperman, Leslie; Lin, Zhicheng; Tesar, Paul; Hoffer, Barry; Luo, Yu
2016-08-01
The dopaminergic (DA) system plays important roles in addiction. However, human DA neurons from drug-dependent subjects were not available for study until recent development in inducible pluripotent stem cells (iPSCs) technology. In this study, we produced DA neurons differentiated using iPSCs derived from opioid-dependent and control subjects carrying different 3' VNTR (variable number tandem repeat) polymorphism in the human dopamine transporter (DAT or SLC6A3). In addition, the effects of valproic acid (VPA) exposures on iPSC-derived human DA neurons are also examined. We present the first evidence suggesting that the 3' VNTR polymorphism in the hDAT gene affects DAT expression level in iPSC-derived human DA neurons. In human DA neurons, which provide an appropriate cellular milieu, VPA treatment alters the expression of several genes important for dopaminergic neuron function including DAT, Nurr1, and TH; this might partly explain its action in regulating addictive behaviors. VPA treatment also significantly increased DA D2 receptor (Drd2) expression, especially in the opioid-dependent iPSC cell lines. Our data suggest that human iPSC-derived DA neurons may be useful in in vitro experimental model to examine the effects of genetic variation in gene regulation, to examine the underlying mechanisms in neurological disorders including drug addiction, and to serve as a platform for therapeutic development.
Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.
2016-01-01
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052
KATAYAMA, Masafumi; HIRAYAMA, Takashi; KIYONO, Tohru; ONUMA, Manabu; TANI, Tetsuya; TAKEDA, Satoru; NISHIMORI, Katsuhiko; FUKUDA, Tomokazu
2017-01-01
The cellular conditions required to establish induced pluripotent stem cells (iPSCs), such as the number of reprogramming factors and/or promoter selection, differ among species. The establishment of iPSCs derived from cells of previously unstudied species therefore requires the extensive optimization of programming conditions, including promoter selection and the optimal number of reprogramming factors, through a trial-and-error approach. While the four Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc are sufficient for iPSC establishment in mice, we reported previously that six reprogramming factors were necessary for the creation of iPSCs from primary prairie vole-derived cells. Further to this study, we now show detailed data describing the optimization protocol we developed in order to obtain iPSCs from immortalized prairie vole-derived fibroblasts. Immortalized cells can be very useful tools in the optimization of cellular reprogramming conditions, as cellular senescence is known to dramatically decrease the efficiency of iPSC establishment. The immortalized prairie vole cells used in this optimization were designated K4DT cells as they contained mutant forms of CDK4, cyclin D, and telomerase reverse transcriptase (TERT). We show that iPSCs derived from these immortalized cells exhibit the transcriptional silencing of exogenous reprogramming factors while maintaining pluripotent cell morphology. There were no observed differences between the iPSCs derived from primary and immortalized prairie vole fibroblasts. Our data suggest that cells that are immortalized with mutant CDK4, cyclin D, and TERT provide a useful tool for the determination of the optimal conditions for iPSC establishment. PMID:28331164
Katayama, Masafumi; Hirayama, Takashi; Kiyono, Tohru; Onuma, Manabu; Tani, Tetsuya; Takeda, Satoru; Nishimori, Katsuhiko; Fukuda, Tomokazu
2017-06-21
The cellular conditions required to establish induced pluripotent stem cells (iPSCs), such as the number of reprogramming factors and/or promoter selection, differ among species. The establishment of iPSCs derived from cells of previously unstudied species therefore requires the extensive optimization of programming conditions, including promoter selection and the optimal number of reprogramming factors, through a trial-and-error approach. While the four Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc are sufficient for iPSC establishment in mice, we reported previously that six reprogramming factors were necessary for the creation of iPSCs from primary prairie vole-derived cells. Further to this study, we now show detailed data describing the optimization protocol we developed in order to obtain iPSCs from immortalized prairie vole-derived fibroblasts. Immortalized cells can be very useful tools in the optimization of cellular reprogramming conditions, as cellular senescence is known to dramatically decrease the efficiency of iPSC establishment. The immortalized prairie vole cells used in this optimization were designated K4DT cells as they contained mutant forms of CDK4, cyclin D, and telomerase reverse transcriptase (TERT). We show that iPSCs derived from these immortalized cells exhibit the transcriptional silencing of exogenous reprogramming factors while maintaining pluripotent cell morphology. There were no observed differences between the iPSCs derived from primary and immortalized prairie vole fibroblasts. Our data suggest that cells that are immortalized with mutant CDK4, cyclin D, and TERT provide a useful tool for the determination of the optimal conditions for iPSC establishment.
Shtrichman, R; Germanguz, I; Itskovitz-Eldor, J
2013-06-01
Human induced pluripotent stem cells (hiPSCs) have great potential as a robust source of progenitors for regenerative medicine. The novel technology also enables the derivation of patient-specific cells for applications to personalized medicine, such as for personal drug screening and toxicology. However, the biological characteristics of iPSCs are not yet fully understood and their similarity to human embryonic stem cells (hESCs) is still unresolved. Variations among iPSCs, resulting from their original tissue or cell source, and from the experimental protocols used for their derivation, significantly affect epigenetic properties and differentiation potential. Here we review the potential of iPSCs for regenerative and personalized medicine, and assess their expression pattern, epigenetic memory and differentiation capabilities in relation to their parental tissue source. We also summarize the patient-specific iPSCs that have been derived for applications in biological research and drug discovery; and review risks that must be overcome in order to use iPSC technology for clinical applications.
Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C
2016-01-01
The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.
Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S
2017-04-13
Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson's Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm 2 , which to our knowledge is the highest reported in vitro TEER value to date. Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications.
Rao, Mahendra; Gottesfeld, Joel M
2014-02-21
With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.
Kim, Eun-Mi; Manzar, Gohar; Zavazava, Nicholas
2017-06-01
The safety of induced pluripotent stem cells (iPSCs) in autologous recipients has been questioned after iPSCs, but not embryonic stem cells (ESCs), were reported to be rejected in syngeneic mice. This important topic has remained controversial because there has not been a mechanistic explanation for this phenomenon. Here, we hypothesize that iPSCs, but not ESCs, readily differentiate into gamete-forming cells that express meiotic antigens normally found in immune-privileged gonads. Because peripheral blood T cells are not tolerized to these antigens in the thymus, gamete-associated-proteins (GAPs) sensitize T cells leading to rejection. Here, we provide evidence that GAPs expressed in iPSC teratomas, but not in ESC teratomas, are responsible for the immunological rejection of iPSCs. Furthermore, silencing the expression of Stra8, 'the master regulator of meiosis', in iPSCs, using short hairpin RNA led to significant abrogation of the rejection of iPSCs, supporting our central hypothesis that GAPs expressed after initiation of meiosis in iPSCs were responsible for rejection. In contrast to iPSCs, iPSC-derivatives, such as haematopoietic progenitor cells, are able to engraft long-term into syngeneic recipients because they no longer express GAPs. Our findings, for the first time, provide a unifying explanation of why iPSCs, but not ESCs, are rejected in syngeneic recipients, ending the current controversy on the safety of iPSCs and their derivatives. © 2017 John Wiley & Sons Ltd.
Patel, Ronak; Page, Shyanne; Al-Ahmad, Abraham Jacob
2017-07-01
The blood-brain barrier (BBB) constitutes an important component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by astrocytes, pericytes, and neurons. Recently, isogenic in vitro models of the BBB based on human pluripotent stem cells have been documented, yet the impact of inter-individual variability on the yield and phenotype of such models remains to be documented. In this study, we investigated the impact of inter-individual variability on the yield and phenotype of isogenic models of the BBB, using patient-derived induced pluripotent stem cells (iPSCs). Astrocytes, BMECs, and neurons were differentiated from four asymptomatic patient-derived iPSCs (two males, two females). We differentiated such cells using existing differentiation protocols and quantified expression of cell lineage markers, as well as BBB phenotype, barrier induction, and formation of neurite processes. iPSC-derived BMECs showed barrier properties better than hCMEC/D3 monolayers; however, we noted differences in the expression and activity among iPSC lines. In addition, we noted differences in the differentiation efficiency of these cells into neural stem cells and progenitor cells (as noted by differences in expression of cell lineage markers). Such differences were reflected later in the terminal differentiation, as seen as ability to induce barrier function and to form neurite processes. Although we demonstrated our ability to obtain an isogenic model of the BBB with different patients' iPSCs, we also noted subtle differences in the expression of cell lineage markers and cell maturation processes, suggesting the presence of inter-individual polymorphisms. © 2017 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Xiaohui; Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191; Li, Yang
Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintainedmore » a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.« less
Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.
Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei
2017-07-31
Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.
Ovando-Roche, Patrick; Georgiadis, Anastasios; Smith, Alexander J; Pearson, Rachael A; Ali, Robin R
2017-01-01
A major cause of visual disorders is dysfunction and/or loss of the light-sensitive cells of the retina, the photoreceptors. To develop better treatments for patients, we need to understand how inherited retinal disease mutations result in the dysfunction of photoreceptors. New advances in the field of stem cell and gene editing research offer novel ways to model retinal dystrophies in vitro and present opportunities to translate basic biological insights into therapies. This brief review will discuss some of the issues that should be taken into account when carrying out disease modelling and gene editing of retinal cells. We will discuss (i) the use of human induced pluripotent stem cells (iPSCs) for disease modelling and cell therapy; (ii) the importance of using isogenic iPSC lines as controls; (iii) CRISPR/Cas9 gene editing of iPSCs; and (iv) in vivo gene editing using AAV vectors. Ground-breaking advances in differentiation of iPSCs into retinal organoids and methods to derive mature light sensitive photoreceptors from iPSCs. Furthermore, single AAV systems for in vivo gene editing have been developed which makes retinal in vivo gene editing therapy a real prospect. Genome editing is becoming a valuable tool for disease modelling and in vivo gene editing in the retina.
Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang
2009-01-01
Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter. PMID:19715575
Tang, Bor Luen
2018-05-08
Induced pluripotent stem cells (iPSCs) and induced neuronal (iN) cells are very much touted in terms of their potential promises in therapeutics. However, from a more fundamental perspective, iPSCs and iNs are invaluable tools for the postnatal generation of specific diseased cell types from patients, which may offer insights into disease etiology that are otherwise unobtainable with available animal or human proxies. There are two good recent examples of such important insights with diseased neurons derived via either the iPSC or iN approaches. In one, induced motor neurons (iMNs) derived from iPSCs of Amyotrophic lateral sclerosis/Frontotemporal dementia (ALS/FTD) patients with a C9orf72 repeat expansion revealed a haploinsufficiency of protein function resulting from the intronic expansion and deficiencies in motor neuron vesicular trafficking and lysosomal biogenesis that were not previously obvious in knockout mouse models. In another, striatal medium spinal neurons (MSNs) derived directly from fibroblasts of Huntington’s disease (HD) patients recapitulated age-associated disease signatures of mutant Huntingtin (mHTT) aggregation and neurodegeneration that were not prominent in neurons differentiated indirectly via iPSCs from HD patients. These results attest to the tremendous potential for pathologically accurate and mechanistically revealing disease modelling with advances in the derivation of iPSCs and iNs.
Ma, Yu; Li, Chunliang; Gu, Junjie; Tang, Fan; Li, Chun; Li, Peng; Ping, Ping; Yang, Shi; Li, Zheng; Jin, Ying
2012-01-01
Klinefelter syndrome (KS) is the most common male chromosome aneuploidy. Its pathophysiology is largely unexplained due to the lack of adequate models. Here, we report the derivation of induced pluripotent stem cell (iPSCs) lines from a KS patient with a karyotype of 47, XXY. Derived KS-iPSCs meet all criteria of normal iPSCs with the potential for germ cell differentiation. Although X chromosome inactivation occurs in all KS-iPSCs, genome-wide transcriptome analysis identifies aberrantly expressed genes associated with the clinical features of KS. Our KS-iPSCs can serve as a cellular model for KS research. Identified genes may become biomarkers for early diagnosis or potential therapeutic targets for KS and significantly accelerate the understanding, diagnosis, and treatment of Klinefelter syndrome. PMID:23019320
Secher, Jan O; Liu, Ying; Petkov, Stoyan; Luo, Yonglun; Li, Dong; Hall, Vanessa J; Schmidt, Mette; Callesen, Henrik; Bentzon, Jacob F; Sørensen, Charlotte B; Freude, Kristine K; Hyttel, Poul
2017-03-01
Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping
2017-06-27
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells
NASA Astrophysics Data System (ADS)
Bared, Kalia
The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells
Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis.
Honda, Arata; Choijookhuu, Narantsog; Izu, Haruna; Kawano, Yoshihiro; Inokuchi, Mizuho; Honsho, Kimiko; Lee, Ah-Reum; Nabekura, Hiroki; Ohta, Hiroshi; Tsukiyama, Tomoyuki; Ohinata, Yasuhide; Kuroiwa, Asato; Hishikawa, Yoshitaka; Saitou, Mitinori; Jogahara, Takamichi; Koshimoto, Chihiro
2017-05-01
In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis , has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis , it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called "true naïve" state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study.
Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis
Honda, Arata; Choijookhuu, Narantsog; Izu, Haruna; Kawano, Yoshihiro; Inokuchi, Mizuho; Honsho, Kimiko; Lee, Ah-Reum; Nabekura, Hiroki; Ohta, Hiroshi; Tsukiyama, Tomoyuki; Ohinata, Yasuhide; Kuroiwa, Asato; Hishikawa, Yoshitaka; Saitou, Mitinori; Jogahara, Takamichi; Koshimoto, Chihiro
2017-01-01
In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis, has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis, it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called “true naïve” state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study. PMID:28508054
Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.
Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi
2017-07-01
Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.
Corti, Stefania; Nizzardo, Monica; Simone, Chiara; Falcone, Marianna; Nardini, Martina; Ronchi, Dario; Donadoni, Chiara; Salani, Sabrina; Riboldi, Giulietta; Magri, Francesca; Menozzi, Giorgia; Bonaglia, Clara; Rizzo, Federica; Bresolin, Nereo; Comi, Giacomo P.
2016-01-01
Spinal muscular atrophy (SMA) is among the most common genetic neurological diseases that cause infant mortality. Induced pluripotent stem cells (iPSCs) generated from skin fibroblasts from SMA patients and genetically corrected have been proposed to be useful for autologous cell therapy. We generated iPSCs from SMA patients (SMA-iPSCs) using nonviral, nonintegrating episomal vectors and used a targeted gene correction approach based on single-stranded oligonucleotides to convert the survival motor neuron 2 (SMN2) gene into an SMN1-like gene. Corrected iPSC lines contained no exogenous sequences. Motor neurons formed by differentiation of uncorrected SMA-iPSCs reproduced disease-specific features. These features were ameliorated in motor neurons derived from genetically corrected SMA-iPSCs. The different gene splicing profile in SMA-iPSC motor neurons was rescued after genetic correction. The transplantation of corrected motor neurons derived from SMA-iPSCs into an SMA mouse model extended the life span of the animals and improved the disease phenotype. These results suggest that generating genetically corrected SMA-iPSCs and differentiating them into motor neurons may provide a source of motor neurons for therapeutic transplantation for SMA. PMID:23253609
Sebastiano, Vittorio; Zhen, Hanson Hui; Haddad, Bahareh; Bashkirova, Elizaveta; Melo, Sandra P.; Wang, Pei; Leung, Thomas L.; Siprashvili, Zurab; Tichy, Andrea; Li, Jiang; Ameen, Mohammed; Hawkins, John; Lee, Susie; Li, Lingjie; Schwertschkow, Aaron; Bauer, Gerhard; Lisowski, Leszek; Kay, Mark A.; Kim, Seung K.; Lane, Alfred T.; Wernig, Marius; Oro, Anthony E.
2015-01-01
Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB. PMID:25429056
Zhang, Shu-Zhen; Li, Hong-Fu; Ma, Li-Xiang; Qian, Wen-Jing; Wang, Zhong-Feng; Wu, Zhi-Ying
2015-11-30
Paroxysmal kinesigenic dyskinesia (PKD) is a monogenic movement disorder with autosomal dominant inheritance. We previously identified the proline-rich transmembrane protein 2 (PRRT2) as a causative gene of PKD. However, the pathogenesis of PKD remains largely unknown so far. In addition, applicable modeling tools to investigate the underlying mechanisms of PKD are still lacking. The combination of disease-specific human induced pluripotent stem cells (iPSCs) and directed cell differentiation offers an ideal platform for disease modeling. In this study, we generated two iPSC lines from the renal epithelial cells of one PKD patient with the hotspot c.649dupC mutation (PKD-iPSCs). These cell lines were positive for alkaline phosphatase Nanog, Tra-1-80, Tra-1-60, SSEA-3 and SSEA-4. Teratomas with three blastoderms including ectoderm, mesoderm, and endoderm were obtained two months after injection of PKD-iPSCs into NOD/SCID mice. The expression of PRRT2 mRNA was decreased in PKD-iPSCs compared with that of the control iPSCs. Furthermore, PKD-iPSCs possessed the differentiation potential of functional glutamatergic, dopaminergic and motor neurons in vitro. Electrophysiological examinations revealed that the current densities of fast activated and deactivated sodium channels as well as voltage gated potassium channels were not different between the neurons from PKD-iPSCs and control iPSCs. Thus, PKD-iPSCs are a feasible modeling tool to investigate the pathogenic mechanisms of PKD. © 2015. Published by The Company of Biologists Ltd.
Muguruma, Keiko
2018-02-01
Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.
Modeling Fanconi Anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs
Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua
2014-01-01
Fanconi Anemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration-free induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA-patient bone marrow cells. PMID:24999918
Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs.
Liu, Guang-Hui; Suzuki, Keiichiro; Li, Mo; Qu, Jing; Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; Del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua
2014-07-07
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Yap, May Shin; Nathan, Kavitha R; Yeo, Yin; Lim, Lee Wei; Poh, Chit Laa; Richards, Mark; Lim, Wei Ling; Othman, Iekhsan; Heng, Boon Chin
2015-01-01
Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs.
Honda, Arata; Kawano, Yoshihiro; Izu, Haruna; Choijookhuu, Narantsog; Honsho, Kimiko; Nakamura, Tomonori; Yabuta, Yukihiro; Yamamoto, Takuya; Takashima, Yasuhiro; Hirose, Michiko; Sankai, Tadashi; Hishikawa, Yoshitaka; Ogura, Atsuo; Saitou, Mitinori
2017-01-01
Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics. PMID:28349944
Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel
2017-12-01
A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing
Stanurova, Jana; Neureiter, Anika; Hiber, Michaela; de Oliveira Kessler, Hannah; Stolp, Kristin; Goetzke, Roman; Klein, Diana; Bankfalvi, Agnes; Klump, Hannes; Steenpass, Laura
2016-01-01
Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin-specific gene expression that is regulated by a differentially methylated region. Gene mutations or failures in the imprinting process lead to the development of imprinting disorders, such as Angelman syndrome. The symptoms of Angelman syndrome are caused by the absence of functional UBE3A protein in neurons of the brain. To create a human neuronal model for Angelman syndrome, we reprogrammed dermal fibroblasts of a patient carrying a defined three-base pair deletion in UBE3A into induced pluripotent stem cells (iPSCs). In these iPSCs, both parental alleles are present, distinguishable by the mutation, and express UBE3A. Detailed characterization of these iPSCs demonstrated their pluripotency and exceptional stability of the differentially methylated region regulating imprinted UBE3A expression. We observed strong induction of SNHG14 and silencing of paternal UBE3A expression only late during neuronal differentiation, in vitro. This new Angelman syndrome iPSC line allows to study imprinted gene regulation on both parental alleles and to dissect molecular pathways affected by the absence of UBE3A protein. PMID:27484051
Wang, Xiao-Ming; Yik, Wing Yan; Zhang, Peilin; Lu, Wange; Huang, Ning; Kim, Bo Ram; Shibata, Darryl; Zitting, Madison; Chow, Robert H; Moser, Ann B; Steinberg, Steven J; Hacia, Joseph G
2015-08-29
Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had impaired peroxisome assembly. Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders.
Li, Yanjie; Polak, Urszula; Clark, Amanda D; Bhalla, Angela D; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David; Butler, Jill S; Napierala, Marek
2016-08-01
Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.
Li, Yanjie; Polak, Urszula; Clark, Amanda D.; Bhalla, Angela D.; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David
2016-01-01
Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community. PMID:27002638
Canfield, Scott G; Stebbins, Matthew J; Morales, Bethsymarie Soto; Asai, Shusaku W; Vatine, Gad D; Svendsen, Clive N; Palecek, Sean P; Shusta, Eric V
2017-03-01
The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843. © 2016 International Society for Neurochemistry.
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells.
Bassuk, Alexander G; Zheng, Andrew; Li, Yao; Tsang, Stephen H; Mahajan, Vinit B
2016-01-27
Induced pluripotent stem cells (iPSCs) generated from patient fibroblasts could potentially be used as a source of autologous cells for transplantation in retinal disease. Patient-derived iPSCs, however, would still harbor disease-causing mutations. To generate healthy patient-derived cells, mutations might be repaired with new gene-editing technology based on the bacterial system of clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9, thereby yielding grafts that require no patient immunosuppression. We tested whether CRISPR/Cas9 could be used in patient-specific iPSCs to precisely repair an RPGR point mutation that causes X-linked retinitis pigmentosa (XLRP). Fibroblasts cultured from a skin-punch biopsy of an XLRP patient were transduced to produce iPSCs carrying the patient's c.3070G > T mutation. The iPSCs were transduced with CRISPR guide RNAs, Cas9 endonuclease, and a donor homology template. Despite the gene's repetitive and GC-rich sequences, 13% of RPGR gene copies showed mutation correction and conversion to the wild-type allele. This is the first report using CRISPR to correct a pathogenic mutation in iPSCs derived from a patient with photoreceptor degeneration. This important proof-of-concept finding supports the development of personalized iPSC-based transplantation therapies for retinal disease.
Guo, Zongyou; Liu, Liang; Higgins, Claire A.; Christiano, Angela M.
2013-01-01
Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPSCs for use in the treatment of recessive dystrophic epidermolysis bullosa (RDEB) caused by mutations in the COL7A1 gene. Here, we developed a protocol for differentiating iPSCs into dermal fibroblasts, which also produce type VII collagen and therefore also have the potential to treat RDEB. Moreover, we generated in vitro 3D skin equivalents composed exclusively human iPSC-derived keratinocytes and fibroblasts for disease models and regenerative therapies for skin diseases, first demonstrating that iPSCs can provide the basis for modeling a human organ derived entirely from two different types of iPSC-derived cells. PMID:24147053
Understanding the Role of TSC1/2 in Cerebellar Purkinje Neurons
2017-09-01
patient-specific iPSC lines and rescue the disease phenotypes in patient specific neurons in vitro. We will employ CRISPR -Caspase 9 (Cas9) genome...development from human stem cells. For Aim 2. We at BCH have successfully generated CRISPR -cas9-mediated correction of TSC2- microdeletion in TSC...patient (TSC2+/-) derived hiPSC line (Figure 2). We used puromycin selection for isolation of the CRISPR -cas9 and ssODN transfected cells, and with
A high-content platform to characterise human induced pluripotent stem cell lines.
Leha, Andreas; Moens, Nathalie; Meleckyte, Ruta; Culley, Oliver J; Gervasio, Mia K; Kerz, Maximilian; Reimer, Andreas; Cain, Stuart A; Streeter, Ian; Folarin, Amos; Stegle, Oliver; Kielty, Cay M; Durbin, Richard; Watt, Fiona M; Danovi, Davide
2016-03-01
Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Reprint of "iPSCs, aging and age-related diseases".
Isobe, Ken-ichi; Cheng, Zhao; Nishio, Naomi; Suganya, Thanasegan; Tanaka, Yuriko; Ito, Sachiko
2015-01-25
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka’s group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
iPSCs, aging and age-related diseases.
Isobe, Ken-Ichi; Cheng, Zhao; Nishio, Naomi; Suganya, Thanasegan; Tanaka, Yuriko; Ito, Sachiko
2014-09-25
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka's group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Sugai, Keiko; Fukuzawa, Ryuji; Shofuda, Tomoko; Fukusumi, Hayato; Kawabata, Soya; Nishiyama, Yuichiro; Higuchi, Yuichiro; Kawai, Kenji; Isoda, Miho; Kanematsu, Daisuke; Hashimoto-Tamaoki, Tomoko; Kohyama, Jun; Iwanami, Akio; Suemizu, Hiroshi; Ikeda, Eiji; Matsumoto, Morio; Kanemura, Yonehiro; Nakamura, Masaya; Okano, Hideyuki
2016-09-19
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Three dimensional living neural networks
NASA Astrophysics Data System (ADS)
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
Musunuru, Kiran; Sheikh, Farah; Gupta, Rajat M; Houser, Steven R; Maher, Kevin O; Milan, David J; Terzic, Andre; Wu, Joseph C
2018-01-01
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure. © 2018 American Heart Association, Inc.
Using induced pluripotent stem cells derived neurons to model brain diseases.
McKinney, Cindy E
2017-07-01
The ability to use induced pluripotent stem cells (iPSC) to model brain diseases is a powerful tool for unraveling mechanistic alterations in these disorders. Rodent models of brain diseases have spurred understanding of pathology but the concern arises that they may not recapitulate the full spectrum of neuron disruptions associated with human neuropathology. iPSC derived neurons, or other neural cell types, provide the ability to access pathology in cells derived directly from a patient's blood sample or skin biopsy where availability of brain tissue is limiting. Thus, utilization of iPSC to study brain diseases provides an unlimited resource for disease modelling but may also be used for drug screening for effective therapies and may potentially be used to regenerate aged or damaged cells in the future. Many brain diseases across the spectrum of neurodevelopment, neurodegenerative and neuropsychiatric are being approached by iPSC models. The goal of an iPSC based disease model is to identify a cellular phenotype that discriminates the disease-bearing cells from the control cells. In this mini-review, the importance of iPSC cell models validated for pluripotency, germline competency and function assessments is discussed. Selected examples for the variety of brain diseases that are being approached by iPSC technology to discover or establish the molecular basis of the neuropathology are discussed.
Porcine induced pluripotent stem cells produce chimeric offspring.
West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L
2010-08-01
Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.
Zhou, Miaojin; Hu, Zhiqing; Qiu, Liyan; Zhou, Tao; Feng, Mai; Hu, Qian; Zeng, Baitao; Li, Zhuo; Sun, Qianru; Wu, Yong; Liu, Xionghao; Wu, Lingqian; Liang, Desheng
2018-05-09
Spinal muscular atrophy (SMA) is a kind of neuromuscular disease characterized by progressive motor neuron loss in the spinal cord. It is caused by mutations in the survival motor neuron 1 (SMN1) gene. SMN1 has a paralogous gene, survival motor neuron 2 (SMN2), in humans that is present in almost all SMA patients. The generation and genetic correction of SMA patient-specific induced pluripotent stem cells (iPSCs) is a viable, autologous therapeutic strategy for the disease. Here, c-Myc-free and non-integrating iPSCs were generated from the urine cells of an SMA patient using an episomal iPSC reprogramming vector, and a unique crRNA was designed that does not have similar sequences (≤3 mismatches) anywhere in the human reference genome. In situ gene conversion of the SMN2 gene to an SMN1-like gene in SMA-iPSCs was achieved using CRISPR/Cpf1 and single-stranded oligodeoxynucleotide with a high efficiency of 4/36. Seamlessly gene-converted iPSC lines contained no exogenous sequences and retained a normal karyotype. Significantly, the SMN expression and gems localization were rescued in the gene-converted iPSCs and their derived motor neurons. This is the first report of an efficient gene conversion mediated by Cpf1 homology-directed repair in human cells and may provide a universal gene therapeutic approach for most SMA patients.
Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M
2016-05-17
Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.
Hedges, Erin C; Mehler, Vera J; Nishimura, Agnes L
2016-01-01
In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum.
Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Yumlu, Saniye; Stumm, Jürgen; Bashir, Sanum; Dreyer, Anne-Kathrin; Lisowski, Pawel; Danner, Eric; Kühn, Ralf
2017-05-15
Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones. Copyright © 2017 Elsevier Inc. All rights reserved.
