Science.gov

Sample records for ir emission features

  1. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.

  2. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  3. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Given the current understanding of polycyclic aromatic hydrocarbons (PAHs), the spectroscopic data suggest that are at least two components which contribute to the interstellar emission spectrum: (1) free molecule-sized PAHs producing the narrow features and (2) amorphous carbon particles (which are primarily composed of an irregular 'lattice' of PAHs) contributing to the broad underlying components. An exact treatment of the IR fluorescence from highly vibrationally excited large molecules demonstrates that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. It is concluded that, since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is required along with an observational program focusing on the spatial characteristics of the spectra.

  4. Monitoring of near-IR emission features at the NTT and detection of the northern counterparts.

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Encrenaz, T.; Stüwe, J. A.; Wiedemann, G.

    The evolution of the Jovian stratosphere after the impact of P/Shoemaker-Levy 9 was monitored spectroscopically in the 3.5 μm and 2.1 μm regions using the IRSPEC spectrometer at the ESO 3.5-m New Technology Telescope on La Silla between July 16 and 31, 1994. H3+ and H2 emissions were observed above some of the impact sites and the strongest of the monitored H3+ lines was also detected at the longitudes of the impact areas in the northern hemisphere. These counterparts of the impact sites were clearly visible between July 23 and 25, 1994. Later the longitudinal distribution of the emissions detected in the northern hemisphere does no longer show a correlation to the impact areas. The distribution of the H3+ and H2 emissions on the entire Jovian disk including the auroral regions is presented as a function of time.

  5. IR Plasma Emissions

    DTIC Science & Technology

    1990-04-01

    a current mailing list. Do not return copies of this report unless contractural obligations or notices on a specific document requires that it be...of the relatively cold 0? gas surrounding the fireball (i.e. 02(cold) + hv --> 20*) and the broad emission arises from shock heating of the emission...experimental data and calculations 14 and 0 data from other work35 ,36. Experimental spectra were acquired by Assous 33 in an inductively- heated

  6. Surface temperature measurements of heterogeneous explosives by IR emission

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Funk, D. J.; Dickson, P. M.; Fugard, C. S.; Asay, B. W.

    1998-07-01

    We present measurements of the integrated IR emission (1-5 μm) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 30 °C to 250 °C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which we report as the thermal emissivity. We have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. We demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

  7. Surface temperature measurements of heterogeneous explosives by IR emission

    SciTech Connect

    Henson, B.F.; Funk, D.J.; Dickson, P.M.; Fugard, C.S.; Asay, B.W.

    1998-03-01

    The authors present measurements of the integrated IR emission (1--5 {micro}m) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 300 C to 2,500 C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which the authors report as the thermal emissivity. The authors have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. They demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

  8. Direct emissivity measurements of IR materials

    NASA Astrophysics Data System (ADS)

    Kisler, Yanina; Kupferberg, Lenn C.; Mackenzie, Gordon; Chen, Chia M.

    1999-07-01

    Emissivity measurements of ZnS, Sapphire, ALON, MgO, and Yttria were performed in 3.9-4.0 micrometers and 4.4-4.9 micrometers bands, for temperatures between 300 degrees C and 600 degrees C. The average radiance was measured over each waveband. Emissivity was calculated as the ratio of the radiance of the sample to that of a black body source at the same temperature. The results of the emissivity measurements for the above-mentioned materials will be reported. Measurement techniques that allowed increasing the dynamic range of the measurement and significantly reducing the noise will be discussed.

  9. Surface Temperature Measurements of Heterogeneous Explosives by IR Emission

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Funk, D. J.; Laabs, G. W.; Asay, B. W.

    1997-07-01

    Solid phase temperature is a key observable for understanding chemical and physical properties of energetic materials. Material decomposition during prolonged heating and the rate and mechanism of energy release during explosive ignition are both strongly coupled to the temperature field in the solid. Toward the end of addressing these issues we are pursuing the remote measurement of temperature by the quantitative collection of IR emission from the material surface. We present measurements of the integrated IR emission (1-5 mm) from both the heterogeneous explosive PBX 9501 and pure components at calibrated temperatures from 100C to 250C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature-independent constant for each component which we report as the thermal emissivity of that component in this spectral region. In addition, we report preliminary measurements of the thermal transients from the unconfined surface of both PBX9501 and pressed HMX during ignition after periods of prolonged heating. We demonstrate that the measurement of IR emission in this spectral region provides both a reliable probe of static surface temperature and a unique observable of dynamic temperature change during ignition.

  10. Dust processing in photodissociation regions. Mid-IR emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-12-01

    Context: Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H2 formation. Aims: With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. Methods: In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. Results: We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). Conclusions: We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC 2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from “dense” to “diffuse” properties at the small spatial scale of the dense illuminated ridge.

  11. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  12. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  13. The distribution of maser emission in OH/IR stars

    NASA Technical Reports Server (NTRS)

    Welty, Alan D.; Fix, John D.; Mutel, Robert L.

    1987-01-01

    The 1612 MHz OH emission from five OH/IR stars has been mapped at three epochs over a 2.5 yr period of time. Although the stars were observed at very different phases in the radio light curve of each, there were no remarkable changes in the appearance of the maps. This probably implies that the properties of the masers do not range widely throughout a maser shell. The maps have been used to produce star-centered surface maps of the distribution of maser emission from each star. The surface maps generally are sparsely filled with OH emission and are dominated by relatively few (about 10) major clumps of emission. The presence of large regions of low intensity in the surface maps suggests that the number of individual emitting elements is relatively small or that there are a larger number of elements which are distributed in the shell in a distinctly nonrandom manner.

  14. Untangling the Near-IR Spectral Features in the Protoplanetary Environment of KH 15D

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson; Leggett, S. K.

    2017-01-01

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H2 emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μm size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 MJ, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  15. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  16. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  17. Formation of IR emission in HII regions around young stars

    NASA Astrophysics Data System (ADS)

    Pavlyuchenkov, Yaroslav; Kirsanova, Maria; Akimkin, Vitaly; Wiebe, Dmitry

    2013-07-01

    We investigate the formation of IR emission and corresponding intensity distributions at 8, 24, and 100 micron in HII regions around young massive stars. The evolution of an HII region is simulated using an advanced chemo-dynamical model. Three dust components are included in the model: large silicate grains, very small graphite grains (VSG), and polycyclic aromatic hydrocarbon (PAH) particles. The emergent SED and intensity distributions are calculated using our RT model where stochastic heating of VSG and PAHs is taken into account. The efficiency of two processes for stochastic heating of VSG and PAHs is studied: the absorption of star emission and interaction with hot gas. We compare the synthetic maps with the observed maps from Spitzer and Herschel for the RCW 120 HII region. It is shown that the model with constant PAH abundance cannot reproduce the ring-like appearance of the observed intensity distribution at 8 micron. In order to explain the observed IR distributions we inspect two models of dust evolution. The first model assumes that PAHs are destroyed inside an HII region. In the second model the drift of the dust particles caused by radiation pressure is taken into account. We show that the model with PAH destruction is consistent with observed profiles given appropriate choice of the PAH destruction time. On the contrary, the model with the dust drift is not consistent with observations.

  18. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Ramos Almeida, C.; Alonso-Herrero, A.

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  19. UV extinction and IR emission in diffuse H2 regions

    NASA Technical Reports Server (NTRS)

    Aannestad, Per A.

    1994-01-01

    HII regions occupy a unique position in our understanding of the physical relationships between stars, the interstellar medium, and galactic structure. Observations show a complex interaction between a newly formed hot star and its surroundings. In particular, the ultraviolet radiation from the stars modifies the pre-existing dust, which again affects both the amount of ionizing radiation absorbed by the gas, and the infrared spectrum emitted by the heated dust. The aim of this project was to use UV and far-UV observations to gain information on the nebular dust, and to use this dust to model the far-IR emission, for a consistent picture of a few selected diffuse HII regions. Using archival data from the IUE and Voyager data banks and computed model atmospheres, we have deduced extinction curves for early-types stars. The requisite spectral resolution turned out to be a major task. We have successfully modelled these curves in terms of a multi-component, multi-size distribution of dust grains, and interpret the differences in the curves as primarily due to the presence or non-presence of intermediate size grains (0.01 to 0.04 micron). Much smaller (0.005 micron) grains must also be present. Finally, we have made calculations of the temperature fluctuations and the corresponding infra-red emission in such small grains.

  20. Young Debris Disks With Newly Discovered Emission Features

    NASA Astrophysics Data System (ADS)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  1. Mid-IR emission of galaxies in the Virgo cluster. II. Integrated properties

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Lequeux, J.; Sauvage, M.; Boulade, O.; Boulanger, F.; Cesarsky, D.; Dupraz, C.; Madden, S.; Viallefond, F.; Vigroux, L.

    1998-07-01

    We analyse the integrated properties of the Mid-IR emission of a complete, optically selected sample of galaxies in the Virgo cluster observed with the ISOCAM instrument on board the ISO satellite. The ISOCAM data allows us to construct the luminosity distribution at 6.75 and 15 mu m of galaxies for different morphological classes. These data are used to study the spectral energy distribution of galaxies of different type and luminosity in the wavelength range 2000 Angstroms - 100 mu m. The analysis shows that the Mid-IR emission up to 15 mu m of optically-selected, normal early-type galaxies (E, S0 and S0a) is dominated by the Rayleigh-Jeans tail of the cold stellar component. The Mid-IR emission of late-type galaxies is instead dominated by the thermal emission from dust. As in the Milky Way, the small dust grains emitting in the Mid-IR have an excess of emission if compared to big grains emitting in the Far-IR. While the Far-IR emission of galaxies increases with the intensity of the interstellar radiation field, their Mid-IR emission is non-linearly related to the UV radiation field. The spectral energy distributions of the target galaxies indicate that there is a linear relationship between the UV radiation field and the Mid-IR emission of galaxies for low or intermediate activities of star formation, while the emission from the hot dust seems to drop for strong UV fields. The Mid-IR colour of late-type galaxies is not related to their activity of star formation. The properties of the dust emission in the Mid-IR seem more related to the mass than to the morphological type of the target galaxy. Since the activity of star formation is anticorrelated to the mass of galaxies, this reflects a relationship between the emission of dust in the Mid-IR and the UV radiation field: galaxies with the lowest Mid-IR emission for a given UV field are low mass, dwarf galaxies. These observational evidences are easily explained if the carriers of the Unidentified Infrared Bands

  2. An Aromatic Feature Emission Inventory of the Local Volume

    NASA Astrophysics Data System (ADS)

    Marble, Andrew; LVL Team

    2010-01-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission for a large unbiased sample of galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the IRAC 8 micron flux with a standard deviation of 6% using a training set of 40 SINGS galaxies for which both equivalent photometry and suitable mid-infrared Spitzer IRS spectra were available. The resulting technique is then applied to the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated by low-luminosity dwarf galaxies for which obtaining comparable MIR spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 micron complex to be 2.47E10 solar luminosities with a mean volume density of 8.8E6 solar luminosities per cubic Mpc. Correspondingly, the same values for all mid-infrared aromatic features in the wavelength range 5.5-20 microns are approximately 1.9 times larger. Using oxygen abundances compiled from the literature, we report a correlation between aromatic feature strength and metallicity, albeit one with significant scatter.

  3. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  4. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  5. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    SciTech Connect

    Forbrich, Jan; Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A.; Muzerolle, James; Gutermuth, Robert A.

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  6. Far-IR Absorption Features of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua; Trainer, M. G.; Anderson, C. M.; Loeffler, M. J.

    2012-10-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene (C6H6) at ppm levels, as well as large positive ions in Titan’s atmosphere, tentatively identified as polycyclic aromatic hydrocarbons (PAHs).[1] The presence of aromatic molecules, which are photolytically active in the ultraviolet, may be an important part of the formation of aerosol particles in Titan’s haze layers, even at these low concentrations. To date, there have been no laboratory experiments in the literature exploring this area of study. The analysis of data from the Composite Infrared Spectrometer (CIRS) on-board Cassini has recently uncovered a broad emission feature centered at 140 cm-1 in the far-IR that is unique to the aerosol layers of Titan’s atmosphere.[2] Current optical constants from laboratory-generated aerosol analogs have been unable to reproduce this feature.[3,4] From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as PAHs and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). We hypothesize that the inclusion of trace amounts of aromatic precursors will aid in the production of these large structures in the laboratory-generated aerosols. In this study, we perform UV irradiation of several aromatic precursors, both with and without nitrogen heteroatoms, to understand their influence on the observable characteristics of the aerosol. Measured optical and chemical properties will be compared to those formed from CH4/N2 mixtures [5,6] as well as to those from Cassini observations. [1] Waite, J. H., et al. (2007) Science 316 870-875. [2] Anderson, C.M, et al. (2011) Icarus 212 762-778. [3] Khare, B.N., et al. (1984) Icarus 60 127-137. [4] Imanaka, H., et al. (2012) Icarus 218 247-261. [5] Trainer, M.G., et al. (2006) PNAS 103 18035-18042. [6] Trainer, M.G., et al. (2012) Astrobiology 12 315-326.

  7. EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT z ∼ 1

    SciTech Connect

    Lange, Johannes U.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel; Brammer, Gabriel; Whitaker, Katherine E.; Franx, Marijn

    2016-03-01

    We explore the presence of non-stellar rest-frame near-IR (2–5 μm) emission in galaxies at z ∼ 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα profiles, shows that AGNs are unlikely to be the dominant source of excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope.

  8. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with

  9. c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    NASA Astrophysics Data System (ADS)

    Lahuis, F.; van Dishoeck, E. F.; Jørgensen, J. K.; Blake, G. A.; Evans, N. J.

    2010-09-01

    Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer “Cores to Disks” (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. The mid-IR spectral range hosts a suite of diagnostic lines which can distinguish them. A key point is to spatially resolve the emission in the Spitzer-IRS spectra to separate extended PDR and shock emission from compact source emission associated with the circumstellar disk and jets. Methods: An optimal extraction method is used to separate both spatially unresolved (compact, up to a few hundred AU) and spatially resolved (extended, thousand AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Results: Both compact and extended emission features are observed. Warm (T_ex few hundred K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S i] 25 μm emission is observed primarily in the extended component. [S i] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (T_ex ⪆ 700 K) H2, observed primarily through the S(4) line, and [Ne ii] emission is seen mostly in the spatially unresolved component. [Fe ii] and [Si ii] lines are observed in both spatial components. Hot H2O emission is found in the spatially unresolved component of some sources. Conclusions: The observed emission on ≥1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded

  10. Evidence for extended IR emission in NGC2798 and NGC6240

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; Joseph, R. D.; James, P. A.; Robertson, N. A.

    1987-01-01

    Extended emission at 10 and 20 microns can be used to distinguish starbursts from monsters as the underlying energy source driving the luminous infrared emission in the central regions of galaxies. The spatial extent of the mid infrared emission in the interacting galaxy NCG 2798 and the merger NGC 6240 were investigated. The 10 and 20 micron profiles of the IR source in NGC 2798 are significantly wider than beam profiles measured on a standard star, supporting a starburst interpretation of its IR luminosity. For NGC 6240 there is marginal evidence for an extended 10 micron source, suggesting that a significant fraction of its IR luminosity could be produced by a burst of star formation.

  11. Mid-IR Spectra of HED Meteorites and Synthetic Pyroxenes: Reststrahlen Features (9-12 micron)

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids.

  12. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    NASA Astrophysics Data System (ADS)

    Lyu, Jianwei; Rieke, G. H.; Shi, Yong

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  13. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  14. Interferometric Observations of Emission Features in the F-Corona

    NASA Astrophysics Data System (ADS)

    Gulyaev, R. A.; Shcheglov, P. V.

    1998-09-01

    In order to detect the resonance emissions of CaII ions created by the interplanetary dust vaporization, a suitable technique for interferometric observation of eclipsed sky around the Sun was developed. Successful observation has been carried out at the eclipse of February 26, 1998 in Guadeloupe. Field of view of the apparatus was extended up to 40 solar radii from the Sun. All the field on the negative obtained is covered by an interferometric pattern adequate to day-sky interferograms. Such a pattern must be due to the double scattering of the sunlight in the Earth's atmosphere. There is a number of emission features on the above background. First, unshifted K-line is seen up to about 10 solar radii. This is consistent with other indications on the occurences of the H and K emission lines in coronal spectrum. Probably, the unshifted K-emission is due to scattering in the Earth's atmosphere similar to the twilight emission. The most important features on the frame are Doppler-shifted K-emissions in the SW-quadrant of the circumsolar space within the range of 5 to 20 solar radii. The line displacements correspond to Doppler velocities for relevant heliocentric distances. We suppose that these features represent emissions expected with the dust particles evaporation. There are some more emission features close to the Sun which are not identified so far. The above observational results present first successful experiment on detection of manifestations of the dust vaporization near the Sun

  15. A tentative identification of methanol as the progenitor of the 3.52-micron emission feature in several comets

    NASA Technical Reports Server (NTRS)

    Hoban, Susan; Mumma, Michael; Reuter, Dennis C.; Disanti, Michael; Joyce, R. R.; Storrs, Alex

    1991-01-01

    Continuum emission has been detected during 3.44-3.64 micron spectral region observations of Comets P/Brorsen-Metcalf, Okazaki-Levy-Rudenko, and Levy. The spatial brightness profile of the 3.52-micron emission feature was measured and found to be consistent with uniform outflow from a central, unresolved source; the molecule generating the emission is either directly sublimated from the cometary surface or is a short-lived parent specie's dissociation product. The modeled IR spectrum of CH3OH implies the consistency of the observed spectra with a methanol origin for the 3.52 emission.

  16. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data

    PubMed Central

    Wan, Chayan; Cao, Wenqing; Cheng, Cungui

    2014-01-01

    Sprague-Dawley (SD) rats' normal and abnormal pancreatic tissues are determined directly by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy method. In order to diagnose earlier stage of SD rats pancreatic cancer rate with FT-IR, a novel method of extraction of FT-IR feature using discrete wavelet transformation (DWT) analysis and classification with the probability neural network (PNN) was developed. The differences between normal pancreatic and abnormal samples were identified by PNN based on the indices of 4 feature variants. When error goal was 0.01, the total correct rates of pancreatic early carcinoma and advanced carcinoma were 98% and 100%, respectively. It was practical to apply PNN on the basis of ATR-FT-IR to identify abnormal tissues. The research result shows the feasibility of establishing the models with FT-IR-DWT-PNN method to identify normal pancreatic tissues, early carcinoma tissues, and advanced carcinoma tissues. PMID:25548717

  17. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data.

    PubMed

    Wan, Chayan; Cao, Wenqing; Cheng, Cungui

    2014-01-01

    Sprague-Dawley (SD) rats' normal and abnormal pancreatic tissues are determined directly by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy method. In order to diagnose earlier stage of SD rats pancreatic cancer rate with FT-IR, a novel method of extraction of FT-IR feature using discrete wavelet transformation (DWT) analysis and classification with the probability neural network (PNN) was developed. The differences between normal pancreatic and abnormal samples were identified by PNN based on the indices of 4 feature variants. When error goal was 0.01, the total correct rates of pancreatic early carcinoma and advanced carcinoma were 98% and 100%, respectively. It was practical to apply PNN on the basis of ATR-FT-IR to identify abnormal tissues. The research result shows the feasibility of establishing the models with FT-IR-DWT-PNN method to identify normal pancreatic tissues, early carcinoma tissues, and advanced carcinoma tissues.

  18. Circular polarization in 1612 MHz OH maser emission from OH/IR stars

    NASA Technical Reports Server (NTRS)

    Zell, Philip; Fix, John D.

    1991-01-01

    In order to study the incidence of circular polarization in the 1612 MHz OH emission from envelopes of OH/IR stars, the Arecibo radio telescope was used to obtain high-resolution, high signal-to-noise 1612 MHz spectra in both circular polarizations for several OH/IR stars. The method of Troland and Heiles (1982) was used to estimate the intensities of magnetic fields in the envelopes. The fields appear to have complex structures, and intensities on the order of 1-100 microG. The spectra are weakly polarized, probably as a result of weakly polarized emission from individual emitting elements. Integration over the Stokes parameter V yields nonzero results for three of the stars, suggesting that another polarizing mechanism (in addition to simple Zeeman splittings) is at work.

  19. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission.

    PubMed

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins; Faulkner, Stephen; Vosch, Tom; Sørensen, Thomas Just

    2015-02-11

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency. Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed for the visible part of the spectrum.

  20. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  1. Investigating the origin of emissivity features in airless body spectra

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Bowles, N. E.; Thomas, I.; Donaldson Hanna, K. L.

    2013-12-01

    It has long been noted that mid-infrared emissivity features remote observations of airless bodies do not generally match reflectance and ambient thermal emission laboratory measurements. Recently Vernazza et al., (2012) conducted reflectance experiments and successfully reproduced spectral differences by doping a fine (<30 micron) particulate samples of meteorite and/or minerals with KBr (potassium bromide) powder, which is transparent in the infrared. Their results suggest that porosity and/or cavity effects are significant in modifying the observed spectra of asteroids and derived values of surface thermal inertia. At similar wavelengths, the lunar community has long supported the theory that radiative transfer was a driving phenomenon through the creation of strong thermal gradients in the upper 100 microns of a particulate surface (e.g. Logan et al., 1973; Henderson et al., 1995). These thermal gradients are steep within the depth of thermal emission causing a strong wavelength dependence to the observed thermal emission spectrum. For example, strong absorptions like Reststrahlen Bands emit from the colder, shallower surface while strongly transparent features such as the Christiansen Feature emit from the warmer, deeper surface. To study these effects, we have built simulated airless body thermal emission chambers at University of Oxford and JPL (Thomas et al., 2012). In this study we investigate both radiative transfer and porosity phenomenon by measuring KBr-doped samples in reflectance and both ambient and simulated airless body emission.

  2. Unusual features in the persistent emission of the Rapid Burster

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.; Lewin, Walter H. G.; Van Paradijs, Jan; Van Der Klis, Michiel

    1993-01-01

    Several distinct features in the persistent X-ray emission after long (greater than 30 s) type II bursts from the Rapid Burster were discovered in August 1985. A specific pattern characterized by a 'hump' was observed in the early portion of the persistent emission after type II bursts with integrated fluxes less than about 4.8 x 10 exp -6 erg/sq cm. This hump which typically lasts about 200 s is almost never observed after bursts with fluences greater than this value. The emission during the hump is found to be always harder than the average persistent emission. Quasi-periodic oscillations with frequencies of about 40 mHz observed in 10 cases occur exclusively during a hump. The persistent emission also exhibited sharp 'glitches' and small 'bumps' lasting about 20-100 s. The glitches always occurred at the same phase in the intervals between bursts. In seven cases the glitches were followed by a bump.

  3. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  4. Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Batishche, Sergei A.

    1995-05-01

    It is shown that infra-red ((lambda) equals 1064 nm) long pulse (approximately 100 microsecond(s) ) radiation of YAG:Nd laser, operating in free generation regime, effectively fragments gallstones, urinary calculus and kidney stones. The features of the mechanism of this process are investigated. Laser lithotripsy is nowadays a method widely used for fragmentation of gallstones, urinary calculus and kidney stones. Flashlamp pumped dye lasers of microsecond duration are most often used for such purposes. Nevertheless, there are some reports on lithotripsies with nanosecond duration laser pulses (for example, Q-switched YAG:Nd laser). The mechanism of the laser fragmentation of such stones was supposed to be the next. The laser powerful radiation, delivered through the optical fiber, is absorbed by the material of the stone. As a result of such highly localized energy absorption, dense plasma is formed, which expands. Such plasma and vapor, liquid confined, forms a cavitation bubble. This bubble grows, reaches its most dimension and then collapses on itself in some hundreds of micro seconds. Shock waves generated during the growth and the collapse of these bubbles are the origin of fragmentation of the stone. It is necessary to say that there are rather confined data on the hundreds microsecond laser pulse fragmentation especially what concerns the usage of infra-red (IR) YAG:Nd lasers with long laser pulses. Clearing this problem would result in better understanding of the fragmentation mechanism and it could favor development of simple and more reliable laser systems for lithotripsy. In this work we report about investigation of features of an effective fragmentation of gallstones, urinary calculus and kidney stones under exposure of IR ((lambda) equals 1064 nm) radiation of repetitive YAG:Nd laser working in free generation regime.

  5. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  6. New Infrared Emission Features and Spectral Variations in Ngc 7023

    NASA Technical Reports Server (NTRS)

    Werner, M. W.; Uchida, K. I.; Sellgren, K.; Marengo, M.; Gordon, K. D.; Morris, P. W.; Houck, J. R.; Stansberry, J. A.

    2004-01-01

    We observed the reflection nebula NGC 7023, with the Short-High module and the long-slit Short-Low and Long-Low modules of the Infrared Spectrograph on the Spitzer Space Telescope. We also present Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) images of NGC 7023 at 3.6, 4.5, 8.0, and 24 m. We observe the aromatic emission features (AEFs) at 6.2, 7.7, 8.6, 11.3, and 12.7 m, plus a wealth of weaker features. We find new unidentified interstellar emission features at 6.7, 10.1, 15.8, 17.4, and 19.0 m. Possible identifications include aromatic hydrocarbons or nanoparticles of unknown mineralogy. We see variations in relative feature strengths, central wavelengths, and feature widths, in the AEFs and weaker emission features, depending on both distance from the star and nebular position (southeast vs. northwest).

  7. Dust processing in photodissociation regions Mid-IR emission modelling of NGC2023N

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-11-01

    This study is done in the context of dust evolution and its interaction with the gaseous phase throughout the interstellar medium evolution cycle. We focus on the mid-IR spectral variations of the dust emission across photodissociation regions, observed with both ISO and Spitzer satellites. We use a dust emission model coupled with a radiative transfer model in order to study the excitation effects on these spectral variations. We show that in NGC2023N, radiative transfer effects cannot account for the observed spectral variations. Thus, we interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR bands carriers) and very small grains (VSGs, mid-IR continuum carriers). We conclude that the PAH/VSG abundance ratio is about 5 times lower in the dense deep part than in the diffuse illuminated part of the PDR where dust properties seem to be the same as in the diffuse high galactic latitude medium. Consequently, we conclude that dust must evolve from "dense properties" to "diffuse properties" at the small spatial scale of the dense illuminated ridge.

  8. Interferometric observations of emission features in the F-corona

    NASA Astrophysics Data System (ADS)

    Gulyaev, R. A.; Shcheglov, P. V.

    1999-03-01

    We are solving the problem of detection of the resonance emissions of Ca II ions created by the interplanetary dust sublimation. To this end, a suitable technique was developed for interferometric observations of the eclipsed sky around the Sun. Successful observations have been carried out during the eclipse of February 26, 1998 in Guadeloupe. On the negative obtained, all the field is covered by an interference pattern adequate to a daytime sky interferogram. Such a pattern must be due to the double scattering of the sunlight in the Earth's atmosphere. There is a number of emission features on the above background. Unshifted K-line of Ca II is seen up to about 10 solar radii. This is consistent with other evidences on the occurrence of the H and K emission lines in the coronal spectrum. The most important features on the photograph are Doppler-shifted K-emissions in the SW-quadrant of the circumsolar space within the range of 5 to 20 solar radii. The sign of the Doppler shift corresponds to direction of the planetary orbital motions. That is why, we suppose that these features just represent the emission associated with the sublimating dust. If so, it will be said about the discovery of a new component of the solar corona, namely the `S-corona' (from `sublimation').

  9. Wavelength calibration techniques and subtle surface and atmospheric absorption features in the Mariner 6, 7 IRS reflectance data

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, T. L.; Martin, T. Z.; Pollack, James B.; Freedman, R.

    1994-01-01

    1994 marks the 25th anniversary of the Mariner 6 and 7 flyby missions to Mars. Despite its age, the Mariner 6,7 Infrared Spectrometer (IRS) data are a unique set of measurements that can provide important information about the Martian surface, atmospheric, and atmospheric aerosol composition. For certain mid-IR wavelengths, the IRS spectra are the only such spacecraft data obtained for Mars. At other wavelengths, IRS measured surface regions different from those measured by Mariner 9 or Phobos 2 and under different dust opacity conditions. We are interested in examining the IRS reflectance data in the 1.8 to 3.0 micron region because there are numerous diagnostic absorption features at these wavelengths that could be indicative of hydrated silicate minerals or of carbonate- or sulfate-bearing minerals. Groundbased telescopic data and recent Phobos ISM measurements have provided controversial and somewhat contradictory evidence for the existence of mineralogic absorption features at these wavelengths. Our goal is to determine whether any such features can be seen in the IRS data and to use their presence or absence to re-assess the quality and interpretations of previous telescopic and spacecraft measurements.

  10. OCCULTATION OF THE QUIESCENT EMISSION FROM Sgr A* BY IR FLARES

    SciTech Connect

    Yusef-Zadeh, F.; Wardle, M.; Bushouse, H.; Dowell, C. D.; Roberts, D. A.

    2010-11-20

    We have investigated the nature of flare emission from Sgr A* during multi-wavelength observations of this source that took place in 2004, 2005, and 2006. We present evidence for dimming of submillimeter and radio flux during the peak of near-IR flares. This suggests that the variability of Sgr A* across its wavelength spectrum is phenomenologically related. The model explaining this new behavior of flare activity could be consistent with adiabatically cooling plasma blobs that are expanding but also partially eclipsing the background quiescent emission from Sgr A*. When a flare is launched, the plasma blob is most compact and is brightest in the optically thin regime whereas the emission in radio/submillimeter wavelengths has a higher opacity. Absorption in the observed light curve of Sgr A* at radio/submillimeter flux is due to the combined effects of lower brightness temperature of plasma blobs with respect to the quiescent brightness temperature and high opacity of plasma blobs. This implies that plasma blobs are mainly placed in the magnetosphere of a disk-like flow or further out in the flow. The depth of the absorption being larger in submillimeter than in radio wavelengths implies that the intrinsic size of the quiescent emission increases with increasing wavelength which is consistent with previous size measurements of Sgr A*. Lastly, we believe that occultation of the quiescent emission of Sgr A* at radio/submillimeter by IR flares can be used as a powerful tool to identify flare activity at its earliest phase of its evolution.

  11. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.

    2016-01-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  12. The anomalous 3.43 and 3.53 micron emission features toward HD 97048 and Elias 1 - C-C vibrational modes of polycyclic aromatic hydrocarbons?

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.; Wooden, D. H.; Cohen, M.

    1990-01-01

    The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones of large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable.

  13. IR detector for hydrocarbons concentration measurement in emissions during petroleum and oil products storage and transportation

    NASA Astrophysics Data System (ADS)

    Vasilyev, Andrey O.; Shemanin, Valeriy G.; Chartiy, Pavel V.

    2011-10-01

    A double beam IR detector is developed for light hydrocarbons concentration measurement in emissions from storage vessels during oil and oil products storage and transportation. It was concluded on the basis of chromatogram that main crude losses from evaporation are the share of hydrocarbons light ends from methane to decane. Detector operation is based on spectral transparency measurement in the infrared spectra absorption range. Operational wavelength of infrared radiation makes 3.4 μm. measurement principle is based on concentration calculation proceed from molecule absorption cross-section, optical path length between light emitted diode and reference and signal photodiodes as well as from value of measured signal transmitted through gaging volume. The novel of offering device is an actual paraffin hydrocarbons concentration measurement in emissions and continuous and automatic environment quality control.

  14. Improving HJ-1B IRS land surface temperature product using ASTER global emissivity database

    NASA Astrophysics Data System (ADS)

    Li, H.; Hu, T.; Meng, X.; Yongming, D.; Cao, B.; Liu, Q.

    2015-12-01

    Land surface temperature (LST) is a key parameter for hydrological, meteorological, climatological and environmental studies. Currently many operational LST products have been generated using European and American satellite data, i.e., the Advanced Very High Resolution Radiometer (AVHRR), Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS). However, few LST product has been produced using Chinese satellite data. Thus, the objective of this study is to generate reliable LST product using Chinese HJ-1B satellite data. The HJ-1B satellite of China, were launched on September 6, 2008, which are used for disaster and environment monitoring. IRS (Infrared Scanner) is one of the key instruments onboard HJ-1B satellite, it can scan the earth every four days, has four spectral bands ranging from the near-infrared to thermal infrared bands (band 1 0.75 - 1.10μm, band 2 1.55-1.75μm, MIR band 3 3.50 - 3.90μm, band 4 10.5-12.5μm) with 720 km swath. It scans ±29° from nadir and the spatial resolution for band1-3 is 150m and 300m for band4. In this study, a single-channel parametric model (SC-PM) algorithm were used to produce 300m LST product from HJ-1B IRS data. The NCEP atmospheric profiles and a parametric model were used for atmospheric correction. In order to improve the accuracy of the land surface emissivity (LSE), the 1km ASTER Global Emissivity Database (GED) and self-developed 5-day 1km vegetation cover product were used for estimating the LSE based on the Vegetation Cover Method. Two years of HJ-1B IRS LST product in Heihe River basin (Gansu province, China) from June 2012 to June 2014 were generated. The LST products were evaluated against ground observations in an arid area of northwest China during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment. Four barren surface sites and ten vegetated sites were chosen for the evaluation. The results show that the developed HJ-1B IRS

  15. Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    NASA Technical Reports Server (NTRS)

    Galliano, F.; Madden, S.C.; Tielens, A. G. G. M.; Peeters, E.; Jones, A. P.

    2007-01-01

    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic H II regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M 82, M 51, 30 Doradus, M 17 and the Orion bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controlled by the fraction of ionized PAHs. In particular, we show that we can rule out the modification of the PAH size distribution as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio Go/n(sub e) x square root of(T(sub gas)). Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.

  16. SiO and H2O maser emission in OH/IR objects and late-type variable stars

    NASA Technical Reports Server (NTRS)

    Nyman, L.-A.; Johansson, L. E. B.; Booth, R. S.

    1986-01-01

    A four-year search for 86-GHz SiO and H2O maser emission towards about 20 unidentified OH/IR objects and about 35 optically identified variable stars has yielded information on the temporal variations of many of these sources. The SiO maser emission is noted to behave differently in OH/IR objects as compared with Mira variables. An attempt is made to explain the appearance of strong masers in both vibrational states solely at the 43 GHz transition, under the assumption that an intrinsically weak pump mechanism generates weak (v=1, J=2-1) emission.

  17. A Systematic Search for the Spectra with Features of Crystalline Silicates in the Spitzer IRS Enhanced Products

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Luo, Ali; Liu, Jiaming; Jiang, Biwei

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. The average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.

  18. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  19. An Extraordinary Group of 3.6micron Galaxies with Extremely Bright, Extended Far-IR Emission

    NASA Astrophysics Data System (ADS)

    Yan, Lin

    2013-08-01

    Based on WISE, Spitzer and recent Herschel far-IR data, we have discovered W0010+32, a remarkable object with extremely bright (detected by IRAS) and extended far-IR emission, coinciding with a group of 3.6micron sources with very faint optical magnitudes. The bright 70micron emission was resolved into two peaks, separated by 10arcseconds. The photo-z estimates based on optical and IR data are largely uncertain, ranging from 0.7 to >2. The bright far-IR emission from W0010+32 could either be magnified by the gravitational lensing of a foreground cluster of galaxies or is a rare case of a cluster of intrinsically luminous hyperLIRGs. Either case offers a rare window on the rapid transformation of galaxies and clusters during a short episode of the most energetic activity. To unravel the mystery of W0010+32, we request 0.5 nights of Keck I time to obtain J, H & K-band multi-object near-IR spectra using MOSFIRE. The proposed near-IR spectra will detect emission lines ! from galaxies with SFR as low as 0.4-3.4Msun/yr at z 1-2.3. This data will enable the following critical measurements: (1) redshifts of galaxies, and determine if it is indeed a group/cluster, (2) metallicities and AGN content based on emission line ratios and widths, (3) unobscured SFR based on Halpha line fluxes as well as dust extinctions based on spectral lines and continuum slopes, (4) kinematic velocity measurements with spatially and spectrally resolved emission lines (gas outflows) commonly seen among extreme starbursts.

  20. Radiative Transfer Modeling of the Mid-IR/Far-IR Dust Emissions of the Symbiotic Mira, V* R Aqr

    NASA Astrophysics Data System (ADS)

    Omelian, Eric B.; Sankrit, Ravi; Helton, L. Andrew; Gorti, Uma; Wagner, R. Mark

    2017-01-01

    We present RADMC-3D models of the symbiotic system V* R Aqr, which consists of a Mira variable and white dwarf. Thermal radiative transfer modeling is performed using RADMC-3D to characterize the mid-IR/far-IR Spectral Energy Distributions (SEDs) of the system at two different phases of the visible light curve. Near maximum visible light (Mira phase of 1.0), we utilize the Infrared Space Observatory (ISO) Short Wave Spectrometer/Long Wave Spectrometer observations (2.3 - 197 mu-m) and contrast them to the recently obtained near minimum visible light (~0.4 Mira phase) observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA)/Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) (6.4 - 37.1 mu-m). Initial spectra and photometry from the SOFIA/FORCAST observations of the central Mira indicate that flux values are about 50% of that measured by the ISO SWS/LWS observations. Dust models utilizing a spherical shell and amorphous silicates are used to generate synthetic SEDs, which are compared with the ISO and FORCAST observations in order to constrain the properties of the shell (such as its dust mass and temperature) at different phases of the Mira variability. Our proposed monitoring of the V* R Aqr system will establish a characterization baseline of the SEDs as the system approaches its upcoming eclipse and periastron passage.

  1. Optical emission spectroscopic study of plasma plumes generated by IR CO2 pulsed laser on carbon targets

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Díaz, L.; Santos, M.; Reyman, D.; Poyato, J. M. L.

    2008-05-01

    Optical emission spectroscopy studies, in the spectral range ultraviolet-visible-near infrared (UV-Vis-NIR), were performed to investigate thermal and dynamical properties of a plume produced by laser ablation of a graphite target. Ablation is carried out using a high-power IR CO2 pulsed laser at λ = 9.621 µm, power density ranging from 0.22 to 5.36 GW cm-2 and air pressures around 4 Pa. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited C, ionic fragments C+, C2+ and C3+ and molecular features of C2(d 3Πg-a 3Πu Swan band system). The medium-weak emission is mainly due to excited atomic N, H, O, ionic fragment C4+ and molecular features of C2( E\\,^1\\Sigma _g^+\\--A\\,^{1}\\Pi _u ; Freymark system), C2( D\\,^1\\Sigma _u^+\\--X\\,^1\\Sigma _g^+ ; Mulliken system), CN(D 2Π-A 2Π), C2(e 3Πg-a 3Πu Fox-Herzberg system), C2(C 1Πg-A 1Πu Deslandres-d'Azambuja system), OH(A 2Σ+-X 2Π), CH(C 2Σ+-X 2Π), NH(A 3Π-X 3Σ-), CN(B 2Σ+-X 2Σ+ violet system), CH(B 2Σ+-X 2Π), CH(A 2Δ-X 2Π), C2( A\\,^{1}\\Pi_u\\--X\\,^{1}\\Sigma ^{+}_g ; Phillips system) and CN(A 2Π-X 2Σ+ red system). An excitation temperature Texc = 23 000 ± 1900 K and electron densities in the range (0.6-5.6) × 1016 cm-3 were estimated by means of C+ ionic lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 and CN electronically excited species under various laser irradiance conditions are made.

  2. Application of IRS-1D data in water erosion features detection (case study: Nour roud catchment, Iran).

    PubMed

    Solaimani, K; Amri, M A Hadian

    2008-08-01

    The aim of this study was capability of Indian Remote Sensing (IRS) data of 1D to detecting erosion features which were created from run-off. In this study, ability of PAN digital data of IRS-1D satellite was evaluated for extraction of erosion features in Nour-roud catchment located in Mazandaran province, Iran, using GIS techniques. Research method has based on supervised digital classification, using MLC algorithm and also visual interpretation, using PMU analysis and then these were evaluated and compared. Results indicated that opposite of digital classification, with overall accuracy 40.02% and kappa coefficient 31.35%, due to low spectral resolution; visual interpretation and classification, due to high spatial resolution (5.8 m), prepared classifying erosion features from this data, so that these features corresponded with the lithology, slope and hydrograph lines using GIS, so closely that one can consider their boundaries overlapped. Also field control showed that this data is relatively fit for using this method in investigation of erosion features and specially, can be applied to identify large erosion features.

  3. An alternative mechanism for production of emission features in some infrared objects

    NASA Technical Reports Server (NTRS)

    Apruzese, J. P.

    1975-01-01

    Two dust-envelope models of the M supergiant VX Sgr, which exhibits a prominent emission feature at 10 microns, are presented. The models indicate that, for certain envelope sizes, the presence of the observed emission feature does not necessarily indicate that the emitting grains possess a similar feature in their emissivity profile. The mechanism which may in some cases be producing the observed emission feature is discussed.

  4. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  5. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria

    PubMed Central

    Roalkvam, Irene; Drønen, Karine; Stokke, Runar; Daae, Frida L.; Dahle, Håkon; Steen, Ida H.

    2015-01-01

    In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD+-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments. PMID:26441916

  6. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  7. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  8. Highly selective and responsive visible to near-IR ytterbium emissive probe for monitoring mercury(II).

    PubMed

    Zhang, Tao; Chan, Chi-Fai; Lan, Rongfeng; Wong, Wai-Kwok; Wong, Ka-Leung

    2014-01-20

    A new lanthanide probe based on the fluorescence resonance energy transfer (FRET) process with the combination of ytterbium porphyrinate complex and a rhodamine B derivative unit was synthesized to detect the Hg(2+) ion with responsive emission in the visible and near-IR region with a detection limit of 10 μM.

  9. THE SPATIAL EXTENT OF (U)LIRGS IN THE MID-INFRARED. II. FEATURE EMISSION

    SciTech Connect

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Stierwalt, S.; Haan, S.; Howell, J. H.; Petric, A. O.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Murphy, E. J.; Appleton, P.; Evans, A. S.; Sanders, D. B.

    2011-11-01

    We present results from the second part of our analysis of the extended mid-infrared (MIR) emission of the GOALS sample based on 5-14 {mu}m low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for all galaxies in the sample, FEE{sub {lambda}}, defined as the fraction of the emission that originates outside of the unresolved central component of a source, and spatially separate the MIR spectrum of a galaxy into its nuclear and extended components. We find that the [Ne II]12.81 {mu}m emission line is as compact as the hot dust MIR continuum, while the polycyclic aromatic hydrocarbon (PAH) emission is more extended. In addition, the 6.2 and 7.7 {mu}m PAH emission is more compact than that of the 11.3 {mu}m PAH, which is consistent with the formers being enhanced in a more ionized medium. The presence of an active galactic nucleus (AGN) or a powerful nuclear starburst increases the compactness and the luminosity surface density of the hot dust MIR continuum, but has a negligible effect on the spatial extent of the PAH emission on kpc-scales. Furthermore, it appears that both processes, AGN and/or nuclear starburst, are indistinguishable in terms of how they modify the integrated PAH-to-continuum ratio of the FEE in (ultra)luminous infrared galaxies ((U)LIRGs). Globally, the 5-14 {mu}m spectra of the extended emission component are homogeneous for all galaxies in the GOALS sample. This suggests that, independently of the spatial distribution of the various MIR features, the physical properties of star formation occurring at distances farther than 1.5 kpc from the nuclei of (U)LIRGs are very similar, resembling local star-forming galaxies with L{sub IR} < 10{sup 11} L{sub sun}, as well as star-formation-dominated ULIRGs at z {approx} 2. In contrast, the MIR spectra of the nuclear component of local ULIRGs and LIRGs are very diverse. These results imply that the observed

  10. Polycyclic Aromatic Hydrocarbon Emission in Spitzer/IRS Maps. I. Catalog and Simple Diagnostics

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Allamandola, L. J.; Tielens, A. G. G. M.; Peeters, E.

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5-15 μm. For each object we have spectral maps at a spatial resolution of ˜4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  11. POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS

    SciTech Connect

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E.; Allamandola, L. J.; Tielens, A. G. G. M.

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  12. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  13. A new emission feature in IRAS spectra and the polycyclic aromatic hydrocarbon spectrum

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Tielens, A. G. G. M.; Allamandola, L. J.

    1985-01-01

    IRAS spectra of those sources which show strong 7.7 and 11.3 micron emission features also show a plateau of emission extending from 11.3 to about 13.0 microns. Like the 11.3 micron feature, this new feature is attributed to the CH out-of-plane bending mode in polycyclic aromatic hydrocarbons (PAHs). Its discovery reinforces the identification of the 'unidentified infrared emission features' as emission from PAHs. The wavelength of this new feature suggests that interstellar PAHs are not as partially hydrogenated as hitherto thought. It also constrains their molecular structure.

  14. Harmonic and anharmonic features of IR and NIR absorption and VCD spectra of chiral 4-X-[2.2]paracyclophanes.

    PubMed

    Abbate, Sergio; Castiglioni, Ettore; Gangemi, Fabrizio; Gangemi, Roberto; Longhi, Giovanna; Ruzziconi, Renzo; Spizzichino, Sara

    2007-08-02

    The vibrational absorption spectra and vibrational circular dichroism (VCD) spectra of both enantiomers of 4-X-[2.2]paracyclophanes (X = COOCD3, Cl, I) have been recorded for a few regions in the range of 900-12000 cm(-1). The analysis of the VCD spectra for the two IR regions, 900-1600 cm(-1) and 2800-3200 cm(-1), is conducted by comparing with DFT calculations of the corresponding spectra; the latter region reveals common motifs of vibrational modes for the three molecules for aliphatic CH stretching fundamentals, whereas in the mid-IR region, one is able to identify specific signatures arising from the substituent groups X. In the CH stretching region between 2900 and 2800 cm(-1), we identify and interpret a group of three IR VCD bands due to HCH bending overtone transitions in Fermi resonance with CH stretching fundamental transitions. The analysis of the NIR region between approximately 8000 and approximately 9000 cm(-1) for X = COOCD3 reveals important features of the aromatic CH stretching overtones that are of value since the aromatic CH stretching fundamentals are almost silent. The intensifying of such overtones is attributed to electrical anharmonicity terms, which are evaluated here by ab initio methods and compared with literature data.

  15. Structural features of alkali and barium aluminofluorophosphate glasses studied by IR spectroscopy

    SciTech Connect

    Urusovskaya, L.N.; Smirnova, E.V.

    1995-03-01

    IR reflection spectra of the Al(PO{sub 3}){sub 3}-MeF{sub x} glasses (Me=Li, Na, K, Ba) with the maximum content of fluoride varied for each specific glass within certain concentration limits are considered. Analysis of the spectra for glasses obtained upon variation in the content of alkali metal fluoride introduced into these glasses has demonstrated that the increase in the MeF{sub x} content leads to breaking the chain groupings and forming the [PO{sub 3}F]{sup 2-} groups, whereas the rise in concentration of barium fluoride in the Al(PO{sub 3}){sub 3}-BaF{sub 2} glasses brings about the stabilization of the chain structures.

  16. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  17. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. I. Emission-Line Diagnostics

    NASA Astrophysics Data System (ADS)

    Melendez, Marcio; Weaver, K.; Kraemer, S.; Mushotzky, R. F.; Tueller, J.; Markwardt, C. B.; Malumuth, E. M.; Engle, K.; Armus, L.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.

    2010-01-01

    We compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra,of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 μm, [Ne II] 12.81μm , [Ne III] 15.56 μm and [Ne V] μm, and hard X-ray show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGN are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The correlations between all the mid-infrared emission lines and BAT luminosities are statistically significant. The mid-infrared emission line fluxes are highly correlated, with the worst correlations for [Ne V]-[Ne II] and [O IV]-[Ne II], as a result of enhanced [Ne II] in some sources due to nuclear stellar activity, however the tightness of these mid-infrared correlations suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that [Ne III] an [O IV] lines do not unambiguously identify AGNs as stand-along diagnostics, however the BAT AGNs fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. While it is likely that detection of [Ne V] indicates the presence of an AGN, the [Ne V] line is weak compared to [O IV] and may not be detected in weak AGN. We suggest that a composite method using [Ne II], [Ne III], and [O IV] provides a more robust diagnostic.

  18. IR Structured Emission-Based Speciation, Thermometry, and Tomography of CO and H2O in High-Pressure Combustors

    DTIC Science & Technology

    2006-05-01

    combustors and augmentors, but is impacted by soot emission interference in staged combustors. The current work is motivated primarily by the...typically of order 10. Time averaged spatial maps can be constructed using a scanning mechanism, similar to that used for gas samplers , to scan the...entrance slit . The light enters the spectrograph, is dispersed, and reimaged with 1:3 demagnification onto the focal plane of a Santa Barbara ImageIR

  19. SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES

    SciTech Connect

    Haynes, Korey; Cannon, John M.; Skillman, Evan D.; Gehrz, Robert; Jackson, Dale C. E-mail: khaynes5@gmu.ed E-mail: gehrz@astro.umn.ed

    2010-11-20

    Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) {approx} 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of {approx}50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(11.3 {mu}m), (8.6 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(6.2 {mu}m), and (8.6 {mu}m)/(6.2 {mu}m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 {mu}m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 {mu}m)/(6.2 {mu}m) and (8.6 {mu}m)/(6.2 {mu}m) to the mixed (CC/CH) mode PAH ratio (7.7 {mu}m)/(11.3 {mu}m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.

  20. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-07-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The infrared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation model of Venus' atmosphere to be used in atmospheric and surface parameter retrieval procedures that fit simulated spectra to the measured data. The surface emissivity can be retrieved from VIRTIS-M-IR measurements in the transparency windows around 1 μm, but it is not easy to derive, since atmospheric influences strongly interfere with surface information. There are mainly three atmospheric model parameters that may affect quantitative results of surface emissivity retrievals: CO_2 opacity, cloud features, and deep atmosphere temperature field. The CO_2 opacity with respect to allowed transitions is usually computed by utilizing a suitable line data base and certain line shape models that consider collisional line mixing. Both line data bases and shape models are not well established from measurements under the environmental conditions in the deep atmosphere of Venus. Pressure-induced additional continuum absorption introduces further opacity uncertainties. The clouds of Venus are usually modeled by a four-modal distribution of spherical droplets of about 75% sulfuric acid, where each mode is characterized by a different mean and standard deviation of droplet size distribution and a different initial altitude abundance profile. The influence of possible cloud mode variations on surface emissivity retrieval results is investigated in the paper. Future retrieval procedures will aim at a separation of cloud mode and surface emissivity variations using different atmospheric windows sounded by

  1. Remote sensing of the surface emissivity at 9 microns over the globe. [over desert regions with IR Interferometer Spectrometer data

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.

    1976-01-01

    The infrared spectral measurements made by the Nimbus 4 infrared interferometer spectrometer (Iris) for a period of about 10 months are used to study the surface emissivity properties over the globe. It is found that the surface emissivity at 9 microns, as measured by Iris with a circular field of view of about 100-km diameter, is significantly less than unity over arid and semiarid areas. The spectral features in the 8-12-micron window observed over these lands reveal emissivity characteristics essentially due to quartz (SiO2). It is found that these emissivity features are significantly weakened by the presence of clay, clay horizons, or pedogenic horizons in the soil. Low emissivity is observed over sandy or sandy loam areas (psamments) with no clay or pedogenic horizons.

  2. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.

    PubMed

    Wang, Yi Jia; Shi, Yang; Wang, Zhaoyang; Zhu, Zhenfeng; Zhao, Xinyuan; Nie, Han; Qian, Jun; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2016-07-04

    A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) was obtained in high yield by a simple two-step reaction. The resultant TPE-TCF showed evident aggregation-induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near-IR (red-NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red-NIR emission and high efficiency, nanoparticles (NPs) of TPE-TCF were fabricated by using tat-modified 1,2-distearoylsn-glycero-3-phosphor-ethanol-amine-N-[methoxy-(polyethyl-eneglycol)-2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co-incubation with 4,6-diamidino-2-phenylindole (DAPI) in the presence of tritons, the capsulated TPE-TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI.

  3. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    PubMed

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-07

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation.

  4. Near-IR emissions in the upper Jovian atmosphere after SL-9 impact: Indications of possible northern counterparts

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Encrenaz, Th.; Stüwe, J. A.; Wiedemann, G.

    The evolution of the Jovian atmosphere as a result of the impact of SL-9 was monitored in the near-IR at the 3.5-m New Technology Telescope at ESO, La Silla, from July 22-31, 1994. At the beginning of the observational run the spectra around 3.5 µm show enhanced H3+ emissions at -44° and +44° latitude, which are distributed similarly in longitude. Later, most of the H3+ emission is present in the northern polar region while it has faded at -44°. In the 2.1 µm range all spectra obtained at -44° lat. show a continuum associated to the impact sites on which in some cases the H2 quadrupole line is indicated. The spatial distribution of the H2 emission in the northern hemisphere does not show a clear correlation to the impact sites.

  5. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    SciTech Connect

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. CNRS, Institut d'Astrophysique, Paris )

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  6. The influence of the spectral emissivity of flat-plate calibrators on the calibration of IR thermometers

    SciTech Connect

    Cárdenas-García, D.; Méndez-Lango, E.

    2013-09-11

    Flat Calibrators (FC) are an option for calibration of infrared thermometers (IT) with a fixed large target. FCs are neither blackbodies, nor gray-bodies; their spectral emissivity is lower than one and depends on wavelength. Nevertheless they are used as gray-bodies with a nominal emissivity value. FCs can be calibrated radiometrically using as reference a calibrated IR thermometer (RT). If an FC will be used to calibrate ITs that work in the same spectral range as the RT then its calibration is straightforward: the actual FC spectral emissivity is not required. This result is valid for any given fixed emissivity assessed to the FC. On the other hand, when the RT working spectral range does not match with that of the ITs to be calibrated with the FC then it is required to know the FC spectral emissivity as part of the calibration process. For this purpose, at CENAM, we developed an experimental setup to measure spectral emissivity in the infrared spectral range, based on a Fourier transform infrared spectrometer. Not all laboratories have emissivity measurement capability in the appropriate wavelength and temperature ranges to obtain the spectral emissivity. Thus, we present an estimation of the error introduced when the spectral range of the RT used to calibrate an FC and the spectral ranges of the ITs to be calibrated with the FC do not match. Some examples are developed for the cases when RT and IT spectral ranges are [8,13] μm and [8,14] μm respectively.

  7. Pulsar polarization: weak sources and emission features at 430 MHz

    SciTech Connect

    Rankin, J.M.; Benson, J.M.

    1981-03-01

    We have measured the Stokes parameters of the average profiles of 31 pulsars at 430 MHz. The three pulsars in our sample with interpulse emission (0823+26, 0950+08, and 1929+10) have measurable linear polarization angles. In particular, PSR 0950+08 exhibits a polarization angle signature that rotates smoothly and continuously through 180/sup 0/ across the interpulse-- main pulse waveform. Of the remaining 28 pulsars, 17 have simple profile shapes and 11 have double or complex profiles. The highest levels of linear polarization (60% to 83%) are found in four pulsars with simple profiles. The remaining 24 objects have linear polarizations more or less evenly distributed between 0% and 45%, and show no correlation of linear emission with pulse shape. Switching between dominant linear emission modes is revealed through sudden 90/sup 0/ shifts in the linear polarization angle, usually at the leading and/or trailing edges of the profiles. Interference between orthogonal emission states apparently causes much of the linear depolarization in this sample of objects. We further measure levels of circular polarization between 0% and 25% in these objects. Approximately one-half of the objects have circular levels less than approx.10%. The circular polarization fractions appear to be independent of both pulse shape and linear polarization level.

  8. Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Johansson, J.; Goobar, A.; Kasliwal, M. M.; Helou, G.; Masci, F.; Tinyanont, S.; Jencson, J.; Cao, Y.; Fox, O. D.; Kromer, M.; Amanullah, R.; Banerjee, D. P. K.; Joshi, V.; Jerkstrand, A.; Kankare, E.; Prince, T. A.

    2017-04-01

    SN 2014J in M 82 is the closest Type Ia supernova (SN Ia) in decades. The proximity allows for detailed studies of supernova physics and provides insights into the circumstellar and interstellar environment. In this work, we analyse Spitzer mid-infrared (mid-IR) data of SN 2014J in the 3.6 and 4.5 μm wavelength range, together with several other nearby and well-studied SNe Ia. We compile the first composite mid-IR light-curve templates from our sample of SNe Ia, spanning the range from before peak brightness well into the nebular phase. Our observations indicate that SNe Ia form a very homogeneous class of objects at these wavelengths. Using the low-reddening supernovae for comparison, we constrain possible thermal emission from circumstellar dust around the highly reddened SN 2014J. We also study SNe 2006X and 2007le, where the presence of matter in the circumstellar environment has been suggested. No significant mid-IR excess is detected, allowing us to place upper limits on the amount of pre-existing dust in the circumstellar environment. For SN 2014J, Mdust ≲ 10- 5 M⊙ within rdust ∼ 1017 cm, which is insufficient to account for the observed extinction. Similar limits are obtained for SNe 2006X and 2007le.

  9. Long term stable deep red light-emitting electrochemical cells based on an emissive, rigid cationic Ir(iii) complex

    DOE PAGES

    Namanga, Jude E.; Gerlitzki, Niels; Mallick, Bert; ...