Schnabel, Lauren V; Abratte, Christian M; Schimenti, John C; Felippe, M Julia Bevilaqua; Cassano, Jennifer M; Southard, Teresa L; Cross, Jessica A; Fortier, Lisa A
2015-01-01
Aim To evaluate the in vitro immunogenic and immunomodulatory properties of induced pluripotent stem cells (iPSCs) compared with bone marrow-derived mesenchymal stromal cells (MSCs). Materials & methods Mouse embryonic fibroblasts (MEFs) were isolated from C3HeB/FeJ and C57BL/6J mice, and reprogrammed to generate iPSCs. Mixed leukocyte reactions were performed using MHC-matched and -mismatched responder leukocytes and stimulator leukocytes, iPSCs or MSCs. To assess immunogenic potential, iPSCs and MSCs were used as stimulator cells for responder leukocytes. To assess immunomodulatory properties, iPSCs and MSCs were cultured in the presence of stimulator and responder leukocytes. MEFs were used as a control. Results iPSCs had similar immunogenic properties but more potent immunomodulatory effects than MSCs. Co-culture of MHC-mismatched leukocytes with MHC-matched iPSCs resulted in significantly less responder T-cell proliferation than observed for MHC-mismatched leukocytes alone and at more responder leukocyte concentrations than with MSCs. In addition, MHC-mismatched iPSCs significantly reduced responder T-cell proliferation when co-cultured with MHC-mismatched leukocytes, while MHC-mismatched MSCs did not. Conclusion These results provide important information when considering the use of iPSCs in place of MSCs in both regenerative and transplantation medicine. PMID:24773530
Yap, May Shin; Nathan, Kavitha R.; Yeo, Yin; Poh, Chit Laa; Richards, Mark; Lim, Wei Ling; Othman, Iekhsan; Heng, Boon Chin
2015-01-01
Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs. PMID:26089911
Brick, David J.; Nethercott, Hubert E.; Montesano, Samantha; Banuelos, Maria G.; Stover, Alexander E.; Schutte, Soleil Sun; O’Dowd, Diane K.; Hagerman, Randi J.; Ono, Michele; Hessl, David R.; Tassone, Flora
2014-01-01
The autism spectrum disorders (ASDs) comprise a set of neurodevelopmental disorders that are, at best, poorly understood but are the fastest growing developmental disorders in the United States. Because animal models of polygenic disorders such as the ASDs are difficult to validate, the derivation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming offers an alternative strategy for identifying the cellular mechanisms contributing to ASDs and the development of new treatment options. Access to statistically relevant numbers of ASD patient cell lines, however, is still a limiting factor for the field. We describe a new resource with more than 200 cell lines (fibroblasts, iPSC clones, neural stem cells, glia) from unaffected volunteers and patients with a wide range of clinical ASD diagnoses, including fragile X syndrome. We have shown that both normal and ASD-specific iPSCs can be differentiated toward a neural stem cell phenotype and terminally differentiated into action-potential firing neurons and glia. The ability to evaluate and compare data from a number of different cell lines will facilitate greater insight into the cause or causes and biology of the ASDs and will be extremely useful for uncovering new therapeutic and diagnostic targets. Some drug treatments have already shown promise in reversing the neurobiological abnormalities in iPSC-based models of ASD-associated diseases. The ASD Stem Cell Resource at the Children’s Hospital of Orange County will continue expanding its collection and make all lines available on request with the goal of advancing the use of ASD patient cells as disease models by the scientific community. PMID:25273538
Brick, David J; Nethercott, Hubert E; Montesano, Samantha; Banuelos, Maria G; Stover, Alexander E; Schutte, Soleil Sun; O'Dowd, Diane K; Hagerman, Randi J; Ono, Michele; Hessl, David R; Tassone, Flora; Schwartz, Philip H
2014-11-01
The autism spectrum disorders (ASDs) comprise a set of neurodevelopmental disorders that are, at best, poorly understood but are the fastest growing developmental disorders in the United States. Because animal models of polygenic disorders such as the ASDs are difficult to validate, the derivation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming offers an alternative strategy for identifying the cellular mechanisms contributing to ASDs and the development of new treatment options. Access to statistically relevant numbers of ASD patient cell lines, however, is still a limiting factor for the field. We describe a new resource with more than 200 cell lines (fibroblasts, iPSC clones, neural stem cells, glia) from unaffected volunteers and patients with a wide range of clinical ASD diagnoses, including fragile X syndrome. We have shown that both normal and ASD-specific iPSCs can be differentiated toward a neural stem cell phenotype and terminally differentiated into action-potential firing neurons and glia. The ability to evaluate and compare data from a number of different cell lines will facilitate greater insight into the cause or causes and biology of the ASDs and will be extremely useful for uncovering new therapeutic and diagnostic targets. Some drug treatments have already shown promise in reversing the neurobiological abnormalities in iPSC-based models of ASD-associated diseases. The ASD Stem Cell Resource at the Children's Hospital of Orange County will continue expanding its collection and make all lines available on request with the goal of advancing the use of ASD patient cells as disease models by the scientific community. ©AlphaMed Press.
From the Psychiatrist’s Couch to Induced Pluripotent Stem Cells: Bipolar Disease in a Dish
Hoffmann, Anke; Sportelli, Vincenza; Ziller, Michael; Spengler, Dietmar
2018-01-01
Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype in disease-relevant tissues and cell types. Neural cells generated from BD-specific iPSCs are thought to capture associated genetic risk factors, known and unknown, and to allow the analysis of their effects on cellular and molecular phenotypes. Interestingly, an increasing number of studies on BD-derived iPSCs report distinct alterations in neural patterning, postmitotic calcium signaling, and neuronal excitability. Importantly, these alterations are partly normalized by lithium, a first line treatment in BD. In light of these exciting findings, we discuss current challenges to the field of iPSC-based disease modelling and future steps to be taken in order to fully exploit the potential of this approach for the investigation of BD and the development of new therapies. PMID:29517996
El Khatib, Moustafa M; Ohmine, Seiga; Jacobus, Egon J; Tonne, Jason M; Morsy, Salma G; Holditch, Sara J; Schreiber, Claire A; Uetsuka, Koji; Fusaki, Noemi; Wigle, Dennis A; Terzic, Andre; Kudva, Yogish C; Ikeda, Yasuhiro
2016-05-01
Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immunodeficient mice. Moreover, removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplantation, ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable, depending on the oncogenic load, with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus, transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products, especially when reprogrammed with integrating vectors. Two major underlying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzymatic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in testing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature β cell phenotype would lead to safe islet replacement therapy for diabetes. ©AlphaMed Press.
Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
Liu, Ying; Deng, Wenbin
2016-05-01
With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control and to complement the iPSC-based approach for ALS disease modeling studies. Much knowledge has been generated from the study of both ALS iPSCs and ESCs. As these methods have advantages and disadvantages that should be balanced on experimental design in order for them to complement one another, combining the diverse methods would help build an expanded knowledge of ALS pathophysiology. The goals are to reverse engineer the human disease using ESCs and iPSCs, generate lineage reporter lines and in vitro disease models, target disease related genes, in order to better understand the molecular and cellular mechanisms of differentiation regulation along neural (neuronal versus glial) lineages, to unravel the pathogenesis of the neurodegenerative disease, and to provide appropriate cell sources for replacement therapy. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt
2016-01-01
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.
Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells
Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito
2016-01-01
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178
Saito, Akiko; Ooki, Akio; Nakamura, Takashi; Onodera, Shoko; Hayashi, Kamichika; Hasegawa, Daigo; Okudaira, Takahito; Watanabe, Katsuhito; Kato, Hiroshi; Onda, Takeshi; Watanabe, Akira; Kosaki, Kenjiro; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Sakamoto, Teruo; Yamaguchi, Akira; Sueishi, Kenji; Azuma, Toshifumi
2018-01-22
Runt-related transcription factor 2 (RUNX2) haploinsufficiency causes cleidocranial dysplasia (CCD) which is characterized by supernumerary teeth, short stature, clavicular dysplasia, and osteoporosis. At present, as a therapeutic strategy for osteoporosis, mesenchymal stem cell (MSC) transplantation therapy is performed in addition to drug therapy. However, MSC-based therapy for osteoporosis in CCD patients is difficult due to a reduction in the ability of MSCs to differentiate into osteoblasts resulting from impaired RUNX2 function. Here, we investigated whether induced pluripotent stem cells (iPSCs) properly differentiate into osteoblasts after repairing the RUNX2 mutation in iPSCs derived from CCD patients to establish normal iPSCs, and whether engraftment of osteoblasts derived from properly reverted iPSCs results in better regeneration in immunodeficient rat calvarial bone defect models. Two cases of CCD patient-derived induced pluripotent stem cells (CCD-iPSCs) were generated using retroviral vectors (OCT3/4, SOX2, KLF4, and c-MYC) or a Sendai virus SeVdp vector (KOSM302L). Reverted iPSCs were established using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-derived RNA-guided endonucleases, to correct mutations in CCD-iPSCs. The mRNA expressions of osteoblast-specific markers were analyzed using quantitative reverse-transcriptase polymerase chain reaction. iPSCs-derived osteoblasts were transplanted into rat calvarial bone defects, and bone regeneration was evaluated using microcomputed tomography analysis and histological analysis. Mutation analysis showed that both contained nonsense mutations: one at the very beginning of exon 1 and the other at the initial position of the nuclear matrix-targeting signal. The osteoblasts derived from CCD-iPSCs (CCD-OBs) expressed low levels of several osteoblast differentiation markers, and transplantation of these osteoblasts into calvarial bone defects created in rats with severe combined immunodeficiency showed poor regeneration. However, reverted iPSCs improved the abnormal osteoblast differentiation which resulted in much better engraftment into the rat calvarial bone defect. Taken together, these results demonstrate that patient-specific iPSC technology can not only provide a useful disease model to elucidate the role of RUNX2 in osteoblastic differentiation but also raises the tantalizing prospect that reverted iPSCs might provide a practical medical treatment for CCD.
Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro
2016-01-01
Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874
He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua
2017-09-27
Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.
Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.
2014-01-01
Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857
Meraviglia, Viviana; Zanon, Alessandra; Lavdas, Alexandros A; Schwienbacher, Christine; Silipigni, Rosamaria; Di Segni, Marina; Chen, Huei-Sheng Vincent; Pramstaller, Peter P; Hicks, Andrew A; Rossini, Alessandra
2015-06-05
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by forcing the expression of four transcription factors (Oct-4, Sox-2, Klf-4, and c-Myc), typically expressed by human embryonic stem cells (hESCs). Due to their similarity with hESCs, iPSCs have become an important tool for potential patient-specific regenerative medicine, avoiding ethical issues associated with hESCs. In order to obtain cells suitable for clinical application, transgene-free iPSCs need to be generated to avoid transgene reactivation, altered gene expression and misguided differentiation. Moreover, a highly efficient and inexpensive reprogramming method is necessary to derive sufficient iPSCs for therapeutic purposes. Given this need, an efficient non-integrating episomal plasmid approach is the preferable choice for iPSC derivation. Currently the most common cell type used for reprogramming purposes are fibroblasts, the isolation of which requires tissue biopsy, an invasive surgical procedure for the patient. Therefore, human peripheral blood represents the most accessible and least invasive tissue for iPSC generation. In this study, a cost-effective and viral-free protocol using non-integrating episomal plasmids is reported for the generation of iPSCs from human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats after whole blood centrifugation and without density gradient separation.
Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie
2016-10-01
The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation. HFFs were successfully induced into iPSCs by transduction of OCT4, SOX2, KLF4, and c-MYC. Positive expressions of various pluripotency factors were exhibited in HFFs-induced iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells, and mature HLCs. Various hepatocyte-specific genes were highly expressed in iPSC-induced HLCs. Copyright © 2016 John Wiley & Sons, Ltd.
Lee, Seo-Young; Jeong, SangKyun; Kim, Janghwan; Chung, Sun-Ku
2018-06-09
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. PD can result from a mutation of alpha-synuclein (α-SNCA), such as α-SNCA A53T. Using episomal vectors, induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts with the α-SNCA A53T mutation. A huge bacterial artificial chromosome (BAC) harboring the normal α-SNCA gene successfully corrected the α-SNCA A53T-mutant iPSCs. Melting curve analysis for allelic composition indicated that the BAC DNA was precisely targeted to the α-SNCA A53T mutation allele, without random integration. The corrected PD-iPSCs displayed the normal karyotype and pluripotency, with the capability to differentiate to any cell type. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H
2012-01-01
Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.
Generation of a human iPSC line from a patient with Leigh syndrome.
Galera, Teresa; Zurita, Francisco; González-Páramos, Cristina; Moreno-Izquierdo, Ana; Fraga, Mario F; Fernández, Agustin F; Garesse, Rafael; Gallardo, M Esther
2016-01-01
Human iPSC line LND554SV.3 was generated from heteroplasmic fibroblasts of a patient with Leigh syndrome carrying a mutation in the MT-ND5 gene (m.13513GNA; p.D393N). Reprogramming factors Oct3/4, Sox2, Klf4,and cMyc were delivered using a non-integrative methodology that involves the use of Sendai virus.
Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells
Merling, Randall K.; Sweeney, Colin L.; Choi, Uimook; De Ravin, Suk See; Myers, Timothy G.; Otaizo-Carrasquero, Francisco; Pan, Jason; Linton, Gilda; Chen, Lifeng; Koontz, Sherry; Theobald, Narda L.; Malech, Harry L.
2013-01-01
A variety of somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs), but CD34+ hematopoietic stem cells (HSCs) present in nonmobilized peripheral blood (PB) would be a convenient target. We report a method for deriving iPSC from PB HSCs using immunobead purification and 2- to 4-day culture to enrich CD34+ HSCs to 80% ± 9%, followed by reprogramming with loxP-flanked polycistronic (human Oct4, Klf4, Sox2, and c-Myc) STEMCCA-loxP lentivector, or with Sendai vectors. Colonies arising with STEMCCA-loxP were invariably TRA-1-60+, yielding 5.3 ± 2.8 iPSC colonies per 20 mL PB (n = 17), where most colonies had single-copy STEMCCA-loxP easily excised by transient Cre expression. Colonies arising with Sendai were variably reprogrammed (10%-80% TRA-1-60+), with variable yield (6 to >500 TRA-1-60+ iPSC colonies per 10 mL blood; n = 6). Resultant iPSC clones expressed pluripotent cell markers and generated teratomas. Genomic methylation patterns of STEMCCA-loxP–reprogrammed clones closely matched embryonic stem cells. Furthermore, we showed that iPSCs are derived from the nonmobilized CD34+ HSCs enriched from PB rather than from any lymphocyte or monocyte contaminants because they lack somatic rearrangements typical of T or B lymphocytes and because purified CD14+ monocytes do not yield iPSC colonies under these reprogramming conditions. PMID:23386128
Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.
Sotthibundhu, Areechun; McDonagh, Katya; von Kriegsheim, Alexander; Garcia-Munoz, Amaya; Klawiter, Agnieszka; Thompson, Kerry; Chauhan, Kapil Dev; Krawczyk, Janusz; McInerney, Veronica; Dockery, Peter; Devine, Michael J; Kunath, Tilo; Barry, Frank; O'Brien, Timothy; Shen, Sanbing
2016-11-15
Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of end cell products. This research therefore highlights the potential of rapamycin in producing uniform EBs and in shortening iPSC differentiation duration.
Swartz, Elliot W; Baek, Jaeyun; Pribadi, Mochtar; Wojta, Kevin J; Almeida, Sandra; Karydas, Anna; Gao, Fen-Biao; Miller, Bruce L; Coppola, Giovanni
2016-11-01
: Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG + cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved. Myotubes derived from patients carrying the C9orf72 repeat expansion show no change in differentiation efficiency and normal TDP-43 localization after as many as 120 days in vitro when compared to unaffected controls. This study provides an efficient, novel protocol for the generation of skeletal myotubes from human induced pluripotent stem cells that may serve as a valuable tool in drug discovery and modeling of musculoskeletal and neuromuscular diseases. ©AlphaMed Press.
Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs
Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W
2012-01-01
Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238
Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young
2010-12-14
The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.
Koh, Sehwon; Piedrahita, Jorge A
2014-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Jun; Lee, Esther J.; Jing, Liufang; Christoforou, Nicolas; Leong, Kam W.; Setton, Lori A.
2013-01-01
A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration – a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient’s own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24+ iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24+ cell fraction via real time RT-PCR. CD24+ iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24+ fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD. PMID:24086564
Altered neuronal network and rescue in a human MECP2 duplication model
Nageshappa, Savitha; Carromeu, Cassiano; Trujillo, Cleber A.; Mesci, Pinar; Espuny-Camacho, Ira; Pasciuto, Emanuela; Vanderhaeghen, Pierre; Verfaillie, Catherine; Raitano, Susanna; Kumar, Anujith; Carvalho, Claudia M.B.; Bagni, Claudia; Ramocki, Melissa B.; Araujo, Bruno H. S.; Torres, Laila B.; Lupski, James R.; Van Esch, Hilde; Muotri, Alysson R.
2015-01-01
Increased dosage of MeCP2 results in a dramatic neurodevelopmental phenotype with onset at birth. We generated induced pluripotent stem cells (iPSC) from patients with the MECP2 duplication syndrome (MECP2dup), carrying different duplication sizes, to study the impact of increased MeCP2 dosage in human neurons. We show that cortical neurons derived from these different MECP2dup iPSC lines have increase synaptogenesis and dendritic complexity. Additionally, using multi-electrodes arrays, we show that neuronal network synchronization was altered in MECP2dup-derived neurons. Given MeCP2 function at the epigenetic level, we tested if these alterations were reversible using a library of compounds with defined activity on epigenetic pathways. One histone deacetylase inhibitor, NCH-51, was validated as a potential clinical candidate. Interestingly, this compound has never been considered before as a therapeutic alternative for neurological disorders. Our model recapitulates early stages of the human MECP2 duplication syndrome and represents a promising cellular tool to facilitate therapeutic drug screening for severe neurodevelopmental disorders. PMID:26347316
Cao, Nan; Liu, Zumei; Chen, Zhongyan; Wang, Jia; Chen, Taotao; Zhao, Xiaoyang; Ma, Yu; Qin, Lianju; Kang, Jiuhong; Wei, Bin; Wang, Liu; Jin, Ying; Yang, Huang-Tian
2012-01-01
Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells. PMID:22143566
Ethnically diverse pluripotent stem cells for drug development.
Fakunle, Eyitayo S; Loring, Jeanne F
2012-12-01
Genetic variation is an identified factor underlying drug efficacy and toxicity, and adverse drug reactions, such as liver toxicity, are the primary reasons for post-marketing drug failure. Genetic predisposition to toxicity might be detected early in the drug development pipeline by introducing cell-based assays that reflect the genetic and ethnic variation of the expected treatment population. One challenge for this approach is obtaining a collection of suitable cell lines derived from ethnically diverse populations. Induced pluripotent stem cells (iPSCs) seem ideal for this purpose. They can be obtained from any individual, can be differentiated into multiple relevant cell types, and their self-renewal capability makes it possible to generate large quantities of quality-controlled cell types. Here, we discuss the benefits and challenges of using iPSCs to introduce genetic diversity into the drug development process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kim, Changsung
2014-03-01
Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.
Specific Triazine Herbicides Induce Amyloid-β42 Production.
Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloϊse; Oumata, Nassima; Galons, Hervé; Lee, Jung Yeol; Chang, Young-Tae; Stϋber, Kathrin; Koch, Philipp; Fontaine, Gaëlle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent
2016-10-18
Proteolytic cleavage of the amyloid-β protein precursor (AβPP) by secretases leads to extracellular release of amyloid-β (Aβ) peptides. Increased production of Aβ42 over Aβ40 and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifying products of the 'human chemical exposome' (HCE) able to induce Aβ42 production may be a key to understanding some of the initiating causes of AD and to generate non-genetic, chemically-induced AD animal models. A cell model was used to screen HCE libraries for Aβ42 inducers. Out of 3500+ compounds, six triazine herbicides were found that induced a β- and γ-secretases-dependent, 2-10 fold increase in the production of extracellular Aβ42 in various cell lines, primary neuronal cells, and neurons differentiated from human-induced pluripotent stem cells (iPSCs). Immunoprecipitation/mass spectrometry analyses show enhanced production of Aβ peptides cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and lower, a characteristic of AD. Neurons derived from iPSCs obtained from a familial AD (FAD) patient (AβPP K724N) produced more Aβ42 versus Aβ40 than neurons derived from healthy controls iPSCs (AβPP WT). Triazines enhanced Aβ42 production in both control and AD iPSCs-derived neurons. Triazines also shifted the cleavage pattern of alcadeinα, another γ-secretase substrate, suggesting a direct effect of triazines on γ-secretase activity. In conclusion, several widely used triazines enhance the production of toxic, aggregation prone Aβ42/Aβ43 amyloids, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in late-onset AD.
Wang, Yixuan; Zheng, Chen-Guang; Jiang, Yonghua; Zhang, Jiqin; Chen, Jiayu; Yao, Chao; Zhao, Qingguo; Liu, Sheng; Chen, Ke; Du, Juan; Yang, Ze; Gao, Shaorong
2012-04-01
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by over-expression of several transcription factors has the potential to cure many genetic and degenerative diseases currently recalcitrant to traditional clinical approaches. One such genetic disease is β-thalassemia major (Cooley's anemia). This disease is caused by either a point mutation or the deletion of several nucleotides in the β-globin gene, and it threatens the lives of millions of people in China. In the present study, we successfully generated iPSCs from fibroblasts collected from a 2-year-old patient who was diagnosed with a homozygous 41/42 deletion in his β-globin gene. More importantly, we successfully corrected this genetic mutation in the β-thalassemia iPSCs by homologous recombination. Furthermore, transplantation of the genetically corrected iPSCs-derived hematopoietic progenitors into sub-lethally irradiated immune deficient SCID mice showed improved hemoglobin production compared with the uncorrected iPSCs. Moreover, the generation of human β-globin could be detected in the mice transplanted with corrected iPSCs-derived hematopietic progenitors. Our study provides strong evidence that iPSCs generated from a patient with a genetic disease can be corrected by homologous recombination and that the corrected iPSCs have potential clinical uses.
Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi
2011-01-01
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793
Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.
2011-01-01
Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. PMID:22110631
Wang, Bo; Jakus, Adam E.; Baptista, Pedro M.; Soker, Shay; Soto-Gutierrez, Alejandro; Abecassis, Michael M.; Shah, Ramille N.
2016-01-01
Induced pluripotent stem cells (iPSCs) are new diagnostic and potentially therapeutic tools to model disease and assess the toxicity of pharmaceutical medications. A common limitation of cell lineages derived from iPSCs is a blunted phenotype compared with fully developed, endogenous cells. We examined the influence of novel three-dimensional bioartificial microenvironments on function and maturation of hepatocyte-like cells differentiated from iPSCs and grown within an acellular, liver-derived extracellular matrix (ECM) scaffold. In parallel, we also compared a bioplotted poly-l-lactic acid (PLLA) scaffold that allows for cell growth in three dimensions and formation of cell-cell contacts but is infused with type I collagen (PLLA-collagen scaffold) alone as a “deconstructed” control scaffold with narrowed biological diversity. iPSC-derived hepatocytes cultured within both scaffolds remained viable, became polarized, and formed bile canaliculi-like structures; however, cells grown within ECM scaffolds had significantly higher P450 (CYP2C9, CYP3A4, CYP1A2) mRNA levels and metabolic enzyme activity compared with iPSC hepatocytes grown in either bioplotted PLLA collagen or Matrigel sandwich control culture. Additionally, the rate of albumin synthesis approached the level of primary cryopreserved hepatocytes with lower transcription of fetal-specific genes, α-fetoprotein and CYP3A7, compared with either PLLA-collagen scaffolds or sandwich culture. These studies show that two acellular, three-dimensional culture systems increase the function of iPSC-derived hepatocytes. However, scaffolds derived from ECM alone induced further hepatocyte maturation compared with bioplotted PLLA-collagen scaffolds. This effect is likely mediated by the complex composition of ECM scaffolds in contrast to bioplotted scaffolds, suggesting their utility for in vitro hepatocyte assays or drug discovery. Significance Through the use of novel technology to develop three-dimensional (3D) scaffolds, the present study demonstrated that hepatocyte-like cells derived via induced pluripotent stem cell (iPSC) technology mature on 3D extracellular matrix scaffolds as a result of 3D matrix structure and scaffold biology. The result is an improved hepatic phenotype with increased synthetic and catalytic potency, an improvement on the blunted phenotype of iPSC-derived hepatocytes, a critical limitation of iPSC technology. These findings provide insight into the influence of 3D microenvironments on the viability, proliferation, and function of iPSC hepatocytes to yield a more mature population of cells for cell toxicity studies and disease modeling. PMID:27421950
Wilson, Patricia G; Payne, Tiffany
2014-01-01
The promise of genetic reprogramming has prompted initiatives to develop banks of induced pluripotent stem cells (iPSCs) from diverse sources. Sentinel assays for pluripotency could maximize available resources for generating iPSCs. Neural rosettes represent a primitive neural tissue that is unique to differentiating PSCs and commonly used to identify derivative neural/stem progenitors. Here, neural rosettes were used as a sentinel assay for pluripotency in selection of candidates to advance to validation assays. Candidate iPSCs were generated from independent populations of amniotic cells with episomal vectors. Phase imaging of living back up cultures showed neural rosettes in 2 of the 5 candidate populations. Rosettes were immunopositive for the Sox1, Sox2, Pax6 and Pax7 transcription factors that govern neural development in the earliest stage of development and for the Isl1/2 and Otx2 transcription factors that are expressed in the dorsal and ventral domains, respectively, of the neural tube in vivo. Dissociation of rosettes produced cultures of differentiation competent neural/stem progenitors that generated immature neurons that were immunopositive for βIII-tubulin and glia that were immunopositive for GFAP. Subsequent validation assays of selected candidates showed induced expression of endogenous pluripotency genes, epigenetic modification of chromatin and formation of teratomas in immunodeficient mice that contained derivatives of the 3 embryonic germ layers. Validated lines were vector-free and maintained a normal karyotype for more than 60 passages. The credibility of rosette assembly as a sentinel assay for PSCs is supported by coordinate loss of nuclear-localized pluripotency factors Oct4 and Nanog in neural rosettes that emerge spontaneously in cultures of self-renewing validated lines. Taken together, these findings demonstrate value in neural rosettes as sentinels for pluripotency and selection of promising candidates for advance to validation assays.
Payne, Tiffany
2014-01-01
The promise of genetic reprogramming has prompted initiatives to develop banks of induced pluripotent stem cells (iPSCs) from diverse sources. Sentinel assays for pluripotency could maximize available resources for generating iPSCs. Neural rosettes represent a primitive neural tissue that is unique to differentiating PSCs and commonly used to identify derivative neural/stem progenitors. Here, neural rosettes were used as a sentinel assay for pluripotency in selection of candidates to advance to validation assays. Candidate iPSCs were generated from independent populations of amniotic cells with episomal vectors. Phase imaging of living back up cultures showed neural rosettes in 2 of the 5 candidate populations. Rosettes were immunopositive for the Sox1, Sox2, Pax6 and Pax7 transcription factors that govern neural development in the earliest stage of development and for the Isl1/2 and Otx2 transcription factors that are expressed in the dorsal and ventral domains, respectively, of the neural tube in vivo. Dissociation of rosettes produced cultures of differentiation competent neural/stem progenitors that generated immature neurons that were immunopositive for βIII-tubulin and glia that were immunopositive for GFAP. Subsequent validation assays of selected candidates showed induced expression of endogenous pluripotency genes, epigenetic modification of chromatin and formation of teratomas in immunodeficient mice that contained derivatives of the 3 embryonic germ layers. Validated lines were vector-free and maintained a normal karyotype for more than 60 passages. The credibility of rosette assembly as a sentinel assay for PSCs is supported by coordinate loss of nuclear-localized pluripotency factors Oct4 and Nanog in neural rosettes that emerge spontaneously in cultures of self-renewing validated lines. Taken together, these findings demonstrate value in neural rosettes as sentinels for pluripotency and selection of promising candidates for advance to validation assays. PMID:25426336
Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.
Yoshida, Yoshinori; Yamanaka, Shinya
2017-06-09
Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.
Andersson, Eva-Marie; Heath, Nikki; Persson-kry, Anette; Collins, Richard; Hicks, Ryan; Dekker, Niek; Forslöw, Anna
2017-01-01
It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications. PMID:29117231
Zhao, Ming-Tao; Jahanbani, Fereshteh; Lee, Won Hee; Snyder, Michael P.
2016-01-01
Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation. PMID:27398408
Gao, Xiugong; Yourick, Jeffrey J; Sprando, Robert L
2017-12-01
Induced pluripotent stem cells (iPSCs) offer the potential to generate tissues with ethnic diversity enabling toxicity testing on selected populations. Recently, it has been reported that endothelial progenitor cells (EPCs) derived from umbilical cord blood (CB) or adult peripheral blood (PB) afford a practical and efficient cellular substrate for iPSC generation. However, differences between EPCs from different blood sources have rarely been studied. In the current study, we derived EPCs from blood mononuclear cells (MNCs) and reprogrammed EPCs into iPSCs. We also explored differences between CB-EPCs and PB-EPCs at the molecular and cellular levels through a combination of transcriptomic analysis and cell biology techniques. EPC colonies in CB-MNCs emerged 5-7days earlier, were 3-fold higher in number, and consistently larger in size than in PB-MNCs. Similarly, iPSC colonies generated from CB-EPCs was 2.5-fold higher in number than from PB-EPCs, indicating CB-EPCs have a higher reprogramming efficiency than PB-EPCs. Transcriptomic analysis using microarrays found a total of 1133 genes differentially expressed in CB-EPCs compared with PB-EPCs, with 675 genes upregulated and 458 downregulated. Several canonical pathways were impacted, among which the human embryonic stem cell pluripotency pathway was of particular interest. The differences in the gene expression pattern between CB-EPCs and PB-EPCs provide a molecular basis for the discrepancies seen in their derivation and reprogramming efficiencies, and highlight the advantages of using CB as the cellular source for the generation of iPSCs and their derivative tissues for ethnic-related toxicological applications. Published by Elsevier B.V.
Quintana-Bustamante, Oscar; Segovia, Jose C
2016-01-01
Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.
Al-Ahmad, Abraham J
2017-10-01
Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
Derivation of porcine pluripotent stem cells for biomedical research.
Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren
2016-07-01
Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Xiao; Zhang, Dan; Chen, Shang-Chih; Lamey, Tina; Thompson, Jennifer A; McLaren, Terri; De Roach, John N; Chen, Fred K; McLenachan, Samuel
2018-05-01
We report the generation of the human iPSC line LEIi004-A from a patient with late-onset non-syndromic retinitis pigmentosa caused by compound heterozygous mutations in the CLN3 gene. Reprogramming of primary dermal fibroblasts was performed using episomal plasmids containing OCT4, SOX2, KLF4, L-MYC, LIN28, shRNA for p53 and mir302/367 microRNA. To create a coisogenic control line, one CLN3 variant was corrected in the patient-iPSC using CRISPR/Cas9 gene editing to generate the iPSC line LEIi004-A-1. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Characterization of porcine partially reprogrammed iPSCs from adipose-derived stem cells.
Wei, Chao; Li, Xia; Zhang, Pengfei; Zhang, Yu; Liu, Tong; Jiang, Shaoshuai; Han, Fei; Zhang, Yunhai
2015-05-01
Partially reprogrammed induced pluripotent stem cells (PiPSCs) have great potential for investigating reprogramming mechanisms and represent an alternative potential material for making genetically modified animals and regenerative medicine. To date, PiPSCs have scarcely been reported in detail when compared with mice and humans. In this study, we obtained PiPSCs from porcine adipose-derived stem cells (pADSCs) by ectopic expression of human transcription factors (OCT4, SOX2, c-MYC, and KLF4) in feeder-free condition. The morphology and proliferation activity of porcine PiPSCs (pPiPSCs) were similar to those of porcine fully reprogrammed iPSCs (pFiPSCs); furthermore, pPiPSCs expressed higher levels of the typical surface molecules (CD29) found in pADSCs. However, pPiPSCs were negative for key proteins (NANOG) connected with stemness and possessed lower differentiation ability in vivo and in vitro. When differentiation-inhibiting factors were withdrawn, pPiPSCs-derived cells (pPiPSC-DCs) showed similar features to pADSCs in many aspects, including proliferation, differentiation, and immunosuppression. When both types of cells were used to produce cloned embryos, we found that the blastocyst formation rate of 19DC (one of the pPiPSC-DC cell lines)-derived cloned embryos was obviously higher than that of others. The total cell number of 19DC-derived blastocysts was significantly higher than the 30DC (one pFiPSC-DC cell line)-derived blastocysts. In all, through limited differentiation ability, the proliferation activity of pPiPSCs is similar to that of pFiPSCs, and pPiPSCs can retain several of the features of pADSCs, which are beneficial to cell therapy. Furthermore, the differentiation of pPiPSCs is more favorable for producing high-quality reconstructed embryos. © 2015 Society for Reproduction and Fertility.