    2017-02-17

    Here, the new cationic iridium complex [Ir(bzq)2(biq)][PF6] (bzq = benzo[h]quinolinato and biq = 2,2'-biquinoline) has been synthesized for application as an emitter in light emitting electrochemical cells (LECs). The molecular structure and crystal packing of this complex were established by single X-ray diffraction (SXRD). The electrochemical and photophysical properties of the complex were examined to determine the frontier orbital energies as well as the optical transitions that led to photoemission. The complex was found to emit at 644 nm and 662 nm for powder and thin films, respectively. A high powder photoluminescence quantum yield of 25% was determined, which ismore » attributed to a reduction in vibrational modes of the complex due to the use of the rigid cyclometalated (C^N) bzq ligand. A LEC with [Ir(bzq)2(biq)][PF6] as the emitter was fabricated which showed a deep red emission (662 nm) with a luminance of 33.65 cd m–2, yielding a current efficiency of 0.33 cd A–1 and a power efficiency of 0.2 lm W–1. Most importantly, the LEC based on [Ir(bzq)2(biq)][PF6] demonstrated a lifetime of 280 hours which is among the longest device lifetimes reported for any deep red light emitting LEC.« less

  10. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  11. A stable auroral red (SAR) arc with multiple emission features

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Finan, Robert; Baumgardner, Jeffrey; Wroten, Joei; Martinis, Carlos; Casillas, Marcus

    2016-10-01

    Stable auroral red (SAR) arcs offer subvisible evidence for storm time linkages between the inner magnetosphere and the midlatitude ionosphere. A SAR arc's defining characteristics are horizon-to-horizon east-west extent, a few degrees of latitude in meridional extent, emission only at the oxygen 6300Å line, and minimal brightness changes during a night—effects readily provided by steady heat conduction from the ring current-plasmapause interaction region. Here we describe a typical SAR arc (brightness 300 rayleighs) with several superimposed patches of emission in two oxygen lines (with a 6300Å/5577Å ratio of 40). We find no evidence for highly localized heating effects but rather evidence from GPS satellites supporting low-energy electron precipitation as the SAR arc modulating mechanism. Seven brightness peaks with average longitude spacing of 4° define a new spatial pattern for SAR arc studies.

  12. Unravelling thermal emissivity spectra of the main minerals on Mercury's surface by comparison with ab initio calculated IR-HT vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.

    2015-12-01

    Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5

  13. Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses.

    PubMed

    Zhou, Bo; Pun, Edwin Yue-Bun

    2011-08-01

    Superbroadband near-infrared (NIR) emission covering 1250 to 1680 nm wavelength has been obtained in praseodymium (Pr(3+)) singly doped bismuth gallate glasses. The emission originates from the (1)G(4)→(3)H(5) and (1)D(2)→(1)G(4) transitions at 1330 and 1490 nm wavelengths, respectively, and is due to the extremely low phonon energy (∼690 cm(-1)) and the unique ligand field of the glasses. It is shown that the emission line shape can be modified by adjusting the Pr(3+) concentration and the energy transfers involved. The results confirm that other than bismuth (Bi), chromium (Cr), nickel (Ni), and other chemical elements, Pr(3+) singly doped system is a promising alternative in achieving superbroadband NIR emission.

  14. Carriers of the mid-IR emission bands in PNe reanalysed. Evidence of a link between circumstellar and interstellar aromatic dust

    NASA Astrophysics Data System (ADS)

    Joblin, C.; Szczerba, R.; Berné, O.; Szyszka, C.

    2008-10-01

    Context: It has been shown that the diversity of the aromatic emission features can be rationalized into different classes of objects, in which differences between circumstellar and interstellar matter are emphasised. Aims: We probe the links between the mid-IR emitters observed in planetary nebulae (PNe) and their counterparts in the interstellar medium in order to probe a scenario in which the latter have been formed in the circumstellar environment of evolved stars. Methods: The mid-IR (6-14 μm) emission spectra of PNe and compact H II regions were analysed on the basis of previous work on photodissociation regions (PDRs). Galactic, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) objects were considered in our sample. Results: We show that the mid-IR emission of PNe can be decomposed as the sum of six components. Some components made of polycyclic aromatic hydrocarbon (PAH) and very small grain (VSG) populations are similar to those observed in PDRs. Others are fitted in an evolutionary scenario involving the destruction of the aliphatic component observed in the post-AGB stage, as well as strong processing of PAHs in the extreme conditions of PNe that leads to a population of very large ionized PAHs. This species called PAHx are proposed as the carriers of a characteristic band at 7.90 μm. This band can be used as part of diagnostics that identify PNe in nearby galaxies and is also observed in galactic compact H II regions. Conclusions: These results support the formation of the aromatic very small dust particles in the envelopes of evolved stars, in the Milky Way, as well as in the LMC and SMC, and their subsequent survival in the interstellar medium. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the

  15. A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.

    PubMed

    Chan; Onaka

    2000-04-10

    We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.

  16. An Earth-like correspondence between Saturn's auroral features and radio emission.

    PubMed

    Kurth, W S; Gurnett, D A; Clarke, J T; Zarka, P; Desch, M D; Kaiser, M L; Cecconi, B; Lecacheux, A; Farrell, W M; Galopeau, P; Gérard, J-C; Grodent, D; Prangé, R; Dougherty, M K; Crary, F J

    2005-02-17

    Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae, and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure. The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora. There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions, suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field.

  17. The perturbation of near IR optical features of water ice induced by frozen acids, brines and organic polymers.

    NASA Astrophysics Data System (ADS)

    Orlando, T. M.; Grieves, G. A.; McCord, T.

    2007-12-01

    We report the temperature and pH dependencies of the near IR optical signatures of low-temperature ice containing acids, brines or tholins. In the case of flash frozen acids and brines, the 1.5 and 2 micron features shift in wavelength and broaden primarily due to the presence of solvated protons. The role of protons can be seen most dramatically when examining the dissolution of sulfuric acid in ice. Specifically, at temperatures below 135 K, the second pKa of sulfuric acid increases as the temperature decreases due to the increased coupling of the SO42- with the surrounding water molecules. These shifts and broadening are also inherent in the dissolution of MgSO4 or Na2SO4, two candidate materials possibly present in the non-ice regions of Europa. We also compare the optical signatures of organic polymers (tholins) created by discharge devices vs. those created photochemically. The relevance of this work to Titan's surface composition is discussed.

  18. Anthracene Clusters and the Interstellar Infrared Emission Features

    NASA Astrophysics Data System (ADS)

    Roser, J. E.; Ricca, A.; Allamandola, L. J.

    2014-03-01

    The unidentified infrared bands are ubiquitous in the interstellar medium and typically attributed to emission from neutral and ionized polycyclic aromatic hydrocarbons (or PAHs). The contribution of neutral PAH clusters to these bands has been impossible to determine due to a paucity of infrared spectral data. Here we investigated neutral clusters of the three-ring PAH anthracene using FTIR absorption spectroscopy of anthracene matrix-isolated at varying concentrations in solid argon. In order to determine likely cluster structures of the embedded molecules, we also calculated theoretical absorption spectra for the anthracene monomer through hexamer using density functional theory with a dispersion correction (DFT-D). The DFT-D calculations have been calibrated for the anthracene dimer using the second-order Møller-Plesset approach. Because there is some support for the hypothesis that three or four-ring PAHs are present in the Red Rectangle nebula, we discuss the application of our results to this nebula in particular as well as to the interstellar infrared emission in general.

  19. Anthracene clusters and the interstellar infrared emission features

    SciTech Connect

    Roser, J. E.; Ricca, A.; Allamandola, L. J.

    2014-03-10

    The unidentified infrared bands are ubiquitous in the interstellar medium and typically attributed to emission from neutral and ionized polycyclic aromatic hydrocarbons (or PAHs). The contribution of neutral PAH clusters to these bands has been impossible to determine due to a paucity of infrared spectral data. Here we investigated neutral clusters of the three-ring PAH anthracene using FTIR absorption spectroscopy of anthracene matrix-isolated at varying concentrations in solid argon. In order to determine likely cluster structures of the embedded molecules, we also calculated theoretical absorption spectra for the anthracene monomer through hexamer using density functional theory with a dispersion correction (DFT-D). The DFT-D calculations have been calibrated for the anthracene dimer using the second-order Møller-Plesset approach. Because there is some support for the hypothesis that three or four-ring PAHs are present in the Red Rectangle nebula, we discuss the application of our results to this nebula in particular as well as to the interstellar infrared emission in general.

  20. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  1. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay.

  2. Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources

    NASA Technical Reports Server (NTRS)

    Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.

    1987-01-01

    High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.

  3. Modeling vehicle emissions in different types of Chinese cities: importance of vehicle fleet and local features.

    PubMed

    Huo, Hong; Zhang, Qiang; He, Kebin; Yao, Zhiliang; Wang, Xintong; Zheng, Bo; Streets, David G; Wang, Qidong; Ding, Yan

    2011-10-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control.

  4. Orientation effects on spectral emission features of quasars

    NASA Astrophysics Data System (ADS)

    Bisogni, Susanna; Marconi, Alessandro; Risaliti, Guido

    2017-01-01

    We present an analysis of the orientation effects in Sloan Digital Sky Survey (SDSS) quasar composite spectra. In a previous work, we have shown that the equivalent width (EW) of the [O III] λ5007 Å (vacuum rest wavelength 5008.24 Å) line is a reliable indicator of the inclination of the accretion disc. Here, we have selected a sample of ˜12 000 quasars from the SDSS 7th Data Release and divided it in subsamples with different values of EW_{[{O {III}]}}. We find inclination effects both on broad and narrow quasars emission lines, among which an increasing broadening from low to high EW for the broad lines and a decreasing importance of the blue component for the narrow lines. These effects are naturally explained with a variation of source inclination from nearly face-on to edge-on, confirming the goodness of EW_{[{O {III}]}} as an orientation indicator. Moreover, we suggest that orientation effects could explain, at least partially, the origin of the anticorrelation between [O III] and Fe II intensities, i.e. the well-known eigenvector 1.

  5. A TALE OF THREE MYSTERIOUS SPECTRAL FEATURES IN CARBON-RICH EVOLVED STARS: THE 21 μm, 30 μm, AND “UNIDENTIFIED INFRARED” EMISSION FEATURES

    SciTech Connect

    Mishra, Ajay; Li, Aigen; Jiang, B. W. E-mail: lia@missouri.edu

    2015-03-20

    The mysterious “21 μm” emission feature seen almost exclusively in the short-lived protoplanetary nebula (PPN) phase of stellar evolution remains unidentified since its discovery two decades ago. This feature is always accompanied by the equally mysterious, unidentified “30 μm” feature and the so-called “unidentified infrared” (UIR) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm which are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The 30 μm feature is commonly observed in all stages of stellar evolution from the asymptotic giant branch through PPN to the planetary nebula phase. We explore the interrelations among the mysterious 21, 30 μm, and UIR features of the 21 μm sources. We derive the fluxes emitted in the observed UIR, 21, and 30 μm features from published Infrared Space Observatory or Spitzer/IRS spectra. We find that none of these spectral features correlate with each other. This argues against a common carrier (e.g., thiourea) for both the 21 μm feature and the 30 μm feature. This also does not support large PAH clusters as a possible carrier for the 21 μm feature.

  6. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S.; Rhoads, J.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Kimlbe, R. A.; Trauger, J. T.; Young, E. T.

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  7. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  8. Search for the infrared emission features from deuterated interstellar polycyclic aromatic hydrocarbons

    SciTech Connect

    Onaka, Takashi; Mori, Tamami I.; Sakon, Itsuki; Ohsawa, Ryou; Kaneda, Hidehiro; Okada, Yoko; Tanaka, Masahiro

    2014-01-10

    We report the results of a search for emission features from interstellar deuterated polycyclic aromatic hydrocarbons (PAHs) in the 4 μm region with the Infrared Camera (IRC) on board AKARI. No significant excess emission is seen in 4.3-4.7 μm in the spectra toward the Orion Bar and M17 after the subtraction of line emission from the ionized gas. A small excess of emission remains at around 4.4 and 4.65 μm, but the ratio of their intensity to that of the band emission from PAHs at 3.3-3.5 μm is estimated as 2%-3%. This is an order of magnitude smaller than the values previously reported and also those predicted by the model of deuterium depletion onto PAHs. Since the subtraction of the ionized gas emission introduces an uncertainty, the deuterated PAH features are also searched for in the reflection nebula GN 18.14.0, which does not show emission lines from ionized gas. We obtain a similar result that excess emission in the 4 μm region, if present, is about 2% of the PAH band emission in the 3 μm region. The present study does not find evidence for the presence of the large amount of deuterated PAHs that the depletion model predicts. The results are discussed in the context of deuterium depletion in the interstellar medium.

  9. Ag nanoparticles enhanced near-IR emission from Er3+ ions doped glasses

    NASA Astrophysics Data System (ADS)

    Qi, Jiani; Xu, Tiefeng; Wu, Yi; Shen, Xiang; Dai, Shixun; Xu, Yinsheng

    2013-10-01

    Vitreous materials containing rare-earth (RE) ions and metallic nanoparticles (NPs) attract considerable interest because the presence of the NPs may lead to an intensification of luminescence. In this work, the characteristics of 1.54 μm luminescence for the Er3+ ions doped bismuthate glasses containing Ag NPs were studied under 980 nm excitation. The surface plasmon resonance (SPR) band of Ag NPs appears from 500 to 1500 nm. Transmission electron microscopic (TEM) image reveals that the Ag NPs are dispersed homogeneously with the size from 2 to 7 nm. The strength parameters Ωt(t = 2, 4, 6), spontaneous emission probability (A), radiative lifetime (τ) and stimulated emission section (σem) of Er3+ ions were calculated by the Judd-Ofelt theory. When the glass contains 0.2 wt% AgCl, the 1.54 μm fluorescence intensity of Er3+ reaches a maximum value, which is 7.2 times higher than that of glass without Ag NPs. The Ag NPs embedded glasses show significantly fluorescence enhancement of Er3+ ions by local field enhancement from SPR.

  10. A heterotrimetallic Ir(III), Au(III) and Pt(II) complex incorporating cyclometallating bi- and tridentate ligands: simultaneous emission from different luminescent metal centres leads to broad-band light emission.

    PubMed

    Muñoz-Rodríguez, Rebeca; Buñuel, Elena; Fuentes, Noelia; Williams, J A Gareth; Cárdenas, Diego J

    2015-05-14

    Di- and tri-nuclear metal complexes incorporating gold(III), iridium(III) and platinum(II) units linked via a 1,3,5-triethynylbenzene core are reported, together with the corresponding mononuclear complexes as models. The gold(III) and platinum(II) units comprise tridentate, cyclometallating, C^N^C and N^N^C-coordinating ligands, respectively, with the Ar-C≡C- directly bound to the metal at the fourth coordination site. The iridium moiety is an Ir(ppy)2(acac) unit bound to the triethynylbenzene through a phenyl substituent at the 3-position of the acac ligand. The multinuclear compounds are prepared, using a modular synthetic strategy, from the monometallic complexes. All of the compounds are luminescent in solution at room temperature, and their photophysical properties were studied. The triplet excited state energies of the mononuclear complexes lie in the order Au > Ir > Pt. Consistent with this order, energy transfer from Au to Ir and from Au to Pt is observed, leading to quenching of the Au emission in the gold-containing multinuclear complexes. Energy transfer from Ir to Pt occurs at a rate that only partially quenches the Ir-based emission. As a result, the dinuclear Ir-Pt and trinuclear Au-Ir-Pt complexes display broad emission across most of the visible region of the spectrum.

  11. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-07-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  12. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.

    PubMed

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C

    2015-07-24

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  13. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

    NASA Astrophysics Data System (ADS)

    Schlegel, D. J.; Finkbeiner, D. P.; Davis, Marc

    1997-12-01

    We present a full sky 100micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. We have constructed a map of the dust temperature, so that the 100micron map can be converted to a map proportional to dust column density. The dust temperature varies from 17 K to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high latitude regions, the dust map correlates well with maps of HI emission, but deviations are significant. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). For the 100micron map no signficant CIB is detected, but in the 140micron and 240micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 30 +/- 8 {nW/m}(2/sr) at 140\\micron, and 16 \\pm 3.4 {nW/m}^2/sr at 240micron (95% confidence), which is an integrated flux ~ 2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law, and use the colors of elliptical galaxies. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

  14. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  15. On the Relation between the Mysterious 21 μm Emission Feature of Post-asymptotic Giant Branch Stars and Their Mass-loss Rates

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen; Jiang, B. W.

    2016-07-01

    Over two decades ago, a prominent, mysterious emission band peaking at ˜20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.

  16. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    PubMed

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a

  17. Detection of the Near-IR Cosmic Infrared Background Using Alternative Models of Near-IR Galactic Emission in the DIRBE Data

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Oliversen, Ronald J. (Technical Monitor)

    2000-01-01

    The analysis portion of this task has been completed. New models were developed for the removal of the near-infrared emission of Galactic stars in the DIRBE data. Subtraction of these models from the observed emission attempted to achieve a better detection of the Cosmic Infrared Background at near-infrared wavelengths. The new models were found to provide a large improvement in the isotropy of the residual emission, however constraints on the intensity of the emission are not significantly improved. A paper detailing the procedures and results has been drafted, and will be completed next year. The draft of this paper is included as the final report on the contract.

  18. ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES

    SciTech Connect

    Zhang, Yong; Kwok, Sun E-mail: sunkwok@hku.hk

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support for the PAH hypothesis.

  19. DUST AROUND R CORONAE BOREALIS STARS. II. INFRARED EMISSION FEATURES IN AN H-POOR ENVIRONMENT

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, D. L. E-mail: nkrao@iiap.res.in

    2013-08-20

    Residual Spitzer/Infrared Spectrograph spectra for a sample of 31 R Coronae Borealis (RCB) stars are presented and discussed in terms of narrow emission features superimposed on the quasi-blackbody continuous infrared emission. A broad {approx}6-10 {mu}m dust emission complex is seen in the RCBs showing an extreme H-deficiency. A secondary and much weaker {approx}11.5-15 {mu}m broad emission feature is detected in a few RCBs with the strongest {approx}6-10 {mu}m dust complex. The Spitzer infrared spectra reveal for the first time the structure within the {approx}6-10 {mu}m dust complex, showing the presence of strong C-C stretching modes at {approx}6.3 and 8.1 {mu}m as well as of other dust features at {approx}5.9, 6.9, and 7.3 {mu}m, which are attributable to amorphous carbonaceous solids with little or no hydrogen. The few RCBs with only moderate H-deficiencies display the classical ''unidentified infrared bands (UIRs)'' and mid-infrared features from fullerene-related molecules. In general, the characteristics of the RCB infrared emission features are not correlated with the stellar and circumstellar properties, suggesting that the RCB dust features may not be dependent on the present physical conditions around RCB stars. The only exception seems to be the central wavelength of the 6.3 {mu}m feature, which is blueshifted in those RCBs showing also the UIRs, i.e., the RCBs with the smallest H deficiency.

  20. IR Windstreaks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    This infrared image shows windstreaks in the region between Gordii Dorsum and Amazonis Mensa.

    Image information: IR instrument. Latitude -15.8, Longitude 215 East (145 West). 97 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Improving the classification accuracy for IR spectroscopic diagnosis of stomach and colon malignancy using non-linear spectral feature extraction methods.

    PubMed

    Lee, Sanguk; Kim, Kyoungok; Lee, Hyeseon; Jun, Chi-Hyuck; Chung, Hoeil; Park, Jong-Jae

    2013-07-21

    Non-linear feature extraction methods, neighborhood preserving embedding (NPE) and supervised NPE (SNPE), were employed to effectively represent the IR spectral features of stomach and colon biopsy tissues for classification, and improve the classification accuracy for diagnosis of malignancy. The motivation was to utilize the NPE and SNPE's capability of capturing non-linear spectral behaviors by simultaneously preserving local relationships in order that minute spectral differences among classes would be effectively recognized. NPE and SNPE derive an optimal embedding feature such that the local neighborhood structure can be preserved in reduced spaces (variables). The IR spectra collected from stomach and colon tissues were represented by several new variables through NPE and SNPE, and also by using the principal component analysis (PCA). Then, the feature-extracted variables were subsequently classified into normal, adenoma and cancer tissues by using both k-nearest neighbor (k-NN) and support vector machine (SVM), and the resulting accuracies were compared with each other. In both cases, the combination of SNPE-SVM provided the best classification performance, and the accuracy was substantially improved compared to when PCA-SVM was used. Overall results demonstrate that NPE and SNPE could be potential feature-representation strategies useful in biomedical diagnosis based on vibrational spectroscopy where effective recognition of minute spectral differences is critical.

  2. The effect of emissive biased limiter on the magnetohydrodynamic modes in the IR-T1 tokamak

    SciTech Connect

    Ghasemloo, M.; Ghoranneviss, M.; Salem, M. K.; Arvin, R.; Mohammadi, S.; Nik Mohammadi, A.

    2013-03-15

    A moveable emissive biased limiter (EBL) for the investigation of spatial and temporal structure of MHD modes in IR-T1 tokamak, based on mirnov oscillations, was designed and constructed. The biasing has been considered to improve the global confinement by setting up an electric field at the plasma edge. Radial electric field (E{sub r}) modifies edge plasma turbulence, plasma rotation, and transport. Mirnov oscillations using singular value decomposition (SVD) and wavelet techniques were analyzed. SVD algorithm has been employed to analyze the frequency and wavenumber harmonics of the MHD fluctuations. The time-resolved frequency component analysis has been performed using wavelets. The EBL was applied to plasma at 10 ms with negative polarity. The results show that after applying EBL, the m = 2 mode is grown, m = 3 mode is suppressed, and H{sub {alpha}} radiation is decreased. Furthermore, results of the wavelet analysis of mirnov coil in the time range of 8-12 ms indicate that 1.5 ms after applying EBL, the MHD frequency is reduced from 45 kHz to 25 kHz.

  3. DYNAMICS OF ATOMIC AND MOLECULAR EMISSION FEATURES FROM NANOSECOND, FEMTOSECOND LASER AND FILAMENT PRODUCED PLASMAS

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    In this presentation, the persistence of atomic, and molecular emission features and its relation to fundamental properties (temperature and density) of ablation plumes generated using various irradiation methods (ns, fs, filaments) will be discussed in detail along with its implications for remote sensing applications.

  4. Spatial variations of the 3-micron emission features within Orion's Bar

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Allamandola, L. J.; Tielens, A. G. G. M.

    1988-01-01

    3-micron spectra of the Orion Bar region have been obtained at three positions corresponding to different distances from the exciting source. The recently discovered unidentified features at 3.46, 3.51, and 3.57 microns are clearly visible. The spectra show that the 3.4 and 3.51-micron emission features increase in intensity relative to the strong 3.3-micron feature as the distance from the exciting source increases. The implications for polycyclic aromatic hydrocarbons and recent ideas concerning their ultraviolet excitation and spatial evolution are discussed.

  5. SOFIA-EXES Mid-IR Observations of [Fe II] Emission from the Extended Atmosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    Harper, G. M.; DeWitt, C.; Richter, M. J.; Greathouse, T. K.; Ryde, N.; Guinan, E. F.; O’Gorman, E.; Vacca, W. D.

    2017-02-01

    We present a NASA-DLR SOFIA-Echelon Cross Echelle Spectrograph (EXES) and NASA Infrared Telescope Facility-Texas Echelon Cross Echelle Spectrograph (TEXES) mid-IR R≃ {{50,000}} spectral study of forbidden Fe ii transitions in the early-type M supergiants, Betelgeuse (α Ori: M2 Iab) and Antares (α Sco: M1 Iab + B3 V). With EXES, we spectrally resolve the ground term [Fe ii] 25.99 μm (a{}6{D}J=7/2{--9/2}: {E}{up}=540 K) emission from Betelgeuse. We find a small centroid blueshift of 1.9 ± 0.4 {km} {{{s}}}-1 that is a significant fraction (20%) of the current epoch wind speed, with a FWHM of 14.3 ± 0.1 {km} {{{s}}}-1. The TEXES observations of [Fe ii] 17.94 μm (a{}4{F}J=7/2-9/2: {E}{up}={{3400}} K) show a broader FWHM of 19.1 ± 0.2 {km} {{{s}}}-1, consistent with previous observations, and a small redshift of 1.6 ± 0.6 {km} {{{s}}}-1 with respect to the adopted stellar center-of-mass velocity of {V}{CoM}=20.9+/- 0.3 {km} {{{s}}}-1. To produce [Fe ii] 25.99 μm blueshifts of 20% wind speed requires that the emission arises closer to the star than existing thermal models for α Ori’s circumstellar envelope predict. This implies a more rapid wind cooling to below 500 K within 10{R}* ({θ }* =44 mas, dist = 200 pc) of the star, where the wind has also reached a significant fraction of the maximum wind speed. The line width is consistent with the turbulence in the outflow being close to the hydrogen sound speed. EXES observations of [Fe ii] 22.90 μm (a{}4{D}J=5/2{--7/2}: {E}{up}={{11,700}} K) reveal no emission from either star. These findings confirm the dominance of cool plasma in the mixed region where hot chromospheric plasma emits copiously in the UV, and they also constrain the wind heating produced by the poorly understood mechanisms that drive stellar outflows from these low variability and weak-dust signature stars.

  6. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  7. The Effect of Radiation Timing on Patients With High-Risk Features of Parameningeal Rhabdomyosarcoma: An Analysis of IRS-IV and D9803

    SciTech Connect

    Spalding, Aaron C.; Hawkins, Douglas S.; Anderson, James R.; Lyden, Elizabeth; Laurie, Fran; Wolden, Suzanne L.; Arndt, Carola A.S.; Michalski, Jeff M.

    2013-11-01

    Purpose: Radiation therapy remains an essential treatment for patients with parameningeal rhabdomyosarcoma (PMRMS), and early radiation therapy may improve local control for patients with intracranial extension (ICE). Methods and Materials: To address the role of radiation therapy timing in PMRMS in the current era, we reviewed the outcome from 2 recent clinical trials for intermediate-risk RMS: Intergroup Rhabdomyosarcoma Study (IRS)-IV and Children's Oncology Group (COG) D9803. The PMRMS patients on IRS-IV with any high-risk features (cranial nerve palsy [CNP], cranial base bony erosion [CBBE], or ICE) were treated immediately at day 0, and PMRMS patients without any of these 3 features received week 6-9 radiation therapy. The D9803 PMRMS patients with ICE received day 0 X-Ray Therapy (XRT) as well; however, those with either CNP or CBBE had XRT at week 12. Results: Compared with the 198 PMRMS patients from IRS-IV, the 192 PMRMS patients from D9803 had no difference (P<.05) in 5-year local failure (19% vs 19%), failure-free-survival (70% vs 67%), or overall survival (75% vs 73%) in aggregate. The 5-year local failure rates by subset did not differ when patients were classified as having no risk features (None, 15% vs 19%, P=.25), cranial nerve palsy/cranial base of skull erosion (CNP/CBBE, 15% vs 28%, P=.22), or intracranial extension (ICE, 21% vs 15%, P=.27). The D9083 patients were more likely to have received initial staging by magnetic resonance imaging (71% vs 53%). Conclusions: These data support that a delay in radiation therapy for high-risk PMRMS features of CNP/CBBE does not compromise clinical outcomes.

  8. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    SciTech Connect

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-04-30

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  9. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath; Papovich, Casey

    2015-08-01

    We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.

  10. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  11. Task-specific tailored multiple-reflection mirror systems for sensitivity enhancement of spectroscopic measurements: application for aircraft engine exhaust emission measurements with FT-IR spectro

    NASA Astrophysics Data System (ADS)

    Brockmann, Klaus; Kurtenbach, Ralf; Kriesche, Volker; Wiesen, Peter; Heland, Joerg; Schaefer, Klaus

    1999-09-01

    Multi-path reflection mirror systems in White- or Herriott- type configuration have been widely used to enhance the absorption path-length and thus the sensitivity of laboratory spectroscopic systems, e.g. for smog chamber studies and molecular spectroscopy. Field studies, for instance using mobile tunable diode laser spectroscopy have widened the range of applications of these mirror systems for specific measurement tasks. In this paper a special designed White-type system mounted in two racks with 5 m base-length and adjustable optical path-length up to 74 passes is described. This system has been tested and successfully used to enhance the sensitivity of non-intrusive FT-IR measurements of aircraft engine exhaust emissions in the harsh environment of an engine test bed. The open cell around the engine plume including the transfer optics for the adaption of the spectrometers in a separate room allowed manual switching between passive FT-IR emission measurements, FT-IR absorption measurements with the cell, and, by covering the infrared source (globar) with a shutter, multi-path FT-IR emission measurements. Tests prior to the aircraft engine measurements were made to investigate the influence of different path- lengths, the position of the plume in the White cell, soot in the exhaust gas, and vibrations of the mirrors. The FT-IR spectra from all three measurement modes using the White cell during the engine measurements were found to be of good quality and the results of the analyses were comparable to the results from intrusive measurement systems.

  12. Emission intensity in the visible and IR spectral ranges from Si-based structures formed by direct bonding with simultaneous doping with erbium (Er) and europium (Eu)

    SciTech Connect

    Mezdrogina, M. M. Kostina, L. S.; Beliakova, E. I.; Kuzmin, R. V.

    2013-09-15

    The photo- and electroluminescence spectra of silicon-based structures formed by direct bonding with simultaneous doping with rare-earth metals are studied. It is shown that emission in the visible and IR spectral ranges can be obtained from n-Si:Er/p-Si and n-Si:Eu/p-Si structures fabricated by the method suggested in the study. The results obtained make this method promising for the fabrication of optoelectronic devices.

  13. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  14. The 5.25 and 5.7 μm Astronomical Polycyclic Aromatic Hydrocarbon Emission Features

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Peeters, E.; Tielens, A. G. G. M.; Allamandola, L. J.

    2009-01-01

    Astronomical mid-IR spectra show two minor polycyclic aromatic hydrocarbon (PAH) features at 5.25 and 5.7 μm (1905 and 1754 cm-1) that hitherto have been little studied, but contain information about the astronomical PAH population that complements that of the major emission bands. Here, we report a study involving both laboratory and theoretical analysis of the fundamentals of PAH spectroscopy that produce features in this region and use these to analyze the astronomical spectra. The Infrared Space Observatory Short Wavelength Spectrograph spectra of 15 objects showing these PAH features were considered for this study, however only four (HD 44179; NGC 7027; Orion Bar, two positions) have sufficient signal-to-noise between 5 and 6 μm to allow for an in-depth analysis. All four astronomical spectra show similar peak positions and profiles. The 5.25 μm feature is peaked and asymmetric, with an FWHM of about 0.12 ± 0.01 μm (~40 ± 6.5 cm-1), while the 5.7 μm feature is broader and flatter, with an FWHM of about 0.17 ± 0.02 μm (50 ± 5.6 cm-1). Detailed analysis of the laboratory spectra and quantum-chemical calculations show that the astronomical 5.25 and 5.7 μm bands are a blend of combination, difference and overtone bands primarily involving CH stretching and CH in-plane and CH out-of-plane bending fundamental vibrations. The experimental and computational spectra show that, of all the hydrogen adjacency classes that are possible on PAHs, solo and duo hydrogens consistently produce prominent bands at the observed positions, whereas quartet hydrogens do not. In all, this study supports the picture that astronomical PAHs are large with compact, regular structures. From the coupling with primarily strong CH out-of-plane bending modes, one might surmise that the 5.25 and 5.7 μm bands track the neutral PAH population. However, theory suggests that the role of charge in these astronomical bands might also be important. Based on observations with Infrared Space

  15. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    NASA Astrophysics Data System (ADS)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (<1 GHz) components of emission with flux amplitude of about 1 sfu, moving from high to low frequencies in 1-3 seconds. We detected the shift of spectral maximum to short waves and appearance of narrow-band (<800 MHz) features during the CMEs formation. The results are being discussed within the framework of known models of radioemission of active region and bursts. Their application to possible conditions in formation of CMEs is also addressed in this research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  16. Laboratory simulation of infrared astrophysical features. Ph.D. Thesis; [emission spectra of comets

    NASA Technical Reports Server (NTRS)

    Rose, L. A.

    1977-01-01

    Intermediate resolution emission spectroscopy was used to study a group of 9 terrestrial silicates, 1 synthetic silicate, 6 meteorites and 2 lunar soils; comparisons were made with the intermediate resolution spectra of Comet Kohoutek in order to determine which materials best simulate the 10um astrophysical feature. Mixtures of silicates which would yield spectra matching the spectrum of the comet in the 10um region include: (1) A hydrous layer lattice silicate in combination with a high temperature condensate; (2) an amorphous magnesium silicate in combination with a high temperature condensate and (3) glassy olivine and glassy anorthite in approximately equal proportions.

  17. Fractal Model of a Compact Intracloud Discharge. II. Specific Features of Electromagnetic Emission

    NASA Astrophysics Data System (ADS)

    Davydenko, S. S.; Iudin, D. I.

    2016-12-01

    We examine the features of the electromagnetic emission of a compact intracloud discharge (CID) within the framework of the fractal approach [1] described in the first part of the article. Compact intracloud discharge is considered as the result of electric interaction of two bipolar streamer-type structures previously developed in the regions of a strong electric field inside the thundercloud. To estimate the electromagnetic emission of the discharge, the complex tree-like structure of the electric currents at the preliminary and main stages of CID was represented as the sum of a relatively slowly varying large-scale linear mean component and fast small-scale constituents corresponding to the initial formation of elementary conductive channels of the discharge tree. Mean linear current of the discharge is considered as an effective source of the VLF/LF emission at both the preliminary and main stages of a CID. Electrostatic, induction, and radiation components of the electric field at different distances from the mean current are calculated taking into account specific features of both stages of the discharge within the framework of the transmission-line model. It is shown that at the preliminary stage only the electrostatic component can mainly be detected, whereas at the main stage all the above components of the electric field can be reliably measured. Dependence of the radiation electric field at the main stage on the length of the discharge channel and propagation velocity of the current front is analyzed. It is found that due to the bi-directional expansion of the current at the main stage of a CID the radiation field pulse remains narrow in a wide range of discharge parameters. The small-scale currents corresponding to the initial breakdown between the neighboring cells of the discharge domain are considered as the sources of HF/VHF radiation. It is shown that HF/VHF emission at the preliminary stage is negligible as compared to emission at the main stage

  18. Double features in mean pulsar profiles and the nature of their radio emission

    NASA Astrophysics Data System (ADS)

    Melikidze, George I.; Gil, Janusz

    In the talk presented at this Workshop by J.Dyks, the author claimed that the long-sought Rosetta Stone needed to decipher the nature of pulsar radio emission has been finally identified as the double features in averaged pulsar profiles. The author argued that highly symmetric bifurcated features are produced by a split-fan beams of extraordinary-mode curvature radiation emitted by thin microscopic streams of magnetospheric plasma conducted by a very narrow bundle of magnetic field lines. We examined arguments leading to these intriguing conclusions and found a number of flaws. At least one of them is fatal, namely there is not enough available energy within such thin microscopic plasma streams.

  19. Intrinsic fluorescence excitation-emission matrix spectral features of cottonseed protein fractions and the effects of denaturants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the functional and physicochemical properties of cottonseed protein, we investigated the intrinsic fluorescence excitation-emission matrix (EEM) spectral features of cottonseed protein isolate (CSPI) and sequentially extracted water (CSPw) and alkali (CSPa) protein fractions, an...

  20. Noninvasive express diagnostics of pulmonary diseases based on control of patient's gas emission using methods of IR and terahertz laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Starikova, M. K.; Bulanova, A. A.; Bukreeva, E. B.; Karapuzikov, A. A.; Karapuzikov, A. I.; Kistenev, Y. V.; Klementyev, V. M.; Kolker, D. B.; Kuzmin, D. A.; Nikiforova, O. Y.; Ponomarev, Yu. N.; Sherstov, I. V.; Boyko, A. A.

    2013-11-01

    Pulmonary diseases diagnostics always occupies one of the key positions in medicine practices. A large variety of high technology methods are used today, but none of them cannot be used for early screening of pulmonary diseases. We discuss abilities of methods of IR and terahertz laser spectroscopy for noninvasive express diagnostics of pulmonary diseases on a base of analysis of absorption spectra of patient's gas emission, in particular, exhaled air. Experience in the field of approaches to experimental data analysis and hard-ware realization of gas analyzers for medical applications is also discussed.

  1. ON THE ORIGIN OF THE 11.3 MICRON UNIDENTIFIED INFRARED EMISSION FEATURE

    SciTech Connect

    Sadjadi, SeyedAbdolreza; Zhang, Yong; Kwok, Sun

    2015-07-01

    The 11.3 μm emission feature is a prominent member of the family of unidentified infrared emission (UIE) bands and is frequently attributed to out-of-plane bending modes of polycyclic aromatic hydrocarbon (PAH) molecules. We have performed quantum mechanical calculations of 60 neutral PAH molecules and found that it is difficult to reconcile the observed astronomical feature with any or a mix of these PAH molecules. We have further analyzed the fitting of spectra of several astronomical objects by the NASA PAH database program and found that reasonable fittings to the observed spectra are only possible by including significant contributions from oxygen- and/or magnesium-containing molecules in the mix. A mix of pure PAH molecules, even including units of different sizes, geometry, and charged states, is unable to fit the astronomical spectra. Preliminary theoretical results on the vibrational spectra of simple molecules with mixed aromatic/aliphatic structures show that these structures have consistent clusters of vibrational modes and could be viable carriers of the UIE bands.

  2. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  3. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect

    Wang, Wei; Li, Zhuo E-mail: zhuo.li@pku.edu.cn

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ∼ 0.81 ± 0.45 keV plus a power-law model of Γ ∼ 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ∼2.6σ. The corresponding 3σ upper limit on the {sup 44}Ti line flux amounts to 1.5 × 10{sup –5} photon cm{sup –2} s{sup –1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  4. ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY

    SciTech Connect

    Yang, Kai; Guo, Yang; Ding, M. D. E-mail: dmd@nju.edu.cn

    2015-06-20

    Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12–25 keV energy band were located at the footpoints of this hot channel. Using a nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.

  5. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  6. High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs

    NASA Technical Reports Server (NTRS)

    Tokunaga, Alan T.; Sellgren, Kris; Sakata, Akira; Wada, S.; Onaka, Takashi; Nakada, Y.; Nagata, T.

    1989-01-01

    Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features.

  7. High sensitive and high resolution investigations of the Jovian S-burst emission modulation features

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Konovalenko, A. A.; Rucker, H. O.; Lecacheux, A.; Vinogradov, V. V.

    2007-08-01

    In spite of the long history of studying, the Jovian S-burst radiation still represents an event which needs to be investigated in detail. Many questions concerning this complex phenomenon are opened. One of the interesting problems is the different modulation features appearing on the dynamic spectra in dependence on the time resolution achieved in the experiment and also on the visualization time scale. It seems that in every concrete case the physical mechanism of the modulation is different. In connection to this the following statistical sets need to be fully collected and analyzed for each modulation effects: 1) observed conditions: dependence or independence on Jupiter - Io - observer position, season time, day-night time, the Solar activity; 2) observed parameters: sign and value of the frequency drift, lane's curvature, modulation depth, distances between the nearest lanes and their variety, scale of the modulation; 3) polarization properties. During the last years the new high sensitive recording facilities, such as the digital spectro-polarimiter (DSP) and waveform receiver (WFR) were created and installed into the largest decameter band antenna array UTR-2 (Kharkov, Ukraine). It can be noted that in the present time this combination (antenna + equipments) gives the best sensitiveness, band of analysis, dynamic range, time and frequency resolutions. The using of mentioned above technique allowed detecting new time-frequency features of the Jovian S-bursts. Several bright new results concerning the modulations were obtained. With the creation of new giant low frequency antenna array (LOFAR) and low wavelength array (LWA) the new possibilities of high level study of the Jovian DAM emission will appear. For instance, the combination of LOFAR and already existing instruments (max base in order of 2000 km) will permit to determine the spatial parameters and localization of an emission source. Future results may prove useful for the general understanding of

  8. On the aliphatic versus aromatic content of the carriers of the `unidentified' infrared emission features

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Glaser, R.; Li, Aigen; Zhong, J. X.

    2016-10-01

    Although it is generally accepted that the unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, the exact nature of their carriers remains unknown: whether they are free-flying, predominantly aromatic gas-phase molecules, or amorphous solids with a mixed aromatic/aliphatic composition are being debated. Recently, the 3.3 and 3.4 μm features which are commonly respectively attributed to aromatic and aliphatic C-H stretches have been used to place an upper limit of ˜2 per cent on the aliphatic fraction of the UIE carriers (i.e. the number of C atoms in aliphatic chains to that in aromatic rings). Here we further explore the aliphatic versus aromatic content of the UIE carriers by examining the ratio of the observed intensity of the 6.2 μm aromatic C-C feature (I6.2) to that of the 6.85 μm aliphatic C-H deformation feature (I6.85). To derive the intrinsic oscillator strengths of the 6.2 μm stretch (A6.2) and the 6.85 μm deformation (A6.85), we employ density functional theory to compute the vibrational spectra of seven methylated polycyclic aromatic hydrocarbon molecules and their cations. By comparing I6.85/I6.2 with A6.85/A6.2, we derive the fraction of C atoms in methyl(ene) aliphatic form to be at most ˜10 per cent, confirming the earlier finding that the UIE emitters are predominantly aromatic. We have also computed the intrinsic strength of the 7.25 μm feature (A7.25), another aliphatic C-H deformation band. We find that A6.85 appreciably exceeds A7.25. This explains why the 6.85 μm feature is more frequently detected in space than the 7.25 μm feature.

  9. Dust Attenuation of the Nebular Regions of z ~ 2 Star-forming Galaxies: Insight from UV, IR, and Emission Lines

    NASA Astrophysics Data System (ADS)

    De Barros, S.; Reddy, N.; Shivaei, I.

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ˜ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M⊙ yr-1 > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ˜ 2 from previous studies.

  10. Features for instantaneous emissions of low-level infrared signals of glucokinase enzyme from Pyrococcus furiosus.

    PubMed

    Torres, Sergio; Mella, Héctor; Reyes, Claudio; Meza, Pablo; Gallardo, Maria J; Staforelli, Juan P

    2015-03-10

    A noncontact infrared (IR) imaging-based methodology and signal recovery tools are applied on an enzyme reaction as a test target. The method is implemented by a long-wave (8-12 μm) IR microbolometer imaging array and a germanium-based IR optical vision. The reaction is carried out by the glucokinase, which produces a rapid exothermal release of energy that is weak, and, even worse, the IR video captured by the uncooled microbolometer detector is affected by spatial and temporal noise with specific complexities. Hitherto, IR-based signal recovery tools have worked with a standard acquisition frequency, which is clearly beyond the time scale of a real scenario. The implications of this (and similar) rapid reactions motivate the designs of a signal recovery method using prior information of the processes to extract and quantify the spontaneity of the enzymatic reaction in a three-dimensional (space and time) single and noncontact online measurement.

  11. Spatial variations of the 3 micron emission features within UV-excited nebulae - Photochemical evolution of interstellar polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Tielens, A. G. G. M.; Allamandola, L. J.; Moorhouse, A.; Brand, P. W. J. L.

    1989-01-01

    Spectra at 3 microns have been obtained at several positions in the Orion Bar region and in the nebula surrounding HD 44179. Weak emission features at 3.40, 3.46, 3.51, and 3.57 microns are prominent in the Orion Bar region. The 3.40- and 3.51-micron features increase in intensity relative to the dominant 3.29-micron feature. The spectrum obtained in the Red Rectangle region 5 arcsecs north of HD 44179 are similar to those in the Orion Bar, with a weak, broad 3.40-micron feature at the position of HD 44179. The spatial behavior of the weak emission features is explained in terms of hot bands of the CH stretch and overtones, and combination bands of other fundamental vibrations in simple PAHs. Based on the susceptibility of PAHs to destruction by the far UV fields in both regions, PAH sizes are estimated at 20-50 carbon atoms.

  12. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  13. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  14. Fourier Transform Emission Spectroscopy of the A' 1Pi-X1Sigma+ and A1Pi-X1Sigma+ Systems of IrN.

    PubMed

    Ram; Bernath

    1999-02-01

    The emission spectrum of IrN has been investigated in the 10 000-20 000 cm-1 region at 0.02 cm-1 resolution using a Fourier transform spectrometer. The bands were excited in an Ir hollow cathode lamp operated with a mixture of 2 Torr of Ne and a trace of N2. Numerous bands have been classified into two transitions labeled as A1Pi-X1Sigma+ and A' 1Pi-X1Sigma+ by analogy with the isoelectronic PtC molecule. Ten bands involving vibrational levels up to Kv = 4 in the ground and excited states have been identified in the A1Pi-X1Sigma+ transition. This electronic transition has been previously observed by [A. J. Marr, M. E. Flores, and T. C. Steimle, J. Chem. Phys. 104, 8183-8196 (1996)]. To lower wavenumbers, five additional bands with R heads near 12 021, 12 816, 13 135, 14 136, and 15 125 cm-1 have been assigned as the 0-1, 3-3, 0-0, 1-0, and 2-0 bands, respectively, of the new A' 1Pi-X1Sigma+ transition. A rotational analysis of these bands has been carried out and equilibrium constants for the ground and excited states have been extracted. The Kv = 2 and 3 vibrational levels of the A' 1Pi state interact with the Kv = 0 and 1 levels of the A1Pi state and cause global perturbations in the bands. The ground state equilibrium constants for 193IrN are: omegae = 1126.176360(61) cm-1, omegaexe = 6.289697(32) cm-1, Be = 0.5001033(20) cm-1, alphae = 0.0032006(20) cm-1, and re = 1.6068276(32) Å. Copyright 1999 Academic Press.

  15. Rocketborne cryogenic (10 K) high-resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra.

    PubMed

    Stair, A T; Pritchard, J; Coleman, I; Bohne, C; Williamson, W; Rogers, J; Rawlins, W T

    1983-04-01

    A Michelson interferometer spectrometer cooled to 10 degrees by liquid helium was flown into an IBC class III aurora on 1 April 1976 from Poker Flat, Alas. The sensor, HIRIS, covered the spectral range 455-2500 wave numbers (4-22 microm) with a spectral resolution of 1.8 cm(-1) and an NESR of 5 x 10-12 W/cm2 scrm(-1) at 1000 cm(-1). An atmospheric emission spectrum was obtained every 0.7 sec over an altitude range of 70-125 km. Atmospheric spectra were obtained of CO2 (nu3), NO (Deltanu = 1), O3 (nu3) and CO2 (nu2). Auroral produced excitations were observed for each band, this being the first known measurement of auroral enhancements of O3 (nu3), 9.6 microm, and CO2 (nu2), 15 microm, emissions.

  16. Risk assessment of an old landfill regarding the potential of gaseous emissions--a case study based on bioindication, FT-IR spectroscopy and thermal analysis.

    PubMed

    Tintner, Johannes; Smidt, Ena; Böhm, Katharina; Matiasch, Lydia

    2012-12-01

    Risk assessment of two sections (I and II) of an old landfill (ALH) in Styria (Austria) in terms of reactivity of waste organic matter and the related potential of gaseous emissions was performed using conventional parameters and innovative tools to verify their effectiveness in practice. The ecological survey of the established vegetation at the landfill surface (plant sociological relevés) indicated no relevant emissions over a longer period of time. Statistical evaluation of conventional parameters reveals that dissolved organic carbon (DOC), respiration activity (RA(4)), loss of ignition (LOI) and total inorganic carbon (TIC) mostly influence the variability of the gas generation sum (GS(21)). According to Fourier Transform Infrared (FT-IR) spectral data and the results of the classification model the reactivity potential of the investigated sections is very low which is in accordance with the results of plant sociological relevés and biological tests. The interpretation of specific regions in the FT-IR spectra was changed and adapted to material characteristics. Contrary to mechanically-biologically treated (MBT) materials, where strong aliphatic methylene bands indicate reactivity, they are rather assigned to the C-H vibrations of plastics in old landfill materials. This assumption was confirmed by thermal analysis and the characteristic heat flow profile of plastics containing landfill samples. Therefore organic carbon contents are relatively high compared to other stable landfills as shown by a prediction model for TOC contents based on heat flow profiles and partial least squares regression (PLS-R). The stability of the landfill samples, expressed by the relation of CO(2) release and enthalpies, was compared to unreactive landfills, archeological samples, earthlike materials and hardly degradable organic matter. Due to the material composition and the aging process the landfill samples are located between hardly degradable, but easily combustible

  17. Polycyclic Aromatic Hydrocarbon Emission in Spitzer/IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Peeters, E.

    2017-03-01

    We decompose the observed 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer/IRS-SL instrument. In order to fit the 7.7 μm PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μm) is linearly related to the UV-field intensity (log G 0). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μm spectral profiles.

  18. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Dong, Lihong; Wang, Haidou; Li, Guolu; Liu, Shenshui

    2016-09-01

    Crankshaft is regarded as an important component of engines, and it is an important application of remanufacturing because of its high added value. However, the fatigue failure research of remanufactured crankshaft is still in its primary stage. Thus, monitoring and investigating the fatigue failure of the remanufacturing crankshaft is crucial. In this paper, acoustic emission (AE) technology and machine vision are used to monitor the four-point bending fatigue of 42CrMo, which is the material of crankshaft. The specimens are divided into two categories, namely, pre-existing crack and non-preexisting crack, which simulate the crankshaft and crankshaft blank, respectively. The analysis methods of parameter-based AE techniques, wavelet transform (WT) and SEM analysis are combined to identify the stage of fatigue failure. The stage of fatigue failure is the basis of using AE technology in the field of remanufacturing crankshafts. The experiment results show that the fatigue crack propagation style is a transgranular fracture and the fracture is a brittle fracture. The difference mainly depends on the form of crack initiation. Various AE signals are detected by parameter analysis method. Wavelet threshold denoising and WT are combined to extract the spectral features of AE signals at different fatigue failure stages.

  19. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    SciTech Connect

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.; Hartig, K. C.; LaHaye, N. L.; Brumfield, B. E.; Jovanovic, I.; Phillips, M. C.; Harilal, S. S.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent and serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.

  20. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.; Hartig, K. C.; LaHaye, N. L.; Brumfield, B. E.; Jovanovic, I.; Phillips, M. C.; Harilal, S. S.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.

  1. Optical Emission Spectroscopy in PECVD Helps Modulate Key Features in Biofunctional Coatings for Medical Implants

    NASA Astrophysics Data System (ADS)

    Santos, Miguel; Michael, Praveesuda; Filipe, Elysse; Wise, Steven; Bilek, Marcela; University of Sydney Collaboration

    2015-09-01

    We explore the use of optical emission spectroscopy (OES) diagnostic tools as a process feedback control strategy in plasma-assisted deposition of biofunctional coatings. Hydrogenated carbon nitride coatings are deposited on medical-grade metallic substrates using radio-frequency (rf) discharges sustained in C2H2/N2/Ar gaseous mixtures. The discharge is generated by capacitively coupling the rf power (supplied at f = 13.56 MHz) to the plasma and the substrates are electrically biased using a pulse generator to provide microsecond square profiled pulses at voltages in the range |Vbias| = 250 V - 1000 V. Nitrogen content and CN bonding configurations in the coatings follow similar trends to those of CN radicals and nitrogen molecular ions in the discharge. OES is used as a non-intrusive diagnostic technique to identify a suitable window of process parameters and ultimately achieve biofunctional interfaces compatible with current clinical demands. Importantly, we demonstrate that key features of the coatings can be modulated and made suitable for blood and/or tissue contacting medical implants, such as coronary stents and orthopaedic implants. The coatings are mechanically robust, inherently non-thrombogenic and can be readily modified, enabling an easy functionalization through the immobilization of biological molecules in a bioactive conformation.

  2. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    PubMed Central

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír

    2015-01-01

    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702

  3. Hn PAHs and the 2940 and 28050/cm (3.40 and 3.51 Microns) Infrared Emission Features

    NASA Technical Reports Server (NTRS)

    Bernstein, Max; Sandford, Scott; Allamandola, Louis; Witteborn, Fred (Technical Monitor)

    1996-01-01

    The 3150-2700/cm (3.17-3.70 microns) range of the spectra of a number of Ar matrix isolated PAHs containing excess H atoms (Hn-PAHs) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. It is demonstrated that the aliphatic C-H stretches in molecules of this type having low-to-modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700/cm (3.25 and 3.7 microns) in the spectra of many planetary nebulae, reflection nebulae, and HII regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700/cm (3.39-3.70 microns) region and briefly discuss their astrophysical implications.

  4. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  5. Ab initio calculation of X-ray emission and IR spectra of the hydrofullerene C 60H 36

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Okotrub, A. V.; Antich, A. V.; Lobach, A. S.

    2001-05-01

    Two isomers of the hydrofullerene C 60H 36 with T and D3 d symmetry were calculated using ab initio Hartree-Fock self-consistent field (HF-SCF). The T symmetry isomer in which the benzenoid rings occupy tetrahedral positions is predicted to be lower in energy than the other considered isomer. Simulated CK α spectra of the isomers were compared with the X-ray fluorescence spectrum of the hydrofullerene C 60H 36 prepared by the transfer hydrogenation method. The short-wave maximum intensity of the CK α spectrum of C 60H 36 was shown to be sensitive to the number of π electrons in the high-occupied levels of the molecule. Although the theoretical spectra are similar in appearance, the T isomer seems to be in better accordance with the experiment. Furthermore, the computed infrared frequencies and intensities for this isomer were found to correlate well with features in the measured spectrum of C 60H 36. The most intense peak in the low-frequency spectral region was shown to correspond to the skeletal vibrations of the benzenoid rings.

  6. Spatial variations of the 3 micron emission features within UV-excited nebulae: photochemical evolution of interstellar polycyclic aromatic hydrocarbons.

    PubMed

    Geballe, T R; Tielens, A G; Allamandola, L J; Moorhouse, A; Brand, P W

    1989-06-01

    We have obtained 3 microns spectra at several positions in the Orion Bar region and in the "Red Rectangle," the nebula surrounding HD 44179. The recently discovered weak emission features at 3.40, 3.46, 3.51, and 3.57 microns (2940, 2890, 2850, and 2800 cm-1) are prominent in the Orion Bar region. The 3.40 microns and 3.51 microns features increases in intensity relative to the dominant 3.29 microns (3040 cm-1) feature when going from the ionized to the neutral zone across the Orion Bar. However, only a weak and rather broad 3.40 microns feature is present at the position of HD 44179. These spectra demonstrate that some of the 3 microns emission components vary independently of each other and in a systematic way within UV-excited nebulae. This spatial variation is discussed in terms of the UV excitation and photochemical evolution of polycyclic aromatic hydrocarbons and related molecular structures. The spatial behavior of the weak emission features can be understood qualitatively in terms of hot bands of the CH stretch and overtones and combination bands of other fundamental vibrations in simple PAHs. An explanation in terms of emission by molecular sidegroups attached to the PAHs is less straightforward, particularly in the case of the Red Rectangle and other evolved mass-losing objects. We estimate PAH sizes of 20-50 carbon atoms based on the susceptibility of PAHs to destruction by the far ultraviolet fields present in the Orion Bar and the Red Rectangle; the size range is similar to independent estimates made previously.

  7. Observations of Ellerman bomb emission features in He i D3 and He i 10 830 Å

    NASA Astrophysics Data System (ADS)

    Libbrecht, Tine; Joshi, Jayant; Rodríguez, Jaime de la Cruz; Leenaarts, Jorrit; Ramos, Andrés Asensio

    2017-01-01

    Context. Ellerman bombs (EBs) are short-lived emission features, characterised by extended wing emission in hydrogen Balmer lines. Until now, no distinct signature of EBs has been found in the He i 10 830 Å line, and conclusive observations of EBs in He i D3 have never been reported. Aims: We aim to study the signature of EBs in neutral helium triplet lines. Methods: The observations consisted of ten consecutive SST/TRIPPEL raster scans close to the limb, featuring the Hβ, He i D3 and He i 10 830 Å spectral regions. We also obtained raster scans with IRIS and made use of the SDO/AIA 1700 Å channel. We used Hazel to invert the neutral helium triplet lines. Results: Three EBs in our data show distinct emission signatures in neutral helium triplet lines, most prominently visible in the He i D3 line. The helium lines have two components: a broad and blueshifted emission component associated with the EB, and a narrower absorption component formed in the overlying chromosphere. One of the EBs in our data shows evidence of strong velocity gradients in its emission component. The emission component of the other two EBs could be fitted using a constant slab. Our analysis hints towards thermal Doppler motions having a large contribution to the broadening for helium and IRIS lines. We conclude that the EBs must have high temperatures to exhibit emission signals in neutral helium triplet lines. An order of magnitude estimate places our observed EBs in the range of T 2 × 104-105 K. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  8. The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24 μm Inferred IR Luminosities and Star Formation Rates at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen A.; Shapley, Alice E.; Siana, Brian; Kriek, Mariska; Mobasher, Bahram; Coil, Alison L.; Freeman, William R.; Sanders, Ryan L.; Price, Sedona H.; Azadi, Mojegan; Zick, Tom

    2017-03-01

    We present results on the variation of 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission in galaxies spanning a wide range in metallicity at z ∼ 2. For this analysis, we use rest-frame optical spectra of 476 galaxies at 1.37 ≤ z ≤ 2.61 from the MOSFIRE Deep Evolution Field (MOSDEF) survey to infer metallicities and ionization states. Spitzer/MIPS 24 μm and Herschel/PACS 100 and 160 μm observations are used to derive rest-frame 7.7 μm luminosities ({L}7.7) and total IR luminosities ({L}{IR}), respectively. We find significant trends between the ratio of {L}7.7 to {L}{IR} (and to dust-corrected star formation rate [SFR]) and both metallicity and [O iii]/[O ii] ({{{O}}}32) emission line ratio. The latter is an empirical proxy for the ionization parameter. These trends indicate a paucity of PAH emission in low-metallicity environments with harder and more intense radiation fields. Additionally, {L}7.7/{L}{IR} is significantly lower in the youngest quartile of our sample (ages of ≲500 Myr) compared to older galaxies, which may be a result of the delayed production of PAHs by AGB stars. The relative strength of {L}7.7 to {L}{IR} is also lower by a factor of ∼2 for galaxies with masses {M}* < {10}10 {M}ȯ , compared to the more massive ones. We demonstrate that commonly used conversions of {L}7.7 (or 24 μm flux density, f 24) to {L}{IR} underestimate the IR luminosity by more than a factor of 2 at {M}* ∼ {10}9.6{--10.0} {M}ȯ . We adopt a mass-dependent conversion of {L}7.7 to {L}{IR} with {L}7.7/{L}{IR} = 0.09 and 0.22 for {M}* ≤slant {10}10 and > {10}10 {M}ȯ , respectively. Based on the new scaling, the SFR–M * relation has a shallower slope than previously derived. Our results also suggest a higher IR luminosity density at z ∼ 2 than previously measured, corresponding to a ∼30% increase in the SFR density.