Patient-Specific Pluripotent Stem Cells in Neurological Diseases
Durnaoglu, Serpen; Genc, Sermin; Genc, Kursad
2011-01-01
Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs) derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting. PMID:21776279
Muench, Marcus O.; Fusaki, Noemi; Beyer, Ashley I.; Wang, Jiaming; Qi, Zhongxia; Yu, Jingwei
2013-01-01
The discovery of induced pluripotent stem cells (iPSCs) holds great promise for regenerative medicine since it is possible to produce patient-specific pluripotent stem cells from affected individuals for potential autologous treatment. Using nonintegrating cytoplasmic Sendai viral vectors, we generated iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells. After 5–8 passages, the Sendai viral genome could not be detected by real-time quantitative reverse transcription-polymerase chain reaction. Using the spin embryoid body method, we showed that these blood cell-derived iPSCs could efficiently be differentiated into hematopoietic stem and progenitor cells without the need of coculture with either mouse or human stromal cells. We obtained up to 40% CD34+ of which ∼25% were CD34+/CD43+ hematopoietic precursors that could readily be differentiated into mature blood cells. Our study demonstrated a reproducible protocol for reprogramming blood cells into transgene-free iPSCs by the Sendai viral vector method. Maintenance of the genomic integrity of iPSCs without integration of exogenous DNA should allow the development of therapeutic-grade stem cells for regenerative medicine. PMID:23847002
Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique
NASA Astrophysics Data System (ADS)
Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan
2014-06-01
Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.
Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
Ben Jehuda, Ronen; Shemer, Yuval; Binah, Ofer
2018-06-01
The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.
Kajiwara, Kazuhiro; Tanemoto, Tomohiro; Wada, Seiji; Karibe, Jurii; Ihara, Norimasa; Ikemoto, Yu; Kawasaki, Tomoyuki; Oishi, Yoshie; Samura, Osamu; Okamura, Kohji; Takada, Shuji; Akutsu, Hidenori; Sago, Haruhiko; Okamoto, Aikou; Umezawa, Akihiro
2017-06-06
Myelomeningocele (MMC) is a congenital disease without genetic abnormalities. Neurological symptoms are irreversibly impaired after birth, and no effective treatment has been reported to date. Only surgical repairs have been reported so far. In this study, we performed antenatal treatment of MMC with an artificial skin using induced pluripotent stem cells (iPSCs) generated from a patient with Down syndrome (AF-T21-iPSCs) and twin-twin transfusion syndrome (AF-TTTS-iPSCs) to a rat model. We manufactured three-dimensional skin with epidermis generated from keratinocytes derived from AF-T21-iPSCs and AF-TTTS-iPSCs and dermis of human fibroblasts and collagen type I. For generation of epidermis, we developed a protocol using Y-27632 and epidermal growth factor. The artificial skin was successfully covered over MMC defect sites during pregnancy, implying a possible antenatal surgical treatment with iPSC technology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Xu, Huaigeng
2017-01-01
In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic. PMID:28607562
Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae
2017-01-01
Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.
Is Human-induced Pluripotent Stem Cell the Best Optimal?
Wang, Feng; Kong, Jie; Cui, Yi-Yao; Liu, Peng; Wen, Jian-Yan
2018-04-05
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modeling, drug discovery, and cell therapy development. In this review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field. Articles in this review were searched from PubMed database from January 2014 to December 2017. Original articles about iPSCs and cardiovascular diseases were included and analyzed. iPSC holds great promises for human disease modeling, drug discovery, and stem cell-based therapy, and this potential is only beginning to be realized. However, several important issues remain to be addressed. The recent availability of human cardiomyocytes derived from iPSCs opens new opportunities to build in vitro models of cardiac disease, screening for new drugs and patient-specific cardiac therapy.
Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility
Wissing, Silke; Muñoz-Lopez, Martin; Macia, Angela; Yang, Zhiyuan; Montano, Mauricio; Collins, William; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.
2012-01-01
Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ∼10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs. PMID:21989055
Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.
Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel
2016-03-01
Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. Copyright © 2015 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.
Xu, Peng; Tong, Ying; Liu, Xiu-zhen; Wang, Ting-ting; Cheng, Li; Wang, Bo-yu; Lv, Xiang; Huang, Yue; Liu, De-pei
2015-01-01
β-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the β-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination, endonucleases, including TALENs and CRISPR/Cas9, have been widely used to enhance the gene correction efficiency in patient-derived iPSCs. Here, we designed TALENs and CRISPR/Cas9 to directly target the intron2 mutation site IVS2-654 in the globin gene. We observed different frequencies of double-strand breaks (DSBs) at IVS2-654 loci using TALENs and CRISPR/Cas9, and TALENs mediated a higher homologous gene targeting efficiency compared to CRISPR/Cas9 when combined with the piggyBac transposon donor. In addition, more obvious off-target events were observed for CRISPR/Cas9 compared to TALENs. Finally, TALENs-corrected iPSC clones were selected for erythroblast differentiation using the OP9 co-culture system and detected relatively higher transcription of HBB than the uncorrected cells. This comparison of using TALENs or CRISPR/Cas9 to correct specific HBB mutations in patient-derived iPSCs will guide future applications of TALENs- or CRISPR/Cas9-based gene therapies in monogenic diseases. PMID:26156589
Xu, Peng; Tong, Ying; Liu, Xiu-zhen; Wang, Ting-ting; Cheng, Li; Wang, Bo-yu; Lv, Xiang; Huang, Yue; Liu, De-pei
2015-07-09
β-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the β-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination, endonucleases, including TALENs and CRISPR/Cas9, have been widely used to enhance the gene correction efficiency in patient-derived iPSCs. Here, we designed TALENs and CRISPR/Cas9 to directly target the intron2 mutation site IVS2-654 in the globin gene. We observed different frequencies of double-strand breaks (DSBs) at IVS2-654 loci using TALENs and CRISPR/Cas9, and TALENs mediated a higher homologous gene targeting efficiency compared to CRISPR/Cas9 when combined with the piggyBac transposon donor. In addition, more obvious off-target events were observed for CRISPR/Cas9 compared to TALENs. Finally, TALENs-corrected iPSC clones were selected for erythroblast differentiation using the OP9 co-culture system and detected relatively higher transcription of HBB than the uncorrected cells. This comparison of using TALENs or CRISPR/Cas9 to correct specific HBB mutations in patient-derived iPSCs will guide future applications of TALENs- or CRISPR/Cas9-based gene therapies in monogenic diseases.
Zhang, Wei; Wang, Hanning; Zhang, Shaopeng; Zhong, Liang; Wang, Yanliang; Pei, Yangli; Cao, Suying
2018-01-01
Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs), are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs) under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX). These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM) of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal–epithelial transition (MET) through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation. PMID:29419748
Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul
2017-07-01
Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.
Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma
2014-01-01
Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407
Generation of germ cells in vitro in the era of induced pluripotent stem cells.
Imamura, Masanori; Hikabe, Orie; Lin, Zachary Yu-Ching; Okano, Hideyuki
2014-01-01
Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future. © 2013 Wiley Periodicals, Inc.
Induced pluripotent stem cell technology: a decade of progress.
Shi, Yanhong; Inoue, Haruhisa; Wu, Joseph C; Yamanaka, Shinya
2017-02-01
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C
2011-02-01
Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.
Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery.
Nsair, Ali; MacLellan, W Robb
2011-04-30
The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and offer a supply of genetically identical cells that can be differentiated into all somatic cell types for potential use in regenerative therapies or drug screening and testing. As the techniques for generation of iPSC lines are constantly evolving, new uses for human iPSC are emerging from in-vitro disease modeling to high throughput drug discovery and screening. This technology promises to revolutionize the field of medicine and offers new hope for understanding and treatment of numerous diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C
2016-05-01
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.
Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.
Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro
2015-05-14
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.
Eckford, Paul D W; McCormack, Jacqueline; Munsie, Lise; He, Gengming; Stanojevic, Sanja; Pereira, Sergio L; Ho, Karen; Avolio, Julie; Bartlett, Claire; Yang, Jin Ye; Wong, Amy P; Wellhauser, Leigh; Huan, Ling Jun; Jiang, Jia Xin; Ouyang, Hong; Du, Kai; Klingel, Michelle; Kyriakopoulou, Lianna; Gonska, Tanja; Moraes, Theo J; Strug, Lisa J; Rossant, Janet; Ratjen, Felix; Bear, Christine E
2018-04-20
Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a "first of its kind", comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses. The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant's blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators. To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors. This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Comment on “Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells”
Bilican, Bilada; Serio, Andrea; Barmada, Sami J.; Nishimura, Agnes Lumi; Sullivan, Gareth J.; Carrasco, Monica; Phatnani, Hemali P.; Puddifoot, Clare A.; Story, David; Fletcher, Judy; Park, In-Hyun; Friedman, Brad A.; Daley, George Q.; Wyllie, David J. A.; Hardingham, Giles E.; Wilmut, Ian; Finkbeiner, Steven; Maniatis, Tom; Shaw, Christopher E.; Chandran, Siddharthan
2014-01-01
Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations. PMID:23740897
Tidball, Andrew M.; Neely, M. Diana; Chamberlin, Reed; Aboud, Asad A.; Kumar, Kevin K.; Han, Bingying; Bryan, Miles R.; Aschner, Michael; Ess, Kevin C.; Bowman, Aaron B.
2016-01-01
Alterations in DNA damage response and repair have been observed in Huntington’s disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown. PMID:26982737
Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A
2018-05-01
Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.
Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou
2015-01-01
A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.
Hallam, Dean; Collin, Joseph; Bojic, Sanja; Chichagova, Valeria; Buskin, Adriana; Xu, Yaobo; Lafage, Lucia; Otten, Elsje G; Anyfantis, George; Mellough, Carla; Przyborski, Stefan; Alharthi, Sameer; Korolchuk, Viktor; Lotery, Andrew; Saretzki, Gabriele; McKibbin, Martin; Armstrong, Lyle; Steel, David; Kavanagh, David; Lako, Majlinda
2017-11-01
Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.
Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko
2011-06-01
Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.
Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin
2010-02-01
The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.
Zhou, Jing; Ghoroghi, Shima; Benito-Martin, Alberto; Wu, Hao; Unachukwu, Uchenna John; Einbond, Linda Saxe; Guariglia, Sara; Peinado, Hector; Redenti, Stephen
2016-01-01
Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm–1uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue. PMID:26797168
Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo
2018-03-12
The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Olivera, Ramiro; Moro, Lucia Natalia; Jordan, Roberto; Luzzani, Carlos; Miriuka, Santiago; Radrizzani, Martin; Donadeu, F Xavier; Vichera, Gabriel
2016-01-01
The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals.
Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol
2016-10-01
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.
Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes
2013-01-01
Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826
Romero-Moya, Damià; Santos-Ocaña, Carlos; Castaño, Julio; Garrabou, Gloria; Rodríguez-Gómez, José A; Ruiz-Bonilla, Vanesa; Bueno, Clara; González-Rodríguez, Patricia; Giorgetti, Alessandra; Perdiguero, Eusebio; Prieto, Cristina; Moren-Nuñez, Constanza; Fernández-Ayala, Daniel J; Victoria Cascajo, Maria; Velasco, Iván; Canals, Josep Maria; Montero, Raquel; Yubero, Delia; Jou, Cristina; López-Barneo, José; Cardellach, Francesc; Muñoz-Cánoves, Pura; Artuch, Rafael; Navas, Plácido; Menendez, Pablo
2017-07-01
Coenzyme Q 10 (CoQ 10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ 10 biosynthesis (COQ genes) cause primary CoQ 10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ 10 ], CoQ 10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4 ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4 ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ 10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ 10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703. © 2017 AlphaMed Press.
Yang, Jiayin; Cai, Jie; Zhang, Ya; Wang, Xianming; Li, Wen; Xu, Jianyong; Li, Feng; Guo, Xiangpeng; Deng, Kang; Zhong, Mei; Chen, Yonglong; Lai, Liangxue; Pei, Duanqing; Esteban, Miguel A.
2010-01-01
The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well. PMID:20956530
Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios
2014-12-01
Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.
Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species.
Trounson, Alan
2009-01-09
Two independent studies in this issue of Cell Stem Cell (Liao et al., 2009; Li et al., 2009) derive rat induced pluripotent stem cells (iPSCs). In one report, the method used results in rat and human iPSCs that exhibit phenotypic traits similar to mouse embryonic stem cells.
Somatic cell reprogramming informed by the oocyte.
Gonzalez-Munoz, Elena; Cibelli, Jose B
2018-05-08
The successful production of animals and embryonic stem cells (ESCs) using somatic cell nuclear transfer (SCNT) has demonstrated the unmatched nuclear reprogramming capacity of the oocyte and helped prove the degree of plasticity of differentiated cells. The introduction of transcription factors to generate induced pluripotent stem cells (iPSCs) displaced SCNT and, due to its ease of implementation, became the method of choice for cell reprogramming. Nonetheless, iPSC derivation remains inefficient and stochastic. This review article focuses on using the oocyte as a source of reprogramming factors, comparing the SCNT and iPSC mechanisms for remodeling chromatin and acquiring pluripotency.
Kim, Kitai; Zhao, Rui; Doi, Akiko; Ng, Kitwa; Unternaehrer, Juli; Cahan, Patrick; Hongguang, Huo; Loh, Yuin-Han; Aryee, Martin J.; Lensch, M. William; Li, Hu; Collins, James J.; Feinberg, Andrew P.; Daley, George Q.
2012-01-01
We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some human iPSC retain a residual “epigenetic memory” of their tissue of origin. PMID:22119740
Hagan, Mackenzie; Ashraf, Muhammad; Kim, Il-Man; Weintraub, Neal L; Tang, Yaoliang
2018-01-01
Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disease caused by a lack of dystrophin, which eventually leads to apoptosis of muscle cells and impaired muscle contractility. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) gene editing of induced pluripotent stem cells (IPSC) offers the potential to correct the DMD gene defect and create healthy IPSC for autologous cell transplantation without causing immune activation. However, IPSC carry a risk of tumor formation, which can potentially be mitigated by differentiation of IPSC into myogenic progenitor cells (MPC). We hypothesize that precise genetic editing in IPSC using CRISPR-Cas9 technology, coupled with MPC differentiation and autologous transplantation, can lead to safe and effective muscle repair. With future research, our hypothesis may provide an optimal autologous stem cell-based approach to treat the dystrophic pathology and improve the quality of life for patients with DMD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.
Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun
2015-08-01
Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.
Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin; Wang, Jin-Fu
2016-05-01
The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. ©AlphaMed Press.
Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin
2016-01-01
The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7AWT/WT; C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Significance Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. PMID:27013738
Generation and genetic modification of induced pluripotent stem cells.
Schambach, Axel; Cantz, Tobias; Baum, Christopher; Cathomen, Toni
2010-07-01
The generation of induced pluripotent stem cells (iPSCs) enabled by exogenous expression of the canonical Oct4, Sox2, Klf4 and c-Myc reprogramming factors has opened new ways to create patient- or disease-specific pluripotent cells. iPSCs represent an almost inexhaustible source of cells for targeted differentiation into somatic effector cells and hence are likely to be invaluable for therapeutic applications and disease-related research. After an introduction on the biology of reprogramming we cover emerging technological advances, including new reprogramming approaches, small-molecule compounds and tailored genetic modification, and give an outlook towards potential clinical applications of iPSCs. Although this field is progressing rapidly, reprogramming is still an inefficient process. The reader will learn about innovative tools to generate patient-specific iPSCs and how to modify these established lines in a safe way. Ideally, the disease-causing mutation is edited directly in the genome using novel technologies based on artificial nucleases, such as zinc-finger nucleases. Human iPSCs create fascinating options with regard to disease modeling, drug testing, developmental studies and therapeutic applications. However, important hurdles have to be taken and more efficient protocols to be established to achieve the ambitious goal of bringing iPSCs into clinical use.
Hysolli, Eriona; Tanaka, Yoshiaki; Su, Juan; Kim, Kun-Yong; Zhong, Tianyu; Janknecht, Ralf; Zhou, Xiao-Ling; Geng, Lin; Qiu, Caihong; Pan, Xinghua; Jung, Yong-Wook; Cheng, Jijun; Lu, Jun; Zhong, Mei; Weissman, Sherman M; Park, In-Hyun
2016-07-12
Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Wattanapanitch, Methichit; Damkham, Nattaya; Potirat, Ponthip; Trakarnsanga, Kongtana; Janan, Montira; U-Pratya, Yaowalak; Kheolamai, Pakpoom; Klincumhom, Nuttha; Issaragrisil, Surapol
2018-02-26
Thalassemia is the most common genetic disease worldwide; those with severe disease require lifelong blood transfusion and iron chelation therapy. The definitive cure for thalassemia is allogeneic hematopoietic stem cell transplantation, which is limited due to lack of HLA-matched donors and the risk of post-transplant complications. Induced pluripotent stem cell (iPSC) technology offers prospects for autologous cell-based therapy which could avoid the immunological problems. We now report genetic correction of the beta hemoglobin (HBB) gene in iPSCs derived from a patient with a double heterozygote for hemoglobin E and β-thalassemia (HbE/β-thalassemia), the most common thalassemia syndrome in Thailand and Southeast Asia. We used the CRISPR/Cas9 system to target the hemoglobin E mutation from one allele of the HBB gene by homology-directed repair with a single-stranded DNA oligonucleotide template. DNA sequences of the corrected iPSCs were validated by Sanger sequencing. The corrected clones were differentiated into hematopoietic progenitor and erythroid cells to confirm their multilineage differentiation potential and hemoglobin expression. The hemoglobin E mutation of HbE/β-thalassemia iPSCs was seamlessly corrected by the CRISPR/Cas9 system. The corrected clones were differentiated into hematopoietic progenitor cells under feeder-free and OP9 coculture systems. These progenitor cells were further expanded in erythroid liquid culture system and developed into erythroid cells that expressed mature HBB gene and HBB protein. Our study provides a strategy to correct hemoglobin E mutation in one step and these corrected iPSCs can be differentiated into hematopoietic stem cells to be used for autologous transplantation in patients with HbE/β-thalassemia in the future.
New lessons learned from disease modeling with induced Pluripotent Stem Cells
Onder, Tamer T.; Daley, George Q.
2012-01-01
Cellular reprogramming and generation of induced pluripotent stem cells (iPSCs) from adult cell types has enabled the creation of patient-specific stem cells for use in disease modeling. To date, many iPSC lines have been generated from a variety of disorders, which have then been differentiated into disease-relevant cell types. When a disease-specific phenotype is detectable in such differentiated cells, the reprogramming technology provides a new opportunity to identify aberrant disease-associated pathways and drugs that can block them. Here, we highlight recent progress as well as limitations in the use of iPSCs to recapitulate disease phenotypes and to screen for therapeutics in vitro. PMID:22749051
Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria
Qi, Zijuan; Cui, Yazhou; Shi, Liang; Luan, Jing; Zhou, Xiaoyan; Han, Jinxiang
2018-01-01
Summary The aim of the study was to establish an induced pluripotent stem cell line from urine-derived cells (UiPSCs) from a patient with phenylketonuria (PKU) in order to provide a useful research tool with which to examine the pathology of this rare genetic metabolic disease. Urine-derived epithelial cells (UCs) from a 15-year-old male patient with PKU were isolated and reprogrammed with integration-free episomal vectors carrying an OCT4, SOX2, KLF4, and miR-302-367 cluster. PKU-UiPSCs were verified as correct using alkaline phosphatase staining. Pluripotency markers were detected with real-time PCR and flow cytometry. Promoter methylation in two pluripotent genes, NANOG and OCT4, was analyzed using bisulphite sequencing. An embryoid body (EB) formation assay was also performed. An induced pluripotent stem cell line (iPSC) was generated from epithelial cells in urine from a patient with PKU. This cell line had increased expression of stem cell biomarkers, it efficiently formed EBs, it stained positive for alkaline phosphatase (ALP), and it had a marked decrease in promoter methylation in the NANOG and OCT4 genes. The PKU-UiPSCs created here had typical characteristics and are suitable for further differentiation.
Hiler, Daniel J.; Barabas, Marie E.; Griffiths, Lyra M.; Dyer, Michael A.
2017-01-01
Postmitotic differentiated neurons are among the most difficult cells to reprogram into induced pluripotent stem cells (iPSCs) because they have poor viability when cultured as dissociated cells. Other protocols to reprogram postmitotic neurons have required the inactivation of the p53 tumor suppressor. We describe a method that does not require p53 inactivation and induces reprogramming in cells purified from the retinae of reprogrammable mice in aggregates with wild-type retinal cells. After the first 10 days of reprogramming, the aggregates are then dispersed and plated on irradiated feeder cells to propagate and isolate individual iPSC clones. The reprogramming efficiency of different neuronal populations at any stage of development can be quantitated using this protocol. Reprogramming retinal neurons with this protocol will take 56 days, and these retina-derived iPSCs can undergo retinal differentiation to produce retinae in 34 days. In addition, we describe a quantitative assessment of retinal differentiation from these neuron-derived iPSCs called STEM-RET. The procedure quantitates eye field specification, optic cup formation, and retinal differentiation in 3-dimensional cultures using molecular, cellular and morphological criteria. An advanced level of cell culture experience is required to carry out this protocol. PMID:27658012
Hansen, Marten; Varga, Eszter; Aarts, Cathelijn; Wust, Tatjana; Kuijpers, Taco; von Lindern, Marieke; van den Akker, Emile
2018-04-28
Hematopoietic differentiation of human induced pluripotent stem cells (iPSCs) provide opportunities not only for fundamental research and disease modelling/drug testing but also for large-scale production of blood effector cells for future clinical application. Although there are multiple ways to differentiate human iPSCs towards hematopoietic lineages, there is a need to develop reproducible and robust protocols. Here we introduce an efficient way to produce three major blood cell types using a standardized differentiation protocol that starts with a single hematopoietic initiation step. This system is feeder-free, avoids EB-formation, starts with a hematopoietic initiation step based on a novel single cell-derived iPSC colony differentiation and produces multi-potential progenitors within 8-10 days. Followed by lineage-specific growth factor supplementation these cells can be matured into well characterized erythroid, megakaryocytic and myeloid cells with high-purity, without transcription factor overexpression or any kind of pre-purification step. This standardized differentiation system provides a simple platform to produce specific blood cells in a reproducible manner for hematopoietic development studies, disease modelling, drug testing and the potential for future therapeutic applications. Copyright © 2018. Published by Elsevier B.V.
CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.
Wang, Lixia; Yi, Fei; Fu, Lina; Yang, Jiping; Wang, Si; Wang, Zhaoxia; Suzuki, Keiichiro; Sun, Liang; Xu, Xiuling; Yu, Yang; Qiao, Jie; Belmonte, Juan Carlos Izpisua; Yang, Ze; Yuan, Yun; Qu, Jing; Liu, Guang-Hui
2017-05-01
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 +/A272C and FUS +/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 +/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Kayashima, Hiroki; Miura, Jiro; Uraguchi, Shinya; Wang, Fangfang; Okawa, Hiroko; Sasaki, Jun-Ichi; Saeki, Makio; Matsumoto, Takuya; Yatani, Hirofumi
2014-01-01
Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and are, therefore, expected to be useful for bone regenerative medicine; however, the characteristics of iPSC-derived osteogenic cells remain unclear. Here, we provide a direct in vitro comparison of the osteogenic differentiation process in mesenchymal stem cells (MSCs) and iPSCs from adult C57BL/6J mice. After 30 days of culture in osteogenic medium, both MSCs and iPSCs produced robustly mineralized bone nodules that contained abundant calcium phosphate with hydroxyapatite crystal formation. Mineral deposition was significantly higher in iPSC cultures than in MSC cultures. Scanning electron microscopy revealed budding matrix vesicles in early osteogenic iPSCs; subsequently, the vesicles propagated to exhibit robust mineralization without rich fibrous structures. Early osteogenic MSCs showed deposition of many matrix vesicles in abundant collagen fibrils that became solid mineralized structures. Both cell types demonstrated increased expression of osteogenic marker genes, such as runx2, osterix, dlx5, bone sialoprotein (BSP), and osteocalcin, during osteogenesis; however, real-time reverse transcription–polymerase chain reaction array analysis revealed that osteogenesis-related genes encoding mineralization-associated molecules, bone morphogenetic proteins, and extracellular matrix collagens were differentially expressed between iPSCs and MSCs. These data suggest that iPSCs are capable of differentiation into mature osteoblasts whose associated hydroxyapatite has a crystal structure similar to that of MSC-associated hydroxyapatite; however, the transcriptional differences between iPSCs and MSCs could result in differences in the mineral and matrix environments of the bone nodules. Determining the biological mechanisms underlying cell-specific differences in mineralization during in vitro iPSC osteogenesis may facilitate the development of clinically effective engineered bone. PMID:24625139
Chen, Jian; Lin, Mingyan; Foxe, John J; Pedrosa, Erika; Hrabovsky, Anastasia; Carroll, Reed; Zheng, Deyou; Lachman, Herbert M
2013-01-01
Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.
Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.
2016-01-01
Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043
Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn
2016-07-12
The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Langouët, Maéva; Glatt-Deeley, Heather R; Chung, Michael S; Dupont-Thibert, Clémence M; Mathieux, Elodie; Banda, Erin C; Stoddard, Christopher E; Crandall, Leann; Lalande, Marc
2018-02-01
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity and is caused by the absence of paternal contribution to chromosome 15q11-q13. Using induced pluripotent stem cell (iPSC) models of PWS, we previously discovered an epigenetic complex that is comprised of the zinc-finger protein ZNF274 and the SET domain bifurcated 1 (SETDB1) histone H3 lysine 9 (H3K9) methyltransferase and that silences the maternal alleles at the PWS locus. Here, we have knocked out ZNF274 and rescued the expression of silent maternal alleles in neurons derived from PWS iPSC lines, without affecting DNA methylation at the PWS-Imprinting Center (PWS-IC). This suggests that the ZNF274 complex is a separate imprinting mark that represses maternal PWS gene expression in neurons and is a potential target for future therapeutic applications to rescue the PWS phenotype. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Induced pluripotent stem cell-based therapy for age-related macular degeneration.
Bracha, Peter; Moore, Nicholas A; Ciulla, Thomas A
2017-09-01
In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression.
Frisca, Frisca; Crombie, Duncan E; Dottori, Mirella; Goldshmit, Yona; Pébay, Alice
2013-05-01
We previously reported that lysophosphatidic acid (LPA) inhibits the neuronal differentiation of human embryonic stem cells (hESC). We extended these studies by analyzing LPA's effects on the expansion of neural stem/progenitor cells (NS/PC) derived from hESCs and human induced pluripotent stem cells (iPSC), and we assessed whether data obtained on the neural differentiation of hESCs were relevant to iPSCs. We showed that hESCs and iPSCs exhibited comparable mRNA expression profiles of LPA receptors and producing enzymes upon neural differentiation. We demonstrated that LPA inhibited the expansion of NS/PCs of both origins, mainly by increased apoptosis in a Rho/Rho-associated kinase (ROCK)-dependent mechanism. Furthermore, LPA inhibited the neuronal differentiation of iPSCs. Lastly, LPA induced neurite retraction of NS/PC-derived early neurons through Rho/ROCK, which was accompanied by myosin light chain (MLC) phosphorylation. Our data demonstrate the consistency of LPA effects across various sources of human NS/PCs, rendering hESCs and iPSCs valuable models for studying lysophospholipid signaling in human neural cells. Our data also highlight the importance of the Rho/ROCK pathway in human NS/PCs. As LPA levels are increased in the central nervous system (CNS) following injury, LPA-mediated effects on NS/PCs and early neurons could contribute to the poor neurogenesis observed in the CNS following injury.
Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P
2016-04-01
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Hiler, Daniel; Chen, Xiang; Hazen, Jennifer; Kupriyanov, Sergey; Carroll, Patrick A; Qu, Chunxu; Xu, Beisi; Johnson, Dianna; Griffiths, Lyra; Frase, Sharon; Rodriguez, Alberto R; Martin, Greg; Zhang, Jiakun; Jeon, Jongrye; Fan, Yiping; Finkelstein, David; Eisenman, Robert N; Baldwin, Kristin; Dyer, Michael A
2015-07-02
Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures. Copyright © 2015 Elsevier Inc. All rights reserved.
Songstad, Allison E.; Worthington, Kristan S.; Chirco, Kathleen R.; Giacalone, Joseph C.; Whitmore, S. Scott; Anfinson, Kristin R.; Ochoa, Dalyz; Cranston, Cathryn M.; Riker, Megan J.; Neiman, Maurine; Stone, Edwin M.; Mullins, Robert F.
2017-01-01
Abstract Age‐related macular degeneration (AMD) is a leading cause of irreversible blindness in the Western world. Although, the majority of stem cell research to date has focused on production of retinal pigment epithelial (RPE) and photoreceptor cells for the purpose of evaluating disease pathophysiology and cell replacement, there is strong evidence that the choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first to be lost in this disease. As such, to accurately evaluate disease pathophysiology and develop an effective treatment, production of patient‐specific, stem cell‐derived CECs will be required. In this study, we report for the first time a stepwise differentiation protocol suitable for generating human iPSC‐derived CEC‐like cells. RNA‐seq analysis of the monkey CEC line, RF/6A, combined with two statistical screens allowed us to develop media comprised of various protein combinations. In both screens, connective tissue growth factor (CTGF) was identified as the key component required for driving CEC development. A second factor tumor necrosis factor (TNF)‐related weak inducer of apoptosis receptor was also found to promote iPSC to CEC differentiation by inducing endogenous CTGF secretion. CTGF‐driven iPSC‐derived CEC‐like cells formed capillary tube‐like vascular networks, and expressed the EC‐specific markers CD31, ICAM1, PLVAP, vWF, and the CEC‐restricted marker CA4. In combination with RPE and photoreceptor cells, patient‐specific iPSC derived CEC‐like cells will enable scientists to accurately evaluate AMD pathophysiology and develop effective cell replacement therapies. Stem Cells Translational Medicine 2017;6:1533–1546 PMID:28474838
Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan
2016-03-01
The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei
2013-09-01
Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.
Translational Control in Bone Marrow Failure
2015-05-01
HCLS1 associated protein X-1 (HAX1), cause hereditary forms of neutropenia . Previously, competing hypotheses have posited that mutant forms of...derived induced pluripotent stem cell (iPSC) model of ELANE-associated neutropenia . During the second year of this project, in order to facilitate...pathology. 3 2. KEY WORDS neutropenia bone marrow failure neutrophil elastase ELANE HAX1 alternate translation induced pluripotent stem cells (iPSC
Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin
2018-06-15
Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.
Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.
Liu, Chun; Oikonomopoulos, Angelos; Sayed, Nazish; Wu, Joseph C
2018-03-08
The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling. © 2018. Published by The Company of Biologists Ltd.
Hsu, Chih-Chien; Lu, Huai-En; Chuang, Jen-Hua; Ko, Yu-Ling; Tsai, Yi-Ching; Tai, Hsiao-Yun; Yarmishyn, Aliaksandr A; Hwang, De-Kuang; Wang, Mong-Lien; Yang, Yi-Ping; Chen, Shih-Jen; Peng, Chi-Hsien; Chiou, Shih-Hwa; Lin, Tai-Chi
2018-04-03
Best disease (BD), also termed Best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and central visual loss. In this report, we generated an induced pluripotent stem cell (iPSC) line, TVGH-iPSC-012-04, from the peripheral blood mononuclear cells of a female patient with BD by using the Sendai virus delivery system. The resulting iPSCs retained the disease-causing DNA mutation, expressed pluripotent markers and could differentiate into three germ layers. We believe that BD patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease. Copyright © 2018. Published by Elsevier B.V.
Thinking outside the liver: Induced pluripotent stem cells for hepatic applications
Subba Rao, Mekala; Sasikala, Mitnala; Reddy, D Nageshwar
2013-01-01
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications. PMID:23801830
Thinking outside the liver: induced pluripotent stem cells for hepatic applications.
Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D
2013-06-14
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.
Watanabe, Daisuke; Koyanagi-Aoi, Michiyo; Taniguchi-Ikeda, Mariko; Yoshida, Yukiko; Azuma, Takeshi; Aoi, Takashi
2018-01-01
γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling
Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji
2013-01-01
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor–mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl–/– mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC–derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT. PMID:23908116
Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.
Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji
2013-09-01
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.
Ulm, Ashley; Mayhew, Christopher N.; Debley, Jason; Khurana Hershey, Gurjit K.; Ji, Hong
2016-01-01
Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research. PMID:27022951
Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells
Guo, Wenting; Fumagalli, Laura; Prior, Robert; Van Den Bosch, Ludo
2017-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two age-dependent multifactorial neurodegenerative disorders, which are typically characterized by the selective death of motor neurons and cerebral cortex neurons, respectively. These two diseases share many clinical, genetic and pathological aspects. During the past decade, cell reprogramming technologies enabled researchers to generate human induced pluripotent stem cells (iPSCs) from somatic cells. This resulted in the unique opportunity to obtain specific neuronal and non-neuronal cell types from patients which could be used for basic research. Moreover, these in vitro models can mimic not only the familial forms of ALS/FTD, but also sporadic cases without known genetic cause. At present, there have been extensive technical advances in the generation of iPSCs, as well as in the differentiation procedures to obtain iPSC-derived motor neurons, cortical neurons and non-neuronal cells. The major challenge at this moment is to determine whether these iPSC-derived cells show relevant phenotypes that recapitulate complex diseases. In this review, we will summarize the work related to iPSC models of ALS and FTD. In addition, we will discuss potential drawbacks and solutions for establishing more trustworthy iPSC models for both ALS and FTD. PMID:29326542
Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang
2016-09-01
β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg-/- (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia.
Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong
2016-03-10
Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.
Saito, Hidehito; Okita, Keisuke; Chang, Alfred E.; Ito, Fumito
2016-01-01
Current approaches to adoptive T cell therapy are limited by the difficulty of obtaining sufficient numbers of T cells against targeted antigens with useful in vivo characteristics. Theoretically, this limitation could be overcome by using induced pluripotent stem cells (iPSCs) that could provide an unlimited source of autologous T cells. However, the therapeutic efficacy of iPSC-derived regenerated T cells remains to be demonstrated. Here we report the first successful reprogramming of T-cell receptor (TCR) transgenic CD8+ T cells into pluripotency. As part of the work, we established a syngeneic mouse model for evaluating in vitro and in vivo antitumor reactivity of regenerated T cells from iPSCs bearing a rearranged TCR of known antigen specificity. Stably TCR retained T cell-derived iPSCs differentiated into CD4+CD8+ T cells that expressed CD3 and the desired TCR in vitro. Stimulation of iPSC-derived CD4+CD8+ T cells with the cognate antigen in the presence of IL-7 and IL-15 followed by expansion with IL-2, IL-7 and IL-15 generated large numbers of less-differentiated CD8+ T cells with antigen-specific potent cytokine production and cytolytic capacity. Furthermore, adoptively transferred iPSC-derived CD8+ T cells escaped immune rejection, mediated effective regression of large tumors, improved survival, and established antigen-specific immunological memory. Our findings illustrate the translational potential of iPSCs to provide an unlimited number of phenotypically defined, functional, and expandable autologous antigen-specific T cells with the characteristics needed to enable in vivo effectiveness. PMID:27197199
Identifying the dynamics of actin and tubulin polymerization in iPSCs and in iPSC-derived neurons
Magliocca, Valentina; Petrini, Stefania; Franchin, Tiziana; Borghi, Rossella; Niceforo, Alessia; Abbaszadeh, Zeinab; Bertini, Enrico; Compagnucci, Claudia
2017-01-01
The development of the nervous system requires cytoskeleton-mediated processes coordinating self-renewal, migration, and differentiation of neurons. It is not surprising that many neurodevelopmental problems and neurodegenerative disorders are caused by deficiencies in cytoskeleton-related genes. For this reason, we focus on the cytoskeletal dynamics in proliferating iPSCs and in iPSC-derived neurons to better characterize the underpinnings of cytoskeletal organization looking at actin and tubulin repolymerization studies using the cell permeable probes SiR-Actin and SiR-Tubulin. During neurogenesis, each neuron extends an axon in a complex and changing environment to reach its final target. The dynamic behavior of the growth cone and its capacity to respond to multiple spatial information allows it to find its correct target. We decided to characterize various parameters of the actin filaments and microtubules. Our results suggest that a rapid re-organization of the cytoskeleton occurs 45 minutes after treatments with de-polymerizing agents in iPSCs and 60 minutes in iPSC-derived neurons in both actin filaments and microtubules. The quantitative data confirm that the actin filaments have a primary role in the re-organization of the cytoskeleton soon after de-polymerization, while microtubules have a major function following cytoskeletal stabilization. In conclusion, we investigate the possibility that de-polymerization of the actin filaments may have an impact on microtubules organization and that de-polymerization of the microtubules may affect the stability of the actin filaments. Our results suggest that a reciprocal influence of the actin filaments occurs over the microtubules and vice versa in both in iPSCs and iPSC-derived neurons. PMID:29340040
Baghbaderani, Behnam Ahmadian; Syama, Adhikarla; Sivapatham, Renuka; Pei, Ying; Mukherjee, Odity; Fellner, Thomas; Zeng, Xianmin; Rao, Mahendra S
2016-08-01
We have recently described manufacturing of human induced pluripotent stem cells (iPSC) master cell banks (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Reports, 5(4), 647-659, 2015). In this manuscript, we describe the detailed characterization of the two iPSC clones generated using this process, including whole genome sequencing (WGS), microarray, and comparative genomic hybridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibration material and with a reporter subclone and lines made by a similar process from different donors. We believe that iPSCs are likely to be used to make multiple clinical products. We further believe that the lines used as input material will be used at different sites and, given their immortal status, will be used for many years or even decades. Therefore, it will be important to develop assays to monitor the state of the cells and their drift in culture. We suggest that a detailed characterization of the initial status of the cells, a comparison with some calibration material and the development of reporter sublcones will help determine which set of tests will be most useful in monitoring the cells and establishing criteria for discarding a line.
Leung, Amy; Murphy, George J
2016-01-01
Familial transthyretin amyloidosis (ATTR) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR, protein secreted from the liver aggregates and forms fibrils in target organs, chiefly the heart and peripheral nervous system, highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here, we describe detailed methodologies for the directed differentiation of protein folding disease-specific iPSCs into hepatocytes that produce mutant protein, and neural-lineage cells often targeted in disease. Methodologies are also described for the construction of multisystem models and drug screening using iPSCs.
Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya; Phanthong, Phetcharat; Schmid, Benjamin; Nielsen, Troels T; Freude, Kristine K
2017-10-25
The rising prevalence of progressive neurodegenerative diseases coupled with increasing longevity poses an economic burden at individual and societal levels. There is currently no effective cure for the majority of neurodegenerative diseases and disease-affected tissues from patients have been difficult to obtain for research and drug discovery in pre-clinical settings. While the use of animal models has contributed invaluable mechanistic insights and potential therapeutic targets, the translational value of animal models could be further enhanced when combined with in vitro models derived from patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide the opportunity to model disease development, uncover novel mechanisms and test potential therapeutics. Here we review findings from iPSC-based modeling of selected neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and spinocerebellar ataxia. Furthermore, we discuss the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Linli; Chen, Yuehua; Guan, Chunyan; Zhao, Zhiju; Li, Qiang; Yang, Jianguo; Mo, Jian; Wang, Bin; Wu, Wei; Yang, Xiaohui; Song, Libing; Li, Jun
2017-11-02
Because the lack of an induced pluripotent stem cell (iPSC) induction system with optimal safety and efficiency limits the application of these cells, development of such a system is important. To create such an induction system, we screened a variety of reprogrammed plasmid combinations and multiple compounds and then verified the system's feasibility using urine cells from different individuals. We also compared large-scale iPSC chromosomal variations and expression of genes associated with genomic stability between this system and the traditional episomal system using karyotype and quantitative reverse transcription polymerase chain reaction analyses. We developed a high-efficiency episomal system, the 6F/BM1-4C system, lacking tumorigenic factors for human urine-derived cell (hUC) reprogramming. This system includes six low-risk factors (6F), Oct4, Glis1, Klf4, Sox2, L-Myc, and the miR-302 cluster. Transfected hUCs were treated with four compounds (4C), inhibitor of lysine-demethylase1, methyl ethyl ketone, glycogen synthase kinase 3 beta, and histone deacetylase, within a short time period. Comparative analysis revealed significantly decreased chromosomal variation in iPSCs and significantly increased Sirt1 expression compared with iPSCs induced using the traditional episomal system. The 6F/BM1-4C system effectively induces reprogramming of urine cells in samples obtained from different individuals. iPSCs induced using the 6F/BM1-4C system are more stable at the cytogenetic level and have potential value for clinical application.
Clayton, Z E; Sadeghipour, S; Patel, S
2015-10-15
Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Burnight, Erin R; Gupta, Manav; Wiley, Luke A; Anfinson, Kristin R; Tran, Audrey; Triboulet, Robinson; Hoffmann, Jeremy M; Klaahsen, Darcey L; Andorf, Jeaneen L; Jiao, Chunhua; Sohn, Elliott H; Adur, Malavika K; Ross, Jason W; Mullins, Robert F; Daley, George Q; Schlaeger, Thorsten M; Stone, Edwin M; Tucker, Budd A
2017-09-06
Patient-derived induced pluripotent stem cells (iPSCs) hold great promise for autologous cell replacement. However, for many inherited diseases, treatment will likely require genetic repair pre-transplantation. Genome editing technologies are useful for this application. The purpose of this study was to develop CRISPR-Cas9-mediated genome editing strategies to target and correct the three most common types of disease-causing variants in patient-derived iPSCs: (1) exonic, (2) deep intronic, and (3) dominant gain of function. We developed a homology-directed repair strategy targeting a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) and demonstrated restoration of the retinal transcript and protein in patient cells. We generated a CRISPR-Cas9-mediated non-homologous end joining (NHEJ) approach to excise a major contributor to Leber congenital amaurosis, the IVS26 cryptic-splice mutation in CEP290, and demonstrated correction of the transcript and protein in patient iPSCs. Lastly, we designed allele-specific CRISPR guides that selectively target the mutant Pro23His rhodopsin (RHO) allele, which, following delivery to both patient iPSCs in vitro and pig retina in vivo, created a frameshift and premature stop that would prevent transcription of the disease-causing variant. The strategies developed in this study will prove useful for correcting a wide range of genetic variants in genes that cause inherited retinal degeneration. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Preclinical studies for induced pluripotent stem cell-based therapeutics.
Harding, John; Mirochnitchenko, Oleg
2014-02-21
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
miR-146b-5p promotes the neural conversion of pluripotent stem cells by targeting Smad4
Zhang, Nianping; Lyu, Ying; Pan, Xuebing; Xu, Liping; Xuan, Aiguo; He, Xiaosong; Huang, Wandan; Long, Dahong
2017-01-01
Pluripotent stem cells (PSCs) are regarded as potential sources that provide specific neural cells for cell therapy in some nervous system diseases. However, the mechanisms underlying the neural differentiation of PSCs remain largely unknown. MicroRNAs (miRNAs or miRs) are a class of small non-protein-coding RNAs that act as critical regulatory molecules in many cellular processes. In this study, we found that miR-146b-5p expression was markedly increased following the neural induction of mouse embryonic stem cells (ESCs) or induced PSCs (iPSCs). In this study, to further identify the role of miR-146b-5p, we generated stable miR-146b-5p- overexpressing ESC and iPSC cell lines, and induced the differentiation of these cells by the adherent monolayer culture method. In the miR-146b-5p-overexpressing ESC- or iPSC- derived cultures, RT-qPCR analysis revealed that the mRNA expression levels of neuroectoderm markers, such as Sox1, Nestin and Pax6, were markedly increased, and flow cytometric analysis verified that the number of Nestin-positive cells was higher in the miR-146b-5p-overexpressing compared with the control cells. Mechanistically, the miR-146b-5p-overexpressing ESCs or iPSCs exhibited a significant reduction in Oct4 expression, which may be an explanation for these cells having a tendency to differentiate towards the neural lineage. Moreover, we confirmed that miR-146b-5p directly targeted Smad4 and negatively regulated the transforming growth factor (TGF)-β signaling pathway, which contributed to the neural commitment of PSCs. Collectively, our findings uncover the essential role of miR-146b-5p in the neural conversion of PSCs. PMID:28713933
Karakikes, Ioannis; Termglinchan, Vittavat; Cepeda, Diana A.; Lee, Jaecheol; Diecke, Sebastian; Hendel, Ayal; Itzhaki, Ilanit; Ameen, Mohamed; Shrestha, Rajani; Wu, Haodi; Ma, Ning; Shao, Ning-Yi; Seeger, Timon; Woo, Nicole; Wilson, Kitchener D.; Matsa, Elena; Porteus, Matthew H.; Sebastiano, Vittorio; Wu, Joseph C.
2017-01-01
Rationale Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusion Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research. PMID:28246128
Conserved expression of transposon-derived non-coding transcripts in primate stem cells.
Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume
2017-02-28
A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.
Ikeya, Makoto; Yasui, Yukihiko; Ikeda, Yasutoshi; Ebina, Kosuke; Moriguchi, Yu; Shimomura, Kazunori; Hideki, Yoshikawa
2017-01-01
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage. PMID:28607560
NF1 Neuronal Genotype Phenotype Relationships
2017-06-01
neurofibromin protein that are required for correct function in Drosophila. We will use these insights for subsequent CRISPR /Cas9 gene editing of humnan induced...selecting the most informative of these to develop isogenic human iPSC models using CRISPR /Cas9 gene editing. These NF1 mutant iPSC lines will then be used...Together, the results of these assays will help us to focus on specific missense mutations, which we plan to engineer into hiPSCs using CRISPR /Cas9
Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi
2016-01-01
Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID:28297575
2016-09-01
parathyroid hormone and GCM2, both markers of parathyroid tissues. 15. SUBJECT TERMS Induced pluripotent stem cells, ips cells, parathyroid, Crispr ...parathyroid organogenesis. The iPSCs are being modified with CRISPR or TALEN technology for sequence specific insertion of a GFP reporter into the...cells, parathyroid, Crispr /cas9, TALENS, pluripotent stem cells, hypoparathyroidism, 2 human homolog (Gcm2/GCMB), parathyroid hormone (PTH) and
Yang, Juan; Li, Song; He, Xi-Biao; Cheng, Cheng; Le, Weidong
2016-05-17
Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology may provide a promising platform to create reliable models, not only for better understanding the etiopathological process of AD, but also for efficient anti-AD drugs screening. More importantly, human-sourced iPSCs may also provide a beneficial tool for cell-replacement therapy against AD. Although considerable progress has been achieved, a number of key challenges still require to be addressed in iPSCs research, including the identification of robust disease phenotypes in AD modeling and the clinical availabilities of iPSCs-based cell-replacement therapy in human. In this review, we highlight recent progresses of iPSCs research and discuss the translational challenges of AD patients-derived iPSCs in disease modeling and cell-replacement therapy.
Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong
2014-12-21
Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.
Pluripotent stem cells and livestock genetic engineering
Soto, Delia A.
2016-01-01
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs. PMID:26894405
Pluripotent stem cells and livestock genetic engineering.
Soto, Delia A; Ross, Pablo J
2016-06-01
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Liu, H; Yang, L; Yu, F F; Wang, S; Wu, C; Qu, C; Lammi, M J; Guo, X
2017-05-01
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Induced pluripotent stem cells from goat fibroblasts.
Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng
2013-12-01
Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. © 2013 Wiley Periodicals, Inc.
RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.
Kehler, James; Greco, Marianna; Martino, Valentina; Pachiappan, Manickam; Yokoe, Hiroko; Chen, Alice; Yang, Miranda; Auerbach, Jonathan; Jessee, Joel; Gotte, Martin; Milanesi, Luciano; Albertini, Alberto; Bellipanni, Gianfranco; Zucchi, Ileana; Reinbold, Rolland A; Giordano, Antonio
2017-06-01
Cellular reprogramming by epigenomic remodeling of chromatin holds great promise in the field of human regenerative medicine. As an example, human-induced Pluripotent Stem Cells (iPSCs) obtained by reprograming of patient somatic cells are sufficiently similar to embryonic stem cells (ESCs) and can generate all cell types of the human body. Clinical use of iPSCs is dependent on methods that do not utilize genome altering transgenic technologies that are potentially unsafe and ethically unacceptable. Transient delivery of exogenous RNA into cells provides a safer reprogramming system to transgenic approaches that rely on exogenous DNA or viral vectors. RNA reprogramming may prove to be more suitable for clinical applications and provide stable starting cell lines for gene-editing, isolation, and characterization of patient iPSC lines. The introduction and rapid evolution of CRISPR/Cas9 gene-editing systems has provided a readily accessible research tool to perform functional human genetic experiments. Similar to RNA reprogramming, transient delivery of mRNA encoding Cas9 in combination with guide RNA sequences to target specific points in the genome eliminates the risk of potential integration of Cas9 plasmid constructs. We present optimized RNA-based laboratory procedure for making and editing iPSCs. In the near-term these two powerful technologies are being harnessed to dissect mechanisms of human development and disease in vitro, supporting both basic, and translational research. J. Cell. Physiol. 232: 1262-1269, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Examining FKBP5 mRNA expression in human iPSC-derived neural cells
Lieberman, Richard; Kranzler, Henry R.; Levine, Eric S.; Covault, Jonathan
2016-01-01
In peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells. We used 27 human induced pluripotent stem cell lines (iPSCs) derived from 20 subjects to examine FKBP5 mRNA expression following GR activation. Following differentiation into forebrain-lineage neural cultures, cells were exposed to 1μM dexamethasone and mRNA expression of FKBP5 and NR3C1 analyzed. Results from the iPSC-derived neural cells were compared with those from 15 donor matched fibroblast lines. Following dexamethasone treatment, there was a 670% increase in FKBP5 expression in fibroblasts, mimicking findings in peripheral blood-derived cells, but only a 23% increase in iPSC-derived neural cultures. FKBP5 rs1360780 genotype did not affect the induction of FKBP5 mRNA in either fibroblasts or neural cells. These results suggest that iPSC-derived forebrain-lineage neurons may not be an optimal neural cell type in which to examine relationships between GR activation, FKBP5 expression, and genetic variation in human subjects. Further, FKBP5 induction following GR activation may differ between cell types derived from the same individual. PMID:27915167
Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid
2013-01-01
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968
Lee, Andrew S.; Xu, Dan; Plews, Jordan R.; Nguyen, Patricia K.; Nag, Divya; Lyons, Jennifer K.; Han, Leng; Hu, Shijun; Lan, Feng; Liu, Junwei; Huang, Mei; Narsinh, Kazim H.; Long, Charles T.; de Almeida, Patricia E.; Levi, Benjamin; Kooreman, Nigel; Bangs, Charles; Pacharinsak, Cholawat; Ikeno, Fumiaki; Yeung, Alan C.; Gambhir, Sanjiv S.; Robbins, Robert C.; Longaker, Michael T.; Wu, Joseph C.
2011-01-01
Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia. PMID:21719696
Tan, Xiaobing; Dai, Qingli; Guo, Tao; Xu, Jingshu; Dai, Qingyuan
2018-01-22
Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy. Copyright © 2017. Published by Elsevier Inc.
Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.
2016-01-01
Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
Byrne, Susan M; Church, George M
2015-01-01
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Generation of induced pluripotent stem cells from a patient with X-linked juvenile retinoschisis.
Peng, Chi-Hsien; Huang, Kang-Chieh; Lu, Huai-En; Syu, Shih-Han; Yarmishyn, Aliaksandr A; Lu, Jyh-Feng; Buddhakosai, Waradee; Lin, Tai-Chi; Hsu, Chih-Chien; Hwang, De-Kuang; Shen, Chia-Ning; Chen, Shih-Jen; Chiou, Shih-Hwa
2018-05-01
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy manifested as splitting of anatomical layers of retina. In this report, we generated a patient-specific induced pluripotent stem cell (iPSC) line, TVGH-iPSC-013-05, from the peripheral blood mononuclear cells of a male patient with XLRS by using the Sendai-virus delivery system. We believe that XLRS patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease. Copyright © 2018. Published by Elsevier B.V.
Murai, Kiyohito; Sun, Guoqiang; Ye, Peng; Tian, E.; Yang, Su; Cui, Qi; Sun, Guihua; Trinh, Daniel; Sun, Olivia; Hong, Teresa; Wen, Zhexing; Kalkum, Markus; Riggs, Arthur D.; Song, Hongjun; Ming, Guo-li; Shi, Yanhong
2016-01-01
Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation. PMID:26965827
Murai, Kiyohito; Sun, Guoqiang; Ye, Peng; Tian, E; Yang, Su; Cui, Qi; Sun, Guihua; Trinh, Daniel; Sun, Olivia; Hong, Teresa; Wen, Zhexing; Kalkum, Markus; Riggs, Arthur D; Song, Hongjun; Ming, Guo-li; Shi, Yanhong
2016-03-11
Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation.
Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu
2015-01-13
Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wagoner, Michael D; Bohrer, Laura R; Aldrich, Benjamin T; Greiner, Mark A; Mullins, Robert F; Worthington, Kristan S; Tucker, Budd A; Wiley, Luke A
2018-05-08
The purpose of this study was to devise a strategy for the derivation of corneal endothelial cells (CEnCs) from adult fibroblast-derived induced pluripotent stem cells (iPSCs). IPSCs were generated from an adult human with normal ocular history via expression of OCT4 , SOX2 , KLF4 and c-MYC Neural crest cells (NCCs) were differentiated from iPSCs via addition of CHIR99021 and SB4315542. NCCs were driven toward a CEnC fate via addition of B27, PDGF-BB and DKK-2 to CEnC media. Differentiation of NCCs and CEnCs was evaluated via rt-PCR, morphological and immunocytochemical analysis. At 17 days post-NCC induction, there were notable changes in cell morphology and upregulation of the neural crest lineage transcripts PAX3 , SOX9 , TFAP2A , SOX10 and p75NTR and the proteins p75/NGFR and SOX10. Exposure of NCCs to B27, PDGF-BB and DKK-2 induced a shift in morphology from a spindle-shaped neural phenotype to a tightly-packed hexagonal appearance and increased expression of the transcripts ATP1A1 , COL8A1 , COL8A2 , AQP1 and CDH2 and the proteins ZO-1, N-Cad, AQP-1 and Na + /K + ATPase. Replacement of NCC media with CEnC media on day 3, 5 or 8 reduced the differentiation time needed to yield CEnCs. IPSC-derived CEnCs could be used for evaluation of cornea endothelial disease pathophysiology and for testing of novel therapeutics. © 2018. Published by The Company of Biologists Ltd.
Thoma, Eva C; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph
2016-10-25
Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
Kawamoto, Hiroshi; Masuda, Kyoko; Nagano, Seiji; Maeda, Takuya
2018-03-01
Recent advances in adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) have led to moderate therapeutic anti-cancer effects in clinical trials. However, a critical issue, namely that CTLs collected from patients are easily exhausted during expansion culture, has yet to be solved. To address this issue, we have been developing a strategy which utilizes induced pluripotent stem cell (iPSC) technology. This strategy is based on the idea that when iPSCs are produced from antigen-specific CTLs, CTLs regenerated from such iPSCs should show the same antigen specificity as the original CTLs. Pursuing this idea, we previously succeeded in regenerating melanoma antigen MART1-specific CTLs, and more recently in producing potent CTLs expressing CD8αβ heterodimer. We are now developing a novel method by which non-T derived iPSCs are transduced with exogenous T cell receptor genes. If this method is applied to Human Leukocyte Antigen (HLA) haplotype-homozygous iPSC stock, it will be possible to prepare "off-the-shelf" T cells. As a first-in-human trial, we are planning to apply our strategy to relapsed acute myeloid leukemia patients by targeting the WT1 antigen.
Tulpule, Asmin; Kelley, James M.; Lensch, M. William; McPherson, Jade; Park, In Hyun; Hartung, Odelya; Nakamura, Tomoka; Schlaeger, Thorsten M.; Shimamura, Akiko; Daley, George Q.
2013-01-01
Summary Shwachman-Diamond syndrome (SDS), a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS by knock-down of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two SDS patients. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated auto-digestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease. PMID:23602541
From iPSC towards cardiac tissue-a road under construction.
Peischard, Stefan; Piccini, Ilaria; Strutz-Seebohm, Nathalie; Greber, Boris; Seebohm, Guiscard
2017-10-01
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra
2015-08-15
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids.
Verma, Rajneesh; Liu, Jun; Holland, Michael Kenneth; Temple-Smith, Peter; Williamson, Mark; Verma, Paul John
2013-02-01
Nanog has an important role in pluripotency induction in bovines and snow leopards. To examine whether it was required for wild felids globally, we examined the induction of pluripotency in felids from Asia (Bengal tiger, Panthera tigris), Africa (serval, Leptailurus serval), and the Americas (jaguar, Panthera onca). Dermal fibroblasts were transduced with genes encoding the human transcription factors OCT4, SOX2, KLF4, and cMYC with or without NANOG. Both four- and five-factor induction resulted in colony formation at day 3 in all three species tested; however, we were not able to maintain colonies that were generated without NANOG beyond passage (P) 7. Five-factor induced pluripotent stem cell (iPSC) colonies from wild cats were expanded in vitro on feeder layers and were positive for alkaline phosphatase and protein expression of OCT-4, NANOG, and stage-specific embryonic antigen-4 at P4 and P14. Reverse-transcription polymerase chain reaction confirmed that all five human transgenes were transcribed at P4; however, OCT4, SOX2, and NANOG transgenes were silenced by P14. Endogenous OCT4 and NANOG transcripts were detected at P4 and P14 in all cell lines confirming successful reprogramming. At P14, the iPSCs from all three species remained euploid and differentiated in vivo and in vitro into derivatives of the three germ layers. This study describes an effective method for inducing pluripotency in three endangered wild cats from across the globe and confirms Nanog as an essential factor in the reprogramming event. Efficient production of iPSC from endangered felids creates a unique opportunity for species preservation through gamete production, nuclear transfer, embryo complementation, and future novel technologies.
Nanog Is an Essential Factor for Induction of Pluripotency in Somatic Cells from Endangered Felids
Verma, Rajneesh; Liu, Jun; Holland, Michael Kenneth; Temple-Smith, Peter; Williamson, Mark
2013-01-01
Abstract Nanog has an important role in pluripotency induction in bovines and snow leopards. To examine whether it was required for wild felids globally, we examined the induction of pluripotency in felids from Asia (Bengal tiger, Panthera tigris), Africa (serval, Leptailurus serval), and the Americas (jaguar, Panthera onca). Dermal fibroblasts were transduced with genes encoding the human transcription factors OCT4, SOX2, KLF4, and cMYC with or without NANOG. Both four- and five-factor induction resulted in colony formation at day 3 in all three species tested; however, we were not able to maintain colonies that were generated without NANOG beyond passage (P) 7. Five-factor induced pluripotent stem cell (iPSC) colonies from wild cats were expanded in vitro on feeder layers and were positive for alkaline phosphatase and protein expression of OCT-4, NANOG, and stage-specific embryonic antigen-4 at P4 and P14. Reverse-transcription polymerase chain reaction confirmed that all five human transgenes were transcribed at P4; however, OCT4, SOX2, and NANOG transgenes were silenced by P14. Endogenous OCT4 and NANOG transcripts were detected at P4 and P14 in all cell lines confirming successful reprogramming. At P14, the iPSCs from all three species remained euploid and differentiated in vivo and in vitro into derivatives of the three germ layers. This study describes an effective method for inducing pluripotency in three endangered wild cats from across the globe and confirms Nanog as an essential factor in the reprogramming event. Efficient production of iPSC from endangered felids creates a unique opportunity for species preservation through gamete production, nuclear transfer, embryo complementation, and future novel technologies. PMID:23514873
Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young
2016-08-01
While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.