  9. IR Spectroscopy of PAHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Bernstein, Max; Mattioda, Andrew; Sandford, Scott

    2007-05-01

    Interstellar PAHs are likely to be a component of the ice mantles that form on dust grains in dense molecular clouds. PAHs frozen in grain mantles will produce IR absorption bands, not IR emission features. A couple of very weak absorption features in ground based spectra of a few objects embedded in dense clouds may be due to PAHs. Additionally spaceborne observations in the 5 to 8 ?m region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It has not been possible to properly evaluate the contribution of PAH bands to these IR observations because the laboratory absorption spectra of PAHs condensed in realistic interstellar mixed-molecular ice analogs is lacking. This experimental data is necessary to interpret observations because, in ice mantles, the interaction of PAHs with the surrounding molecules effects PAH IR band positions, widths, profiles, and intrinsic strengths. Furthermore, PAHs are readily ionized in pure H2O ice, further altering the PAH spectrum. This laboratory proposal aims to remedy the situation by studying the IR spectroscopy of PAHs frozen in laboratory ice analogs that realistically reflect the composition of the interstellar ices observed in dense clouds. The purpose is to provide laboratory spectra which can be used to interpret IR observations. We will measure the spectra of these mixed molecular ices containing PAHs before and after ionization and determine the intrinsic band strengths of neutral and ionized PAHs in these ice analogs. This will enable a quantitative assessment of the role that PAHs can play in determining the 5-8 ?m spectrum of dense clouds and will directly address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PAHs be detected in dense clouds? 2- Are PAH ions components of interstellar ice?

  10. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  11. IR emission and electrical conductivity of Nd/Nb-codoped TiOx (1.5 < x < 2) thin films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Tchiffo-Tameko, C.; Cachoncinlle, C.; Perriere, J.; Nistor, M.; Petit, A.; Aubry, O.; Pérez Casero, R.; Millon, E.

    2016-12-01

    The effect of the co-doping with Nd and Nb on electrical and optical properties of TiOx films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO2) or highly oxygen deficient (TiOx with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10-1 and 10-6 mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO2 were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV-vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd3+ emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiOx films by Nb5+ ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO2 films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10-6 mbar).

  12. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.

  13. New features of excitonic emission in metal nanoparticle/semiconductor quantum dot nanosystem

    NASA Astrophysics Data System (ADS)

    Kryuchenko, Yu. V.; Korbutyak, D. V.

    2016-10-01

    We study theoretically the excitonic emission properties of a hybrid nanosystem composed of a spherical metal nanoparticle (NP) and a spherical quantum dot (QD). We show that electromagnetic field (EMF) emitted by a single QD has only dipole, quadrupole, and octupole components, i.e., QD cannot in principle be regarded as an oscillating point dipole, which emits infinite series of multipoles. This leads to a substantial deviation of the characteristics of QD excitonic emission from the emission characteristics of point dipole (molecular fluorophore) located in a vicinity of metal NP at small interparticle distances. The observed fluorescence spectra of the CdTe QD/Ag NP nanostructure are found to be in good agreement with the calculated ones.

  14. Transient Fe Emission features in AGN: A new diagnostic of Accreting Systems

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Reeves, J. R.; George, I. M.; Kraemer, S. B.

    2004-08-01

    Chandra and XMM data have revealed narrow and highly redshifted Fe K emission lines in a handful of AGN. Rapid flux variability and energy shifts of the lines have lead to speculations for their origin ranging from hotspots on the accretion disk to emission from decelerating ejected blobs of gas traveling close to the escape velocity. Whichever scenario proves true, these lines are invaluable in tracing gas close to the black hole, and arguably less subject to the ambiguities which have plagued interpretation of broad `disk lines'. I review observations of such lines to date and discuss progress possible with current and future instrumentation.

  15. UV and IR measurements of sulphur dioxide emissions during and after the 2014-2015 Bárðarbunga eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Simmons, Isla C.; Whitty, Rachel C. W.; Pfeffer, Melissa A.; Thomas, Helen; Galle, Bo; Calder, Eliza; Arellano, Santiago; Prata, Fred; Pumphrey, Hugh C.

    2016-04-01

    A basaltic fissure eruption of the Bárðarbunga volcanic system, Iceland, occurred from 31st August 2014 until 28th February 2015. This flood basalt eruption produced 1.6 km3 of lava and emitted sulphur dioxide (SO2) from the vents at rates of up to 3800 kg/s forming an eruption plume that could easily be detected from space. SO2 was also released by the cooling lava flows forming a low level haze. SO2 emissions were monitored using multiple techniques including scanning differential optical absorption spectrometers (DOAS), mobile DOAS traverses, and a NicAIR II infrared camera. UV DOAS data have been processed to distinguish the SO2 released by the degassing lava field as it cooled, both during and after the eruption. Initial results show that during February, the final month of the eruption, the lava field released about 3 kg/s of SO2. The lava field continued to emit detectable levels of SO2 at lower quantities in March, following the end of the eruption. Brightness temperature differences using 8.62 and 10.87 μm channels on the IR camera have been processed to calculate the column amounts of SO2 within the eruption plume. SO2 path lengths of over 700 ppm-m have been retrieved in November. This has been achieved despite the challenges of high H2O concentrations in the plume and high gas concentrations above the lava field. Poor meteorological conditions often resulted in a lack of clear sky within the images causing difficulties constraining background SO2 levels.

  16. Catalog of the H-alpha + N II forbidden-line emission features in the Kepler SNR

    SciTech Connect

    Dodorico, S.; Bandiera, R.; Danziger, J.; Focardi, P.

    1986-06-01

    A deep image of the Kepler SNR has been obtained in the light of H-alpha + N II forbidden-line with the faint object spectrograph and camera (EFOSC) and a CCD detector at the ESO 3.6 m telescope. The visibility of the optically emitting knots of ionized gas has been greatly enhanced by subtraction of the continuum radiation. Features as faint as 2 percent of the night-sky brightness have been identified and a half-shell of emission is clearly revealed. The total H-alpha luminosity of the ionized gas is estimated to be 8.3 x 10 to the 45th photons/s at a distance of 5 kpc implying a mass of ionized hydrogen of about 0.02 solar mass. An automatic searching program has been used to identify and list individual emission features in the continuum-subtracted image. A catalog with accurate celestial positions and approximate fluxes for 64 emission-line knots is given. 13 references.

  17. Herschel-PACS Observations of Far-IR CO Line Emission in NGC 1068: Highly Excited Molecular Gas in the Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.; Sturm, E.; Fischer, J.; Sternberg, A.; Graciá-Carpio, J.; Davies, R.; González-Alfonso, E.; Mark, D.; Poglitsch, A.; Contursi, A.; Genzel, R.; Lutz, D.; Tacconi, L.; Veilleux, S.; Verma, A.; de Jong, J. A.

    2012-08-01

    We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J upper = 14-30 (E upper/kB = 580-2565 K) range, all of which are consistent with arising from within the central 10'' (700 pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by ~80 km s-1. We employ a large velocity gradient model and derive n H2 ~ 105.6 cm-3, T kin ~ 170 K, and M H2 ~ 106.7 M ⊙ for the ME component and n H2 ~ 106.4 cm-3, T kin ~ 570 K, and M H2 ~ 105.6 M ⊙ for the HE component, although for both components the uncertainties in the density and mass are ±(0.6-0.9) dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the ~200 pc diameter ring of material traced by H2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H2 ring, but a better kinematic match is found with a clump of infalling gas ~40 pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the ~1 pc radius H2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN and might then provide the N H ~ 1025 cm-2 column obscuring the

  18. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (Lovejoy) with the GIANO/TNG Spectrograph

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-10-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 μm region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11 ± 0.14) × 1029 s-1] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33 ± 0.11) × 1029 s-1] and para-water [Q(H2O)PARA, (0.87 ± 0.21) × 1029 s-1] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  19. The 2-Year Checkup on 10 SNe IIn Discovered by Spitzer to Exhibit Late-Time (is greater than 100 Day) IR Emission

    NASA Technical Reports Server (NTRS)

    Fox, Ori Dosovitz; Chevalier, R. A.; Skrutskie, A. V.; Filippenko, A. V.; Silverman, J. M.; Ganeshalingam, M.

    2012-01-01

    Two years ago, a warm Spitzer survey of sixty-eight SNe IIn identified between the years 1998-2008 discovered 10 events with unreported late-time infrared (IR) excesses, in some cases more than 5 years post-explosion. These data nearly double the database of existing mid-IR observations of SNe IIn and offer important clues regarding the SN circumstellar.

  20. VUV and Optical Emission Characterization of Fluorocarbon SiO2 Etch Processes and Correlation to Etch Feature Quality

    NASA Astrophysics Data System (ADS)

    Hsueh, H.; Dandapani, E.; McGrath, R.; Messier, R.; Ji, B.; Karwacki, E.

    2000-10-01

    Fluorocarbon discharges used for SiO2 etch were characterized using optical (OES) and VUV emission spectroscopy. Actinometry was used to monitor atomic fluorine concentration (N_F) as power, pressure and gas mix were varied. Thermal oxide films were photolithographically patterned to define 0.5-2.0 μ m trench features, and then etched in an AMAT Mark II reactor. Etch rate, selectivity and feature critical dimension were measured using SEM and other techniques. DC self-bias was also recorded for each set of process conditions. Good etch features, etch rates of 1175 Åmin, and selectivity of 7.9 were obtained for reactor operation at 750 W, 80 mTorr, and with a gas mixture of CF_4/CHF_3/Ar at 85/10/5 sccm. Etch rate, selectivity and feature critical dimensions observed have been correlated to actinometric estimates of N_F, to self-bias voltage and to OES and VUV emissions. While varying process conditions around the reference values defined above, NF was found to increase monotonically between 0.75 and 1.2x10^13/cm^3 as pressure was increased from 70 to 100 mTorr, as power was increased from 650 to 850 W, and as CF4 gas fraction was increased from 5the reference gas mixture, etch rate was found to increase (1150 to 1550 Åmin) with increasing power, and to decrease (1550 to 550 Åmin) with increasing pressure. In these cases, etch rate trend tracked the self-bias voltage established. However, when CF4 gas fraction was increased from 5Åmin, while NF concentration increased by only 15self-bias varied by only 8feature profiles, and associated reaction processes will be presented.

  1. INTERSTELLAR CARBODIIMIDE (HNCNH): A NEW ASTRONOMICAL DETECTION FROM THE GBT PRIMOS SURVEY VIA MASER EMISSION FEATURES

    SciTech Connect

    McGuire, Brett A.; Loomis, Ryan A.; Charness, Cameron M.; Corby, Joanna F.; Blake, Geoffrey A.; Hollis, Jan M.; Lovas, Frank J.; Jewell, Philip R.; Remijan, Anthony J.

    2012-10-20

    In this work, we identify carbodiimide (HNCNH), which is an isomer of the well-known interstellar species cyanamide (NH{sub 2}CN), in weak maser emission, using data from the Green Bank Telescope PRIMOS survey toward Sgr B2(N). All spectral lines observed are in emission and have energy levels in excess of 170 K, indicating that the molecule likely resides in relatively hot gas that characterizes the denser regions of this star-forming region. The anticipated abundance of this molecule from ice mantle experiments is {approx}10% of the abundance of NH{sub 2}CN, which in Sgr B2(N) corresponds to {approx}2 Multiplication-Sign 10{sup 13} cm{sup -2}. Such an abundance results in transition intensities well below the detection limit of any current astronomical facility and, as such, HNCNH could only be detected by those transitions which are amplified by masing.

  2. Analysis of Spectral Features of Seawaterbiooptical Components Fluorescence from the Excitation-emission Matrix

    NASA Astrophysics Data System (ADS)

    Salyuk, P. A.; Nagorny, I. G.

    The paper presents the method for processing of excitation-emission matrix of sea water and the allocation of the spectral characteristics of different types of colored dissolved organic matter (CDOM) and phytoplankton cells in seawater. The method consists of identification of regularly observed fluorescence peaks of CDOM in marine waters of different type and definition of the spectral ranges, where the predominant influence of these peaks are observed.

  3. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  4. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  5. Solid-State Chemistry as a Formation Mechanism for C 4N 2 Ice and Possibly the Haystack (220 cm -1 ice emission feature) in Titan's Stratosphere as Observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert E.; McLain, Jason L.; Nna Mvondo, Delphine; Romani, Paul; Flasar, F. Michael

    2016-10-01

    A profusion of organic ices containing hydrocarbons, nitriles, and combinations of their mixtures comprise Titan's complex stratospheric cloud systems, and are typically formed via vapor condensation. These ice particles are then distributed throughout the mid-to-lower stratosphere, with an increased abundance near the winter poles (see Anderson et al., 2016). The cold temperatures and the associated strong circumpolar winds that isolate polar air act in much the same way as on Earth, giving rise to compositional anomalies and stratospheric clouds that provide heterogeneous chemistry sites.Titan's C4N2 ice emission feature at 478 cm-1 and "the Haystack," a strong unidentified stratospheric ice emission feature centered at 220 cm-1, share a common characteristic. Even though both are distinctive ice emission features evident in Cassini Composite InfraRed (CIRS) far-IR spectra, no associated vapor emission features can be found in Titan's atmosphere. Without a vapor phase, solid-state chemistry provides an alternate mechanism beside vapor condensation for producing these observed stratospheric ices.Anderson et al., (2016) postulated that C4N2 ice formed in Titan's stratosphere via the solid-state photochemical reaction HCN + HC3N → C4N2 + H2 can occur within extant HCN-HC3N composite ice particles. Such a reaction, and potentially similar reactions that may produce the Haystack ice, are specific examples of solid-state chemistry in solar system atmospheres. This is in addition to the reaction HCl + ClONO2 → HNO3 + Cl2, which is known to produce HNO3 coatings on terrestrial water ice particles, a byproduct of the catalytic chlorine chemistry that produces ozone holes in Earth's polar stratosphere (see for example, Molina et al., 1987 Soloman, 1999).A combination of radiative transfer modeling of CIRS far-IR spectra, coupled with optical constants derived from thin film transmittance spectra of organic ice mixtures obtained in our Spectroscopy for Planetary ICes

  6. Why the oxygen IR emission at 1.27 μm is not the best way for ozone retrieval in the mesosphere?

    NASA Astrophysics Data System (ADS)

    Manuilova, Rada O.; Yankovsky, Valentine A.

    2016-04-01

    In the framework of model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in the MLT of the Earth, YM2011, we have tried to answer the formulated above question. In our study we propose to retrieve the [O3] using as proxies electronic-vibrationally excited levels of oxygen molecule, namely O2(b1, v=0, 1), O2(a1, v=0) and excited atom O(1D). Concerning the [O3] retrieval in the range of 50-100 km, the emissions at 1.27 μm formed by transition from O2(a1, v=0) and at 762 nm formed by transition from O2(b1, v=0) are the most intensive ones among all emissions under consideration. However, considering the complexity of kinetics of the excited components: choosing O(1D) as a proxy for [O3] retrieval, requires taking into account five aeronomical reactions. For other proxies the number of aeronomical reactions is as follows: O2(b1, v=1) - 13; O2(b1, v=0) - 18; O2(a1, v=0) - 25. Increasing the number of reactions that must be considered when using a proxy from O(1D) to O2(a1, v=0) depends on the fact that, calculating the population of each of the underlying electronic-vibrationally excited state requires considering the mechanisms of the population of the upper levels. Using the O2(a1, v=0) is also associated with the problem of poorly known rate coefficients for some important processes. For example, the rate constant of reaction O₂( a1, v=0) + O(³P) -> products is known with uncertainty 200%. The next criterion of a "good" proxy is the value of [O3] retrieval uncertainty. Above 90 km, O2(a1, v=0) becomes the worst proxy among all under consideration with the uncertainty exceeding 100%. In the interval 50-98 km O2(b1, v=1) is the "good" proxy with the value of uncertainty less than 20% below 90 km and less than 25% up to 98 km. Therefore, O2(b1, v=1) is the preferable proxy at the altitudes of 50-98 km. Commonly used [O3] retrieval proxy, O2(a1, v=0), transition from which forms the 1.27 μm O2 IR Atmospheric band, has more than one

  7. PAHFIT: Properties of PAH Emission

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Draine, Bruce

    2012-10-01

    PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

  8. Features of space-charge-limited emission in foil-less diodes

    SciTech Connect

    Wu, Ping; Yuan, Keliang; Liu, Guozhi; Sun, Jun

    2014-12-15

    Space-charge-limited (SCL) current can always be obtained from the blade surface of annular cathodes in foil-less diodes which are widely used in O-type relativistic high power microwave generators. However, there is little theoretical analysis regarding it due to the mathematical complexity, and almost all formulas about the SCL current in foil-less diodes are based on numerical simulation results. This paper performs an initial trial in calculation of the SCL current from annular cathodes theoretically under the ultra-relativistic assumption and the condition of infinitely large guiding magnetic field. The numerical calculation based on the theoretical research is coherent with the particle-in-cell (PIC) simulation result to some extent under a diode voltage of 850 kV. Despite that the theoretical research gives a much larger current than the PIC simulation (41.3 kA for the former and 9.7 kA for the latter), which is induced by the ultra-relativistic assumption in the theoretical research, they both show the basic characteristic of emission from annular cathodes in foil-less diodes, i.e., the emission enhancement at the cathode blade edges, especially at the outer edge. This characteristic is confirmed to some extent in our experimental research of cathode plasma photographing under the same diode voltage and a guiding magnetic field of 4 T.

  9. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Ishida, Tsuyoshi; Chen, Youqing; Bennour, Ziad; Yamashita, Hiroto; Inui, Shuhei; Nagaya, Yuya; Naoi, Makoto; Chen, Qu; Nakayama, Yoshiki; Nagano, Yu

    2016-11-01

    We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC-CO2), liquid carbon dioxide (L-CO2), water, and viscous oil with viscosity of 0.051-336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low-viscosity fluid induced three-dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes.

  10. PRODAN dual emission feature to monitor BHDC interfacial properties changes with the external organic solvent composition.

    PubMed

    Agazzi, Federico M; Rodriguez, Javier; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2013-03-19

    We have investigated the water/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/n-heptane:benzene reverse micelles (RMs) interfaces properties using 6-propionyl-2-(N,N-dimethyl)aminonaphthalene, PRODAN, as molecular probe. We have used absorption and emission (steady-state and time-resolved) spectroscopy of PRODAN to monitor the changes in the RMs interface functionalities upon changing the external organic solvent blend. We demonstrate that PRODAN is a useful probe to investigate how the external solvent composition affects the micelle interface properties. Our results show that changes in the organic solvent composition in water/BHDC/n-heptane:benzene RMs have a dramatic effect on the photophysics of PRODAN. Thus, increasing the aliphatic solvent content over the aromatic one produces PRODAN partition and PRODAN intramolecular electron transfer (ICT) processes. Additionally, the water presence in these RMs makes the PRODAN ICT process favored with the consequent decreases in the LE emission intensity and a better definition of the charge transfer (CT) band. All this evidence suggests that the benzene molecules are expelled out of the interface, and the water-BHDC interactions are stronger with more presence of water molecules in the polar part of the interface. Thus, we demonstrate that a simple change in the composition of the external phase promotes remarkable changes in the RMs interface. Finally, the results obtained with PRODAN together with those reported in a previous work in our lab reveal that the external phase is important when trying to control the properties of RMs interface. It should be noted that the external phase itself, besides the surfactant and the polar solvent sequestrated, is a very important control variable that can play a key role if we consider smart application of these RMs systems.

  11. Optical characteristics of aerosol trioxide dialuminum at the IR wavelength range

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Shefer, O. V.; Kashirskii, D. E.

    2015-11-01

    In this work, a numerical study of the transmission function, extinction coefficient, scattering coefficient, and absorption coefficient of the aerosol generated by the jet engine emissions was performed. Analyzing the calculation results of the IR optical characteristics of anthropogenic emissions containing the dialuminum trioxide was carried out. The spectral features of the optical characteristics of the medium caused by the average size, concentration and complex refractive index of the particles were illustrated.

  12. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Cotton, W.; Schödel, R.; Royster, M. J.; Roberts, D. A.; Kunneriath, D.

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μm Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 104 au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μm and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  13. Persistent time intervals between features in solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Kouveliotou, Chryssa; Barat, C.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.

    1986-01-01

    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov.

  14. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  15. [Analysis on the impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature].

    PubMed

    Sun, Xiang-Ping; Li, Guo-Xue; Xiao, Ai-Ping; Shi, Hong; Wang, Yi-Ming; Li, Yang-Yang

    2014-09-01

    Using pig manure and corn straw as raw materials for high-temperature composting, setting three different treat- ments: C/N 15, C/N 25, and C/N 35. Composting period is 120 days, which contains 30 days for ventilation cycle by forced continuous ventilation. Sampled on 0, 22, 30, 60, 90, 120th days, they were analyzed by elemental analysis and IR spectroscopy to study effect of different lignin content on compost humic acid (HA) composition and molecular structure. The results showed that the change in composting humic acid C focused on the first 30 days, while after composting, the O/C of compost HA increased, H/C decreased, and N content increased. Low C/N (15) and higher C/N ratio (35) had higher degree of oxidation than the C/N 25 in compost HA. FTIR indicated that the infrared spectrum shapes with different lignin content treatment are similar during the composting process, but the peak intensity is obviously different. Research results proved that the composting stage is more conducive to enhanced aromatic in compost HA. After composting, C/N 15 had less polysaccharide and fat ingredients and more aromatic structural components in compost HA, compared with C/N 25 and 35. In addition, compost HA of C/N 15 had higher degree of humification and its structure was more stable.

  16. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-02-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007-2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10-14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of - 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  17. Gas-emission crater in Central Yamal, West Siberia, Russia, a new permafrost feature

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Streletskaya, Irina; Gubarkov, Anatoly

    2016-04-01

    The Yamal crater is a hole funnel-shaped on top and cylinder-shaped down to the bottom, surrounded by a parapet. Field study of the crater included size measurements, photo- video-documentation of the feature and the surrounding environment, and geochemical sampling. The upper part of the geological section within the crater consisted of stratified icy sediments, underlain by almost pure stratified ice of nearly vertical orientation of the layers. The volume of discharged material (volume of the void of the crater) was 6 times larger than the volume of material in the parapet. The difference was due to a significant amount of ice exposed in the walls of the crater, emitted to the surface and melted there. Remote sensing data was processes and validated by field observations to reveal the date of crater formation, previous state of the surface, evolution of the crater and environmental conditions of the surrounding area. Crater formed between 9 October and 1 November 2013. The initial size derived from Digital Elevation Model (DEM) had diameter of the vegetated rim 25-29 m. It turned through a sharp bend into a cylinder with close to vertical sides and diameter 15-16 m. Depth of the hole was impossible to estimate from DEM because of no light reaching walls in the narrow hole. By the time of initial observation in July 2014, water was found at the depth exceeding 50 m below the rim. In November 2014 this depth was 26 m. By September 2015 almost all the crater was flooded, with water surface about 5 m below the rim. The plan dimensions of the crater increased dramatically from initial 25-29 to 47-54 m in 2015. Thus, it took two warm seasons to almost entirely fill in the crater. We suppose that during the next 1-2 years parapet will be entirely destroyed, and as a result the crater will look like an ordinary tundra lake. Excluding impossible and improbable versions of the crater's development, the authors conclude that the origin of this crater can be attributed to

  18. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  19. Detection of the 3.4 micron emission feature in comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r) and an observational summary

    NASA Technical Reports Server (NTRS)

    Brooke, T. Y.; Tokunaga, A. T.; Knacke, R. F.

    1990-01-01

    A survey was performed of the 3 micron spectral region of comets, including the broad 3.4 micron emission feature due to C-N bonds in organic molecules. One goal is to determine how the strength of the emission band varies with heliocentric distance r in comets. This depends on both the production rate of the organic molecules and the emission mechanism, neither of which is well determined at present. The observations to date are consistent with cometary organics being present in all comets at comparable abundances relative to water. Loss of contrast in the 3.4 micron feature as comets get closer to the sun is then easily explained by dilution by thermal emission from the continuum grains, whose flux rises more steeply with heliocentric distance than that of organics.

  20. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal.

    PubMed

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm(-1)), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm(-1)), total carbohydrates (CHO, region and baseline ca. 1193-889cm(-1)) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm(-1), region: 1102-1083 cm(-1)) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm(-1)) to 2nd peak (ca. 1374 cm(-1)) height ratio, CHO 1st peak (ca. 1149 cm(-1)) to 3rd peak (ca. 1032 cm(-1)) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly

  1. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P < 0

  2. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  3. Near-ir spectroscopy of Jupiter at the time of comet Shoemaker-Levy 9 Impacts: Emissions of CH4, H3 + and H2

    NASA Astrophysics Data System (ADS)

    Encrenaz, Th.; Schulz, R.; Stüwe, J. A.; Wiedemann, G.; Drossart, P.; Crovisier, J.

    Near-infrared emissions of the SL9 impact sites of Jupiter have been recorded on July 16-18, 1994, at ESO (La Silla, Chile). A very strong emission of methane was recorded between 3.50 and 3.56 µm, shortly after impact H, showing evidence for a temporary increase of the Jovian stratospheric temperature. Emissions of H2 (2.12 µm) and H3+ (3.53 µm) were also detected above some of the impact sites, several hours after the impacts. The observed H3+ emissions, however, seem to be at least partly contaminated by the southern aurora. A strong continuum was also detected at 2.12 µm over most of the impact sites, presumably due to intense scattering of reflected sunlight by stratospheric haze.

  4. Mid-Infrared Spectral Properties of IR QSOs

    SciTech Connect

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-10-10

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from {approx}5 to 30 {mu}m, including the spectral slopes, 6.2 {mu}m PAH emission strengths and [NeII] 12.81 {mu}m luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 {mu}m) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  5. IRS Legacy Survey of the Green Valley in COSMOS

    NASA Astrophysics Data System (ADS)

    Scoville, Nicholas; Aussel, Herve; Capak, Peter; Frayer, David; Ilbert, Olivier; Kneib, Jean-Paul; Le Floc'h, Emeric; McCracken, Henry; Salvato, Mara; Sanders, David; Schinnerer, Eva; Sheth, Kartik; Surace, Jason; Yan, Lin

    2008-03-01

    We propose IRS low resolution spectroscopy is obtained for a complete flux-limited sample of 55 MIPS 24micron selected galaxies in the HST/ACS-COSMOS survey field at z = 0.65-0.85. All of the galaxies have S(24) > 0.7 mJy and confirmed IRAC counterparts. The IRS observations yield the PAH and silicate features, the mid-IR continuum SED and the Ne emission lines (for the brighter sources). These tracers provide diagnostics for the nature of the energy sources (starburst and/or AGN) in these dust obscured galaxies. This COSMOS IRS Legacy survey samples the full range of optical (e.g. U-V) color and absolute optical magnitude exhibited by luminous infrared-selected galaxies at our selected redshifts. Our sample of 24 micron sources allow us to better understand the role played by IR-selected galaxies in galaxy evolution, and provide a critical test of evolutionary models which suggest that sources in the Green Valley represent a transition stage as dusty spirals in the Blue Cloud merge and evolve into massive gas-poor elipticals on the Red Sequence.

  6. Herschel-PACS Observations of Far-IR CO Line Emission in NGC 1068: Highly Excited Molecular Gas in the Circumnuclear Disk

    DTIC Science & Technology

    2012-08-10

    Acquisition and Reduction The observations were made with the Photodetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2010) on board the...of the AGN is obscured by a Compton - thick medium, but the extended emission detected by Chandra in the 6–8 keV band demonstrates that the nuclear X...amount of shock-heated gas must also be considered. 7. CONSTRAINTS ON THE NUCLEAR OBSCURATION 7.1. Could the Detected Emission Arise from Compton -thick

  7. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    PubMed Central

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-01-01

    Background: The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Methods: Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of <15%. Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging. Results: Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD, while the remained 5 with a normal DAT-PET scan were SWEDDs. As for UPRDS, the dressing and hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P < 0.05 and P < 0.01, respectively). Bilateral tremor was more frequent in the SWEDDs group (P < 0.05). The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs. PMID:26112718

  8. The emission/absorption FE 2 spectrum of HD 45677

    NASA Technical Reports Server (NTRS)

    Stalio, R.; Selvelli, P. L.

    1981-01-01

    The complex behavior of the emission/absorption spectrum of Fe II is analyzed. The far UV spectrum is characterized almost solely by absorption lines, while, in the near UV, strong emissions are predominant. Radiative excitation from the ground to the highest levels (chi is approximately 10 eV) with re-emission in the near UV, visible and I.R. seems to be the main mechanism capable of explaining the observed spectral features.

  9. GSH 006-15+7: a local Galactic supershell featuring transition from H I emission to absorption

    NASA Astrophysics Data System (ADS)

    Moss, V. A.; McClure-Griffiths, N. M.; Braun, R.; Hill, A. S.; Madsen, G. J.

    2012-04-01

    We report on the discovery of a new Galactic supershell, GSH 006-15+7, from the Galactic All-Sky Survey data. Observed and derived properties are presented, and we find that GSH 006-15+7 is one of the nearest physically large supershells known, with dimensions of ˜780 × 520 pc at a distance of ˜ 1.5 kpc. The shell wall appears in HI emission at b≲-6?5 and in HI self-absorption (HISA) at b≳-6?5. We use this feature along with HISA diagnostics to estimate an optical depth of τ˜ 3, a spin temperature of ˜40 K and a swept-up mass of M˜ 3 × 106 M⊙. We also investigate the origin of GSH 006-15+7, assessing the energy contribution of candidate powering sources and finding evidence in favour of a formation energy of ˜1052 erg. We find that this structure provides evidence for the transfer of mass and energy from the Galactic disc into the halo.

  10. Modelling the Emission And/or Absorption Features in the High Resolution Spectra of the Southern Binary System: HH Car

    NASA Astrophysics Data System (ADS)

    Koseoglu, Dogan; Bakış, Hicran

    2016-07-01

    High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.

  11. DUST ATTENUATION OF THE NEBULAR REGIONS OF z ∼ 2 STAR-FORMING GALAXIES: INSIGHT FROM UV, IR, AND EMISSION LINES

    SciTech Connect

    De Barros, S.; Reddy, N.; Shivaei, I.

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ∼ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M{sub ⊙} yr{sup −1} > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ∼ 2 from previous studies.

  12. Efficient conversion from UV light to near-IR emission in Yb{sup 3+}-doped triple-layered perovskite CaLaNb{sub 3}O{sub 10}

    SciTech Connect

    Lu, Yuting; Li, Yuze; Qin, Lin; Huang, Yanlin; Qin, Chuanxiang; Tsuboi, Taiju; Huang, Wei

    2015-04-15

    Graphical abstract: CaRNb{sub 3}O{sub 10} is a self-activated oxide due to charge transfer transition in octahedral NbO{sub 6} groups. CaLaNb{sub 3}O{sub 10}:Yb{sup 3+} presents intense IR emission due to the cooperative energy transfer from host (NbO{sub 6}) to Yb{sup 3+} is responsible. It could be expected to be potentially applicable for enhancing photovoltaic conversion efficiency of Si-based solar cells. - Abstract: Yb{sup 3+}-doped triple-layered perovskite CaLaNb{sub 3}O{sub 10} micro-particles were synthesized via the solid-state reaction method. The crystal structure and morphology of the polycrystalline samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements, respectively. The reflectance spectra, photoluminescence (PL) excitation and emission spectra, the decay curves, and the absolute quantum efficiency (QE) of the near-infrared (NIR) emission (910–1100 nm) were measured. Under excitation of UV light, Yb{sup 3+}-doped perovskite shows an intense NIR emission attributed to the {sup 2}F{sub 5/2} → {sup 2}F{sub 7/2} transitions of Yb{sup 3+} ions, which could match maximum spectral response of a Si-based solar cell. This is beneficial for its possible application in an enhancement of the photovoltaic conversion efficiency of solar energy utilization. The efficient energy transfer in Yb{sup 3+}-doped CaLaNb{sub 3}O{sub 10} from NbO{sub 6} groups into Yb{sup 3+} ions was confirmed by the spectra and fluorescent decay measurements. Cooperative energy transfer (CET) was supposed to be the NIR emission mechanism.

  13. Detection of the 3.4 micron emission feature in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r) and an observational summary

    NASA Technical Reports Server (NTRS)

    Brooke, T. Y.; Tokunaga, A. T.; Knacke, R. F.

    1991-01-01

    The 3.4 micron emission feature due to cometary organics was detected in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r). Features-to-continuum ratios in these two comets were higher than those expected from the trend seen in other comets to date. Three micron spectra of eight comets are reviewed. The 3.4 micron band flux is better correlated with the water production rate than with the dust production rate in this sample of comets. High feature-to-continuum ratios in P/Brorsen-Metcalf and Okazaki-Levy-Rudenko can be explained by the low dust-to-gas ratios of these two comets. The observations to date are consistent with cometary organics being present in all comets (even those for which no 3.4 micron feature was evident) at comparable abundances with respect to water. The emission mechanism and absolute abundance of the organics are not well determined; either gas-phase fluorescence or thermal emission from hot grains is consistent with the heliocentric distance dependence of the 3.4 micron band flux. There is an overall similarity in the spectral profiles of the 3.4 micron feature in comets; however, there are some potentially significant differences in the details of the spectra.

  14. Hydrogenated Polycyclic Aromatic Hydrocarbons and the 2940 and 2850 Wavenumber (3.40 and 3.51 micron) Infrared Emission Features

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamadola, Louis J.

    1996-01-01

    The 3150-2700/cm (3.17-3.70 micron) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (H(sub n)-PAHS) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700/cm (3.25 and 3.7 micron) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700/cm (3.39-3.70 micron) region and briefly discuss their astrophysical implications.

  15. Near-IR imaging toward a puzzling young stellar object precessing jet

    NASA Astrophysics Data System (ADS)

    Paron, S.; Fariña, C.; Ortega, M. E.

    2016-10-01

    Aims: The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3-2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods: Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1-0 S(1), H2 2-1 S(1), Brγ, and CO 2-0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 0.̋35 and 0.̋45. Results: The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuum-subtracted image reveals several knots and filaments at a larger

  16. Palagonitic Mars from Rock Rinds to Dust: Evidence from Visible, Near-IR, and Thermal Emission Spectra of Poorly Crystalline Materials

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Mertzman, S. A.; Lane, M. D.; Christensen, P. R.

    2003-01-01

    Visible and near-IR (VNIR) spectral data for Martian bright regions are characterized by a general shape consisting of a ferric absorption edge extending from about 400 to 750 nm and relatively constant reflectivity extending from about 750 nm to beyond 2000 nm . Among terrestrial geologic materials, the best spectral analogues are certain palagonic tephras from Mauna Kea Volcano (Hawaii). By definition, palagonite is a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass. The ferric pigment in palagonite is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles is not known, and the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. We show here that laboratory VNIR and TES spectra of palagonitic alteration rinds developed on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  17. Epic changes in the IRS46 mid-infrared spectrum; an inner disk chemistry study

    NASA Astrophysics Data System (ADS)

    Lahuis, F.; Kamp, I.; Thi, W. F.; van Dishoeck, E. F.; Woitke, P.

    2011-05-01

    The Spitzer-IRS detection of highly abundant hot (Tex>400 K) molecular gas toward the low-mass star IRS 46 (Lahuis et al. 2006) was cause for great excitement. Strong absorption bands of gas-phase C_2H_2, HCN and CO_2 provided the first observational test of chemical models in the planet-forming zone of a circumstellar disk as well as a direct measure of the temperature and density in this zone. Subsequently, the same molecules have been observed in absorption toward the young star GV Tau (Gibb et al. 2007) and in emission (together with hot abundant H_2O and OH) toward a number of T Tauri stars (Carr & Najita 2008, Salyk et al. 2008, Pontoppidan et al. 2010). Follow-up Spitzer-IRS observations of IRS 46 at 5 epochs taken during 2008 and 2009 show dramatic changes of the mid-IR properties. The mid-IR continuum and the strength of hot water emission lines (detected in the newly reduced data) have increased (up to a factor of two) while the above mentioned absorption features have decreased (up to a factor of five) in strength (see figure below). At the same time GV Tau does not show any significant changes in flux or the strength of its molecular absorption bands. Starting with the parameters of the SED model as presented by Lahuis et al. (2006), we use the proptoplanetary disk model ProDiMo (Woitke et al. 2009, Kamp et al. 2010) to model the chemical composition of the inner few AU of the IRS 46 disk. In addition, the nature of the changes observed in the mid-IR spectra of IRS 46 are investigated using these models.

  18. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  19. Polarization features of the ELF emissions excited in the outer ionosphere through modification of the ionospheric F-region by high-power HF radio emission

    NASA Astrophysics Data System (ADS)

    Belov, Alexey

    indent=1cm The results of in-situ measurements performed by the onboard equipment of the DEMETER satellite show that the guided ELF emissions can be excited through modification of the ionospheric F-region by high-power HF radio emission from the SURA heating facility. The power spectra of the excited ELF waves have a sharp upper frequency cutoff at the local proton gyrofrequency. In this work, we study the propagation and polarization characteristics of the observed ELF emissions using multicomponent measurement of electric and magnetic fields from the DEMETER satellite. For analysis we make use of singular value decomposition (SVD) technique. It is shown that the polar angle of the observed emissions wave vector with respect to ambient magnetic field is less than pi/6. The waves propagate upward in the left-hand-polarized mode. The wave polarization changes from right- to left-handed at the so-called crossover frequency. The obtained results improve the understanding of the generation mechanisms of observed ELF emissions. This work was supported by the Russian Foundation for Basic Research (project No. 12-02-00747-a), and the Government of the Russian Federation (contract No. 11.G34.31.0048).

  20. Northern Polar Spring in IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This image was collected October 19, 2002 during the northern spring season. The top half of this daytime IR image shows the North Polar sand sea.

    Image information: IR instrument. Latitude 76.2, Longitude 226.8 East (133.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  1. Emission spectroscopy of IR laser-induced processes in ultra-dense deuterium D(0): Rotational transitions in D(0) with spin values s = 2, 3 and 4

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2017-02-01

    The emission spectrum induced in ultra-dense deuterium D(0) by a 1064 nm pulsed YAG laser with 0.4 J pulses is strongly dependent on the amount of D(0) formed. With D2 pressure below 10-2 mbar at the D(0) generator and no D(0) layer on the metal surface, line spectra can be observed with numerous lines due to metal and gas atoms. When a D(0) layer exists on the generator surface, these lines disappear. A different pattern of emission lines and bands is then found. Several peaks are observed which agree well with the rotational transitions of rotating D-D pairs in D(0) from theory. The peak widths are approximately 20 cm-1. A prominent peak at 760 nm corresponds to spin state s = 3 in D(0) from a rotational transition J = 1 → 0. This gives an experimental D-D distance in this state of 5.052 ± 0.003 pm that is only 0.25% larger than predicted by theory and calculations. The existence of these rotational lines strongly supports the cluster model of D(0) described previously. At a few hundred mbar pressure, a red-emitting apparently self-focused beam is formed by the laser beam. The expected Balmer lines are weak or absent.

  2. CBSD version 2 component models of the IR celestial background

    NASA Astrophysics Data System (ADS)

    Kennealy, John P.; Glaudell, Gene A.

    1990-12-01

    CBSD Version 2 addresses the development of algorithms and software which implement realistic models of all the primary celestial background phenomenologies, including solar system, galactic, and extra-galactic features. During 1990, the CBSD program developed and refined IR scene generation models for the zodiacal emission, thermal emission from asteroids and planets, and the galactic point source background. Chapters in this report are devoted to each of those areas. Ongoing extensions to the point source module for extended source descriptions of nebulae and HII regions are briefly discussed. Treatment of small galaxies will also be a natural extension of the current CBSD point source module. Although no CBSD module yet exists for inter-stellar IR cirrus, MRC has been working closely with the Royal Aerospace Establishment in England to achieve a data-base understanding of cirrus fractal characteristics. The CBSD modules discussed in Chapters 2, 3, and 4 are all now operational and have been employed to generate a significant variety of scenes. CBSD scene generation capability has been well accepted by both the IR astronomy community and the DoD user community and directly supports the SDIO SSGM program.

  3. IR Spectroscopy of PANHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Mattioda, Andrew; Sandford, Scott

    2008-03-01

    Interstellar PAHs are likely to be frozen into ice mantles on dust grains in dense clouds. These PAHs will produce IR absorption bands, not emission features. A couple of very weak absorption features in ground based spectra of a few objects in dense clouds may be due to PAHs. It is now thought that aromatic molecules in which N atoms are substituted for a few of the C atoms in a PAH's hexagonal skeletal network (PANHs) may well be as abundant and ubiquitous throughout the interstellar medium as PAHs. Spaceborne observations in the 5 to 8 um region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It is not possible to analyze these observations because lab spectra of PANHs and PAHs condensed in realistic interstellar ice analogs are lacking. This lab data is necessary to interpret observations because, in ice mantles, the surrounding molecules affect PANH and PAH IR band positions, widths, profiles, and intrinsic strengths. Further, PAHs (and PANHs?) are readily ionized in pure H2O ice, further altering the spectrum. This proposal starts to address this situation by studying the IR spectra of PANHs frozen in laboratory ice analogs that reflect the composition of the interstellar ices observed in dense clouds. Thanks to Spitzer Cycle-4 support, we are now measuring the spectra of PAHs in interstellar ice analogs to provide laboratory spectra that can be used to interpret IR observations. Here we propose to extend this work to PANHs. We will measure the spectra of these interstellar ice analogs containing PANHs before and after ionization and determine the band strengths of neutral and ionized PANHs in these ices. This will enable a quantitative assessment of the role that PANHs can play in the 5-8 um spectrum of dense clouds and address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PANHs be detected in dense clouds? 2- Are PANH ions

  4. LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION

    SciTech Connect

    Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R.; Tanvir, N. R.; Page, K. L.; O’Brien, P. T.; Wiersema, K.; Metzger, B. D.; Cenko, S. B.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t{sup −70}. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L{sub X} ∼ 5 × 10{sup 42} erg s{sup −1} and are marginally inconsistent with a continuing decay of t{sup −5/3}, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M{sub BH} = 3 × 10{sup 6} M{sub ⊙}, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of M{sub R} ∼ −22 to −23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  5. Late Time Multi-wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t-70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ˜ 5 × 1042 erg s-1 and are marginally inconsistent with a continuing decay of t-5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ˜ -22 to -23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  6. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm)

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2007-01-01

    In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.

  7. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    SciTech Connect

    Yang, G.M.; Yang, C.C.; Xu, Q.; Zheng, W.T.; Li, S.

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheet density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.

  8. From Ultrafast Structure Determination to Steering Reactions: Mixed IR/Non-IR Multidimensional Vibrational Spectroscopies.

    PubMed

    van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-09-28

    Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential.

  9. Analysis of the AlCl Absorption Feature and the Searchlight Emission Effect Observed in Solid-Propellant Rocket Plumes

    DTIC Science & Technology

    1992-09-01

    phase function was approximated by the Henyey - Greenstein function ...searchlight emission are supported by Monte Carlo radiative transfer calculations using the measured plume extinction profile. It is concluded that...Press, New York, 1980. 25. Kamiuto, K. "Study of the Henyey - Greenstein Approximation to Scattering Phase Functions ." Journal of

  10. Improving Detection of Axillary Lymph Nodes by Computer-Aided Kinetic Feature Identification in Positron Emission Tomography

    DTIC Science & Technology

    2004-08-01

    Detection of Early Metastasized Molecular Feature (IDEMMF) system; and test and evaluate the prototype with phantom , animal study and clinical patient...reported below. 5 2.1.1 TAC feature extraction Using dynamic phantom data with known ground truth, we tested, to a certain degree, how the time activity...averaged time activity curve. We have performed an experimental study with a realistic liver phantom . In the liver phantom three artificial spherical

  11. New lanthanide complexes for sensitized visible and near-IR light emission: synthesis, 1H NMR, and X-ray structural investigation and photophysical properties.

    PubMed

    Quici, Silvio; Marzanni, Giovanni; Forni, Alessandra; Accorsi, Gianluca; Barigelletti, Francesco

    2004-02-23

    We describe the syntheses, the 1H NMR studies in CD3OD and D2O as solvent, the X-ray characterization, and the luminescence properties in D2O solution of the two complexes Eu.1 and Er.1, where 1 is a dipartite ligand that includes (i) a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) unit serving as hosting site for the metal center; and (ii) a phenanthroline unit which plays the role of light antenna for the sensitization process of the metal centered luminescence. In a previous report (Inorg. Chem. 2002, 41, 2777), we have shown that for Eu.1 there are no water molecules within the first coordination sphere. X-ray and 1H NMR results reported here are consistent with full saturation of the nine coordination sites within the Eu.1 and Er.1 complexes. In addition, these studies provide important details regarding the conformations, square antiprism (SAP) and twisted square antiprism (TSAP), adopted in solution by these complexes. The luminescence results are consistent with both an effective intersystem crossing (ISC) at the light absorbing phenanthroline unit (lambda(exc) = 278 nm) and an effective energy transfer (en) process from the phenanthroline donor to the cation acceptor (with unit or close to unit efficiency for both steps). In D2O solvent, the overall sensitization efficiency, phi(se), is 0.3 and 5 x 10(-6), for Eu.1 (main luminescence peaks at 585, 612, 699 nm) and Er.1 (luminescence peak at 1530 nm), respectively. The photophysical properties of both complexes are discussed with reference to their structural features as elucidated by the obtained 1H NMR and X-ray results.

  12. The spacing of the interstellar 6.2 and 7.7 micron emission features as an indicator of polycyclic aromatic hydrocarbon size

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1999-01-01

    A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons (PAHs), ranging in size from C10H8 through C48H20, is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This Letter is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650-1100 cm-1 (6.1-9.1 microns) region that tend to cluster the vicinity of the interstellar emission bands at 1610 and 1320 cm-1 (6.2 and 7.6 microns), but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHs in the 50-80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 cm-1 (6.2 microns) interstellar band indicates that PAHs containing as few as 20 carbon atoms contribute to this feature.

  13. The Spacing of the Interstellar 6.2 Microns and 7.7 Microns Emission Features as an Indicator of PAH Size

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.; Mead, Susan (Technical Monitor)

    1998-01-01

    A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons ranging in size from C10H8 through C48H20 is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This paper is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650 - 1100 per centimeter (6.1 - 9.1 microns) region which tend to cluster in the vicinity of the interstellar emission bands at 1610 per centimeter and 1320 per centimeter (6.2 and 7.6 microns) but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHS in the 50 to 80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 per centimeter (6.2 microns) interstellar band indicates that PAHS containing as few as 20 carbon atoms contribute to this feature.

  14. Dust content in compact HII regions (NGC 7538-IRS1, IRS2, and IRS3)

    NASA Astrophysics Data System (ADS)

    Akabane, K.; Kuno, N.

    2005-02-01

    The luminosity of the central star of the compact HII regions of NGC 7538 was estimated from the solid angle of the IR sources subtended relative to the central star, and was found to be 5˜ 10 times as intense as that of IR sources. Under the single central star approximation, the luminosity gives a stellar UV photon rate NU(*) (s-1) of ˜3.0 × 1048, ˜1.5 × 1049, ˜5.1 × 1049, and ˜1.7 × 1047 for the compact HII regions of NGC 7538-IRS1(A/2), B, IRS2, and IRS3, respectively. NU (*) and the observed electron density, ne, provide the dust opacity of the ionizing photon, τSd, for the optical path out to the Strömgren sphere radius rS, assuming a gas with standard dust content. Ionizing photon opacity over the same optical path but with the actual dust content τSda is also derived from ri / rS, where ri is the radius of the ionized sphere, which is estimated from NU(*) and the observed volume emission measure ne2 (4 π ri3/3) (Spitzer \\cite{Spitzer1978}). An observational trend of γ NU(*) / 4π ri2 1/2 ˜ constant, where γ = τSda / τSd}, was obtained for the 4 compact HII regions of the NGC 7538(N). Fourteen selected compact HII regions from data catalogued by VLA observations were examined for this trend, and a similar result was obtained. A limit of γ as 15 ≥ γ ≥ 0.1 was given for the 14 selected sources. The size of the dust-depleted cavity of the NGC 7538(N) suggested by Chini et al. (\\cite{Chini1986}) coincides with that of the ionized sphere of the IRS2 of the region.

  15. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  16. Development of an extra-vehicular (EVA) infrared (IR) camera inspection system

    NASA Astrophysics Data System (ADS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; Hawk, Doug; Amoroso, Michael

    2006-04-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle's Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle's inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  17. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  18. Nonlinear reflection from the surface of neutron stars and features of radio emission from the pulsar in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-08-01

    There are no explanations for the high-frequency component of the emission from the pulsar in the Crab nebula, but it may be a manifestation of instability in nonlinear reflection from the star's surface. Radiation from relativistic positrons flying from the magnetosphere to the star and accelerated by the electric field of the polar gap is reflected. The instability involves stimulated scattering on surface waves.

  19. Optimized IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  20. Identification of the emission features near 3.5 microns in the pre main sequence star HD 97048

    NASA Technical Reports Server (NTRS)

    Baas, F.; Allamandola, L. J.; Geballe, T. R.; Persson, S. E.; Lacy, J. H.

    1982-01-01

    The spectrum of HD97048 was measured with a resolving power of 450 between 3.37 and 3.64 microns. The prominent feature near 3.5 microns is well resolved, with a peak at 3.53 microns and a wing extending to a shorter wavelength. The weaker feature near 3.4 microns is found to peak at 3.43 microns, in contrast to the 3.40 micron feature seen in other astronomical objects. The observed spectrum strongly resembles laboratory spectra of mixtures of monomeric and dimeric formaldehyde embedded in low temperature solids. Of various possible excitation mechanisms, ultraviolet pumped infrared fluorescence of formaldehyde in interstellar grains provides the best explanation for the observed spectrum of HD 97048.

  1. XMM-Newton and INTEGRAL study of the SFXT IGR J18483-0311 in quiescence: hint of a cyclotron emission feature?

    NASA Astrophysics Data System (ADS)

    Sguera, V.; Ducci, L.; Sidoli, L.; Bazzano, A.; Bassani, L.

    2010-02-01

    We report the results from archival XMM-Newton and INTEGRAL observations of the Supergiant Fast X-ray Transient (SFXT) IGR J18483-0311 in quiescence. The 18-60 keV hard X-ray behaviour of the source is presented here for the first time; it is characterized by a spectral shape (Γ ~ 2.5) similar to that during outburst activity, and the lowest measured luminosity level is ~1034 erg s-1. The 0.5-10 keV luminosity state, measured by XMM-Newton during the apastron passage, is about one order of magnitude lower and it is reasonably fitted by an absorbed blackbody model yielding parameters consistent with previous measurements. In addition, we find evidence (~3.5σ significance) of an emission-like feature at ~3.3 keV in the quiescent 0.5-10 keV source spectrum. The absence of any known or found systematic effects, which could artificially introduce the observed feature, gives us confidence about its non-instrumental nature. We show that its physical explanation in terms of atomic emission line appears unlikely, and conversely we attempt to ascribe it to an electron cyclotron emission line which would imply a neutron star magnetic field of the order of ~3 × 1011 G. Importantly, such direct estimation is in very good agreement with that independently inferred by us in the framework of accretion from a spherically symmetric stellar wind. If firmly confirmed by future longer X-ray observations, this would be the first detection ever of a cyclotron feature in the X-ray spectrum of an SFXT, with important implications on theoretical models.

  2. A FEATURE MOVIE OF SiO EMISSION 20-100 AU FROM THE MASSIVE YOUNG STELLAR OBJECT ORION SOURCE I

    SciTech Connect

    Matthews, L. D.; Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Kunz, M. W.

    2010-01-01

    We present multi-epoch Very Long Baseline Array imaging of the {sup 28}SiO v = 1 and v = 2, J = 1-0 maser emission toward the massive young stellar object (YSO) Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of approx0.5 mas (approx0.2 AU for d = 414 pc) and a spectral resolution of approx0.2 km s{sup -1}. Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (from 2001 March 19 to 2002 December 10). These movies provide the most detailed view to date of the dynamics and temporal evolution of molecular material within approx20-100 AU of a massive (approx>8 M{sub sun}) YSO. As in previous studies, we find that the bulk of the SiO masers surrounding Source I lie in an X-shaped locus; the emission in the south and east arms is predominantly blueshifted, and emission in the north and west is predominantly redshifted. In addition, bridges of intermediate-velocity emission are observed connecting the red and blue sides of the emission distribution. We have measured proper motions of over 1000 individual maser features and found that these motions are characterized by a combination of radially outward migrations along the four main maser-emitting arms and motions tangent to the intermediate-velocity bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with masses as high as at least 8 M{sub sun} form via disk-mediated accretion. However, we cannot yet rule out that the Source I disk may have been formed or altered following a recent close encounter.

  3. Infrared absorption and emission characteristics of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  4. Infrared emission features: probing the interstellar PAH population and circumstellar environment of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan

    2009-12-01

    AKs zijn alom vertegenwoordigd en bieden een uitstekend middel om de veelheid aan objecten verspreid over het heelal te bestuderen. Met name in gebieden waar zich sterren en planeten vormen, helpen ze bij het ontwarren van de grootschalige structuur. PAKs staat voor polycyclische aromatische koolwaterstoffen en ze vormen een familie van grote kippengaasvormige moleculen opgebouwd uit koolstof en waterstof. Op aarde worden ze onderander aangetroffen in de verbrandingsproducten van fossiele brandstoffen. PAKs vormen het overgangsgebied van stofdeeltjes ter grote van een micron naar moleculair "gas". PAKs zijn uniek op twee manieren. Allereerst, PAKs fluoresceren na de absorptie van een enkel ultraviolet foton, waardoor ze te zien zijn in zeer koude gebieden, ver weg van de aanstralende bron. In de tweede plaats, gegeven de complexiteit van deze moleculen, kunnen ze een belangrijke rol hebben gespeeld in het ontstaan van leven. Met behulp van topklasse ruimte- en grond gestationeerde observatoria, zoals bijvoorbeeld Spitzer en de 10-meter klasse telescopen in Chili, is de PAK-emissie afkomstig van middelzware, zich vormende, sterren onderzocht. Door gebruik van zowel beeldvorming als spectroscopie, zijn morfologische en evolutionaire aspecten van de PAK-emissie vastgesteld. De NASA Ames PAK IR Spectroscopische Database is een verzameling van meer dan 600 berekend en ongeveer 200 experimenteel bepaalde spectra. Deze unieke database gaat eind 2009 publiek. Gebruikmakend van deze database is een systematische zoektocht gedaan naar kandidaten die verantwoordelijk kunnen worden gehouden voor de emissie in twee, tot op heden, niet goed bestudeerde regio's van het PAKs-spectra.

  5. The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity

    NASA Astrophysics Data System (ADS)

    Hony, S.; Kemper, F.; Woods, P. M.; van Loon, J. Th.; Gorjian, V.; Madden, S. C.; Zijlstra, A. A.; Gordon, K. D.; Indebetouw, R.; Marengo, M.; Meixner, M.; Panuzzo, P.; Shiao, B.; Sloan, G. C.; Roman-Duval, J.; Mullaney, J.; Tielens, A. G. G. M.

    2011-07-01

    Aims: We present an analysis of a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the infrared (IR) emission is entirely dominated by emission associated with the active galactic nucleus. Methods: We present the 5-37 μm Spitzer/IRS spectrum and broad wavelength spectral energy distribution (SED) of SAGE1CJ053634.78-722658.5, an IR point-source detected by Spitzer/SAGE. The source was observed in the SAGE-Spec program and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z = 0.14 ± 0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) emission bands. We compare the source with models of emission from dusty tori around AGNs. We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. Results: The SED of SAGE1CJ053634.78-722658.5 is peculiar because it lacks far-IR emissiondue to cold dust and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as emission originating from the inner ~10 pc around an accreting black hole. There is no need to invoke emission from the host galaxy, either from the stars or from the interstellar medium, although a possible early-type host galaxy cannot be excluded based on the SED analysis. The hot dust around the accretion disk gives rise to a continuum, which peaks at 4 μm, whereas the strong silicate features may arise from optically thin emission of dusty clouds within ~10 pc around the black hole. The weak PAH emission does not appear to be linked to star formation, as star formation templates strongly over-predict the measured far-IR flux levels. Conclusions: The SED of SAGE1CJ053634.78-722658.5 is rare in the local universe but may be more common in the more distant universe. The conspicuous absence of host-galaxy IR emission places limits on the far-IR emission arising from

  6. Variable uptake feature of focal nodular hyperplasia in Tc-99m phytate hepatic scintigraphy/single-photon emission computed tomography-A parametric analysis.

    PubMed

    Hsu, Yu-Ling; Chen, Yu-Wen; Lin, Chia-Yang; Lai, Yun-Chang; Chen, Shinn-Cherng; Lin, Zu-Yau

    2015-12-01

    Tc-99m phytate hepatic scintigraphy remains the standard method for evaluating the functional features of Kupffer cells. In this study, we demonstrate the variable uptake feature of focal nodular hyperplasia (FNH) in Tc-99m phytate scintigraphy. We reviewed all patients who underwent Tc-99m phytate hepatic scintigraphy between 2008 and 2012 in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Cases with FNH were diagnosed on the basis of pathology or at least one or more prior imaging with a periodic clinical follow-up. All patients received a standard protocol of dynamic flow study and planar and Tc-99m phytate single-photon emission computed tomography (E. CAM; Siemens). The correlation of variable nodular radioactivity with parameters such as tumor size and localization was analyzed. In total, 15 lesions of 14 patients in the clinic were diagnosed as FNH. The tumor size was approximately 2.9-7.4 cm (mean size 4.6 cm). Four lesions were larger than 5 cm. The major anatomic distribution was in the right hepatic lobe (10 lesions), particularly in the superior segments (7 lesions). Tc-99m phytate single-photon emission computed tomography imaging for determining the functional features of Kupffer cells included cool/cold (8 lesions), isoradioactive/warm (6 lesions), and hot (1 lesion) patterns of uptake. We did not observe any statistically significant correlation between variable nodular radioactivity and tumor size (p=0.68) or localization (p=0.04). Herein, we demonstrate the variable uptake feature of FNH in Tc-99m phytate scintigraphy. In small FNH tumors (< 5 cm), increased or equal uptake still provided specificity for the differential diagnosis of hepatic solid tumors.