Wunderlich, Stephanie; Haase, Alexandra; Merkert, Sylvia; Beier, Jennifer; Schwanke, Kristin; Schambach, Axel; Glage, Silke; Göhring, Gudrun; Curnow, Eliza C; Martin, Ulrich
2012-12-01
Induced pluripotent stem cells (iPSCs) represent a novel cell source for regenerative therapies. Many emerging iPSC-based therapeutic concepts will require preclinical evaluation in suitable large animal models. Among the large animal species frequently used in preclinical efficacy and safety studies, macaques show the highest similarities to humans at physiological, cellular, and molecular levels. We have generated iPSCs from cynomolgus monkeys (Macaca fascicularis) as a segue to regenerative therapy model development in this species. Because typical human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors show poor transduction of simian cells, a simian immunodeficiency virus (SIV)-based vector was chosen for efficient transduction of cynomolgus skin fibroblasts. A corresponding polycistronic vector with codon-optimized reprogramming factors was constructed for reprogramming. Growth characteristics as well as cell and colony morphology of the resulting cynomolgus iPSCs (cyiPSCs) were demonstrated to be almost identical to cynomolgus embryonic stem cells (cyESCs), and cyiPSCs expressed typical pluripotency markers including OCT4, SOX2, and NANOG. Furthermore, differentiation in vivo and in vitro into derivatives of all three germ layers, as well as generation of functional cardiomyocytes, could be demonstrated. Finally, a highly efficient technique for generation of transgenic cyiPSC clones with stable reporter expression in undifferentiated cells as well as differentiated transgenic cyiPSC progeny was developed to enable cell tracking in recipient animals. In conclusion, our data indicate that cyiPSCs represent a valuable cell source for establishment of macaque-based allogeneic and autologous preclinical cell transplantation models for various fields of regenerative medicine.
Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa
2015-07-13
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Giri, Shibashish; Bader, Augustinus
2015-01-01
Knockout, knock-in and conditional mutant gene-targeted mice are routinely used for disease modeling in the drug discovery process, but the human response is often difficult to predict from these models. It is believed that patient-derived induced pluripotent stem cells (iPSCs) could replace millions of animals currently sacrificed in preclinical testing and provide a route to new safer pharmaceutical products. In this review, we discuss the use of IPSCs in the drug discovery process. We highlight how they can be used to assess the toxicity and clinical efficacy of drug candidates before the latter are moved into costly and lengthy preclinical and clinical trials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genome stability of programmed stem cell products.
Martin, Ulrich
2017-10-01
Inherited and acquired genomic abnormalities are known to cause genetic diseases and contribute to cancer formation. Recent studies demonstrated a substantial mutational load in mouse and human embryonic and induced pluripotent stem cells (ESCs and iPSCs). Single nucleotide variants, copy number variations, and larger chromosomal abnormalities may influence the differentiation capacity of pluripotent stem cells and the functionality of their derivatives in disease modeling and drug screening, and are considered a serious risk for cellular therapies based on ESC or iPSC derivatives. This review discusses the types and origins of different genetic abnormalities in pluripotent stem cells, methods for their detection, and the mechanisms of development and enrichment during reprogramming and culture expansion. Copyright © 2017 Elsevier B.V. All rights reserved.
Heins, Brittany M.; McGivern, Jered V.; Ornelas, Loren; Svendsen, Clive N.
2012-01-01
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients. PMID:22723941
CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa
Webber, Beau R; Osborn, Mark J; McElroy, Amber N; Twaroski, Kirk; Lonetree, Cara-lin; DeFeo, Anthony P; Xia, Lily; Eide, Cindy; Lees, Christopher J; McElmurry, Ron T; Riddle, Megan J; Kim, Chong Jai; Patel, Dharmeshkumar D; Blazar, Bruce R; Tolar, Jakub
2016-01-01
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe disorder caused by mutations to the COL7A1 gene that deactivate production of a structural protein essential for skin integrity. Haematopoietic cell transplantation can ameliorate some of the symptoms; however, significant side effects from the allogeneic transplant procedure can occur and unresponsive areas of blistering persist. Therefore, we employed genome editing in patient-derived cells to create an autologous platform for multilineage engineering of therapeutic cell types. The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system facilitated correction of an RDEB-causing COL7A1 mutation in primary fibroblasts that were then used to derive induced pluripotent stem cells (iPSCs). The resulting iPSCs were subsequently re-differentiated into keratinocytes, mesenchymal stem cells (MSCs) and haematopoietic progenitor cells using defined differentiation strategies. Gene-corrected keratinocytes exhibited characteristic epithelial morphology and expressed keratinocyte-specific genes and transcription factors. iPSC-derived MSCs exhibited a spindle morphology and expression of CD73, CD90 and CD105 with the ability to undergo adipogenic, chondrogenic and osteogenic differentiation in vitro in a manner indistinguishable from bone marrow-derived MSCs. Finally, we used a vascular induction strategy to generate potent definitive haematopoietic progenitors capable of multilineage differentiation in methylcellulose-based assays. In totality, we have shown that CRISPR/Cas9 is an adaptable gene-editing strategy that can be coupled with iPSC technology to produce multiple gene-corrected autologous cell types with therapeutic potential for RDEB. PMID:28250968
Homma, Kohei; Usui, Sumiko; Kaneda, Makoto
2017-03-01
Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.
Fu, Lina; Xu, Xiuling; Ren, Ruotong; Wu, Jun; Zhang, Weiqi; Yang, Jiping; Ren, Xiaoqing; Wang, Si; Zhao, Yang; Sun, Liang; Yu, Yang; Wang, Zhaoxia; Yang, Ze; Yuan, Yun; Qiao, Jie; Izpisua Belmonte, Juan Carlos; Qu, Jing; Liu, Guang-Hui
2016-03-01
Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.
Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons
Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.
2012-01-01
The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Tian, Changhai; Liu, Miao
2012-04-06
Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using thismore » platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.« less
Stover, Alexander E.; Brick, David J.; Nethercott, Hubert E.; Banuelos, Maria G.; Sun, Lei; O’Dowd, Diane K.; Schwartz, Philip H.
2014-01-01
Robust strategies for developing patient-specific, human, induced pluripotent stem cell (iPSC)-based therapies of the brain require an ability to derive large numbers of highly defined neural cells. Recent progress in iPSC culture techniques includes partial-to-complete elimination of feeder layers, use of defined media, and single-cell passaging. However, these techniques still require embryoid body formation or coculture for differentiation into neural stem cells (NSCs). In addition, none of the published methodologies has employed all of the advances in a single culture system. Here we describe a reliable method for long-term, single-cell passaging of PSCs using a feeder-free, defined culture system that produces confluent, adherent PSCs that can be differentiated into NSCs. To provide a basis for robust quality control, we have devised a system of cellular nomenclature that describes an accurate genotype and phenotype of the cells at specific stages in the process. We demonstrate that this protocol allows for the efficient, large-scale, cGMP-compliant production of transplantable NSCs from all lines tested. We also show that NSCs generated from iPSCs produced with the process described are capable of forming both glia defined by their expression of S100β and neurons that fire repetitive action potentials. PMID:23893392
Sima, Ni; Li, Rong; Huang, Wei; Xu, Miao; Beers, Jeanette; Zou, Jizhong; Titus, Steven; Ottinger, Elizabeth A; Marugan, Juan J; Xie, Xing; Zheng, Wei
2018-04-10
Infantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs. We have generated induced pluripotent stem cells (iPSC) from three patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). Using these new disease models, we evaluated the effect of δ-tocopherol (DT) and hydroxypropyl-β-cyclodextrin (HPBCD) with the enzyme replacement therapy as the control. Treatment with the relevant recombinant enzyme or DT significantly ameliorated the lipid accumulation and lysosomal enlargement in the disease cells. A combination therapy of δ-tocopherol and HPBCD further improved the effect compared to that of either drug used as a single therapy. The results demonstrate that these patient iPSC derived NCL NSCs are valid cell- based disease models with characteristic disease phenotypes that can be used for study of disease pathophysiology and drug development.
Shalom-Feuerstein, Ruby; Serror, Laura; Aberdam, Edith; Müller, Franz-Josef; van Bokhoven, Hans; Wiman, Klas G; Zhou, Huiqing; Aberdam, Daniel; Petit, Isabelle
2013-02-05
Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.
van der Wal, Erik; Herrero-Hernandez, Pablo; Wan, Raymond; Broeders, Mike; In 't Groen, Stijn L M; van Gestel, Tom J M; van IJcken, Wilfred F J; Cheung, Tom H; van der Ploeg, Ans T; Schaaf, Gerben J; Pijnappel, W W M Pim
2018-06-05
Although skeletal muscle cells can be generated from human induced pluripotent stem cells (iPSCs), transgene-free protocols include only limited options for their purification and expansion. In this study, we found that fluorescence-activated cell sorting-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 × 10 11 -fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of acid α-glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/Cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Personalized therapeutic strategies for patients with retinitis pigmentosa.
Zheng, Andrew; Li, Yao; Tsang, Stephen H
2015-03-01
Retinitis pigmentosa (RP) encompasses many different hereditary retinal degenerations that are caused by a vast array of different gene mutations and have highly variable disease presentations and severities. This heterogeneity poses a significant therapeutic challenge, although an answer may eventually be found through two recent innovations: induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome editing. This review discusses the wide-ranging applications of iPSCs and CRISPR-including disease modelling, diagnostics and therapeutics - with an ultimate view towards understanding how these two technologies can come together to address disease heterogeneity and orphan genes in a novel personalized medicine platform. An extensive literature search was conducted in PubMed and Google Scholar, with a particular focus on high-impact research published within the last 1 - 2 years and centered broadly on the subjects of retinal gene therapy, iPSC-derived outer retina cells, stem cell transplantation and CRISPR/Cas gene editing. For the retinal pigment epithelium, autologous transplantation of gene-corrected grafts derived from iPSCs may well be technically feasible in the near future. Photoreceptor transplantation faces more significant unresolved technical challenges but remains an achievable, if more distant, goal given the rapid pace of advancements in the field.
Trilck, Michaela; Peter, Franziska; Zheng, Chaonan; Frank, Marcus; Dobrenis, Kostantin; Mascher, Hermann; Rolfs, Arndt; Frech, Moritz J
2017-02-15
Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1. Copyright © 2016 Elsevier B.V. All rights reserved.
Maria, Sundberg; Helle, Bogetofte; Tristan, Lawson; Gaynor, Smith; Arnar, Astradsson; Michele, Moore; Teresia, Osborn; Oliver, Cooper; Roger, Spealman; Penelope, Hallett; Ole, Isacson
2013-01-01
The main motor symptoms of Parkinson’s disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson’s disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA-neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for pre-clinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate-iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA-neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA-neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA-neurons were able to restore motor function of 6-OHDA lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future. PMID:23666606
Wertheim, J A; Leventhal, J R
2015-04-01
Induced pluripotent stem cells (iPSCs) hold the potential for future development of genetically identical tissues from almost any mature cell lineage. For clinical applications in cell therapy and transplantation, it may provide a means to one-day restore dysfunctional or damaged tissue without the need for immunosuppression. A recent study by de Almeida et al published in the journal Nature Communications indicates that iPSCs may indeed elicit an immune response that evolves as cells differentiate toward maturity to induce a state of tolerance within a recipient animal. If these early findings hold true, it suggests a possible explanation for self-recognition of mature cells derived from iPSCs for use in future therapeutic interventions in transplantation such as cellular therapy or tissue engineering. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells After Spinal Cord Injury
Lu, Paul; Woodruff, Grace; Wang, Yaozhi; Graham, Lori; Hunt, Matt; Wu, Di; Boehle, Eileen; Ahmad, Ruhel; Poplawski, Gunnar; Brock, John; Goldstein, Lawrence S. B.; Tuszynski, Mark H.
2014-01-01
Human induced pluripotent stem cells (iPSCs) from a healthy 86 year-old male were differentiated into neural stem cells and grafted into adult immunodeficient rats after spinal cord injury. Three months after C5 lateral hemisections, iPSCs survived and differentiated into neurons and glia, and extended tens of thousands of axons from the lesion site over virtually the entire length of the rat central nervous system. These iPSC-derived axons extended through adult white matter of the injured spinal cord, frequently penetrating gray matter and forming synapses with rat neurons. In turn, host supraspinal motor axons penetrated human iPSC grafts and formed synapses. These findings indicate that intrinsic neuronal mechanisms readily overcome the inhibitory milieu of the adult injured spinal cord to extend many axons over very long distances; these capabilities persist even in neurons reprogrammed from very aged human cells. PMID:25123310
Using Stem Cells to Model Diseases of the Outer Retina.
Yvon, Camille; Ramsden, Conor M; Lane, Amelia; Powner, Michael B; da Cruz, Lyndon; Coffey, Peter J; Carr, Amanda-Jayne F
2015-01-01
Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).
Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases
Shi, Liang; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Han, Jinxiang
2016-01-01
Summary Rare diseases with a low prevalence are a key public health issue because the causes of those diseases are difficult to determine and those diseases lack a clearly established or curative treatment. Thus, investigating the molecular mechanisms that underlie the pathology of rare diseases and facilitating the development of novel therapies using disease models is crucial. Human induced pluripotent stem cells (iPSCs) are well suited to modeling rare diseases since they have the capacity for self-renewal and pluripotency. In addition, iPSC technology provides a valuable tool to generate patient-specific iPSCs. These cells can be differentiated into cell types that have been affected by a disease. These cells would circumvent ethical concerns and avoid immunological rejection, so they could be used in cell replacement therapy or regenerative medicine. To date, human iPSCs could have been generated from multiple donor sources, such as skin, adipose tissue, and peripheral blood. However, these cells are obtained via invasive procedures. In contrast, several groups of researchers have found that urine may be a better source for producing iPSCs from normal individuals or patients. This review discusses urinary iPSC (UiPSC) as a candidate for modeling rare diseases. Cells obtained from urine have overwhelming advantages compared to other donor sources since they are safely, affordably, and frequently obtained and they are readily obtained from patients. The use of iPSC-based models is also discussed. UiPSCs may prove to be a key means of modeling rare diseases and they may facilitate the treatment of those diseases in the future. PMID:27672542
Nucleolar molecular signature of pluripotent stem cells.
Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N
2013-04-02
Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.
Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases.
Wan, Wenbin; Cao, Lan; Kalionis, Bill; Xia, Shijin; Tai, Xiantao
2015-01-01
Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options.
Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells
Kidwai, Fahad; Edwards, Jessica; Zou, Li; Kaufman, Dan S.
2016-01-01
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. PMID:27331788
Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking
Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.
2014-01-01
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489
Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S.
2016-01-01
Derivation of hematopoietic stem cells from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom+ hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of tdTom+ population. Notably, RUNX1c/tdTom+ cells represent only a limited subpopuation of CD34+CD45+ and CD34+CD43+ cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom+ cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom+ population to CD34+CD45+ umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. PMID:25546363
Little, Daniel; Luft, Christin; Mosaku, Olukunbi; Lorvellec, Maëlle; Yao, Zhi; Paillusson, Sébastien; Kriston-Vizi, Janos; Gandhi, Sonia; Abramov, Andrey Y; Ketteler, Robin; Devine, Michael J; Gissen, Paul
2018-06-13
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.
2017-01-01
Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583
Pluripotent stem cell-derived natural killer cells for cancer therapy
Knorr, David A.; Kaufman, Dan S.
2010-01-01
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an accessible, genetically tractable and homogenous starting cell populations to efficiently study human blood cell development. These cell populations provide platforms to develop new cell-based therapies to treat both malignant and non-malignant hematological diseases. Our group has previously demonstrated the ability of hESC-derived hematopoietic precursors to produce functional natural killer (NK) cells as well as an explanation of the underlying mechanism responsible for inefficient development of T and B cells from hESCs. hESCs and iPSCs, which can be reliably engineered in vitro, provide an important new model system to study human lymphocyte development and produce enhanced cell-based therapies with potential to serve as a “universal” source of anti-tumor lymphocytes for novel clinical therapies. This review will focus on the application of hESC-derived NK cells with currently used and novel therapeutics for clinical trials, current barriers to translation, and future applications through genetic engineering approaches. PMID:20801411
Qin, Mingde; Chen, Ruihua; Li, Hong; Liang, Hansi; Xue, Qun; Li, Fang; Chen, Ying; Zhang, Xueguang
2016-01-01
Amniotic fluid stem cells (AFSCs) are a type of fetal stem cell whose stemness encompasses both embryonic and adult stem cells, suggesting that they may be easily and efficiently reprogrammed into induced pluripotent stem cells (iPSCs). To further simplify the reprogramming process, the creation of AFSC-derived iPSCs using a single factor is desirable. Here we report the generation of one-factor human AFSC-iPSCs (AiPSCs) from human AFSCs by ectopic expression of the transcription factor OCT4. Just like human embryonic stem cells, AiPSCs exhibited similar epigenetic status, global gene expression profiles, teratoma formation and in vitro & in vivo pluripotency. Our results indicate that the OCT4 is necessary and sufficient to directly reprogram human AFSCs into pluripotent AiPSCs. Moreover, reflecting the similar memory characteristics of AFSCs and neural stem cells, we show that AiPSC membrane-derived vesicles (MVs) repair cerebral ischemia damage. We anticipate that the successful generation of one-factor AiPSCs will facilitate the creation of patient-specific pluripotent stem cells without the need for transgenic expression of oncogenes. Moreover, MVs from tissue-specific AiPSCs have potential in tissue repair, representing a novel application of iPSCs. PMID:27019637
Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice
Ogawa, Yasuhiro; Eto, Akira; Miyake, Chisato; Tsuchida, Nana; Miyake, Haruka; Takaku, Yasuhiro; Hagiwara, Hiroaki; Oishi, Kazuhiko
2015-01-01
Neural crest (NC) cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0) is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP). Induced pluripotent stem cell (iPSC) technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs) exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases. PMID:26382630
Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice.
Ogawa, Yasuhiro; Eto, Akira; Miyake, Chisato; Tsuchida, Nana; Miyake, Haruka; Takaku, Yasuhiro; Hagiwara, Hiroaki; Oishi, Kazuhiko
2015-01-01
Neural crest (NC) cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0) is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP). Induced pluripotent stem cell (iPSC) technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs) exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases.
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
Burkhardt, Matthew F; Martinez, Fernando J; Wright, Sarah; Ramos, Carla; Volfson, Dmitri; Mason, Michael; Garnes, Jeff; Dang, Vu; Lievers, Jeffery; Shoukat-Mumtaz, Uzma; Martinez, Rita; Gai, Hui; Blake, Robert; Vaisberg, Eugeni; Grskovic, Marica; Johnson, Charles; Irion, Stefan; Bright, Jessica; Cooper, Bonnie; Nguyen, Leane; Griswold-Prenner, Irene; Javaherian, Ashkan
2016-01-01
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients’ fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modelling for drug screening. PMID:23891805
Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.
Mertens, Jerome; Wang, Qiu-Wen; Kim, Yongsung; Yu, Diana X; Pham, Son; Yang, Bo; Zheng, Yi; Diffenderfer, Kenneth E; Zhang, Jian; Soltani, Sheila; Eames, Tameji; Schafer, Simon T; Boyer, Leah; Marchetto, Maria C; Nurnberger, John I; Calabrese, Joseph R; Ødegaard, Ketil J; McCarthy, Michael J; Zandi, Peter P; Alda, Martin; Alba, Martin; Nievergelt, Caroline M; Mi, Shuangli; Brennand, Kristen J; Kelsoe, John R; Gage, Fred H; Yao, Jun
2015-11-05
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Czepiel, Marcin; Leicher, Lasse; Becker, Katja; Boddeke, Erik
2014-01-01
Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible source for transplantable autologous oligodendrocyte precursors (OPCs). The first transplantation studies in animal models for demyelination with iPSC-derived OPCs demonstrated their survival and remyelinating capacity, but also revealed their limited migration capacity. In the present study, we induced overexpression of the polysialylating enzyme sialyltransferase X (STX) in iPSC-derived OPCs to stimulate the production of polysialic acid-neuronal cell adhesion molecules (PSA-NCAMs), known to promote and facilitate the migration of OPCs. The STX-overexpressing iPSC-derived OPCs showed a normal differentiation and maturation pattern and were able to downregulate PSA-NCAMs when they became myelin-forming oligodendrocytes. After implantation in the demyelinated corpus callosum of cuprizone-fed mice, STX-expressing iPSC-derived OPCs demonstrated a significant increase in migration along the axons. Our findings suggest that the reach and efficacy of iPSC-derived OPC transplantation can be improved by stimulating the OPC migration potential via specific gene modulation. PMID:25069776
Taura, Akiko; Nakashima, Noriyuki; Ohnishi, Hiroe; Nakagawa, Takayuki; Funabiki, Kazuo; Ito, Juichi; Omori, Koichi
2016-10-01
Vestibular ganglion cells, which convey sense of motion from vestibular hair cells to the brainstem, are known to degenerate with aging and after vestibular neuritis. Thus, regeneration of vestibular ganglion cells is important to aid in the recovery of balance for associated disorders. The present study derived hNSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mouse utricle tissues. After a 7-day co-culture period, histological and electrophysiological examinations of transplanted hNSCs were performed. Injected hNSC-derived cells produced elongated axon-like structures within the utricle tissue that made contact with vestibular hair cells. A proportion of hNSC-derived cells showed spontaneous firing activities, similar to those observed in cultured mouse vestibular ganglion cells. However, hNSC-derived cells around the mouse utricle persisted as immature neurons or occasionally differentiated into putative astrocytes. Moreover, electrophysiological examination showed hNSC-derived cells around utricles did not exhibit any obvious spontaneous firing activities. Injected human neural stem cells (hNSCs) showed signs of morphological maturation including reconnection to denervated hair cells and partial physiological maturation, suggesting hNSC-derived cells possibly differentiated into neurons.
Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent
2017-07-18
Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum
2017-07-01
The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.
Induced pluripotent stem cell technology: Toward the future of cardiac arrhythmias.
Gnecchi, Massimiliano; Stefanello, Manuela; Mura, Manuela
2017-06-15
The development of human induced pluripotent stem cell (iPSC) technology has revitalized the efforts made in the last decade to exploit the potential of human embryonic stem cells (ESCs) for scientific research. In the field of cardiac arrhythmias, the possibility of generating an unlimited amount of patient-specific cardiomyocyte-like cells (iPSC-CMs) has clear advantages compared with the use of ESC-derived cardiac cells. In particular, with the introduction and implementation of the large-scale precision medicine initiative, we anticipate that the iPSC technology will play an important role in the advancement of cardiovascular research and medicine. This platform is not free from technical limitations that must be carefully taken into account; however, the utility of iPSC-CMs in disease modeling and drug testing studies is hardly questionable. Here, we summarize some of the progresses made in the field of iPSC technology applied to inherited cardiac arrhythmias, with particular emphasis on the use of iPSC-CMs for modelling the long QT syndrome and for the development of personalized drug and molecular therapies. The growing role of iPSC technology in the practice of precision medicine will also be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient.
Bossolasco, Patrizia; Sassone, Francesca; Gumina, Valentina; Peverelli, Silvia; Garzo, Maria; Silani, Vincenzo
2018-05-17
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease, mainly affecting the motor neurons (MNs) and without effective therapy. Drug screening is hampered by the lack of satisfactory experimental and pre-clinical models. Induced pluripotent stem cells (iPSCs) could help to define disease mechanisms and therapeutic strategies as they could be differentiated into MNs, otherwise inaccessible from living humans. In this study, given the seminal role of TDP-43 in ALS pathophysiology, MNs were obtained from peripheral blood mononuclear cells-derived iPSCs of an ALS patient carrying a p.A382T TARDBP mutation and a healthy donor. Venous samples were preferred to fibroblasts for their ease of collection and no requirement for time consuming extended cultures before experimentation. iPSCs were characterized for expression of specific markers, spontaneously differentiated into primary germ layers and, finally, into MNs. No differences were observed between the mutated ALS patient and the control MNs with most of the cells displaying a nuclear localization of the TDP-43 protein. In conclusion, we here demonstrated for the first time that human TARDBP mutated MNs can be successfully obtained exploiting the reprogramming and differentiation ability of peripheral blood cells, an easily accessible source from any patient. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Fields, Mark; Cai, Hui; Gong, Jie; Del Priore, Lucian
2016-12-08
The field of stem cell biology has rapidly evolved in the last few decades. In the area of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells and their functional behavior has been tested in vitro and in vivo in animal models. Additionally, iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for novel approaches in disease modeling and drug development platforms. Clinical trials are currently testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology as a viable option for cell replacement therapy in retinal degeneration.
Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet
2017-08-01
Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.
NF-κB activation impairs somatic cell reprogramming in ageing.
Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos
2015-08-01
Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.
Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2015-07-01
Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.
Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.
2015-01-01
Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448
Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta
2016-12-13
Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.
Shum, Carole; Macedo, Sara C.; Warre-Cornish, Katherine; Cocks, Graham; Price, Jack; Srivastava, Deepak P.
2015-01-01
This article is part of a Special Issue “Estradiol and Cognition”. Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic “makeup” of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics. PMID:26143621
Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E
2015-05-01
Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.
Fluri, David A.; Tonge, Peter D.; Song, Hannah; Baptista, Ricardo P.; Shakiba, Nika; Shukla, Shreya; Clarke, Geoffrey; Nagy, Andras; Zandstra, Peter W.
2016-01-01
We demonstrate derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension (S) reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor expressing cells based on their differential survival and proliferation in suspension. Seamless integration of SiPSC reprogramming and directed differentiation enabled the scalable production of functionally and phenotypically defined cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step towards the development of a robust PSC generation, expansion and differentiation technology. PMID:22447133
Lin, Yang; Gil, Chang-Hyun; Yoder, Mervin C
2017-11-01
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols. © 2017 American Heart Association, Inc.
Induced pluripotent stem cells for the treatment of stroke: the potential and the pitfalls.
Yu, Fenggang; Li, Yingying; Morshead, Cindi M
2013-09-01
The extraordinary discovery of induced pluripotent stem cells (iPSCs) has led to the very real possibility that patient-specific cell therapy can be realized. The potential to develop cell replacement therapies outside the ethical and legal limitations, has initiated a new era of hope for regenerative strategies to treat human neurological disease including stroke. In this article, we will review and compare the current approaches to derive iPSCs from different somatic cells, and the induction into neuronal phenotypes, considering the advantages and disadvantages to the methodologies of derivation. We will highlight the work relating to the use of iPSC-based therapies in models of stroke and their potential use in clinical trials. Finally, we will consider future directions and areas of exploration which may promote the realization of iPSC-based cell replacement strategies for the treatment of stroke.
Wang, Ping; Lin, Mingyan; Pedrosa, Erika; Hrabovsky, Anastasia; Zhang, Zheng; Guo, Wenjun; Lachman, Herbert M; Zheng, Deyou
2015-01-01
Disruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions, and its targets are enriched with ASD-associated genes. To further understand the molecular links between CHD8 functions and ASD, we have applied the CRISPR/Cas9 technology to knockout one copy of CHD8 in induced pluripotent stem cells (iPSCs) to better mimic the loss-of-function status that would exist in the developing human embryo prior to neuronal differentiation. We then carried out transcriptomic and bioinformatic analyses of neural progenitors and neurons derived from the CHD8 mutant iPSCs. Transcriptome profiling revealed that CHD8 hemizygosity (CHD8 (+/-)) affected the expression of several thousands of genes in neural progenitors and early differentiating neurons. The differentially expressed genes were enriched for functions of neural development, β-catenin/Wnt signaling, extracellular matrix, and skeletal system development. They also exhibited significant overlap with genes previously associated with autism and schizophrenia, as well as the downstream transcriptional targets of multiple genes implicated in autism. Providing important insight into how CHD8 mutations might give rise to macrocephaly, we found that seven of the twelve genes associated with human brain volume or head size by genome-wide association studies (e.g., HGMA2) were dysregulated in CHD8 (+/-) neural progenitors or neurons. We have established a renewable source of CHD8 (+/-) iPSC lines that would be valuable for investigating the molecular and cellular functions of CHD8. Transcriptomic profiling showed that CHD8 regulates multiple genes implicated in ASD pathogenesis and genes associated with brain volume.
Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts
Moura, Michelle B.; Momcilovic, Olga; Easley, Charles A.; Ramalho-Santos, João; Van Houten, Bennett; Schatten, Gerald
2011-01-01
Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). PMID:21698063
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.
Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.
Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru
2016-01-01
The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.
Lieberman, Richard; Kranzler, Henry R; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan
2015-09-01
Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. Copyright © 2015 by the Research Society on Alcoholism.
Bahmad, Hisham; Hadadeh, Ola; Chamaa, Farah; Cheaito, Katia; Darwish, Batoul; Makkawi, Ahmad-Kareem; Abou-Kheir, Wassim
2017-01-01
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro . The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung
2017-01-01
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. PMID:28335495
Mouka, Aurélie; Izard, Vincent; Tachdjian, Gérard; Brisset, Sophie; Yates, Frank; Mayeur, Anne; Drévillon, Loïc; Jarray, Rafika; Leboulch, Philippe; Maouche-Chrétien, Leila; Tosca, Lucie
2017-01-01
Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development. PMID:28045072
CRISPR/Cas9 system and its applications in human hematopoietic cells.
Hu, Xiaotang
2016-11-01
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Christensen, Chloe L; Choy, Francis Y M
2017-02-24
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient's cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient's cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed.
Chow, Maggie; Boheler, Kenneth R; Li, Ronald A
2013-08-14
Heart diseases remain a major cause of mortality and morbidity worldwide. However, terminally differentiated human adult cardiomyocytes (CMs) possess a very limited innate ability to regenerate. Directed differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into CMs has enabled clinicians and researchers to pursue the novel therapeutic paradigm of cell-based cardiac regeneration. In addition to tissue engineering and transplantation studies, the need for functional CMs has also prompted researchers to explore molecular pathways and develop strategies to improve the quality, purity and quantity of hESC-derived and iPSC-derived CMs. In this review, we describe various approaches in directed CM differentiation and driven maturation, and discuss potential limitations associated with hESCs and iPSCs, with an emphasis on the role of epigenetic regulation and chromatin remodeling, in the context of the potential and challenges of using hESC-CMs and iPSC-CMs for drug discovery and toxicity screening, disease modeling, and clinical applications.
iPS cells to model CDKL5-related disorders
Amenduni, Mariangela; De Filippis, Roberta; Cheung, Aaron Y L; Disciglio, Vittoria; Epistolato, Maria Carmela; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hayek, Youssef; Renieri, Alessandra; Ellis, James; Meloni, Ilaria
2011-01-01
Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro. PMID:21750574
iPS cells to model CDKL5-related disorders.
Amenduni, Mariangela; De Filippis, Roberta; Cheung, Aaron Y L; Disciglio, Vittoria; Epistolato, Maria Carmela; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hayek, Youssef; Renieri, Alessandra; Ellis, James; Meloni, Ilaria
2011-12-01
Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.
Disease modeling using human induced pluripotent stem cells: lessons from the liver.
Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F
2015-01-01
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru
2014-05-01
The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.
In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs.
Wu, Yong; Hu, Zhiqing; Li, Zhuo; Pang, Jialun; Feng, Mai; Hu, Xuyun; Wang, Xiaolin; Lin-Peng, Siyuan; Liu, Bo; Chen, Fangping; Wu, Lingqian; Liang, Desheng
2016-01-08
Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5' part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23-26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition.