  7. The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.

    2005-01-01

    Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.

  8. Gale Crater in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 4, 2004 This image shows two representations of the same infra-red image of Gale Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    In the bottom of the crater, surrounding the central mound, there are extensive basaltic sand deposits. The basaltic sand spectral signature combined with the warm surface (due to the low albedo of basaltic sand) produces a very strong pink/magenta color. This color signature contrasts with the green/yellow color of soil and dust in the top of the image, and the cyan color due to the presence of water ice clouds at the bottom of the image. This migrating sand may be producing the erosional features seen on the central mound.

    Image information: IR instrument. Latitude -4.4, Longitude 137.4 East (222.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University

  9. Coma morphology and dust-emission pattern of periodic Comet Halley. II - Nucleus spin vector and modeling of major dust features in 1910

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Larson, S. M.

    1984-01-01

    The continuous ejection of dust from discrete emission sources on the rotating nucleus of the Comet Halley is modelled in order to explain the evolution of spiral jets which unwind from the nucleus condensation into envelopes or halos in the comet head. The model is applied to digitally processed images of three features of the comet taken from Mount Wilson plates during the 1910 fly-by. The model permits a determination of the motion and spin vector for each emission source, its cometocentric coordinates, and a function relating particle ejection velocity to the solar radiation pressure exerted on the ejecta. It is found that the obliquity of the comet orbit's plane to its equatorial plane is 45 deg, the axis of rotation period of 17.3 days. The derived function of particle ejection velocity to the solar radiation pressure implied no contribution from grains larger than 10 microns in radius. High dust loading of gas flows from the June 1910 emission sources is indicated. It is estimated that because of the favorable approach geometry of the Gioto spacecraft during its 1986 flyby, the likelihood of encountering dense jets of dust is small.

  10. Southern hemisphere all-sky imaging investigations into the latitude extent of the 6300 Å emission feature associated with the midnight temperature maximum

    NASA Astrophysics Data System (ADS)

    Colerico, M. J.; Mendillo, M.

    2001-05-01

    An all-sky imaging system has been in operation in Arequipa, Peru, (16.2\\symbol{23}S, 71.35\\symbol{23}W) from October 1993 - October 2000 conducting routine observations of 6300 Å airglow emissions. Using this imaging system, Colerico et al. [1996] reported on the persistent occurrence of an enhanced 6300 Å emission feature with an apparent north-south propagation through the field of view past 24\\symbol{23}S near local midnight. This enhanced airglow feature was referred to as the midnight brightness wave (MBW). The authors concluded that MBW was the airglow signature of the thermospheric midnight temperature maximum (MTM), a highly variable, large scale neutral temperature anomaly which occurs at low latitudes. The MTM is accompanied by a pressure increase and a signature reversal/abatement in the meridional winds from equatorward to poleward. Poleward winds serve to move plasma down magnetic field lines to altitudes where it can dissociatively recombine and produce 6300 Å emissions. Additional imaging systems in operation south of Arequipa in Tucuman, Argentina, (26.5\\symbol{23}S, 65.15\\symbol{23}W) and El Leoncito, Argentina, (31.8\\symbol{23}S, 69.0\\symbol{23}W) extend the latitude range over which MBW events can be observed to 39\\symbol{23}S. In this paper, we use the combined latitude range of the three imaging systems to investigate the latitudinal extent of the MTM's influence on upper atmospheric parameters. Observations of MBW propagation past 39\\symbol{23}S suggest that the MTM's influence may be felt at mid-latitudes in the southern hemisphere.

  11. Mid-IR water and silicate relation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Antonellini, S.; Bremer, J.; Kamp, I.; Riviere-Marichalar, P.; Lahuis, F.; Thi, W.-F.; Woitke, P.; Meijerink, R.; Aresu, G.; Spaans, M.

    2017-01-01

    Context. Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner radius, and disk scale height as potential explanations for the current detection rate. Aims: In this study, we aim to break degeneracies through constraints obtained from observations. We search for a connection between mid-IR water line fluxes and the strength of the 10 μm silicate feature. Methods: We analyze observed water line fluxes from three blends at 15.17, 17.22 and 29.85 μm published earlier and compute the 10 μm silicate feature strength from Spitzer spectra to search for possible trends. We use a series of published ProDiMo thermo-chemical models, to explore disk dust and gas properties, and also the effects of different central stars. In addition, we produced two standard models with different dust opacity functions, and one with a parametric prescription for the dust settling. Results: Our series of models that vary properties of the grain size distribution suggest that mid-IR water emission anticorrelates with the strength of the 10 μm silicate feature. The models also show that the increasing stellar bolometric luminosity simultaneously enhance the strength of this dust feature and the water lines fluxes. No correlation is found between the observed mid-IR water lines and the 10 μm silicate strength. Two-thirds of the targets in our sample show crystalline dust features, and the disks are mainly flaring. Our sample shows the same difference in the peak strength between amorphous and crystalline silicates that was noted in earlier studies, but our models do not support this intrinsic difference in silicate peak strength. Individual properties of our models are not able to reproduce the most extreme observations, suggesting that more complex dust properties (e.g., vertically changing) are

  12. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission

  13. The mid-IR and near-IR interferometry of AGNs: key results and their implications

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.

    2015-09-01

    Infrared interferometry has been very productive in directly probing the structure of AGNs at sub-pc scales. With tens of objects already probed in the mid-IR and near-IR, I will summarize the key results and im- plications from this direct exploration. The Keck interferometry in the near-IR and VLTI in the mid-IR shaped the luminosity dependence of the torus size and structure, while the latter also revealed an equatorial structure at several Rsub (dust sublimation radius), and a polar-elongated region at a few tens of Rsub. Notably, this polar component seems to dominate the compact mid-IR flux. This component can persuasively be attributed to a polar outflow. However, interferometry, through emissivity estimations, also indicates that it is not a UV-optically-thin cloud but participating in the obscuration of the nucleus. I will discuss how to accommodate all these facts to build a consistent picture.

  14. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  15. IR decoys modeling method based on particle system

    NASA Astrophysics Data System (ADS)

    Liu, Jun-yu; Wu, Kai-feng; Dong, Yan-bing

    2016-10-01

    Due to the complexity in combustion processes of IR decoys, it is difficult to describe its infrared radiation characteristics by deterministic model. In this work, the IR decoys simulation based on particle system was found. The measured date of the IR decoy is used to analyze the typical characteristic of the IR decoy. A semi-empirical model of the IR decoy motion law has been set up based on friction factors and a IR decoys simulation model has been build up based on particle system. The infrared imaging characteristic and time varying characteristic of the IR decoy were simulated by making use of the particle feature such as lifetime, speed and color. The dynamic IR decoys simulation is realized with the VC++6.0 and OpenGL.

  16. SPITZER MID-IR SPECTRA OF DUST DEBRIS AROUND A AND LATE B TYPE STARS: ASTEROID BELT ANALOGS AND POWER-LAW DUST DISTRIBUTIONS

    SciTech Connect

    Morales, Farisa Y.; Werner, M. W.; Bryden, G.; Stapelfeldt, K. R.; Beichman, C. A.; Grogan, K.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.; Chen, C. H.; Kenyon, S. J.; Moro-Martin, A.; Wolf, S.

    2009-07-10

    Using the Spitzer/Infrared Spectrograph (IRS) low-resolution modules covering wavelengths from 5 to 35 {mu}m, we observed 52 main-sequence A and late B type stars previously seen using Spitzer/Multiband Imaging Photometer (MIPS) to have excess infrared emission at 24 {mu}m above that expected from the stellar photosphere. The mid-IR excess is confirmed in all cases but two. While prominent spectral features are not evident in any of the spectra, we observed a striking diversity in the overall shape of the spectral energy distributions. Most of the IRS excess spectra are consistent with single-temperature blackbody emission, suggestive of dust located at a single orbital radius-a narrow ring. Assuming the excess emission originates from a population of large blackbody grains, dust temperatures range from 70 to 324 K, with a median of 190 K corresponding to a distance of 10 AU. Thirteen stars however, have dust emission that follows a power-law distribution, F {sub {nu}} = F {sub 0}{lambda}{sup {alpha}}, with exponent {alpha} ranging from 1.0 to 2.9. The warm dust in these systems must span a greater range of orbital locations-an extended disk. All of the stars have also been observed with Spitzer/MIPS at 70 {mu}m, with 27 of the 50 excess sources detected (signal-to-noise ratio > 3). Most 70 {mu}m fluxes are suggestive of a cooler, Kuiper Belt-like component that may be completely independent of the asteroid belt-like warm emission detected at the IRS wavelengths. Fourteen of 37 sources with blackbody-like fits are detected at 70 {mu}m. The 13 objects with IRS excess emission fit by a power-law disk model, however, are all detected at 70 {mu}m (four above, three on, and six below the extrapolated power law), suggesting that the mid-IR IRS emission and far-IR 70 {mu}m emission may be related for these sources. Overall, the observed blackbody and power-law thermal profiles reveal debris distributed in a wide variety of radial structures that do not appear to be

  17. Moisture map by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Cadelano, G.; Bison, P.

    2010-10-01

    A new approach to moisture detection in buildings by an optical method is presented. Limits of classical and new methods are discussed. The state of the art about the use of IR thermography is illustrated as well. The new technique exploits characteristics of the materials and takes into account explicitly the heat and mass exchange between surface and environment. A set of experiments in controlled laboratory conditions on different materials is used to better understand the physical problem. The testing procedure and the data reduction are illustrated. A case study on a heritage building points up the features of this technique.

  18. IRS SCAN-MAPPING OF THE WASP-WAIST NEBULA (IRAS 16253-2429). I. DERIVATION OF SHOCK CONDITIONS FROM H{sub 2} EMISSION AND DISCOVERY OF 11.3 {mu}m PAH ABSORPTION

    SciTech Connect

    Barsony, Mary; Wolf-Chase, Grace A.; Ciardi, David R.

    2010-09-01

    The outflow driven by the Class 0 protostar, IRAS 16253-2429, is associated with bipolar cavities visible in scattered mid-infrared light, which we refer to as the Wasp-Waist Nebula. InfraRed Spectometer (IRS) scan mapping with the Spitzer Space Telescope of a {approx}1' x 2' area centered on the protostar was carried out. The outflow is imaged in six pure rotational (0-0 S(2) through 0-0 S(7)) H{sub 2} lines, revealing a distinct, S-shaped morphology in all maps. A source map in the 11.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature is presented in which the protostellar envelope appears in absorption. This is the first detection of absorption in the 11.3 {mu}m PAH feature. Spatially resolved excitation analysis of positions in the blue- and redshifted outflow lobes, with extinction-corrections determined from archival Spitzer 8 {mu}m imaging, shows remarkably constant temperatures of {approx}1000 K in the shocked gas. The radiated luminosity in the observed H{sub 2} transitions is found to be 1.94 {+-} 0.05 x 10{sup -5} L{sub sun} in the redshifted lobe and 1.86 {+-} 0.04 x 10{sup -5} L{sub sun} in the blueshifted lobe. These values are comparable to the mechanical luminosity of the flow. By contrast, the mass of hot (T {approx} 1000 K) H{sub 2} gas is 7.95 {+-} 0.19 x 10{sup -7} M{sub sun} in the redshifted lobe and 5.78 {+-} 0.17 x 10{sup -7} M{sub sun} in the blueshifted lobe. This is just a tiny fraction, of order 10{sup -3}, of the gas in the cold (30 K), swept-up gas mass derived from millimeter CO observations. The H{sub 2} ortho/para ratio of 3:1 found at all mapped points in this flow suggests previous passages of shocks through the gas. Comparison of the H{sub 2} data with detailed shock models of Wilgenbus et al. shows the emitting gas is passing through Jump (J-type) shocks. Pre-shock densities of 10{sup 4} cm{sup -3{<=}} n {sub H{<=}} 10{sup 5} cm{sup -3} are inferred for the redshifted lobe and n {sub H{<=}} 10{sup 3} cm{sup -3} for the

  19. Infrared emission modeling for vinyl PAHs

    NASA Astrophysics Data System (ADS)

    Maurya, Anju; Rastogi, Shantanu

    Polycyclic Aromatic Hydrocarbon (PAH) molecules are source of the infrared emission features at 3.3, 6.2, 7.7, 8.6, 11.2, 12.7 and 16.4 microns that are ubiquitously observed in diverse astrophysical objects. There are variations in the profile of these emission features between sources ranging from star forming regions to late type stars and also extra galactic sources. The profile variations point towards the presence of a variety of PAHs in different population in different objects. In order to simulate the emission spectra from different sources the vibrational spectra of a wide variety of PAH molecules have been studied. The modeled emission spectra gives good match for some bands but simultaneous fit for all features is not obtained. In particular the 6.2 micron feature, assigned to C-C stretch mode, is not fitted well. We therefore also study PAHs with vinyl side groups. Quantum chemical calculations using DFT/B3LYP in conjugation with optimum basis are performed to obtain the IR spectra of vinyl PAHs. Modeling of emission is done assuming excitation by a UV photon and cascade emission through vibrational levels that are obtained theoretically. It is expected that due to the presence of C = C in vinyl group the aromatic C-C might shift closer to 6.2 micron. A closer match with the observed spectra will provide a better insight about the physical conditions and molecular evolution in the object.

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Spitzer Space Telescope IRS Spectral Mapping of Photoionized Columns in M16 and the Carina HII Regions

    NASA Astrophysics Data System (ADS)

    Cotera, Angela; Simpson, J. P.; Sellgren, K.; Stolovy, S. R.

    2013-01-01

    Photoevaporated columns of dust and gas - also called elephant trunks, pillars or fingers - are found in the periphery of many H II regions. They have been observed within the Galaxy, the SMC and the LMC. These features are thought to be sites of current star formation, but the question remains whether the columns persist because stars formed in the denser regions prior to interactions with the UV radiation and stellar winds of nearby massive stars, or because of core collapse resulting from these interactions. We have obtained Spitzer IRS spectral maps of three columns within M 16 and three columns within the Carina nebula, to test our understanding of the impact on these transitory features of differing stellar populations and initial conditions. We use the wealth of molecular, atomic and PAH emission lines located within the spectral range of the high resolution IRS modes (9.9-37.2 micron) to determine the excitation state, dust and gas temperatures, and probe the shock characteristics within the columns as a function of location. Using the IRS spectral mapping mode, in conjunction with the CUBISM tool and the CLOUDY H II region model code, we have constructed detailed maps of the accessible emission lines and derived parameters for each column. Mapping the distribution of the physical states of the dust and gas in these columns is enhancing our understanding of the competing processes within these dynamic objects. The data presented here represent the only IRS spectral maps of photoionized pillars.

  2. Assessment of COTS IR image simulation tools for ATR development

    NASA Astrophysics Data System (ADS)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  3. IR Linearity Monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2012-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.

  4. IR linearity monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2013-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.

  5. PAH Emission From ULIRGs: Evidence For Unusual Grain Properties?

    NASA Astrophysics Data System (ADS)

    Marshall, Jason A.; Armus, L.; Spoon, H. W. W.

    2007-12-01

    The tremendous power emerging from ultraluminous infrared galaxies (ULIRGs) is driven both by high levels of star-formation activity and AGN-related accretion. Observations of star-forming regions in the Milky Way and external star-forming galaxies provide evidence that the first of these energy generation mechanisms often also gives rise to emission from PAH molecules in the form of characteristic mid-IR features. Given the composite nature of ULIRGs, it is not surprising that many also exhibit significant emission from PAHs. Perhaps more surprising, however, is that some ULIRGs believed to be powered primarily by AGNs also show emission from PAHs, although typically at lower levels relative to their total dust output. To investigate the nature of the PAH emission from galaxies powered either by star-formation or AGN accretion alone, as well as emission from composite systems such as ULIRGs powered by both mechanisms, we present a detailed study of the PAH emission spectra from galaxies of each type. We use the CAFE spectral energy distribution decomposition software we have developed to derive and extinction correct the spectra of PAH emission from a sample of 100 galaxies with Spitzer/IRS observations, and use the results of this analysis to calculate the ratios of the various mid-IR PAH feature luminosities. In particular, we investigate to what extent these relative feature strengths vary as a function of the optical classification of galaxies, and we inquire into whether or not the derived feature strength ratios provide evidence for unusual grain properties in the extreme conditions within ULIRGs.

  6. Transition from the infalling envelope to the Keplerian disk around L1551 IRS 5

    SciTech Connect

    Chou, Ti-Lin; Takakuwa, Shigehisa; Yen, Hsi-Wei; Ohashi, Nagayoshi; Ho, Paul T. P.

    2014-11-20

    We present combined Submillimeter Array (SMA) +Atacama Submillimeter Telescope Experiment (ASTE) images of the Class I protobinary L1551 IRS 5 in the CS (J = 7-6) line, the submillimeter images of L1551 IRS 5 with the most complete spatial sampling ever achieved (0.''9-36''). The SMA image of L1551 IRS 5 in the 343 GHz dust-continuum emission is also presented, which shows an elongated feature along the northwest to southeast direction (∼160 AU × 80 AU), perpendicular to the associated radio jets. The combined SMA+ASTE images show that the high-velocity (≳1.5 km s{sup –1}) CS emission traces the structure of the dust component and shows a velocity gradient along the major axis, which is reproduced by a geometrically thin Keplerian-disk model with a central stellar mass of ∼0.5 M {sub ☉}. The low-velocity (≲1.3 km s{sup –1}) CS emission shows an extended (∼1000 AU) feature that exhibits slight south (blueshifted) to north (redshifted) emission offsets, which is modeled with a rotating and infalling envelope with a conserved angular momentum. The rotational motion of the envelope connects smoothly to the inner Keplerian rotation at a radius of ∼64 AU. The infalling velocity of the envelope is ∼three times lower than the free-fall velocity toward the central stellar mass of 0.5 M {sub ☉}. These results demonstrate transition from the infalling envelope to the Keplerian disk, consistent with the latest theoretical studies of disk formation. We suggest that sizable (r ∼ 50-200 AU) Keplerian disks are already formed when the protostars are still deeply embedded in the envelopes.

  7. NEW MASER EMISSION FROM NONMETASTABLE AMMONIA IN NGC 7538

    SciTech Connect

    Hoffman, Ian M.; Kim, Stella Seojin

    2011-09-20

    We present the first interferometric observations at 18.5 GHz of IRS 1 in NGC 7538. These observations include images of the nonmetastable {sup 14}NH{sub 3} (9, 6) masers with a synthesized beam of 2 arcsec and images of the continuum emission with a synthesized beam of 150 mas. Of the maser emission, the previously known feature near v {sub LSR} = -60 km s{sup -1} is spectrally resolved into at least two components and we observe several new maser emission features near v {sub LSR} = -57 km s{sup -1}. The new maser emission near -57 km s{sup -1} lies 250 {+-} 90 mas northwest of the maser emission near -60 km s{sup -1}. All of the masers are angularly unresolved indicating brightness temperatures T{sub B} > 2000 K. We are also able to conclusively associate the ammonia masers with the position of IRS 1. The excitation of these rare ammonia masers is discussed in the context of the rich maser environment of IRS 1.

  8. Arsia Mons Collapse Pits in IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Arsia Mons and are related to lava tube collapse.

    Image information: IR instrument. Latitude -8.8, Longitude 240.4 East (119.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal

  9. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    PubMed

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  10. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Coprates Chasma Landslides in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides.

    Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Synthesis, spectral (FT-IR, UV-visible, NMR) features, biological activity prediction and theoretical studies of 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione and its tautomer

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Kumar, Abhishek; Misra, Neeraj; Manjula, P. S.; Sarojini, B. K.; Narayana, B.

    2016-03-01

    Triazole compounds constitute an important class of organic chemistry due to their various biological and corrosion inhibition activities. The synthesis scheme of a new triazole compound namely, 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (4AHT) has been theoretically analyzed. Our density functional theory (DFT) based calculations show that the synthesis of 4AHT is energetically feasible at the room temperature as the reaction is exothermic, spontaneous as well as favored in forward direction. The calculated bond-lengths are found to be in good agreement with corresponding crystallographic values. We have considered two possible tautomers of 4AHT viz. thione and thiol forms. The FT-IR (KBr disc), UV-visible (ethanol) and 1H-NMR (DMSO) spectra of 4AHT have been recorded. The vibrational modes have been assigned on the basis of their potential energy distributions and scaled wavenumbers agree well with the FT-IR wavenumbers. Time dependent DFT calculations are performed to analyze the electronic transitions for various excited states which reproduce the experimental peak observed in UV-visible spectrum. Using gauge independent atomic orbital method 1H-NMR chemical shifts have been calculated and correlated with the experimental chemical shifts with the linear correlation coefficient of 0.9453. Our spectral analyses reveal the dominance of thione over thiol form of 4AHT. The chemical reactivity of 4AHT has been discussed by molecular electrostatic potential surface as well as various electronic parameters. The biological activities of 4AHT have also been explored theoretically and it has been found that the title molecule can act as a potential inhibitor of cyclin-dependent kinase 5 enzyme. These findings may guide the synthesis and design of new triazole compounds with interesting biological activity.

  13. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  14. Analysis of the Jovian sporadic decameter emission features on the base of the new data obtained with the high frequency-time resolution waveform receiver.

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Zakharenko, V. V.; Konovalenko, A. A.; Vinogradov, V. V.; Rucker, H. O.

    2009-04-01

    The Jovian sporadic decameter radiation (DAM) represents a phenomenon which is still fully unstudied. The dynamic spectrum has a very complex structure with many unclear properties. The details of how decameter radio bursts are generated in the magnetosphere of Jupiter are still a matter of debate. One of the possible way to understand the physical features of S-bursts as well as mechanism responsible for generation is to increase the temporal and frequency resolutions and look at the S-burst signal from macroscopic viewpoint to a microsecond timescale. Modern progress in electronics and computer technologies allows creating the super effective registration systems with high frequency and temporal resolutions (Digital Signal Processors (DSP) and the Waveform Receiver (WFR)). In the present time in the Ukraine was realized the combination of telescope (UTR-2) and equipment (WFR) with the possible best parameters for the Jovian decameter emission investigations: sensitiveness (antenna effective area is near 100 000 m2), frequency resolution (12 kHz), time resolution (less than 200 ns), dynamic range (70 dB). In November 2008 it was continuous registered 4 hours of Io-B S-burst strong storm with UTR-2 and waveform receiver. The obtained data of the Jovian S-burst radio emission were processed as with Fourier as well as with wavelet transform methods. The main goal of these investigations was to detect and analyze the "superfine" internal content of the individual S-burst as well as macroscopic properties of radiation. Fine structure was investigated on the base of two possible physical mechanisms: 1) the narrow-band random noise process; 2) the wide-band pulse process with frequency and time modulations. For the last case the "de-dispersion" methodology was successively used. The statistical examinations (including the correlation analysis) of the fine internal structures were carried out on a broad basis of the different simple and complex S-burst events. The

  15. Local Mode Analysis: Decoding IR Spectra by Visualizing Molecular Details.

    PubMed

    Massarczyk, M; Rudack, T; Schlitter, J; Kuhne, J; Kötting, C; Gerwert, K

    2017-02-08

    Integration of experimental and computational approaches to investigate chemical reactions in proteins has proven to be very successful. Experimentally, time-resolved FTIR difference-spectroscopy monitors chemical reactions at atomic detail. To decode detailed structural information encoded in IR spectra, QM/MM calculations are performed. Here, we present a novel method which we call local mode analysis (LMA) for calculating IR spectra and assigning spectral IR-bands on the basis of movements of nuclei and partial charges from just a single QM/MM trajectory. Through LMA the decoding of IR spectra no longer requires several simulations or optimizations. The novel approach correlates the motions of atoms of a single simulation with the corresponding IR bands and provides direct access to the structural information encoded in IR spectra. Either the contributions of a particular atom or atom group to the complete IR spectrum of the molecule are visualized, or an IR-band is selected to visualize the corresponding structural motions. Thus, LMA decodes the detailed information contained in IR spectra and provides an intuitive approach for structural biologists and biochemists. The unique feature of LMA is the bidirectional analysis connecting structural details to spectral features and vice versa spectral features to molecular motions.

  16. Photochemical Tuning of Tris-Bidentate Acridine- and Phenazine-Based Ir(III) Complexes.

    PubMed

    Deraedt, Quentin; Loiseau, Frédérique; Elias, Benjamin

    2016-11-01

    Five new Ir(III) complexes of the type [Ir(ppy)2L](+) (where ppy = 2-phenylpyridine, L = bidentate N^N ligand) bearing linear and elbow-shaped acridine- and phenazine-based extended planar aromatic ligands have been successfully synthesized and characterized. The electrochemical and photochemical studies revealed that all complexes allow emission in the range 589-601 nm from excited states corresponding to a charge transfer between an Ir-ppy fragment and the extended planar ligand. Luminescence quenching occurs in water for [Ir(ppy)2dpac](+) (Ir-DPAC), [Ir(ppy)2dpacF2](+) (Ir-DPACF 2 ), [Ir(ppy)2dpacF4](+) (Ir-DPACF 4 ) and [Ir(ppy)2bdppz](+) (Ir-BDPPZ), while solely partial quenching is observed for [Ir(ppy)2npp](+) (Ir-NPP). This "light-switch" effect has been ascribed to the possible formation of a non-emissive mono-hydrogen-bonded excited state for the four complexes. The "elbow shaped" of Ir-NPP is believed to prevent the non-chelating nitrogen atom of the npp ligand to form H-bond with solvent molecules. The results emphasized the potential of small chemical modifications of the extended planar ligand on the properties of the corresponding Ir(III) complexes. Their tunable properties make them ideal candidates for applications such as DNA photoprobes.

  17. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  18. Infrared absorption and emission characteristics of interstellar PAHs. [Polycyclic Aromatic Hydrocarbon

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms and are responsible for the emission.

  19. Mid and Near-IR Absorption Spectra of PAH Neutrals and Ions in H20 Ice to Facilitate their Astronomical Detection

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.

  20. CBSD Version II component models of the IR celestial background. Technical report

    SciTech Connect

    Kennealy, J.P.; Glaudell, G.A.

    1990-12-07

    CBSD Version II addresses the development of algorithms and software which implement realistic models of all the primary celestial background phenomenologies, including solar system, galactic, and extra-galactic features. During 1990, the CBSD program developed and refined IR scene generation models for the zodiacal emission, thermal emission from asteroids and planets, and the galactic point source background. Chapters in this report are devoted to each of those areas. Ongoing extensions to the point source module for extended source descriptions of nebulae and HII regions are briefly discussed. Treatment of small galaxies will also be a natural extension of the current CBSD point source module. Although no CBSD module yet exists for interstellar IR cirrus, MRC has been working closely with the Royal Aerospace Establishment in England to achieve a data-base understanding of cirrus fractal characteristics. The CBSD modules discussed in Chapters 2, 3, and 4 are all now operational and have been employed to generate a significant variety of scenes. CBSD scene generation capability has been well accepted by both the IR astronomy community and the DOD user community and directly supports the SDIO SSGM program.

  1. Low Power Polysilicon Sources for IR Applications

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Jhabvala, M.; Shu, P.

    1998-01-01

    We have designed and fabricated polysilicon thin film infrared (IR) sources by micromachining technology. These sources are made with a lightly doped middle region for light emission and heavy doping of the supporting legs. The sources are fabricated on a 10 mm thick, low temperature process parameters in the fabrication of these silicon dioxide layer. Different doping levels were used to achieve various source resistances. From the power requirement to reach the required light emission versus source resistance curve it is seen that there exists a resistance value which minimizes the necessary input power.

  2. IR Gain Monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2012-10-01

    The gain of the IR channel of WFC3 will be measured using a series of internal flat fields. Using knowledge gained from ground testing and previous cycles, we propose to collect flat field ramps which will be used to create photon transfer curves and give a measure of the gain.

  3. IR gain monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2013-10-01

    The gain of the IR channel of WFC3 will be measured using a series of internal flat fields. Using knowledge gained from ground testing and previous cycles, we propose to collect flat field ramps which will be used to create photon transfer curves and give a measure of the gain. This continues the strategy of last cycle's gain monitor, in proposal 13080.

  4. RADIO JETS AND DISKS IN THE INTERMEDIATE-MASS STAR-FORMING REGION NGC2071IR

    SciTech Connect

    Trinidad, M. A.; Rodriguez, T.; Rodriguez, L. F.