In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs
Wu, Yong; Hu, Zhiqing; Li, Zhuo; Pang, Jialun; Feng, Mai; Hu, Xuyun; Wang, Xiaolin; Lin-Peng, Siyuan; Liu, Bo; Chen, Fangping; Wu, Lingqian; Liang, Desheng
2016-01-01
Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5′ part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23–26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition. PMID:26743572
Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
Merkert, Sylvia; Martin, Ulrich
2016-06-24
The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.
Stelzer, Yonatan; Sagi, Ido; Yanuka, Ofra; Eiges, Rachel; Benvenisty, Nissim
2014-06-01
Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.
Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.
Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul
2017-05-15
Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.
Hazim, Roni A; Karumbayaram, Saravanan; Jiang, Mei; Dimashkie, Anupama; Lopes, Vanda S; Li, Douran; Burgess, Barry L; Vijayaraj, Preethi; Alva-Ornelas, Jackelyn A; Zack, Jerome A; Kohn, Donald B; Gomperts, Brigitte N; Pyle, April D; Lowry, William E; Williams, David S
2017-10-02
Dysfunction of the retinal pigment epithelium (RPE) is implicated in numerous forms of retinal degeneration. The readily accessible environment of the eye makes it particularly suitable for the transplantation of RPE cells, which can now be derived from autologous induced pluripotent stem cells (iPSCs), to treat retinal degeneration. For RPE transplantation to become feasible in the clinic, patient-specific somatic cells should be reprogrammed to iPSCs without the introduction of reprogramming genes into the genome of the host cell, and then subsequently differentiated into RPE cells that are well characterized for safety and functionality prior to transplantation. We have reprogrammed human dermal fibroblasts to iPSCs using nonintegrating RNA, and differentiated the iPSCs toward an RPE fate (iPSC-RPE), under Good Manufacturing Practice (GMP)-compatible conditions. Using highly sensitive assays for cell polarity, structure, organelle trafficking, and function, we found that iPSC-RPE cells in culture exhibited key characteristics of native RPE. Importantly, we demonstrate for the first time with any stem cell-derived RPE cell that live cells are able to support dynamic organelle transport. This highly sensitive test is critical for RPE cells intended for transplantation, since defects in intracellular motility have been shown to promote RPE pathogenesis akin to that found in macular degeneration. To test their capabilities for in-vivo transplantation, we injected the iPSC-RPE cells into the subretinal space of a mouse model of retinal degeneration, and demonstrated that the transplanted cells are capable of rescuing lost RPE function. This report documents the successful generation, under GMP-compatible conditions, of human iPSC-RPE cells that possess specific characteristics of healthy RPE. The report adds to a growing literature on the utility of human iPSC-RPE cells for cell culture investigations on pathogenicity and for therapeutic transplantation, by corroborating findings of others, and providing important new information on essential RPE cell biological properties.
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443
The Immunogenicity and Immune Tolerance of Pluripotent Stem Cell Derivatives
Liu, Xin; Li, Wenjuan; Fu, Xuemei; Xu, Yang
2017-01-01
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy. PMID:28626459
Stem-cell Based Therapies for Epidermolysis Bullosa
2013-10-01
This application addresses the FY11 PRMRP Topic Area, Epidermolysis Bullosa, and proposes to develop stem - cell based therapies for junctional...accomplish this goal, we are proposing to develop stem - cell based therapies for EB using autologous induced pluripotent stem cells (iPSCs) derived from
Stem-Cell Based Therapies for Epidermolysis Bullosa
2014-10-01
This application addresses the FY11 PRMRP Topic Area, Epidermolysis Bullosa, and proposes to develop stem - cell based therapies for junctional...accomplish this goal, we are proposing to develop stem - cell based therapies for EB using autologous induced pluripotent stem cells (iPSCs) derived from
Feeder-free reprogramming of human fibroblasts with messenger RNA.
Warren, Luigi; Wang, Jiwu
2013-11-13
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols. Copyright © 2013 John Wiley & Sons, Inc.
The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis
Aldiri, Issam; Xu, Beisi; Wang, Lu; Chen, Xiang; Hiler, Daniel; Griffiths, Lyra; Valentine, Marc; Shirinifard, Abbas; Thiagarajan, Suresh; Sablauer, Andras; Barabas, Marie-Elizabeth; Zhang, Jiakun; Johnson, Dianna; Frase, Sharon; Zhou, Xin; Easton, John; Zhang, Jinghui; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Dyer, Michael A.
2017-01-01
SUMMARY In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell type–specific differentiation programs. We identified developmental stage–specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to a terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of normal retina than was that of retina-derived iPSCs, and we identified retina-specific epigenetic memory. PMID:28472656
Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming
2018-01-01
Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.
Christensen, Chloe L.; Choy, Francis Y. M.
2017-01-01
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient’s cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient’s cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed. PMID:28933359
Nishimura, Ken; Ohtaka, Manami; Takada, Hitomi; Kurisaki, Akira; Tran, Nhi Vo Kieu; Tran, Yen Thi Hai; Hisatake, Koji; Sano, Masayuki; Nakanishi, Mahito
2017-08-01
Transgene-free induced pluripotent stem cells (iPSCs) are valuable for both basic research and potential clinical applications. We previously reported that a replication-defective and persistent Sendai virus (SeVdp) vector harboring four reprogramming factors (SeVdp-iPS) can efficiently induce generation of transgene-free iPSCs. This vector can express all four factors stably and simultaneously without chromosomal integration and can be eliminated completely from reprogrammed cells by suppressing vector-derived RNA-dependent RNA polymerase. Here, we describe an improved SeVdp-iPS vector (SeVdp(KOSM)302L) that is automatically erased in response to microRNA-302 (miR-302), uniquely expressed in pluripotent stem cells (PSCs). Gene expression and genome replication of the SeVdp-302L vector, which contains miRNA-302a target sequences at the 3' untranslated region of L mRNA, are strongly suppressed in PSCs. Consequently, SeVdp(KOSM)302L induces expression of reprogramming factors in somatic cells, while it is automatically erased from cells successfully reprogrammed to express miR-302. As this vector can reprogram somatic cells into transgene-free iPSCs without the aid of exogenous short interfering RNA (siRNA), the results we present here demonstrate that this vector may become an invaluable tool for the generation of human iPSCs for future clinical applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.
Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego
2011-07-01
Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.
Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos
2010-01-01
Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance. PMID:20419139
Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Houlden, Henry
2017-01-01
Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. PMID:28360103
Numasawa-Kuroiwa, Yuko; Okada, Yohei; Shibata, Shinsuke; Kishi, Noriyuki; Akamatsu, Wado; Shoji, Masanobu; Nakanishi, Atsushi; Oyama, Manabu; Osaka, Hitoshi; Inoue, Ken; Takahashi, Kazutoshi; Yamanaka, Shinya; Kosaki, Kenjiro; Takahashi, Takao; Okano, Hideyuki
2014-01-01
Summary Pelizaeus-Merzbacher disease (PMD) is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER) in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs) from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation. PMID:24936452
Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs.
Yamashita, Akihiro; Morioka, Miho; Yahara, Yasuhito; Okada, Minoru; Kobayashi, Tomohito; Kuriyama, Shinichi; Matsuda, Shuichi; Tsumaki, Noriyuki
2015-03-10
Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs
Yamashita, Akihiro; Morioka, Miho; Yahara, Yasuhito; Okada, Minoru; Kobayashi, Tomohito; Kuriyama, Shinichi; Matsuda, Shuichi; Tsumaki, Noriyuki
2015-01-01
Summary Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects. PMID:25733017
Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin
2015-01-01
Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967
Nootropic agents enhance the recruitment of fast GABAA inhibition in rat neocortex.
Ling, Douglas S F; Benardo, Larry S
2005-07-01
It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses in pyramidal cells. This suggests that the therapeutic actions of nootropic agents may be partly mediated through enhanced cortical GABAergic inhibition, and not solely through the direct modification of excitation, as previously thought.
Eicher, Manuela; Ribi, Karin; Senn-Dubey, Catherine; Senn, Stefanie; Ballabeni, Pierluigi; Betticher, Daniel
2018-04-14
We developed 2 intensity levels of a complex intervention for interprofessional supportive care in cancer (IPSC-C) to facilitate resilience and reduce unmet supportive care needs. We aimed to test the feasibility, acceptability, and preliminary effectiveness of both intensity levels in routine practice. In a randomized, noncomparative phase II trial, newly diagnosed patients received either low (LI-IPSC-C) or high (HI-IPSC-C) intensity interventions. Low-intensity-interprofessional supportive care in cancer (LI-IPSC-C) consisted of 3 electronic assessments of resilience, unmet supportive care needs, mood, and coping effort over 16 weeks with an immediate feedback to clinicians including tailored intervention recommendations to facilitate resilience and supportive care. High-intensity-interprofessional supportive care in cancer (HI-IPSC-C) added 5 structured consultations (face-to-face and telephone) provided by specialized nurses. Primary outcome was a change ≥5 in resilience score on the Connor-Davidson Resilience Scale (CD-RISC). Secondary outcomes were unmet supportive care needs, mood, and coping effort. We assessed feasibility by clinician-provided tailored interventions as recommended and acceptability through qualitative interviews with clinicians and patients. In the LI-IPSC-C arm, 11 of 41, in the HI-IPSC-C arm 17 of 43, patients increased resilience scores by ≥5. Relatively more patients decreased unmet needs in HI-IPSC-C arm. Mood, in both arms, and coping effort, in HI-IPSC-C arm, improved meaningfully. Feasibility was limited for the LI-IPSC-C arm, mainly due to lack of time; acceptability was high in both arms. Neither LI-IPSC-C nor HI-IPSC-C interventions reached the desired threshold. HI-IPSC-C showed positive effects on secondary outcomes and was feasible. Resilience as measured by the CD-RISC may not be the optimal outcome measure for this intervention. Copyright © 2018 John Wiley & Sons, Ltd.
Watmuff, Bradley; Berkovitch, Shaunna S; Huang, Joanne H; Iaconelli, Jonathan; Toffel, Steven; Karmacharya, Rakesh
2016-06-01
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances. Copyright © 2016 Elsevier Inc. All rights reserved.
Chien, Yueh; Liao, Yi-Wen; Liu, Dean-Mo; Lin, Heng-Liang; Chen, Shih-Jen; Chen, Hen-Li; Peng, Chi-Hsien; Liang, Chang-Min; Mou, Chung-Yuan; Chiou, Shih-Hwa
2012-11-01
Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but whether iPSCs can promote corneal reconstruction remains undetermined. In this study, we successfully reprogrammed human corneal keratocytes into iPSCs. To prevent feeder cell contamination, these iPSCs were cultured onto a serum- and feeder-free system in which they remained stable through 30 passages and showed ESC-like pluripotent property. To investigate the availability of iPSCs as bioengineered substitutes in corneal repair, we developed a thermo-gelling injectable amphiphatic carboxymethyl-hexanoyl chitosan (CHC) nanoscale hydrogel and found that such gel increased the viability and CD44+proportion of iPSCs, and maintained their stem-cell like gene expression, in the presence of culture media. Combined treatment of iPSC with CHC hydrogel (iPSC/CHC hydrogel) facilitated wound healing in surgical abrasion-injured corneas. In severe corneal damage induced by alkaline, iPSC/CHC hydrogel enhanced corneal reconstruction by downregulating oxidative stress and recruiting endogenous epithelial cells to restore corneal epithelial thickness. Therefore, we demonstrated that these human keratocyte-reprogrammed iPSCs, when combined with CHC hydrogel, can be used as a rapid delivery system to efficiently enhance corneal wound healing. In addition, iPSCs reprogrammed from corneal surgical residues may serve as an alternative cell source for personalized therapies for human corneal damage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recent technological updates and clinical applications of induced pluripotent stem cells.
Diecke, Sebastian; Jung, Seung Min; Lee, Jaecheol; Ju, Ji Hyeon
2014-09-01
Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.
Kamon, Masayoshi; Katano, Miyuki; Hiraki-Kamon, Keiko; Hishida, Tomoaki; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Suzuki, Ayumu; Hirasaki, Masataka; Ueda, Atsushi; Nishimoto, Masazumi; Kato, Hidemasa
2014-01-01
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by defined factors. However, substantial cell numbers subjected to iPSC induction stray from the main reprogramming route and are immortalized as partial iPSCs. These partial iPSCs can become genuine iPSCs by exposure to the ground state condition. However, such conversion is only possible for mouse partial iPSCs, and it is not applicable to human cells. Moreover, the molecular basis of this conversion is completely unknown. Therefore, we performed genome-wide screening with a piggyBac vector to identify genes involved in conversion from partial to genuine iPSCs. This screening led to identification of Cnot2, one of the core components of the Ccr4-Not complex. Subsequent analyses revealed that other core components, Cnot1 and Cnot3, also contributed to the conversion. Thus, our data have uncovered a novel role of core components of the Ccr4-Not complex as regulators of transition from partial to genuine iPSCs. PMID:24200330
Toward a 3D model of human brain development for studying gene/environment interactions
2013-01-01
This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology. PMID:24564953
Roadblocks en route to the clinical application of induced pluripotent stem cells.
Lowry, William E; Quan, William L
2010-03-01
Since the first studies of human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs), the stem-cell field has been abuzz with the promise that these pluripotent populations will one day be a powerful therapeutic tool. Although it has been proposed that hiPSCs will supersede hESCs with respect to their research and/or clinical potential because of the ease of their derivation and the ability to create immunologically matched iPSCs for each individual patient, recent evidence suggests that iPSCs in fact have several underappreciated characteristics that might mean they are less suitable for clinical application. Continuing research is revealing the similarities, differences and deficiencies of various pluripotent stem-cell populations, and suggests that many years will pass before the clinical utility of hESCs and hiPSCs is realized. There are a plethora of ethical, logistical and technical roadblocks on the route to the clinical application of pluripotent stem cells, particularly of iPSCs. In this Essay, we discuss what we believe are important issues that should be considered when attempting to bring hiPSC-based technology to the clinic.
Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.
Chin, Eunice W M; Marcy, Guillaume; Yoon, Su-In; Ma, Dongliang; Rosales, Francisco J; Augustine, George J; Goh, Eyleen L K
2016-09-01
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.
Overcoming reprogramming resistance of Fanconi anemia cells
Müller, Lars U. W.; Milsom, Michael D.; Harris, Chad E.; Vyas, Rutesh; Brumme, Kristina M.; Parmar, Kalindi; Moreau, Lisa A.; Schambach, Axel; Park, In-Hyun; London, Wendy B.; Strait, Kelly; Schlaeger, Thorsten; DeVine, Alexander L.; Grassman, Elke; D'Andrea, Alan; Daley, George Q.
2012-01-01
Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs. PMID:22371882
Wong, Chui-Wei; Chen, You-Tzung; Chien, Chung-Liang; Yu, Tien-Yu; Rwei, Syang-Peng; Hsu, Shan-Hui
2018-01-01
The 3D bioprinting and cell/tissue printing techniques open new possibilities for future applications. To facilitate the 3D bioprinting process, a large amount of living cells are required. Induced pluripotent stem cells (iPSCs) represent a promising cell source for bioprinting. However, the maintenance and expansion of undifferentiated iPSCs are expensive and time consuming. Therefore, in this study a culture method to obtain a sufficient amount of healthy and undifferentiated iPSCs in a short-term period was established. The iPSCs could be passaged for twice on tissue culture polystyrene (TCPS) dish with the conditional medium and could adapt to the feeder-free environment. Feeder-free dishes were further prepared from chitosan, chitosan-hyaluronan, silk fibroin, and polyurethane (PU1 and PU2) two-dimensional substrates. The iPSCs cultured on the chitosan substrates showed a higher proliferation rate without losing the stemness feature. Among the different materials, PU2 could be prepared as a thermoresponsive hydrogel, which was a potential ink for 3D bioprinting. The iPSCs cultured on PU2 substrates well survived when further embedded in PU2 hydrogel. Moreover, PU2 hydrogel printed with iPSCs remained structural integrity. The use of PU2 hydrogel to embed iPSCs reduced the injury to iPSCs by shear stress. These results indicate that iPSCs could be expanded on chitosan or PU2 membranes without the feeder layer and then printed in PU2 hydrogel. The combination of these steps could offer a new possibility for future applications of iPSC-based 3D bioprinting in tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong; Wang, Yixuan; Gao, Shaorong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. ©AlphaMed Press.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. Significance In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. PMID:26676643
Zhang, Hong-Mei; Chen, Shao-Rui; Matsui, Minoru; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin
2006-03-01
Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.
Singh, Vimal K.; Kalsan, Manisha; Kumar, Neeraj; Saini, Abhishek; Chandra, Ramesh
2015-01-01
Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner. PMID:25699255
Williams, Stephen R; Buhl, Eberhard H; Mody, Istvan
1998-01-01
The properties of GABAA receptor-mediated spontaneous IPSCs generated in hippocampal dentate granule neurones were analysed using whole-cell voltage-clamp techniques in order to explore the functional consequences of the low number (6–12) and close proximity of synaptic contacts made by single GABAergic interneurones. Spontaneous IPSCs (sIPSCs) occurred with a frequency of 14.0 ± 9.1 Hz (n = 31) and revealed a multi-modal positively skewed amplitude distribution (39.0 ± 19.8 pA, median values). The variance of 10–90 % rise times and decay kinetics between IPSCs decreased with increasing peak amplitude. Larger amplitude events had significantly faster rise times, consistent with their site of generation being proximal to the soma. The decay kinetics of sIPSCs did not significantly change with amplitude. Large amplitude sIPSCs occurred singularly or in discrete bursts, repeated regularly at low frequency. The rising phase of such sIPSCs were multi-phasic, composed of clear step-like inflections that were not a product of noise. The variability between the rising phase of individual sIPSCs was quantified by calculating their standard deviation, which produced fast rising (0.22 ± 0.05 ms time to peak, n = 16) functions with half-widths of 0.38 ± 0.10 ms, which declined to plateaux. Computer simulations demonstrated that IPSCs with properties similar to those recorded experimentally could be generated by the linear summation of groups of temporally dispersed component events. Standard deviation functions of the rising phase of simulated IPSCs accurately described distributions of the temporal dispersion of unitary components. The GABA uptake inhibitor (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-enl-yl] nipecotic acid (tiagabine) (10 μM, n = 12) significantly prolonged the decay of mIPSCs (6.5 ± 0.8 to 8.7 ± 1.0 ms, median values) and sIPSCs (6.2 ± 0.4 to 7.3 ± 1.2 ms, median values), but failed to alter the frequency of occurrence, 10–90 % rise times or peak amplitude of events. The application of flurazepam (30 μM, n = 7; 50 μM, n = 4) prolonged the decay of sIPSCs regardless of their amplitude. These data indicate that sIPSCs are formed by the summation of unitary components that occur asynchronously and that GABA released from multiple sites has independent postsynaptic actions. PMID:9705998
Ishigaki, Hirohito; Maeda, Toshinaga; Inoue, Hirokazu; Akagi, Tsuyoshi; Sasamura, Takako; Ishida, Hideaki; Inubushi, Toshiro; Okahara, Junko; Shiina, Takashi; Nakayama, Misako; Itoh, Yasushi; Ogasawara, Kazumasa
2017-11-01
Immune surveillance is a critical component of the antitumor response in vivo , yet the specific components of the immune system involved in this regulatory response remain unclear. In this study, we demonstrate that autoantibodies can mitigate tumor growth in vitro and in vivo We generated two cancer cell lines, embryonal carcinoma and glioblastoma cell lines, from monkey-induced pluripotent stem cells (iPSC) carrying a homozygous haplotype of major histocompatibility complex (MHC, Mafa in Macaca fascicularis). To establish a monkey cancer model, we transplanted these cells into monkeys carrying the matched Mafa haplotype in one of the chromosomes. Neither Mafa-homozygous cancer cell line grew in monkeys carrying the matched Mafa haplotype heterozygously. We detected in the plasma of these monkeys an IgG autoantibody against GRP94, a heat shock protein. Injection of the plasma prevented growth of the tumor cells in immunodeficient mice, whereas plasma IgG depleted of GRP94 IgG exhibited reduced killing activity against cancer cells in vitro These results indicate that humoral immunity, including autoantibodies against GRP94, plays a role in cancer immune surveillance. Cancer Res; 77(21); 6001-10. ©2017 AACR . ©2017 American Association for Cancer Research.
Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations
Bilousova, Ganna; Roop, Dennis R.
2014-01-01
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology. PMID:25368014
Human induced pluripotent stem cell-derived beating cardiac tissues on paper.
Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua
2015-11-21
There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.
Guo, Q; Mintier, G; Ma-Edmonds, M; Storton, D; Wang, X; Xiao, X; Kienzle, B; Zhao, D; Feder, John N
2018-02-01
Using CRISPR/Cas9 delivered as a RNA modality in conjunction with a lipid specifically formulated for large RNA molecules, we demonstrate that homology directed repair (HDR) rates between 20-40% can be achieved in induced pluripotent stem cells (iPSC). Furthermore, low HDR rates (between 1-20%) can be enhanced two- to ten-fold in both iPSCs and HEK293 cells by 'cold shocking' cells at 32 °C for 24-48 hours following transfection. This method can also increases the proportion of loci that have undergone complete sequence conversion across the donor sequence, or 'perfect HDR', as opposed to partial sequence conversion where nucleotides more distal to the CRISPR cut site are less efficiently incorporated ('partial HDR'). We demonstrate that the structure of the single-stranded DNA oligo donor can influence the fidelity of HDR, with oligos symmetric with respect to the CRISPR cleavage site and complementary to the target strand being more efficient at directing 'perfect HDR' compared to asymmetric non-target strand complementary oligos. Our protocol represents an efficient method for making CRISPR-mediated, specific DNA sequence changes within the genome that will facilitate the rapid generation of genetic models of human disease in iPSCs as well as other genome engineered cell lines.
Martínez-Cerdeño, Veronica; Barrilleaux, Bonnie L; McDonough, Ashley; Ariza, Jeanelle; Yuen, Benjamin T K; Somanath, Priyanka; Le, Catherine T; Steward, Craig; Horton-Sparks, Kayla; Knoepfler, Paul S
2017-10-01
Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.
Chang, Hua-Ming; Liao, Yi-Wen; Chiang, Chih-Hung; Chen, Yi-Jen; Lai, Ying-Hsiu; Chang, Yuh-Lih; Chen, Hen-Li; Jeng, Shaw-Yeu; Hsieh, Jung-Hung; Peng, Chi-Hsien; Li, Hsin-Yang; Chien, Yueh; Chen, Szu-Yu; Chen, Liang-Kung; Huo, Teh-Ia
2012-01-01
The only curative treatment for hepatic failure is liver transplantation. Unfortunately, this treatment has several major limitations, as for example donor organ shortage. A previous report demonstrated that transplantation of induced pluripotent stem cells without reprogramming factor c-Myc (3-genes iPSCs) attenuates thioacetamide-induced hepatic failure with minimal incidence of tumorigenicity. In this study, we investigated whether 3-genes iPSC transplantation is capable of rescuing carbon tetrachloride (CCl4)-induced fulminant hepatic failure and hepatic encephalopathy in mice. Firstly, we demonstrated that 3-genes iPSCs possess the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that exhibit biological functions and express various hepatic specific markers. 3-genes iPSCs also exhibited several antioxidant enzymes that prevented CCl4-induced reactive oxygen species production and cell death. Intraperitoneal transplantation of either 3-genes iPSCs or 3-genes iPSC-Heps significantly reduced hepatic necrotic areas, improved hepatic functions, and survival rate in CCl4-treated mice. CCl4-induced hepatic encephalopathy was also improved by 3-genes iPSC transplantation. Hoechst staining confirmed the successful engraftment of both 3-genes iPSCs and 3-genes iPSC-Heps, indicating the homing properties of these cells. The most pronounced hepatoprotective effect of iPSCs appeared to originate from the highest antioxidant activity of 3-gene iPSCs among all transplanted cells. In summary, our findings demonstrated that 3-genes iPSCs serve as an available cell source for the treatment of an experimental model of acute liver diseases. PMID:22489170
Ye, Jin-Hai; Xu, Yuan-Jin; Gao, Jun; Yan, Shi-Guo; Zhao, Jun; Tu, Qisheng; Zhang, Jin; Duan, Xue-Jing; Sommer, Cesar A.; Mostoslavsky, Gustavo; Kaplan, David; Wu, Yu-Nong; Zhang, Chen-Ping; Wang, Lin; Chen, Jake
2011-01-01
Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and thus have a great potential in application in engineered bone substitutes with bioactive scaffolds in regeneration medicine. In the current study we characterized and demonstrated the pluripotency and osteogenic differentiation of mouse iPSCs. To enhance the osteogenic differentiation of iPSCs, we then transduced the iPSCs with the potent transcription factor, nuclear matrix protein SATB2. We observed that in SATB2-overexpressing iPSCs there were increased mineral nodule formation and elevated mRNA levels of key osteogenic genes, osterix (OSX), Runx2, bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, the mRNA levels of HoxA2 was reduced after SATB2 overexpression in iPSCs. The SATB2-overexpressing iPSCs were then combined with silk scaffolds and transplanted into critical-size calvarial bone defects created in nude mice. Five weeks post-surgery, radiological and micro-CT analysis revealed enhanced new bone formation in calvarial defects in SATB2 group. Histological analysis also showed increased new bone formation and mineralization in the SATB2 group. In conclusion, the results demonstrate that SATB2 facilitates the differentiation of iPSCs towards osteoblast-lineage cells by repressing HoxA2 and augmenting the functions of the osteoblast determinants Runx2, BSP and OCN. PMID:21492931
Handel, Adam E.; Chintawar, Satyan; Lalic, Tatjana; Whiteley, Emma; Vowles, Jane; Giustacchini, Alice; Argoud, Karene; Sopp, Paul; Nakanishi, Mahito; Bowden, Rory; Cowley, Sally; Newey, Sarah; Akerman, Colin; Ponting, Chris P.; Cader, M. Zameel
2016-01-01
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells. PMID:26740550
Kim, Kun-Yong; Hysolli, Eriona; Tanaka, Yoshiaki; Wang, Brandon; Jung, Yong-Wook; Pan, Xinghua; Weissman, Sherman Morton; Park, In-Hyun
2014-06-03
Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. Thus, it is still not fully understood when and how the X chromosome reactivation occurs during reprogramming. Here, we report a dynamic change in the X chromosome state throughout reprogramming, with an initial robust reactivation of the inactive X chromosome followed by an inactivation upon generation of nascent iPSC clones. iPSCs with two active X chromosomes or an eroded X chromosome arise in passaging iPSCs. These data provide important insights into the plasticity of the X chromosome of human female iPSCs and will be crucial for the future application of such cells in cell therapy and X-linked disease modeling.
An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs
Menon, Siddharth; Shailendra, Siny; Renda, Andrea; Longaker, Michael; Quarto, Natalina
2016-01-01
Stem cells are classified into embryonic stem cells and adult stem cells. An evolving alternative to conventional stem cell therapies is induced pluripotent stem cells (iPSCs), which have a multi-lineage potential comparable to conventionally acquired embryonic stem cells with the additional benefits of being less immunoreactive and avoiding many of the ethical concerns raised with the use of embryonic material. The ability to generate iPSCs from somatic cells provides tremendous promise for regenerative medicine. The breakthrough of iPSCs has raised the possibility that patient-specific iPSCs can provide autologous cells for cell therapy without the concern for immune rejection. iPSCs are also relevant tools for modeling human diseases and drugs screening. However, there are still several hurdles to overcome before iPSCs can be used for translational purposes. Here, we review the recent advances in somatic reprogramming and the challenges that must be overcome to move this strategy closer to clinical application. PMID:26805822
iPSCs to the rescue in Alzheimer's research.
Choi, Se Hoon; Tanzi, Rudolph E
2012-03-02
A crucial limitation to our understanding of Alzheimer's disease has been the inability to test hypotheses on live, patient-specific neurons. A recent study in Nature by Israel et al. (2012) reports that iPSC-derived neurons from AD patients recapitulate multiple aspects of disease pathology. Copyright © 2012 Elsevier Inc. All rights reserved.
Tom, Colton M; Younesi, Shahab; Meer, Elana; Bresee, Catherine; Godoy, Marlesa; Mattis, Virginia B
2017-11-01
Degeneration of the striatum can occur in multiple disorders with devastating consequences for the patients. Infantile infections with streptococcus, measles, or herpes can cause striatal necrosis associated with dystonia or dyskinesia; and in patients with Huntington's disease the striatum undergoes massive degeneration, leading to behavioral, psychological and movement issues, ultimately resulting in death. Currently, only supportive therapies are available for striatal degeneration. Clinical trials have shown some efficacy using transplantation of fetal-derived primary striatal progenitors. Large banks of fetal progenitors that give rise to medium spiny neurons (MSNs), the primary neuron of the striatum, are needed to make transplantation therapy a reality. However, fetal tissue is of limited supply, has ethical concerns, and is at risk of graft immunorejection. An alternative potential source of MSNs is induced pluripotent stem cells (iPSCs), adult somatic tissues reprogrammed back to a stem cell fate. Multiple publications have demonstrated the ability to differentiate striatal MSNs from iPSCs. Previous publications have demonstrated that the efficacy of fetal progenitor transplants is critically dependent upon the age of the donor embryo/fetus as well as the age of the transplant recipient. With the advent of iPSC technology, a question that remains unanswered concerns the graft's "age," which is crucial since transplanting pluripotent cells has an inherent risk of over proliferation and teratoma formation. Therefore, in order to also determine the effect of transplant recipient age on the graft, iPSCs were differentiated to three stages along a striatal differentiation paradigm and transplanted into the striatum of both neonatal and adult immunodeficient mice. This study demonstrated that increased murine transplant-recipient age (adult vs neonate) resulted in decreased graft survival and volume/rostro-caudal spread after six weeks in vivo, regardless of "age" of the cells transplanted. Importantly, this study implicates that the in vivo setting may provide a better neurogenic niche for iPSC-based modeling as compared to the in vitro setting. Together, these results recapitulate findings from fetal striatal progenitor transplantation studies and further demonstrate the influence of the host environment on cellular survival and maturation. Copyright © 2017 Elsevier Inc. All rights reserved.
Disease characterization using LQTS-specific induced pluripotent stem cells.
Egashira, Toru; Yuasa, Shinsuke; Suzuki, Tomoyuki; Aizawa, Yoshiyasu; Yamakawa, Hiroyuki; Matsuhashi, Tomohiro; Ohno, Yohei; Tohyama, Shugo; Okata, Shinichiro; Seki, Tomohisa; Kuroda, Yusuke; Yae, Kojiro; Hashimoto, Hisayuki; Tanaka, Tomofumi; Hattori, Fumiyuki; Sato, Toshiaki; Miyoshi, Shunichiro; Takatsuki, Seiji; Murata, Mitsushige; Kurokawa, Junko; Furukawa, Tetsushi; Makita, Naomasa; Aiba, Takeshi; Shimizu, Wataru; Horie, Minoru; Kamiya, Kaichiro; Kodama, Itsuo; Ogawa, Satoshi; Fukuda, Keiichi
2012-09-01
Long QT syndrome (LQTS) is an inheritable and life-threatening disease; however, it is often difficult to determine disease characteristics in sporadic cases with novel mutations, and more precise analysis is necessary for the successful development of evidence-based clinical therapies. This study thus sought to better characterize ion channel cardiac disorders using induced pluripotent stem cells (iPSCs). We reprogrammed somatic cells from a patient with sporadic LQTS and from controls, and differentiated them into cardiomyocytes through embryoid body (EB) formation. Electrophysiological analysis of the LQTS-iPSC-derived EBs using a multi-electrode array (MEA) system revealed a markedly prolonged field potential duration (FPD). The IKr blocker E4031 significantly prolonged FPD in control- and LQTS-iPSC-derived EBs and induced frequent severe arrhythmia only in LQTS-iPSC-derived EBs. The IKs blocker chromanol 293B did not prolong FPD in the LQTS-iPSC-derived EBs, but significantly prolonged FPD in the control EBs, suggesting the involvement of IKs disturbance in the patient. Patch-clamp analysis and immunostaining confirmed a dominant-negative role for 1893delC in IKs channels due to a trafficking deficiency in iPSC-derived cardiomyocytes and human embryonic kidney (HEK) cells. This study demonstrated that iPSCs could be useful to characterize LQTS disease as well as drug responses in the LQTS patient with a novel mutation. Such analyses may in turn lead to future progress in personalized medicine.
Cao, Lishuang; McDonnell, Aoibhinn; Nitzsche, Anja; Alexandrou, Aristos; Saintot, Pierre-Philippe; Loucif, Alexandre J C; Brown, Adam R; Young, Gareth; Mis, Malgorzata; Randall, Andrew; Waxman, Stephen G; Stanley, Philip; Kirby, Simon; Tarabar, Sanela; Gutteridge, Alex; Butt, Richard; McKernan, Ruth M; Whiting, Paul; Ali, Zahid; Bilsland, James; Stevens, Edward B
2016-04-20
In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients. We derived induced pluripotent stem cell (iPSC) lines from four of five subjects and produced sensory neurons that emulated the clinical phenotype of hyperexcitability and aberrant responses to heat stimuli. When we compared the severity of the clinical phenotype with the hyperexcitability of the iPSC-derived sensory neurons, we saw a trend toward a correlation for individual mutations. The in vitro IEM phenotype was sensitive to Nav1.7 blockers, including the clinical test agent. Given the importance of peripherally expressed sodium channels in many pain conditions, our approach may have broader utility for a wide range of pain and sensory conditions. Copyright © 2016, American Association for the Advancement of Science.
Hatakeyama, Hideyuki; Goto, Yu-Ichi
2016-04-01
Mitochondria contain multiple copies of their own genome (mitochondrial DNA; mtDNA). Once mitochondria are damaged by mutant mtDNA, mitochondrial dysfunction is strongly induced, followed by symptomatic appearance of mitochondrial diseases. Major genetic causes of mitochondrial diseases are defects in mtDNA, and the others are defects of mitochondria-associating genes that are encoded in nuclear DNA (nDNA). Numerous pathogenic mutations responsible for various types of mitochondrial diseases have been identified in mtDNA; however, it remains uncertain why mitochondrial diseases present a wide variety of clinical spectrum even among patients carrying the same mtDNA mutations (e.g., variations in age of onset, in affected tissues and organs, or in disease progression and phenotypic severity). Disease-relevant induced pluripotent stem cells (iPSCs) derived from mitochondrial disease patients have therefore opened new avenues for understanding the definitive genotype-phenotype relationship of affected tissues and organs in various types of mitochondrial diseases triggered by mtDNA mutations. In this concise review, we briefly summarize several recent approaches using patient-derived iPSCs and their derivatives carrying various mtDNA mutations for applications in human mitochondrial disease modeling, drug discovery, and future regenerative therapeutics. © 2016 AlphaMed Press.
Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki
2012-01-01
Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity. PMID:22068426
Pittermann, Erik; Lachmann, Nico; MacLean, Glenn; Emmrich, Stephan; Ackermann, Mania; Göhring, Gudrun; Schlegelberger, Brigitte; Welte, Karl; Schambach, Axel; Heckl, Dirk; Orkin, Stuart H; Cantz, Tobias; Klusmann, Jan-Henning
2017-06-13
Severe congenital neutropenia (SCN, Kostmann disease) is a heritable disorder characterized by a granulocytic maturation arrest. Biallelic mutations in HCLS1 associated protein X-1 ( HAX1 ) are frequently detected in affected individuals, including those of the original pedigree described by Kostmann in 1956. To date, no faithful animal model has been established to study SCN mediated by HAX1 deficiency. Here we demonstrate defective neutrophilic differentiation and compensatory monocyte overproduction from patient-derived induced pluripotent stem cells (iPSCs) carrying the homozygous HAX1 W44X nonsense mutation. Targeted correction of the HAX1 mutation using the CRISPR-Cas9 system and homologous recombination rescued neutrophil differentiation and reestablished an HAX1 and HCLS1 -centered transcription network in immature myeloid progenitors, which is involved in the regulation of apoptosis, apoptotic mitochondrial changes, and myeloid differentiation. These findings made in isogenic iPSC-derived myeloid cells highlight the complex transcriptional changes underlying Kostmann disease. Thus, we show that patient-derived HAX1 W44X -iPSCs recapitulate the Kostmann disease phenotype in vitro and confirm HAX1 mutations as the disease-causing monogenic lesion. Finally, our study paves the way for nonvirus-based gene therapy approaches in SCN.
Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation.
Paes, Bárbara Cristina Martins Fernandes; Moço, Pablo Diego; Pereira, Cristiano Gonçalves; Porto, Geciane Silveira; de Sousa Russo, Elisa Maria; Reis, Luiza Cunha Junqueira; Covas, Dimas Tadeu; Picanço-Castro, Virginia
2017-06-01
Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.
DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells
Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.
2012-01-01
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831
Genome editing in pluripotent stem cells: research and therapeutic applications.
Deleidi, Michela; Yu, Cong
2016-05-06
Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering.
Jung, Moonjung; Dunbar, Cynthia E; Winkler, Thomas
2015-12-01
The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.
Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons
Negraes, P D; Cugola, F R; Herai, R H; Trujillo, C A; Cristino, A S; Chailangkarn, T; Muotri, A R; Duvvuri, V
2017-01-01
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions, it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions, however, genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here, we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment, we identified a novel gene that appears to contribute to AN pathophysiology, TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions, especially anxiety disorders, we believe this report is its first association with AN. Moreover, our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement, and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease. PMID:28291261
Gao, Xiu-ping; Liu, Qiuli; Nair, Bindu; Wong-Riley, Margaret T.T.
2014-01-01
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesized that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesized that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single neuron optical densitometry, real-time quantitative polymerase chain reaction, and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brain stem slices of rats during the first three postnatal weeks. Our results indicated that: 1) the levels of BDNF and its high-affinity TrkB receptor mRNAs and proteins were relatively high during the first 1-1½ postnatal weeks, but dropped precipitously at P12–13 before rising again afterwards; 2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; 3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs (mIPSCs) at P12–13; and 4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying Sudden Infant Death Syndrome (SIDS). PMID:24666389
Livestock models for exploiting the promise of pluripotent stem cells.
Roberts, R Michael; Yuan, Ye; Genovese, Nicholas; Ezashi, Toshihiko
2015-01-01
Livestock species are widely used as biomedical models. Pigs, in particular, are beginning to have a significant role in regenerative medicine for testing the applicability, success, and safety of grafts derived from induced pluripotent stem cells. Animal testing must always be performed before any clinical trials are performed in humans, and pigs may sometimes be the species of choice because of their physiological and anatomical similarities to humans. Induced pluripotent stem cells (iPSC) have been generated with some success from livestock species by a variety of reprogramming procedures, but authenticated embryonic stem cells (ESC) have not. There are now several studies in which porcine iPSC have been tested for their ability to provide functional grafts in pigs. Pigs have also served as recipients for grafts derived from human iPSC. There have also been recent advances in creating pigs with severe combined immunodeficiency (SCID). Like SCID mice, these pigs are expected to be graft tolerant. Additionally, chimeric, partially humanized pigs could be sources of human organs. Another potential application of pluripotent stem cells from livestock is for the purpose of differentiating the cells into skeletal muscle, which, in turn, could be used either to produce cultured meat or to engraft into damaged muscle. None of these technologies has advanced to a stage that they have become mainstream, however. Despite the value of livestock models in regenerative medicine, only a limited number of institutions are able to use these animals. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Li, Yueying; Liu, Tie; Van Halm-Lutterodt, Nicholas; Chen, JiaYu; Su, Qingjun; Hai, Yong
2016-02-17
An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.
Modeling Axonal Defects in Hereditary Spastic Paraplegia with Human Pluripotent Stem Cells
Denton, Kyle R.; Xu, Chongchong; Shah, Harsh; Li, Xue-Jun
2016-01-01
BACKGROUND Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis (ALS). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remains largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathologic processes including axonal defects. METHODS In this article, we will frst review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summurize the findings and insights gained from studies using iPSC-based models, and discuss the challenges and future directions. RESULTS HSPs, a heterogeneous group of genetic neurodegenerative disorders, are characterized by lower extremity weakness and spasticity that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit disease-relevant axonal defects, such as impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport. CONCLUSION These patient-derived neurons offer unique tools to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy. PMID:27956894
Kallur, Therése; Blomberg, Pontus; Stenfelt, Sonya; Tryggvason, Kristian; Hovatta, Outi
2017-01-01
For quality assurance (QA) in stem cell banking, a planned system is needed to ensure that the banked products, stem cells, meet the standards required for research, clinical use, and commercial biotechnological applications. QA is process oriented, avoids, or minimizes unacceptable product defects, and particularly encompasses the management and operational systems of the bank, as well as the ethical and legal frameworks. Quality control (QC ) is product oriented and therefore ensures the stem cells of a bank are what they are expected to be. Testing is for controlling, not assuring, product quality, and is therefore a part of QC , not QA. Like QA, QC is essential for banking cells for quality research and translational application (Schwartz et al., Lancet 379:713-720, 2012). Human embryonic stem cells (hESCs), as cells derived from donated supernumerary embryos from in vitro fertilization (IVF) therapy, are different from other stem cell types in resulting from an embryo that has had two donors . This imposes important ethical and legal constraints on the utility of the cells, which, together with quite specific culture conditions, require special attention in the QA system. Importantly, although the origin and derivation of induced pluripotent stem cells (iPSCs ) differ from that of hESCs, many of the principles of QA for hESC banking are applicable to iPSC banking (Stacey et al., Cell Stem Cell 13:385-388, 2013). Furthermore, despite differences between the legal and regulatory frameworks for hESC and iPSC banking between different countries, the requirements for QA are being harmonized (Stacey et al., Cell Stem Cell 13:385-388, 2013; International Stem Cell Banking Initiative, Stem Cell Rev 5:301-314, 2009).
Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G
2017-08-14
This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.
Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y
2017-05-26
Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Freestone, Peter S; Guatteo, Ezia; Piscitelli, Fabiana; di Marzo, Vincenzo; Lipski, Janusz; Mercuri, Nicola B
2014-04-01
Endocannabinoids (eCBs) modulate synaptic transmission in the brain, but little is known of their regulatory role in nigral dopaminergic neurons, and whether transmission to these neurons is tonically inhibited by eCBs as seen in some other brain regions. Using whole-cell recording in midbrain slices, we observed potentiation of evoked IPSCs (eIPSCs) in these neurons after blocking CB1 receptors with rimonabant or LY-320,135, indicating the presence of an eCB tone reducing inhibitory synaptic transmission. Increased postsynaptic calcium buffering and block of mGluR1 or postsynaptic G-protein coupled receptors prevented this potentiation. Increasing spillover of endogenous glutamate by inhibiting uptake attenuated eIPSC amplitude, while enhancing the potentiation by rimonabant. Group I mGluR activation transiently inhibited eIPSCs, which could be prevented by GDP-β-S, increased calcium buffering or rimonabant. We explored the possibility that the dopamine-derived eCB N-arachidonoyl dopamine (NADA) is involved. The eCB tone was abolished by preventing dopamine synthesis, and enhanced by l-DOPA. It was not detected in adjacent non-dopaminergic neurons. Preventing 2-AG synthesis did not affect the tone, while inhibition of NADA production abolished it. Quantification of ventral midbrain NADA suggested a basal level that increased following prolonged depolarization or mGluR activation. Since block of the tone was not always accompanied by attenuation of depolarization-induced suppression of inhibition (DSI) and vice versa, our results indicate DSI and the eCB tone are mediated by distinct eCBs. This study provides evidence that dopamine modulates the activity of SNc neurons not only by conventional dopamine receptors, but also by CB1 receptors, potentially via NADA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells.
Geis, Franziska K; Galla, Melanie; Hoffmann, Dirk; Kuehle, Johannes; Zychlinski, Daniela; Maetzig, Tobias; Schott, Juliane W; Schwarzer, Adrian; Goffinet, Christine; Goff, Stephen P; Schambach, Axel
2017-05-31
Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.
Morrison, Michael; Bell, Jessica; George, Carol; Harmon, Shawn; Munsie, Megan; Kaye, Jane
2017-01-01
Increasingly, human induced pluripotent stem cells (iPSC) and their associated genetic and clinical information are being used in a wide range of applications, with large biobanks being established to support and increase their scientific use. The new European General Data Protection Regulations, which comes into effect in 2018, will have implications for biobanks that generate, store and allow research access to iPSC. This paper describes some of the challenges that iPSC biobanks face and suggests some points for the development of appropriate governance structures to address these new requirements. These suggestions also have implications for iPSC research in general. PMID:28976812
iPS Cells for Post-myocardial Infarction Repair: Remarkable Opportunities and Challenges
Lalit, Pratik A.; Hei, Derek J.; Raval, Amish N.; Kamp, Timothy J.
2014-01-01
Coronary artery disease with associated myocardial infarction continues to be a major cause of death and morbidity around the world despite significant advances in therapy. Patients who suffer large myocardial infarctions are at highest risk for progressive heart failure and death, and cell-based therapies offer new hope for these patients. A recently discovered cell source for cardiac repair has emerged as a result of a breakthrough reprogramming somatic cells to induced pluripotent stem cells (iPSCs). The iPSCs can proliferate indefinitely in culture and can differentiate into cardiac lineages including cardiomyocytes, smooth muscle cells, endothelial cells, and cardiac progenitors. Thus large quantities of desired cell products can be generated without being limited by cellular senescence. The iPSCs can be obtained from patients to allow autologous therapy or, alternatively, banks of HLA diverse iPSCs are possible for allogeneic therapy. Preclinical animal studies using a variety of cell preparations generated from iPSCs have shown evidence of cardiac repair. Methodology for the production of clinical grade products from human iPSCs is in place. Ongoing studies of the safety of various iPSC preparations with regard to the risk of tumor formation, immune rejection, induction of arrhythmias, and formation of stable cardiac grafts are needed as the field advances toward the first in man trials of iPSCs post-MI. PMID:24723658
Colasuonno, Fiorella; Borghi, Rossella; Niceforo, Alessia; Muzzi, Maurizio; Bertini, Enrico; Di Giulio, Andrea
2017-01-01
Induced pluripotent stem cells (iPSCs) hold great promise for developing personalized regenerative medicine, however characterization of their biological features is still incomplete. Moreover, changes occurring in long-term cultured iPSCs have been reported, suggesting these as a model of cellular aging. For this reason, we addressed the ultrastructural characterization of iPSCs, with a focus on possible time-dependent changes, involving specific cell compartments. To this aim, we comparatively analysed cultures at different timepoints, by an innovative electron microscopic technology (FIB/SEM). We observed progressive loss of cell-to-cell contacts, associated with increased occurrence of exosomes. Mitochondria gradually increased, while acquiring an elongated shape, with well-developed cristae. Such mitochondrial maturation was accompanied by their turnover, as assessed by the presence of autophagomes (undetectable in young iPSCs), some containing recognizable mitochondria. This finding was especially frequent in middle-aged iPSCs, while being occasional in aged cells, suggesting early autophagic activation followed by a decreased efficiency of the process with culturing time. Accordingly, confocal microscopy showed age-dependent alterations to the expression and distribution of autophagic markers. Interestingly, responsivity to rapamycin, highest in young iPSCs, was almost lost in aged cells. Overall, our results strongly support long-term cultured iPSCs as a model for studying relevant aspects of cellular senescence, involving intercellular communication, energy metabolism, and autophagy. PMID:29064821
Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis
Cochrane, Amy; Kelaini, Sophia; Tsifaki, Marianna; Bojdo, James; Vilà‐González, Marta; Drehmer, Daiana; Caines, Rachel; Magee, Corey; Eleftheriadou, Magdalini; Hu, Yanhua; Grieve, David; Stitt, Alan W.; Zeng, Lingfang; Xu, Qingbo
2017-01-01
Abstract The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stem cells 2017 Stem Cells 2017;35:952–966 PMID:28207177
Cardano, Marina; Marsoner, Fabio; Marcatili, Matteo; Karnavas, Thodoris; Zasso, Jacopo; Lanterna, Luigi Andrea; Conti, Luciano
2016-11-01
Peripheral blood mononuclear cells (PBMCs) were collected from 55-year old male patient with a confirmed diagnosis of hemorrhagic Moyamoya disease (MMD). PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. A footprint-free hiPSC line was characterized by the expression of pluripotency markers and a normal karyotype. These cells were able to give rise to Embryoid Bodies and to a progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a suitable tool for modelling in vitro MMD disease to investigate the cellular mechanisms underlying the occurrence of this pathology. Copyright © 2016. Published by Elsevier B.V.
Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy.
Sachamitr, Patty; Hackett, Simon; Fairchild, Paul Jonathan
2014-01-01
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8(+) T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141(+)XCR1(+) DC, capable of cross presenting TAA to naïve CD8(+) T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae
2015-01-01
Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.
2013-01-01
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366
Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells.
Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo; Kyttälä, Aija
2014-12-01
Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking. ©AlphaMed Press.
Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M
2017-09-01
The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically, we have extrusion printed the bioink including iPSCs, alginate (Al; 5% weight/volume [w/v]), carboxymethyl-chitosan (5% w/v), and agarose (Ag; 1.5% w/v), crosslinked the bioink in calcium chloride for a stable and porous construct, proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm, ectoderm, and mesoderm, or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined, scalable, and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gómez-Lechón, María José; Tolosa, Laia
2016-09-01
Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.
Saxena, Pratik; Bojar, Daniel; Zulewski, Henryk; Fussenegger, Martin
2017-10-10
We previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells. Therefore, synthetic lineage-control networks appear to be a robust methodology for differentiating pluripotent stem cells into somatic cell types for basic research and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E
2016-01-01
Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797
Heslop, James A.; Kia, Richard; Pridgeon, Christopher S.; Sison‐Young, Rowena L.; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W.; Mills, John S.; Kitteringham, Neil R.; Park, Bong K.
2017-01-01
Abstract Drug‐induced liver injury is the greatest cause of post‐marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)‐derived hepatocyte‐like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this “resetting” is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte‐ and dermal fibroblast‐derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC‐derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast‐derived iPSCs. We conclude that the donor and inter‐clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC‐derived HLCs. Stem Cells Translational Medicine 2017;6:1321–1331 PMID:28456008
Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi
2018-02-12
Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.
Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle
Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio
2015-01-01
Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398
Li, Zili; Zhao, Qian; Li, Honggang; Xiong, Chengliang
2018-01-01
Abstract Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development. PMID:29315416
Imlach, Wendy L.; Bhola, Rebecca F.; Mohammadi, Sarasa A.; Christie, Macdonald J.
2016-01-01
The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain. PMID:27841371
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.
Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun
2013-03-28
The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony
2014-03-01
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.
Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman
2015-01-01
Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473
Kehtari, Mousa; Zeynali, Bahman; Soleimani, Masoud; Kabiri, Mahboubeh; Seyedjafari, Ehsan
2018-04-27
Primary hepatocytes, as the gold standard cell type for in vitro models, lose their characteristic morphology and functions after few days. There is an urgent need to develop physiologically relevant models that recapitulate liver microenvironment to obtain mature hepatocyte from stem cells. We designed and fabricated a micro-bioreactor device mimicking the physiological shear stress and cell-cell interaction in liver sinusoid microenvironment. Induced pluripotent stem cells (iPSCs) were co-cultured with human umbilical vein endothelial cells (HUVECs) in the micro-bioreactor device with continuous perfusion of hepatic differentiation medium (100 μL/h). Simulation results showed that flow field inside our perfusion device was uniform and shear stress was adjusted to physiological condition (<2 dyne/cm 2 ). IPSCs-derived hepatocytes (iPSCs-Heps) that were cultured in micro-bioreactor device showed a higher level of hepatic markers compared to those in static condition. Flow cytometry and immunocytochemistry analysis revealed iPSCs cultured in the device sequentially acquired characteristics of definitive endodermal cells (SOX17 positive), hepatoblasts (AFP positive) and mature hepatocyte (ALB positive). Moreover, the albumin and urea secretion were significantly higher in micro-bioreactor device than those cultured in culture dishes during experiment. Thus, based on our results, we propose our micro-bioreactor as a beneficial device to generate mature hepatocytes for drug screening and basic research.
Martins-Taylor, Kristen; Hsiao, Jack S.; Chen, Pin-Fang; Glatt-Deeley, Heather; De Smith, Adam J.; Blakemore, Alexandra I.F.; Lalande, Marc; Chamberlain, Stormy J.
2014-01-01
Prader–Willi syndrome (PWS) and Angelman syndrome (AS) are two neurodevelopmental disorders most often caused by deletions of the same region of paternally inherited and maternally inherited human chromosome 15q, respectively. AS is a single gene disorder, caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, while PWS is still considered a contiguous gene disorder. Rare individuals with PWS who carry atypical microdeletions on chromosome 15q have narrowed the critical region for this disorder to a 108 kb region that includes the SNORD116 snoRNA cluster and the Imprinted in Prader–Willi (IPW) non-coding RNA. Here we report the derivation of induced pluripotent stem cells (iPSCs) from a PWS patient with an atypical microdeletion that spans the PWS critical region. We show that these iPSCs express brain-specific portions of the transcripts driven by the PWS imprinting center, including the UBE3A antisense transcript (UBE3A-ATS). Furthermore, UBE3A expression is imprinted in most of these iPSCs. These data suggest that UBE3A imprinting in neurons only requires UBE3A-ATS expression, and no other neuron-specific factors. These data also suggest that a boundary element lying within the PWS critical region prevents UBE3A-ATS expression in non-neural tissues. PMID:24363065
Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping
2016-01-01
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.
Induction of pluripotent stem cells transplantation therapy for ischemic stroke.
Jiang, Mei; Lv, Lei; Ji, Haifeng; Yang, Xuelian; Zhu, Wei; Cai, Liying; Gu, Xiaju; Chai, Changfeng; Huang, Shu; Sun, Jian; Dong, Qiang
2011-08-01
Stroke can cause permanent neurological damage, complications, and even death. However, there is no treatment exists to restore its lost function. Human embryonic stems transplantation therapy was a novel and potential therapeutic approach for stroke. However, as we have seen, the ethical controversy pertains to embryonic stem cell research. Human induced pluripotent stem cells (iPSCs) are the latest generation of stem cells that may be a solution to the controversy of using embryonic cells. In our study, we generated iPSCs from adult human fibroblasts by introduction of four defined transcription factors (Oct4, Sox2, Nanog, and Lin-28). And then, we investigated the efficacy of iPSCs transplantation therapy for stroke on the animal models of middle cerebral artery occlusion. Surprisingly, we found that transplanted iPSCs migrated to injured brain areas, and differentiated into neuron-like cells successfully. After 4-16 days iPSCs grafting, sensorimotor function of rats has been improved significantly. In one word, we may prove that iPSCs therapy in stroke to be an effective form of treatment.
Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M.; Petit, Patrice X.
2016-01-01
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a “heart-on-chip” assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. PMID:26834781
Omole, Adekunle Ebenezer; Fakoya, Adegbenro Omotuyi John
2018-01-01
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs.
Ulrich, D; Huguenard, J R
1996-06-15
1. Whole-cell voltage-clamp recordings were obtained from GABAergic neurones of rat nucleus reticularis thalami (NRT) in vitro to assess pre- and postsynaptic GABAB receptor-mediated responses. Presynaptic inhibition of GABA release was studied at terminals on local axon collaterals within NRT as well as on projection fibres in the somatosensory relay nuclei. 2. The GABAB receptor agonist (R)-baclofen (10 microM) reduced monosynaptically evoked GABAA-mediated inhibitory postsynaptic currents (IPSCs) in NRT and somatosensory relay cells to 11 and 12% of control, respectively. 3. Action potential-independent miniature IPSCs (mIPSCs) were observed in both cell types. Mean mIPSC amplitude was 20 pA in both NRT and relay cells at a holding potential of 0 mV. The mean mIPSC frequencies were 0.83 and 2.2 Hz in NRT and relay cells, respectively. Baclofen decreased mIPSP frequency by about half in each cell type without affecting amplitude. 4. Paired-burst inhibition of evoked IPSCs was studied in relay and NRT cells by applying pairs of 100 Hz stimulus bursts separated by 600 ms. The mean ratio of second to first peak IPSC amplitudes was 0.77. 5. In NRT cells baclofen induced a linear postsynaptic conductance increase of 0.82 nS with an associated reversal potential of -121 mV. A small (0.14 nS) GABAB component of the evoked IPSC was detected in only a minority of NRT cells (3 of 18). 6. All pre- and postsynaptic effects of baclofen, as well as PBI, were largely reversed by the specific GABAB receptor antagonist CGP 35348 (0.5 mM). 7. We conclude that activation of GABAB receptors in NRT leads to presynaptic autoinhibition of IPSCs in both NRT and relay cells, and to direct activation of a small linear K+ conductance. In addition our experiments suggest that reciprocal connectivity within NRT can be partially mediated by a small GABAB inhibitory event.
Lyu, Cuicui; Shen, Jun; Wang, Rui; Gu, Haihui; Zhang, Jianping; Xue, Feng; Liu, Xiaofan; Liu, Wei; Fu, Rongfeng; Zhang, Liyan; Li, Huiyuan; Zhang, Xiaobing; Cheng, Tao; Yang, Renchi; Zhang, Lei
2018-04-06
Replacement therapy for hemophilia remains a lifelong treatment. Only gene therapy can cure hemophilia at a fundamental level. The clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9 (CRISPR-Cas9) system is a versatile and convenient genome editing tool which can be applied to gene therapy for hemophilia. A patient's induced pluripotent stem cells (iPSCs) were generated from their peripheral blood mononuclear cells (PBMNCs) using episomal vectors. The AAVS1-Cas9-sgRNA plasmid which targets the AAVS1 locus and the AAVS1-EF1α-F9 cDNA-puromycin donor plasmid were constructed, and they were electroporated into the iPSCs. When insertion of F9 cDNA into the AAVS1 locus was confirmed, whole genome sequencing (WGS) was carried out to detect the off-target issue. The iPSCs were then differentiated into hepatocytes, and human factor IX (hFIX) antigen and activity were measured in the culture supernatant. Finally, the hepatocytes were transplanted into non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through splenic injection. The patient's iPSCs were generated from PBMNCs. Human full-length F9 cDNA was inserted into the AAVS1 locus of iPSCs of a hemophilia B patient using the CRISPR-Cas9 system. No off-target mutations were detected by WGS. The hepatocytes differentiated from the inserted iPSCs could secrete hFIX stably and had the ability to be transplanted into the NOD/SCID mice in the short term. PBMNCs are good somatic cell choices for generating iPSCs from hemophilia patients. The iPSC technique is a good tool for genetic therapy for human hereditary diseases. CRISPR-Cas9 is versatile, convenient, and safe to be used in iPSCs with low off-target effects. Our research offers new approaches for clinical gene therapy for hemophilia.
2018-01-01
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs. PMID:29770269
Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa
2011-01-01
Background Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. Methodology/Principal Findings ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34+ cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34+ cells. ESC-derived CD34+ cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34− cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Conclusions/Significance Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures. PMID:21364915
Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa
2011-02-25
Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures.
Maccaferri, Gianmaria; David, J; Roberts, B; Szucs, Peter; Cottingham, Carol A; Somogyi, Peter
2000-01-01
Inhibitory postsynaptic currents (IPSCs) evoked in CA1 pyramidal cells (n = 46) by identified interneurones (n = 43) located in str. oriens were recorded in order to compare their functional properties and to determine the effect of synapse location on the apparent IPSC kinetics as recorded using somatic voltage clamp at −70 mV and nearly symmetrical [Cl−]. Five types of visualised presynaptic interneurone, oriens-lacunosum moleculare (O-LMC), basket (BC), axo-axonic (AAC), bistratified (BiC) and oriens-bistratified (O-BiC) cells, were distinguished by immunocytochemistry and/or synapse location using light and electron microscopy. Somatostatin immunoreactive O-LMCs, innervating the most distal dendritic shafts and spines, evoked the smallest amplitude (26 ± 10 pA, s.e.m., n = 8) and slowest IPSCs (10–90 % rise time, 6.2 ± 0.6 ms; decay, 20.8 ± 1.7 ms, n = 8), with no paired-pulse modulation of the second IPSC (93 ± 4 %) at 100 ms interspike interval. In contrast, parvalbumin-positive AACs evoked larger amplitude (308 ± 103 pA, n = 7) and kinetically faster (rise time, 0.8 ± 0.1 ms; decay 11.2 ± 0.9 ms, n = 7) IPSCs showing paired-pulse depression (to 68 ± 5 %, n = 6). Parvalbumin- or CCK-positive BCs (n = 9) terminating on soma/dendrites, BiCs (n = 4) and O-BiCs (n = 7) innervating dendrites evoked IPSCs with intermediate kinetic parameters. The properties of IPSCs and sensitivity to bicuculline indicated that they were mediated by GABAA receptors. In three cases, kinetically complex, multiphasic IPSCs, evoked by an action potential in the recorded basket cells, suggested that coupled interneurones, possibly through electrotonic junctions, converged on the same postsynaptic neurone. The population of O-BiCs (4 of 4 somatostatin positive) characterised in this study had horizontal dendrites restricted to str. oriens/alveus and innervated stratum radiatum and oriens. Other BiCs had radial dendrites as described earlier. The parameters of IPSCs evoked by BiCs and O-BiCs showed the largest cell to cell variation, and a single interneurone could evoke both small and slow as well as large and relatively fast IPSCs. The kinetic properties of the somatically recorded postsynaptic current are correlated with the innervated cell surface domain. A significant correlation of rise and decay times for the overall population of unitary IPSCs suggests that electrotonic filtering of distal responses is a major factor for the location and cell type specific differences of unitary IPSCs, but molecular heterogeneity of postsynaptic GABAA receptors may also contribute to the observed kinetic differences. Furthermore, domain specific differences in the short-term plasticity of the postsynaptic response indicate a differentiation of interneurones in activity-dependent responses. PMID:10747186
HONSHO, Kimiko; HIROSE, Michiko; HATORI, Masanori; YASMIN, Lubna; IZU, Haruna; MATOBA, Shogo; TOGAYACHI, Sumie; MIYOSHI, Hiroyuki; SANKAI, Tadashi; OGURA, Atsuo; HONDA, Arata
2014-01-01
Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called “naïve-like” state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3–7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use. PMID:25345855
He, Pengfei; Fu, Jiayin; Wang, Dong-An
2016-04-15
By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive procedure. Our results demonstrated chondrogenic differentiation could be realized on the platform via mesoderm differentiation. The mESCs/miPSCs derived chondrocytic cells were further cultured to finally generate a pluripotent stem cells-derived scaffold-free construct based on the micro-cavitary hydrogel platform, in which alginate hydrogel could be removed finally. Our results showed that miPSC-derived graft could be formed by cells with chondrocytic phenotype wrapped by abundant and assembled collagen type II. To our knowledge, this study is the first study that initials from pluripotent stem cell seeding on 3D scaffold environment and ends with a scaffold-free chondrogenic micro-tissue. By the support of materials and methodologies established from this study, engineered autologous iPSC-derived cartilage engraftment may be potentially developed instead of autologous chondrocytes grafts that have limited source. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Unitary synaptic connections among substantia nigra pars reticulata neurons
Wilson, Charles J.
2016-01-01
Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was −64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate. PMID:26961101
Allison, David W; Wilcox, Rebecca S; Ellefsen, Kyle L; Askew, Caitlin E; Hansen, David M; Wilcox, Jeffrey D; Sandoval, Stephanie S; Eggett, Dennis L; Yanagawa, Yuchio; Steffensen, Scott C
2011-08-01
Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs of abuse. The aim of this study was to determine the effect mefloquine (MFQ) has on midbrain DA and GABA neuron inhibition, and the role Cx36 GJs play in regulating midbrain VTA DA neuron activity in mice. In brain slices from adolescent wild-type (WT) mice the Cx36-selective GJ blocker mefloquine (MFQ, 25 μM) increased VTA DA neuron sIPSC frequency sixfold, and mIPSC frequency threefold. However, in Cx36 KO mice, MFQ only increased sIPSC and mIPSC frequency threefold. The nonselective GJ blocker carbenoxolone (CBX, 100 μM) increased DA neuron sIPSC frequency twofold in WT mice, did not affect Cx36 KO mouse sIPSCs, and did not affect mIPSCs in WT or Cx36 KO mice. Interestingly, MFQ had no effect on VTA GABA neuron sIPSC frequency. We also examined MFQ effects on VTA DA neuron firing rate and current-evoked spiking in WT and Cx36 KO mice, and found that MFQ decreased WT DA neuron firing rate and current-evoked spiking, but did not alter these measures in Cx36 KO mice. Taken together these findings suggest that blocking Cx36 GJs increases VTA DA neuron inhibition, and that GJs play in key role in regulating inhibition of VTA DA neurons. Synapse, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.
Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin
2006-03-01
Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.
Malysheva, Svitlana V; Wunderlich, Stephanie; Haase, Alexandra; Göhring, Gudrun; Martin, Ulrich; Merkert, Sylvia
2018-05-19
Caudal-type homeobox 2 (CDX2) transcription factor is an important marker for early trophoblast lineages and intestinal epithelium. Due to its nuclear expression the immunostaining and sorting of viable CDX2 pos cells is not possible. In this paper we report the generation and describe key characteristics of a CDX2 Venus knock-in reporter hiPSC-cell line (MHHi007-A-1) which can serve as an in vitro tool to study human trophoblast and intestinal differentiation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine.
Chi, Hong-jie; Gao, Song; Yang, Xin-chun; Cai, Jun; Zhao, Wen-shu; Sun, Hao; Geng, Yong-Jian
2015-01-01
Induced pluripotent stem cells (iPSCs) are generated by reprogramming human somatic cells through the overexpression of four transcription factors: Oct4, Sox2, Klf4 and c-Myc. iPSCs are capable of indefinite self-renewal, and they can differentiate into almost any type of cell in the body. These cells therefore offer a highly valuable therapeutic strategy for tissue repair and regeneration. Recent experimental and preclinical research has revealed their potential for cardiovascular disease diagnosis, drug screening and cellular replacement therapy. Nevertheless, significant challenges remain in terms of the development and clinical application of human iPSCs. Here, we review current progress in research related to patient-specific iPSCs for ex vivo modeling of cardiovascular disorders and drug screening, and explore the potential of human iPSCs for use in the field of cardiovascular regenerative medicine. © 2015 S. Karger AG, Basel.
Fertile offspring from sterile sex chromosome trisomic mice§
Hirota, Takayuki; Ohta, Hiroshi; Powell, Benjamin E.; Mahadevaiah, Shantha K.; Ojarikre, Obah A.; Saitou, Mitinori; Turner, James M. A.
2017-01-01
Having the correct number of chromosomes is vital for normal development and health. Sex chromosome trisomy (SCT) affects 0.1% of the human population and is associated with infertility. We show that during reprogramming to induced pluripotent stem cells (iPSC), fibroblasts from sterile trisomic XXY and XYY mice lose the extra sex chromosome, by a phenomenon we term trisomy-biased chromosome loss (TCL). Resulting euploid XY iPSCs can be differentiated into the male germ cell lineage and functional sperm that can be used in intracytoplasmic sperm injection to produce chromosomally normal, fertile offspring. Sex chromosome loss is comparatively infrequent during mouse XX and XY iPSC generation. TCL also applies to other chromosomes, generating euploid iPSCs from cells of a Down syndrome mouse model. It can also create euploid iPSCs from human trisomic patient fibroblasts. The findings have relevance to overcoming infertility and other trisomic phenotypes. PMID:28818972
Rana, Payal; Anson, Blake; Engle, Sandra; Will, Yvonne
2012-11-01
Cardiotoxicity remains the number one reason for drug withdrawal from the market, and Food and Drug Administration issued black box warnings, thus demonstrating the need for more predictive preclinical safety screening, especially early in the drug discovery process when much chemical substrate is available. Whereas human-ether-a-go-go related gene screening has become routine to mitigate proarrhythmic risk, the development of in vitro assays predicting additional on- and off-target biochemical toxicities will benefit from cellular models exhibiting true cardiomyocyte characteristics such as native tissue-like mitochondrial activity. Human stem cell-derived tissue cells may provide such a model. This hypothesis was tested using a combination of flux analysis, gene and protein expression, and toxicity-profiling techniques to characterize mitochondrial function in induced pluripotent stem cell (iPSC) derived human cardiomyocytes in the presence of differing carbon sources over extended periods in cell culture. Functional analyses demonstrate that iPSC-derived cardiomyocytes are (1) capable of utilizing anaerobic or aerobic respiration depending upon the available carbon substrate and (2) bioenergetically closest to adult heart tissue cells when cultured in galactose or galactose supplemented with fatty acids. We utilized this model to test a variety of kinase inhibitors with known clinical cardiac liabilities for their potential toxicity toward these cells. We found that the kinase inhibitors showed a dose-dependent toxicity to iPSC cardiomyocytes grown in galactose and that oxygen consumption rates were significantly more affected than adenosine triphosphate production. Sorafenib was found to have the most effect, followed by sunitinib, dasatinib, imatinib, lapatinib, and nioltinib.
Kristensson, Lisbeth; Lundin, Anders; Gustafsson, David; Fryklund, Jan; Fex, Tomas; Louise, Delsing; Ryberg, Erik
2018-05-11
Plasminogen binding inhibitors (PBIs) reduce the risk of bleeding in hemorrhagic conditions. However, generic PBIs are also associated with an increased risk of seizures, an adverse effect linked to unwanted activities towards inhibitory neuronal receptors. Development of novel PBIs serve to remove compounds with such properties, but progress is limited by a lack of higher throughput methods with human translatability. Herein we apply human induced pluripotent stem cell (hiPSC) derived neurons in combination with dynamic mass redistribution (DMR) technology to demonstrate robust and reproducible modulation of both GABA A and glycine receptors. These cells respond to GABA (EC 50 0.33 ± 0.18 μM), glycine (EC 50 11.0 ± 3.7 μM) and additional ligands in line with previous reports from patch clamp technologies. Additionally, we identify and characterize a competitive antagonistic behavior of the prototype inhibitor and drug tranexamic acid (TXA). Finally, we demonstrate proof of concept for effective counter-screening of lead series compounds towards unwanted GABA A receptor activities. No activity was observed for a previously identified PBI candidate drug, AZD6564, whereas a discontinued analog, AZ13267257, could be characterized as a potent GABA A receptor agonist. Copyright © 2018. Published by Elsevier B.V.
Mesenchymal Stem Cells: New Players in Retinopathy Therapy
Rajashekhar, Gangaraju
2014-01-01
Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia–reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future. PMID:24795699
Heterogeneous chloride homeostasis and GABA responses in the median preoptic nucleus of the rat
Grob, Magali; Mouginot, Didier
2005-01-01
The median preoptic nucleus (MnPO) is an integrative structure of the hypothalamus receiving periphery-derived information pertinent to hydromineral and cardiovascular homeostasis. In this context, excitability of MnPO neurones is controlled by fast GABAergic, glutamatergic and angiotensinergic projection from the subfornical organ (SFO). Taking advantage of a brain slice preparation preserving synaptic connection between the SFO and the MnPO, and appropriate bicarbonate-free artificial cerebrospinal fluid (CSF), we investigated a possible implication of an active outward Cl− transport in regulating efficacy of the GABAA receptor-mediated inhibitory response at the SFO–MnPO synapse. When somata of the MnPO neurones was loaded with 18 mm chloride, stimulation of the SFO evoked outward inhibitory postsynaptic currents (IPSCs) in 81% of the MnPO neurones held at −60 mV. Accordingly, EIPSC was found 25 mV hyperpolarized from the theoretical value calculated from the Nernst equation, indicating that IPSC polarity and amplitude were driven by an active Cl− extrusion system in these neurones. EIPSC estimated with gramicidin-based perforated-patch recordings amounted −89.2 ± 4.3 mV. Furosemide (100 μm), a pharmacological compound known to block the activity of the neurone-specific K+–Cl− cotransporter, KCC2, reversed IPSC polarity and shifted EIPSC towards its theoretical value. Presence of the KCC2 protein in the MnPO was further detected with immunohistochemistry, revealing a dense network of KCC2-positive intermingled fibres. In the presence of a GABAB receptor antagonist, high-frequency stimulation (5 Hz) of the SFO evoked a train of IPSCs or inhibitory postsynaptic potentials (IPSPs), whose amplitude was maintained throughout the sustained stimulation. Contrastingly, similar 5 Hz stimulation carried out in the presence of furosemide (50 μm) evoked IPSCs/IPSPs, whose amplitude collapsed during the high-frequency stimulation. Similar reduction in inhibitory neurotransmission was also observed in MnPO neurones lacking the functional Cl− extrusion mechanism. We conclude that a majority of MnPO neurones were characterized by a functional Cl− transporter that ensured an efficient activity-dependent Cl− transport rate, allowing sustained synaptic inhibition of these neurones. Pharmacological and anatomical data strongly suggested the involvement of KCC2, as an essential postsynaptic determinant of the inhibitory neurotransmission afferent to the MnPO, a key-structure in the physiology of the hydromineral and cardiovascular homeostasis. PMID:16239278
GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex
Xiang, Zixiu; Huguenard, John R; Prince, David A
1998-01-01
We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333
Epigenetic Biomarker to Support Classification into Pluripotent and Non-Pluripotent Cells
NASA Astrophysics Data System (ADS)
Lenz, Michael; Goetzke, Roman; Schenk, Arne; Schubert, Claudia; Veeck, Jürgen; Hemeda, Hatim; Koschmieder, Steffen; Zenke, Martin; Schuppert, Andreas; Wagner, Wolfgang
2015-03-01
Quality control of human induced pluripotent stem cells (iPSCs) can be performed by several methods. These methods are usually relatively labor-intensive, difficult to standardize, or they do not facilitate reliable quantification. Here, we describe a biomarker to distinguish between pluripotent and non-pluripotent cells based on DNA methylation (DNAm) levels at only three specific CpG sites. Two of these CpG sites were selected by their discriminatory power in 258 DNAm profiles - they were either methylated in pluripotent or non-pluripotent cells. The difference between these two β-values provides an Epi-Pluri-Score that was validated on independent DNAm-datasets (264 pluripotent and 1,951 non-pluripotent samples) with 99.9% specificity and 98.9% sensitivity. This score was complemented by a third CpG within the gene POU5F1 (OCT4), which better demarcates early differentiation events. We established pyrosequencing assays for the three relevant CpG sites and thereby correctly classified DNA of 12 pluripotent cell lines and 31 non-pluripotent cell lines. Furthermore, DNAm changes at these three CpGs were tracked in the course of differentiation of iPSCs towards mesenchymal stromal cells. The Epi-Pluri-Score does not give information on lineage-specific differentiation potential, but it provides a simple, reliable, and robust biomarker to support high-throughput classification into either pluripotent or non-pluripotent cells.
iPSC-based drug screening for Huntington's disease.
Zhang, Ningzhe; Bailus, Barbara J; Ring, Karen L; Ellerby, Lisa M
2016-05-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
A human neurodevelopmental model for Williams syndrome
Chailangkarn, Thanathom; Trujillo, Cleber A.; Freitas, Beatriz C.; Hrvoj-Mihic, Branka; Herai, Roberto H.; Yu, Diana X.; Brown, Timothy T.; Marchetto, Maria C. N.; Bardy, Cedric; McHenry, Lauren; Stefanacci, Lisa; Järvinen, Anna; Searcy, Yvonne M.; DeWitt, Michelle; Wong, Wenny; Lai, Philip; Ard, M. Colin; Hanson, Kari L.; Romero, Sarah; Jacobs, Bob; Dale, Anders M.; Dai, Li; Korenberg, Julie R.; Gage, Fred H.; Bellugi, Ursula; Halgren, Eric; Semendeferi, Katerina; Muotri, Alysson R.
2016-01-01
Summary Williams syndrome (WS) is a genetic neurodevelopmental disorder characterized by an uncommon hypersociability and a mosaic of retained and compromised linguistic and cognitive abilities. Nearly all clinically diagnosed individuals with WS lack precisely the same set of genes, with breakpoints in chromosome band 7q11.231–5. The contribution of specific genes to the neuroanatomical and functional alterations, leading to behavioral pathologies in humans, remains largely unexplored. Here, we investigate neural progenitor cells (NPCs) and cortical neurons derived from WS and typically developing (TD) induced pluripotent stem cells (iPSCs). WS NPCs have an increased doubling time and apoptosis compared to TD NPCs. Using an atypical WS subject6, 7, we narrowed this cellular phenotype to a single gene candidate, FZD9. At the neuronal stage, WS-derived layers V/VI cortical neurons were characterized by longer total dendrites, increased numbers of spines and synapses, aberrant calcium oscillation and altered network connectivity. Morphometric alterations observed in WS neurons were validated after Golgi staining of postmortem layers V/VI cortical neurons. This human iPSC model8 fills in the current knowledge gap in WS cellular biology and could lead to further insights into the molecular mechanism underlying the disorder and the human social brain. PMID:27509850
Neural stem cell-based treatment for neurodegenerative diseases.
Kim, Seung U; Lee, Hong J; Kim, Yun B
2013-10-01
Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury. © 2013 Japanese Society of Neuropathology.
Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells
Han, Lu; Li, Yang; Tchao, Jason; Kaplan, Aaron D.; Lin, Bo; Li, You; Mich-Basso, Jocelyn; Lis, Agnieszka; Hassan, Narmeen; London, Barry; Bett, Glenna C.L.; Tobita, Kimimasa; Rasmusson, Randall L.; Yang, Lei
2014-01-01
Aims Familial hypertrophic cardiomyopathy (HCM) is one the most common heart disorders, with gene mutations in the cardiac sarcomere. Studying HCM with patient-specific induced pluripotent stem-cell (iPSC)-derived cardiomyocytes (CMs) would benefit the understanding of HCM mechanism, as well as the development of personalized therapeutic strategies. Methods and results To investigate the molecular mechanism underlying the abnormal CM functions in HCM, we derived iPSCs from an HCM patient with a single missense mutation (Arginine442Glycine) in the MYH7 gene. CMs were next enriched from HCM and healthy iPSCs, followed with whole transcriptome sequencing and pathway enrichment analysis. A widespread increase of genes responsible for ‘Cell Proliferation’ was observed in HCM iPSC-CMs when compared with control iPSC-CMs. Additionally, HCM iPSC-CMs exhibited disorganized sarcomeres and electrophysiological irregularities. Furthermore, disease phenotypes of HCM iPSC-CMs were attenuated with pharmaceutical treatments. Conclusion Overall, this study explored the possible patient-specific and mutation-specific disease mechanism of HCM, and demonstrates the potential of using HCM iPSC-CMs for future development of therapeutic strategies. Additionally, the whole methodology established in this study could be utilized to study mechanisms of other human-inherited heart diseases. PMID:25209314
Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress
Asensi, Karina D; Fortunato, Rodrigo S; dos Santos, Danúbia S; Pacheco, Thaísa S; de Rezende, Danielle F; Rodrigues, Deivid C; Mesquita, Fernanda C P; Kasai-Brunswick, Tais H; de Carvalho, Antonio C Campos; Carvalho, Denise P; Carvalho, Adriana B; Goldenberg, Regina C dos S
2014-01-01
Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood–derived mesenchymal stem cells (mb-iPSC), embryonic stem cells (H9) and adult menstrual blood–derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb-iPSC were 10-fold less resistant to H2O2, which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb-iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb-iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb-iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb-iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS. PMID:24528612
Ishii, Misawa Niki; Yamamoto, Koji; Shoji, Masanobu; Asami, Asano; Kawamata, Yuji
2017-08-15
Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform activity in response to convulsant drugs. Our study indicates the possibility that co-culture system of hiPSC-derived neurons with hiPSC-derived astrocytes could be useful in the risk assessment of drug-induced seizure. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Ling; Huang, Jin-Sha; Han, Chao; Zhang, Guo-Xin; Xu, Xiao-Yun; Shen, Yan; Li, Jie; Jiang, Hai-Yang; Lin, Zhi-Cheng; Xiong, Nian; Wang, Tao
2016-12-01
Huntington's disease (HD) is an incurable neurodegenerative disorder that is characterized by motor dysfunction, cognitive impairment, and behavioral abnormalities. It is an autosomal dominant disorder caused by a CAG repeat expansion in the huntingtin gene, resulting in progressive neuronal loss predominately in the striatum and cortex. Despite the discovery of the causative gene in 1993, the exact mechanisms underlying HD pathogenesis have yet to be elucidated. Treatments that slow or halt the disease process are currently unavailable. Recent advances in induced pluripotent stem cell (iPSC) technologies have transformed our ability to study disease in human neural cells. Here, we firstly review the progress made to model HD in vitro using patient-derived iPSCs, which reveal unique insights into illuminating molecular mechanisms and provide a novel human cell-based platform for drug discovery. We then highlight the promises and challenges for pluripotent stem cells that might be used as a therapeutic source for cell replacement therapy of the lost neurons in HD brains.
Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models
2016-01-01
Epigenetic mechanisms play a role in human disease but their involvement in pathologies from the central nervous system has been hampered by the complexity of the brain together with its unique cellular architecture and diversity. Until recently, disease targeted neural types were only available as postmortem materials after many years of disease evolution. Current in vitro systems of induced pluripotent stem cells (iPSCs) generated by cell reprogramming of somatic cells from patients have provided valuable disease models recapitulating key pathological molecular events. Yet whether cell reprogramming on itself implies a truly epigenetic reprogramming, the epigenetic mechanisms governing this process are only partially understood. Moreover, elucidating epigenetic regulation using patient-specific iPSC-derived neural models is expected to have a great impact to unravel the pathophysiology of neurodegenerative diseases and to hopefully expand future therapeutic possibilities. Here we will critically review current knowledge of epigenetic involvement in neurodegenerative disorders focusing on the potential of iPSCs as a promising tool for epigenetic research of these diseases. PMID:26697081
Comparing ESC and iPSC-Based Models for Human Genetic Disorders.
Halevy, Tomer; Urbach, Achia
2014-10-24
Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.
Francis, Natalie; Moore, Melanie; Asan, Simona G; Rutter, Guy A; Burns, Chris
2015-01-01
Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Current focus of stem cell application in retinal repair
Alonso-Alonso, María L; Srivastava, Girish K
2015-01-01
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them. PMID:25914770
Cardano, Marina; Marsoner, Fabio; Zasso, Jacopo; Marcatili, Matteo; Karnavas, Thodoris; Lanterna, Luigi Andrea; Conti, Luciano
2016-11-01
Peripheral blood mononuclear cells (PBMCs) were collected from an 8-year old female patient affected by ischemic Moyamoya disease (MMD). Patient's PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. The footprint free hiPSC line expressed the major pluripotency markers and exhibited a normal karyotype. Cells were competent to give rise to progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a good tool to in vitro model MMD in order to shed light on the cellular and molecular mechanisms responsible for the occurrence of this syndrome. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.
Dannenmann, Benjamin; Lehle, Simon; Hildebrand, Dominic G.; Kübler, Ayline; Grondona, Paula; Schmid, Vera; Holzer, Katharina; Fröschl, Mirjam; Essmann, Frank; Rothfuss, Oliver; Schulze-Osthoff, Klaus
2015-01-01
Summary Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs), we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage. PMID:25937369
Kang, Lan; Gao, Shaorong
2015-01-01
Tetraploid complementation assay is the most rigorous criteria for pluripotency characterization of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Pluripotent stem cells could complement the developmental deficiency of tetraploid embryos and thus support the full-term mice development. Here we describe the protocol for tetraploid complementation using iPSCs to produce viable all-iPSC mice.
Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.
2009-01-01
Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291
Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S
2009-01-01
We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.
Acute fasting increases somatodendritic dopamine release in the ventral tegmental area
2015-01-01
Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913
Szlachcic, Wojciech J.; Switonski, Pawel M.; Krzyzosiak, Wlodzimierz J.; Figlerowicz, Marek; Figiel, Maciej
2015-01-01
ABSTRACT Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life. PMID:26092128
Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter
2015-01-01
Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855
Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P
2017-03-02
Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Almeida, Sandra; Zhang, Zhijun; Coppola, Giovanni; Mao, Wenjie; Futai, Kensuke; Karydas, Anna; Geschwind, Michael D.; Tartaglia, M. Carmela; Gao, Fuying; Gianni, Davide; Sena-Esteves, Miguel; Geschwind, Daniel H.; Miller, Bruce L.; Farese, Robert V.; Gao, Fen-Biao
2012-01-01
SUMMARY The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell (iPSC) lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel GRN mutation (PGRN S116X). In neurons and microglia differentiated from PGRN S116X iPSCs, the levels of intracellular and secreted progranulin were reduced, establishing patient-specific cellular models of progranulin haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the PI3K and MAPK pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by progranulin expression. Our findings identify cell-autonomous, reversible defects in patient neurons with progranulin deficiency and provide a new model for studying progranulin-dependent pathogenic mechanisms and testing potential therapies. PMID:23063362
A role for astroglia in prion diseases.
Aguzzi, Adriano; Liu, Yingjun
2017-12-04
In this issue of JEM, Krejciova et al. (https://doi.org/10.1084/jem.20161547) report that astrocytes derived from human iPSCs can replicate human CJD prions. These observations provide a new, potentially very valuable model for studying human prions in cellula and for identifying antiprion compounds that might serve as clinical candidates. Furthermore, they add to the evidence that astrocytes may not be just innocent bystanders in prion diseases. © 2017 Aguzzi and Liu.
Human iPSC Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy
2016-10-01
chronically epileptic rats ( CERs ) would: (1) diminish the frequency and intensity of spontaneous recurrent seizures (SRS, Specific Aim 1, SA1); and (2...epileptic rats: CERs receiving hMGE-like cell grafts and cyclosporine (an immunosuppressant to promote the survival of human cell grafts in the rat brain... CERs receiving sham-grafting surgery, CERs receiving cyclosporine only and CERs receiving no treatment. The results showed that, in comparison to
Applications and development of communication models for the touchstone GAMMA and DELTA prototypes
NASA Technical Reports Server (NTRS)
Seidel, Steven R.
1993-01-01
The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.
Hu, Chenxia; Li, Lanjuan
2016-01-01
Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.
Meneghini, Vasco; Sala, Davide; De Cicco, Silvia; Luciani, Marco; Cavazzin, Chiara; Paulis, Marianna; Mentzen, Wieslawa; Morena, Francesco; Giannelli, Serena; Sanvito, Francesca; Villa, Anna; Bulfone, Alessandro; Broccoli, Vania; Martino, Sabata
2016-01-01
Abstract Allogeneic fetal‐derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient‐specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene‐therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC‐derived neural stem cells (NSCs) showing a reliable “NSC signature” is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS‐NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a “gold standard” in a side‐by‐side comparison when validating the phenotype of hiPS‐NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS‐NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA‐overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA‐overexpressing iPSC‐derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient‐specific ARSA‐overexpressing hiPS‐NSCs may be used in autologous ex vivo gene therapy protocols to provide long‐lasting enzymatic supply in MLD‐affected brains. Stem Cells Translational Medicine 2017;6:352–368 PMID:28191778
Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K
2017-05-01
Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
iPSC-derived neurons as a higher-throughput readout for autism: Promises and pitfalls
Prilutsky, Daria; Palmer, Nathan P.; Smedemark-Margulies, Niklas; Schlaeger, Thorsten M.; Margulies, David M.; Kohane, Isaac S.
2014-01-01
The elucidation of disease etiologies and establishment of robust, scalable, high-throughput screening assays for autism spectrum disorders (ASDs) have been impeded by both inaccessibility of disease-relevant neuronal tissue and the genetic heterogeneity of the disorder. Neuronal cells derived from induced pluripotent stem cells (iPSCs) from autism patients may circumvent these obstacles and serve as relevant cell models. To date, derived cells are characterized and screened by assessing their neuronal phenotypes. These characterizations are often etiology-specific or lack reproducibility and stability. In this manuscript, we present an overview of efforts to study iPSC-derived neurons as a model for autism, and we explore the plausibility of gene expression profiling as a reproducible and stable disease marker. PMID:24374161
Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
Vazquez-Martin, Alejandro; Van den Haute, Chris; Cufí, Sílvia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Lopez-Bonet, Eugeni; Rodriguez-Gallego, Esther; Fernández-Arroyo, Salvador; Joven, Jorge; Baekelandt, Veerle; Menendez, Javier A.
2016-01-01
Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine. PMID:27295498
Cellular trajectories and molecular mechanisms of iPSC reprogramming.
Apostolou, Effie; Stadtfeld, Matthias
2018-06-16
The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Histone Acetyltransferase MOF Promotes Induces Generation of Pluripotent Stem Cells.
Mu, Xupeng; Yan, Shaohua; Fu, Changhao; Wei, Anhui
2015-08-01
Histone modification plays an important role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). The histone acetyltransferase MOF is a key regulator of ESCs; however, the role of MOF in the process of reprogramming back to induced pluripotent stem cells (iPSCs) remains unclear. In this study, we investigated the function of MOF on the generation of iPSCs. We show that iPSCs contain high levels of MOF mRNA, and the expression level of MOF protein is dramatically upregulated following reprogramming. Most importantly, overexpression of MOF improves reprogramming efficiency and facilitates the formation of iPSCs, whereas small hairpin RNA (shRNA)-mediated knockdown of MOF impairs iPSCs generation during reprogramming. Further investigation reveals that MOF interacts with the H3K4 methyltransferase Wdr5 to promote endogenous Oct4 expression during the reprogramming process. Knockdown of MOF reduces H4K16ac and H3K4me3 modification at the Oct4 promoter. In conclusion, our data indicate that MOF is an important epigenetic regulator that is critical for efficient reprogramming.
Natalwala, Ammar; Kunath, Tilo
2017-01-01
Parkinson's disease is a complex and progressive neurodegenerative condition that is characterized by the severe loss of midbrain dopaminergic (mDA) neurons, which innervate the striatum. Cell transplantation therapies to rebuild this dopaminergic network have been attempted for over 30 years. The most promising outcomes were observed when human fetal mesencephalic tissue was used as the source of cells for transplantation. However, reliance on terminations for a Parkinson's therapy presents significant logistical and ethical hurdles. An alternative source of transplantable mDA neurons is urgently needed, and the solution may come from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Protocols to differentiate hESCs/iPSCs toward mDA neurons are now robust and efficient, and upon grafting the cells rescue preclinical animal models of Parkinson's disease. The challenge now is to apply Good Manufacturing Practice (GMP) to the academic discoveries and protocols to produce clinical-grade transplantable mDA cells. Major technical and logistical considerations include (i) source of hESC or iPSC line, (ii) GMP compliance of the differentiation protocol and all reagents, (iii) characterization of the cell product in terms of identity, safety, and efficacy, (iv) characterization of genomic state and stability, and (v) banking of a transplantation-ready cell product. Approaches and solutions to these challenges are reviewed here. © 2017 Elsevier B.V. All rights reserved.
Progress and challenges in the development of a cell-based therapy for hemophilia A
Fomin, Marina E.; Togarrati, Padma Priya; Muench, Marcus O.
2015-01-01
Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review we discuss the possibilities, progress and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells (iPSCs) that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific iPSCs. PMID:25297648