    2009-11-20

    We report the results of simultaneous radio continuum and water maser observations toward the NGC 2071IR star-forming region, carried out with the VLA in its A configuration. We detect continuum emission toward the infrared sources IRS 1 and IRS 3 at 1.3 and 3.6 cm. In addition, a new continuum source, VLA 1, is also detected at both wavelengths, which is located between IRS 1 and IRS 3. IRS 1 breaks up into three continuum peaks (IRS 1E, 1C, and 1W), aligned in the east-west direction (P.A. = 100{sup 0}). IRS 1 is the central source, while the sources E and W seem to be condensations ejected by IRS 1. In the same way, IRS 3 is also forming a triple system (IRS 3N, 3C and 3S), which is elongated in the northeast-southwest direction and the condensations, IRS 3N and IRS 3S, are symmetrically located along the major axis. Based on the morphology and the continuum emission, we suggest that both IRS 1 and IRS 3 are radio jets, which have ejected condensations into the interstellar medium. Moreover, IRS 1 and IRS 3 seem to be the driving sources of the large-scale outflows observed in H{sub 2} and CO, respectively. In addition, we also detected water emission toward the systems IRS 1, IRS 3, and the new source VLA 1. Based on the spatial-kinematic distribution of the water masers, we find evidence that the water masers are tracing part of circumstellar disks around IRS 1C and IRS 3C. Moreover, we estimate that the sources IRS 1C and IRS 3C have central masses of approx5 and approx1 M {sub sun}, respectively. We conclude that the radio continuum and water maser emission are tracing disk-YSO-outflow systems toward IRS 1 and IRS 3, which are low- and intermediate-mass young stellar objects, respectively.

  5. Systematic modeling for the insulin signaling network mediated by IRS(1) and IRS(2).

    PubMed

    Huang, Can; Wu, Ming; Du, Jun; Liu, Di; Chan, Christina

    2014-08-21

    The hepatic insulin signaling mediated by insulin receptor substrates IRS1 and IRS2 plays a central role in maintaining glucose homeostasis under different physiological conditions. Although functions of individual components in the signaling network have been extensively studied, our knowledge is still limited with regard to how the signals are integrated and coordinated in the complex network to render their functional roles. In this study, we construct systematic models for the insulin signaling network mediated by IRS1 and IRS2, through the integration of current knowledge in the literature into mathematical models of insulin signaling pathways. We hypothesize that the specificity of the IRS signaling mechanisms emerges from the wiring and kinetics of the entire network. A discrete dynamic model is first constructed to account for the numerous dynamic features in the system, i.e., complex feedback circuits, different regulatory time-scales and cross-talks between pathways. Our simulation shows that the wiring of the network determines different functions of IRS1 and IRS2. We further collate and reconstruct a kinetic model of the network as a system of ordinary differential equations to provide an informative model for predicting phenotypes. A sensitivity analysis is applied to identify essential regulators for the signaling process.

  6. An EW technology research of jamming IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-qin; Rong, Hua; Liang, Jing-ping; Chen, Qi; Chen, Min-rong

    2009-07-01

    The IR-Imaging-Guided Weapons have been playing an important role in the modern warfare by means of select attacking the vital parts of targets with the features of highly secret attacking, high precision, and excellent anti-jamming capability ,therefore, they are viewed to be one of the promising precisely guided weapons ,receiving great concern through out the world. This paper discusses the characteristics of IR-Imaging guidance systems at the highlight of making a study of correlated technologies of jamming IR-Imaging-Guided Weapons on the basis of elaborating the operational principles of IR-Imaging-guided Weapons.

  7. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  8. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Martínez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; Hernán-Caballero, A.; González-Martín, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; Díaz-Santos, T.; Elitzur, M.; Esquej, P.; García-Bernete, I.; Imanishi, M.; Levenson, N. A.; Rodríguez Espinosa, J. M.

    2015-12-01

    We present an analysis of the nuclear infrared (IR, 1.6-18 μm) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3-0.5 arcsec) imaging using the Si-2 filter (λC = 8.7 μm) and 7.5-13 μm spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 μm silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol ˜ 1.9 × 1045 erg s-1 that is in good agreement with other estimates in the literature.

  9. Spitzer-IRS Spectroscopic Studies of Oxygen-Rich Asymptotic Giant Branch Star and Red Supergiant Star Dust Properties

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret

    2015-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  10. VizieR Online Data Catalog: IR spectroscopy of AGN & starbursts (Samsonyan+, 2016)

    NASA Astrophysics Data System (ADS)

    Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.

    2016-10-01

    A sample of 379 extragalactic sources is presented that has mid-infrared, high-resolution spectroscopy from the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII]158μm line from the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII]12.81μm, [NeIII]15.55μm, and [CII]158μm are presented, and intrinsic line widths are determined (full width half maximum of Gaussian profiles after instrumental correction). All line profiles, together with overlays comparing the positions of PACS and IRS observations, are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from active galactic nucleus (AGN) to starburst based on equivalent widths of the 6.2μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classifications for [CII], with median widths of 207km/s for AGNs, 248km/s for composites, and 233km/s for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A few objects with unusually broad lines or unusual redshift differences in any feature are identified. (1 data file).

  11. EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

    SciTech Connect

    Lawler, S. M.; Beichman, C. A.; Ciardi, D. R.; Bryden, G.; Tanner, A. M.; Stapelfeldt, K. R.; Su, K. Y. L.; Lisse, C. M.

    2009-11-01

    We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the long-wavelength IRS band (30-34 mum) of 11.8% +- 2.4%. The success rate for excesses in the short-wavelength band (8.5-12 mum) is approx1% including sources from other surveys. For stars with no excess at 8.5-12 mum, the IRS data set 3sigma limits of around 1000 times the level of zodiacal emission present in our solar system, while at 30-34 mum data set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 mum) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, approx1-35 AU from the host stars, with an average distance of 14 +- 6 AU; however, smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range approx50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. Only three stars in this sample show a MIPS 70 mum excess with no IRS excess, implying that very cold dust is rare around solar-type stars.

  12. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  13. Relationship between Quantitative Adverse Plaque Features from Coronary CT Angiography and Downstream Impaired Myocardial Flow Reserve by 13N-Ammonia Positron Emission Tomography: A Pilot Study

    PubMed Central

    Dey, Damini; Zamudio, Mariana Diaz; Schuhbaeck, Annika; Orozco, Luis Eduardo Juarez; Otaki, Yuka; Gransar, Heidi; Li, Debiao; Germano, Guido; Achenbach, Stephan; Berman, Daniel S.; Meave, Aloha; Alexanderson, Erick; Slomka, Piotr J.

    2016-01-01

    Background We investigated the relationship of quantitative plaque features from coronary CT Angiography (CTA) and coronary vascular dysfunction by impaired myocardial flow reserve (MFR) by 13N-Ammonia Positron Emission Tomography (PET). Methods and Results Fifty-one patients (32 men, 62.4±9.5 years) underwent combined rest-stress 13N-ammonia PET and CTA scans by hybrid PET/CT. Regional MFR was measured from PET. From CTA, 153 arteries were evaluated by semi-automated software, computing arterial non-calcified plaque (NCP), low-density NCP (NCP<30 HU), calcified and total plaque volumes, and corresponding plaque burden (plaque volumex100%/vessel volume), stenosis, remodeling index, contrast density difference (maximum difference in luminal attenuation per unit area in the lesion), and plaque length. Quantitative stenosis, plaque burden and myocardial mass were combined by boosted ensemble machine-learning algorithm into a composite risk score to predict impaired MFR (MFR≤2.0) by PET, in each artery. Nineteen patients (37%) had impaired regional MFR in at least one territory, (41/153 vessels). Patients with impaired regional MFR had higher arterial NCP (32.4 vs.17.2 %), low-density NCP (7 vs 4 %) and total plaque burden (37 vs 19.3 %, p<0.02). In multivariable analysis with 10-fold cross-validation, NCP burden was the most significant predictor of impaired MFR (Odds Ratio 1.35, p=0.021). For prediction of impaired MFR with 10-fold cross-validation, receiver-operating-characteristics-area-under-the-curve for the composite score was 0.83 (95%CI:0.79–0.91), greater than for quantitative stenosis (0.66, 95%CI:0.57–0.76, p = 0.005). Conclusions Compared to stenosis, arterial NCP burden and a composite score combining quantitative stenosis and plaque burden from CTA significantly improves identification of downstream regional vascular dysfunction. PMID:26467104

  14. High-performance supported Ir-oxohydroxide water oxidation electrocatalysts.

    PubMed

    Massue, Cyriac; Pfeifer, Verena; Huang, Xing; Noack, Johannes; Tarasov, Andrey; Cap, Sebastien; Schlögl, Robert

    2017-02-05

    The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. Addressing this challenge, we obtained an outstanding high-performance OER-electrocatalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles via a microwave (MW)-supported hydrothermal route. The obtained Ir-phase was identified as an XRD-amorphous, highly hydrated Ir(III/IV)-oxohydroxide. In order to identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER-conditions at loadings as low as 20 μg(Ir) cm-2, we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir-phase via dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER-performance, indicating that the outstanding electrocatalytic properties of the MW-produced Ir(III/IV)-oxohydroxide are prominently linked to the nature of the produced Ir-phase. This finding is in contrast with the often reported stable but poor OER-performance of crystalline IrO2-based compounds produced via more classical calcination routes. Our investigation demonstrates the immense potential of Ir-oxohydroxide-based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.

  15. Quantum DOT IR Photodetectors

    DTIC Science & Technology

    2012-07-01

    optics to obtain multiple spectral images. A multi-wavelength IR imager has a vast number of applications such as target detection in highly...In this section, we discuss the various electrochromic materials, their properties , and the modeling results. 4.1 ROIC Design The high-level diagram...inter- continuum DWELL any optic dependin structure thickness potential F ELL Dete new class o een propos and transitio ELL) struc 5. DWELL st

  16. The VISTA IR camera

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin B.; Caldwell, Martin; Ward, Kim; Whalley, Martin S.; Burke, Kevin; Lucas, John M.; Richards, Tony; Ferlet, Marc; Edeson, Ruben L.; Tye, Daniel; Shaughnessy, Bryan M.; Strachan, Mel; Atad-Ettedgui, Eli; Leclerc, Melanie R.; Gallie, Angus; Bezawada, Nagaraja N.; Clark, Paul; Bissonauth, Nirmal; Luke, Peter; Dipper, Nigel A.; Berry, Paul; Sutherland, Will; Emerson, Jim

    2004-09-01

    The VISTA IR Camera has now completed its detailed design phase and is on schedule for delivery to ESO"s Cerro Paranal Observatory in 2006. The camera consists of 16 Raytheon VIRGO 2048x2048 HgCdTe arrays in a sparse focal plane sampling a 1.65 degree field of view. A 1.4m diameter filter wheel provides slots for 7 distinct science filters, each comprising 16 individual filter panes. The camera also provides autoguiding and curvature sensing information for the VISTA telescope, and relies on tight tolerancing to meet the demanding requirements of the f/1 telescope design. The VISTA IR camera is unusual in that it contains no cold pupil-stop, but rather relies on a series of nested cold baffles to constrain the light reaching the focal plane to the science beam. In this paper we present a complete overview of the status of the final IR Camera design, its interaction with the VISTA telescope, and a summary of the predicted performance of the system.

  17. Symbolic fusion of MMW and IR imagery

    NASA Astrophysics Data System (ADS)

    Eggleston, Peter A.; Kohl, Charles A.

    1988-01-01

    This paper describes the software architecture used to construct a multisensor knowledge-based Autonomous Target Recognizer (ATR). An Intermediate Symbolic Representation (SR) of processed data is employed to provide a very powerful method of associative access over data events and their features, thereby supporting data fusion algorithms at the symbolic level. This architecture supports data fusion from multiple sensors, and its operation is described here using MMW range and IR intensity data.

  18. Symbolic Fusion Of MMW And IR Imagery

    NASA Astrophysics Data System (ADS)

    Eggleston, Peter A.; Kohl, Charles A.

    1989-01-01

    This paper describes the software architecture used to construct a multi-sensor knowledge-based Autonomous Target Recognizer (ATR). An Intermediate Symbolic Representation (ISR) of processed data is employed to provide a very powerful method of associative access over data events and their features, thereby supporting data fusion algorithms at the symbolic level. This architecture supports data fusion from multiple sensors, and its operation is described here using MMW range and IR intensity data.

  19. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  20. The IRS-1 signaling system.

    PubMed

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  1. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  2. Theoretical IR spectra of ionized naphthalene

    NASA Technical Reports Server (NTRS)

    Pauzat, F.; Talbi, D.; Miller, M. D.; DeFrees, D. J.; Ellinger, Y.

    1992-01-01

    We report the results of a theoretical study of the effect of ionization on the IR spectrum of naphthalene, using ab initio molecular orbital theory. For that purpose we determined the structures, band frequencies, and intensities of neutral and positively ionized naphthalene. The calculated frequencies and intensities allowed an assignment of the most important bands appearing in the newly reported experimental spectrum of the positive ion. Agreement with the experimental spectrum is satisfactory enough to take into consideration the unexpected and important result that ionization significantly affects the intensities of most vibrations. A possible consequence on the interpretation of the IR interstellar emission, generally supposed to originate from polycyclic aromatic hydrocarbons (PAHs), is briefly presented.

  3. Automated IR-weld seam control

    NASA Astrophysics Data System (ADS)

    Balle, Michel

    1990-03-01

    In 1975 the concept of visualizing, measuring and studying the thermal condition of welded seams was investigated by a laboratory of the French ministry of defense (at the request of a metal constructor). Gilbert Gaussorgues, the founding father of the company HGH was at the time in charge of the infrared laboratory in question, a department of the general administration of Armament in Toulon, France. His idea was to apply military IR-Technology to above mentioned welding application. Having developed a prototype, tests readily confirmed the validity of using IR-emission from the weld seam close to the actual moment of welding as an indicator of the quality of the fmal assembly. Nearly ten years later, in 1984, HGH decided, due to an increasing demand, to develop above preliminary tests to a complete product/application package designed specifically for welding process-control. The inspection oftubing and of the integrity welds of barrels with hazardous content, were the first applications.

  4. Spatial Variations of PAH Properties in M17SW Revealed by Spitzer/IRS Spectral Mapping

    NASA Astrophysics Data System (ADS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Onaka, T.; Nagayama, T.; Umemoto, T.; Minamidani, T.; Nishimura, A.; Matsuo, M.; Fujita, S.; Tsuda, Y.; Kohno, M.; Ohashi, S.

    2016-12-01

    We present Spitzer/IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Brγ and Nobeyama 45 m/FOREST 13CO (J = 1-0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2 μm. We find that the PAH emission features are bright in the region between the H ii region traced by Brγ and the molecular cloud traced by 13CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer/IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7 μm/PAH 11.3 μm varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0 μm, 12.7 μm, 13.5 μm, and 14.2 μm features to the PAH 11.3 μm feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  5. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features

    PubMed Central

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm−1 (2.5–20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11–15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that ‘normal’ PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules. PMID:26435553

  6. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features.

    PubMed

    Sandford, Scott A; Bernstein, Max P; Materese, Christopher K

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm(-1) (2.5-20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that 'normal' PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  7. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  8. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH EXCESS PERIPHERAL H ATOMS (H {sub n} -PAHs) AND THEIR RELATION TO THE 3.4 AND 6.9 {mu}m PAH EMISSION FEATURES

    SciTech Connect

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (H {sub n} -PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm{sup -1} (2.5-20 {mu}m) infrared spectra of 23 H {sub n} -PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 {mu}m weaken and are replaced with stronger aliphatic bands near 3.4 {mu}m, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 {mu}m region shift and weaken concurrent with growth of a strong aliphatic -CH{sub 2}- deformation mode near 6.9 {mu}m. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 {mu}m features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 {mu}m features. We show that 'normal' PAH emission objects contain relatively few H {sub n} -PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  9. Coherent IR radar technology

    NASA Astrophysics Data System (ADS)

    Gschwendtner, A. B.; Harney, R. C.; Hull, R. J.

    Recent progress in the development of coherent IR radar equipment is reviewed, focusing on the Firepond laser radar installation and the more compact systems derived for it. The design and capabilities of Firepond as a long-range satellite-tracking device are outlined. The technological improvements necessary to make laser radar mobile are discussed: a lightweight, stable 5-10-W transmitter laser for both CW and pulsed operation, a 12-element HgCdTe detector array, an eccentric-pupil Ritchey-Chretien telescope, and a combination of near-field phase modification and anamorphic expansion to produce a fan beam of relatively uniform intensity. Sample images obtained with a prototype system are shown, and the applicability of the mobile system to range-resolved coherent DIAL measurement is found to be similar to that of a baseline DIAL system.

  10. Reprocessing WFC3/IR Exposures Affected by Time-Variable Backgrounds

    NASA Astrophysics Data System (ADS)

    Brammer, G.

    2016-11-01

    The background seen in WFC3/IR observations frequently shows strong time-dependent behavior above the constant flux expected for zodiacal continuum light. This is often caused by an emission line of helium at 1.083 μm excited in the sun-illuminated upper atmosphere, when seen in the filters (F105W, F110W) and grisms (G102, G141) sensitive to the feature. The default behavior of the calwf3 pipeline assumes constant source-plus-background fluxes when it performs up-the-ramp fitting to identify cosmic rays and determine the average count rate within a MULTIACCUM IR exposure. calwf3 provides undesirable results in the presence of strongly variable backgrounds, primarily in the form of elevated and non-Gaussian noise in the FLT products. Here we describe methods to improve the noise properties of the reduced products. In the first, we simply turn off the calwf3 crcorr step, treating the IR detector as if it were a CCD, i.e., accumulating flux and reading it out at the end of the exposure. Next, we artificially flatten the ramps in the IMA products and then allow calwf3 to proceed as normal fitting the ramp and identifying CRs. Either of these procedures enable recovery of datasets otherwise corrupted beyond repair and have no discernible effects on photometry of sources in deep combined images.

  11. IR line scanner on UAV

    NASA Astrophysics Data System (ADS)

    Liu, Shi-chao; Qin, Jie-xin; Qi, Hong-xing; Xiao, Gong-hai

    2011-08-01

    This paper introduces the designing principle and method of the IR line scanner on UAV in three aspects of optical-mechanical system, electronics system and processing software. It makes the system achieve good results in practical application that there are many features in the system such as light weight, small size, low power assumption, wide field of view, high instantaneous field of view, high noise equivalent temperature difference, wirelessly controlled and so on. The entire system is designed as follows: Multi-element scanner is put into use for reducing the electrical noise bandwidth, and then improving SNR; Square split aperture scanner is put into use for solving the image ratation distortion, besides fit for large velocity to height ratio; DSP is put into use for non-uniformity correction and background nosie subtraction, and then improving the imagery quality; SD card is put into use as image data storage media instead of the hard disk; The image data is stored in SD card in FAT32 file system, easily playbacked by processing software on Windows and Linux operating system; wireless transceiver module is put into use for wirelessly controlled.

  12. The IRS-1 signaling system.

    PubMed

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  13. Test chamber for low-background IR focal plane testing

    NASA Technical Reports Server (NTRS)

    Staller, Craig; Capps, Richard W.; Butler, Douglas; Moss, Nancy; Norwood, Wynn

    1989-01-01

    A unique and versatile vacuum chamber has been designed for JPL's IR Focal Plane Technology Group. This chamber is equipped with multiple ports for cryogen and electrical vacuum feedthroughs, pumping units, vacuum gages, sources, and detector camera heads. The design incorporates a liquid-nitrogen-cooled optical table and radiation shield for low-background IR detector testing. Focal planes can be tested at temperatures ranging from 300 K to that of liquid helium. This paper describes the design and construction of this low-background IR focal plane test chamber and discusses some of its distinctive features. An analysis of the test chamber's performance is also presented.

  14. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  15. Thermal Properties of Unusual Local-Scale Features on Vesta

    NASA Technical Reports Server (NTRS)

    Capria, M.; DeSanctis, M.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; Sunshine, J. M.; Titus, T. N.; Mittlefehldt, D. W.; Li, J.; Russell, C. T.; Raymond, C. A.

    2012-01-01

    On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.

  16. Nature of radio feature formed by re-started jet activity in 3C 84 and its relation with γ-ray emissions

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Chida, H.; Kino, M.; Orienti, M.; D'Ammando, F.; Giovannini, G.; Hiura, K.

    2016-02-01

    Re-started jet activity occurred in the bright nearby radio source 3C 84 in about 2005. The re-started jet is forming a prominent component (namely C3) at the tip of jet. The component has showed an increase in radio flux density for more than 7 years while the radio spectrum remains optically thin. This suggests that the component is the head of a radio lobe including a hotspot where the particle acceleration occurs. Thus, 3C 84 is a unique laboratory to study the physical properties at the very early stage of radio source evolution. Another important aspect is that high energy and very high energy γ-ray emissions are detected from this source. The quest for the site of γ-ray emission is quite important to obtain a better understanding of γ-ray emission mechanisms in radio galaxies. In this paper, we review the observational results from very long baseline interferometry (VLBI) monitoring of 3C 84 reported in series of our previous papers. We argue the nature of re-started jet/radio lobe and its relation with high-energy emission.

  17. SPITZER'S VIEW ON AROMATIC AND ALIPHATIC HYDROCARBON EMISSION IN HERBIG Ae STARS

    SciTech Connect

    Acke, B.; Waters, L. B. F. M.; Bouwman, J.; Juhasz, A.; Henning, Th.; Van den Ancker, M. E.; Meeus, G.; Tielens, A. G. G. M.

    2010-07-20

    The chemistry of astronomical hydrocarbons, responsible for the well-known infrared emission features detected in a wide variety of targets, remains enigmatic. Here we focus on the group of young intermediate-mass Herbig Ae stars. We have analyzed the aliphatic and polycyclic aromatic hydrocarbon (PAH) emission features in the infrared spectra of a sample of 53 Herbig Ae stars, obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We confirm that the PAH-to-stellar luminosity ratio is higher in targets with a flared dust disk. However, a few sources with a flattened dust disk still show relatively strong PAH emission. Since PAH molecules trace the gas disk, this indicates that gas disks may still be flared, while the dust disk has settled due to grain growth. There are indications that the strength of the 11.3 {mu}m feature also depends on dust disk structure, with flattened disks being less bright in this feature. We confirm that the CC bond features at 6.2 and 7.8 {mu}m shift to redder wavelengths with decreasing stellar effective temperature. Moreover, we show that this redshift is accompanied by a relative increase of aliphatic CH emission and a decrease of the aromatic 8.6 {mu}m CH feature strength. Cool stars in our sample are surrounded by hydrocarbons with a high aliphatic/aromatic CH ratio and a low aromatic CH/CC ratio, and vice versa for the hot stars. We conclude that, while the overall hydrocarbon emission strength depends on the dust disk's geometry, the relative differences seen in the IR emission features in disks around Herbig Ae stars are mainly due to chemical differences of the hydrocarbon molecules induced by the stellar UV field. Strong UV flux reduces the aliphatic component and emphasizes the spectral signature of the aromatic molecules in the IR spectra.

  18. Monitoring corneal hydration with a mid-infrared (IR) laser.

    PubMed

    Joshi, Abhijeet; Bennett, David B; Stafsudd, Oscar M

    2015-01-01

    A mid-infrared (IR) source at ∼ 3 μm radiation is used as a probe to measure hydration in porcine cornea. Since the Er(3+):YAG emission targets vibrational modes (around 3300 cm(-1)) in the H2O molecule, it is highly sensitive to changes in water content in the first ∼ 10 μm of the corneal tissue.

  19. Spitzer-IRS Spectroscopic Studies of the Properties of Dust from Oxygen-Rich Asymptotic Giant Branch and Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Speck, A.; Volk, K.; Kemper, C.; Reach, W. T.; Lagadec, E.; Bernard, J.; McDonald, I.; Meixner, M.; Srinivasan, S.

    2014-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  20. High-resolution radio emission from RCW 49/Westerlund 2

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Koribalski, B.; Peri, C. S.; Martí, J.; Sánchez-Sutil, J. R.; Dougherty, S. M.; Noriega-Crespo, A.

    2013-11-01

    Aims: The HII region RCW 49 and its ionizing cluster form an extensive, complex region that has been widely studied at infrared (IR) and optical wavelengths. The Molonglo 843 MHz and Australia Telescope Compact Array data at 1.4 and 2.4 GHz showed two shells. Recent high-resolution IR imaging revealed a complex dust structure and ongoing star formation. New high-bandwidth and high-resolution data of the RCW 49 field have been obtained to survey the radio emission at arcsec scale and investigate the small-scale features and nature of the HII region. Methods: Radio observations were collected with the new 2-GHz bandwidth receivers and the CABB correlator of the Australia Telescope Compact Array [ATCA], at 5.5 and 9.0 GHz. In addition, archival observations at 1.4 and 2.4 GHz have been re-reduced and re-analyzed in conjunction with observations in the optical, IR, X-ray, and gamma-ray regimes. Results: The new 2-GHz bandwidth data result in the most detailed radio continuum images of RCW 49 to date. The radio emission closely mimics the near-IR emission observed by Spitzer, showing pillars and filaments. The brightest continuum emission comes from the region known as the bridge. The overall flattish spectral index is typically consistent with a free-free emission mechanism. However, hints of nonthermal components are also present in the bridge. An interesting jet-like structure surrounded by a bubble feature whose nature is still unclear has been discovered close to the Westerlund 2 core. Two apparent bow shocks and a number of discrete sources have been detected as well in the surroundings of RCW 49. In addition, we also report on and discuss the possible detection of a hydrogen recombination line. Conclusions: The radio results support an association between the cm continuum and molecular emission. The detection of the radio recombination line kinematically favors a RCW 49 distance of 6-7 kpc. If the negative spectral indices measured at the bridge should be

  1. Comparison of Spitzer/IRAC Galactic Center Mid-IR Survey Results with X-ray and Radio Emission Due to High-Energy Processes in the Central 100 Parsecs

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Arendt, R. A.; Smith, R.; Yusef-Zadeh, F.; Stolovy, S.; Law, C.; Smith, H. A.; Moseley, Harvey; Ramirez, S.; Karr, J.

    2006-01-01

    We compare the results of a small region from our 3.6 - 8.0 micron Spitzer/IRAC imaging survey of 2 x 1.5 deg around the Galactic Center with x-ray and radio emission due to high energy processes. The region we studied covers 100 x 100 parsecs, and was chosen to include a rich collection of sources, including Sgr A* and the bright Sgr AWest infrared/radio source complex, the non-thermal radio filaments and the thermal: radio arches. In a 40 x 40 parsec subset of that region we also make a preliminary analysis of the correlation between approx.2300 x-ray sources identified by Muno et al. (2003) and 20,000 infrared sources from our survey. We also investigate the correlation between infrared and radio emission in the large-scale structures including the thermal radio arches and non-thermal radio filaments. We set constrictions on the synchrotron spectrum observed at radio and millimeter wavelengths extrapolated to 8 micons, and set limits on the midinfrared variability of Sgr A* during and after the coordinated multi-wavelength observing campaign in September 2004.

  2. New infrared observations of IRS1, IRS3 and the adjacent nebula in the OMC-2 cluster

    NASA Technical Reports Server (NTRS)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.

    1984-01-01

    Near infrared reflection nebulae are often observed around embedded protostellar objects. New observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. The asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebulae. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out.

  3. DETECTION OF THE 3.3 {mu}m AROMATIC FEATURE IN THE SUPERNOVA REMNANT N49 WITH AKARI

    SciTech Connect

    Seok, Ji Yeon; Koo, Bon-Chul; Onaka, Takashi

    2012-01-10

    We present an infrared (IR) study of the supernova remnant (SNR) N49 in the Large Magellanic Cloud with the near-IR (NIR; 2.5-5 {mu}m) spectroscopic observations performed by AKARI. The observations were performed as a coarse spectral mapping to cover most of the bright region in the east, which enables us to compare the distribution of various line emissions and to examine their correlation. We detect the 3.3 {mu}m aromatic feature in the remnant, which is the first time the presence of the 3.3 {mu}m aromatic feature related to an SNR has been reported. In the line maps of the H{sub 2} 1-0 O(3), the 3.3 {mu}m feature, and the Br{alpha}, the distribution of the aromatic feature shows overall correlation with those of other emissions together with regional differences that reflect the local physical conditions. By comparing other archival imaging data at different wavelengths, the association of the aromatic emission with other ionic/molecular emissions is clarified. We examine the archival Spitzer Infrared Spectrograph data of N49 and find signatures of other polycyclic aromatic hydrocarbon (PAH) features at 6.2, 7.7, and 11.3 {mu}m corresponding to the 3.3 {mu}m aromatic feature. Based on the band ratios of the PAHs, we find that the PAHs in N49 are not only dominantly neutral, but they are also small in size. We discuss the origin of the PAH emission in N49 and conclude that the emission is either from the PAHs that have survived the shock or from the PAHs in the preshock gas that was heated by the radiative precursor.

  4. Radio and gamma ray evidence for a molecular-arm feature at 5 kpc from the galactic centre. [observing galactic longitude of CO emission

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Stecker, F. W.

    1974-01-01

    Recent measurements of the galactic CO distribution as evidenced from 2.6 mm radio observations of the CO emission line intensity are correlated with the SAS-2 measurements of galactic gamma ray emission. Both distributions are indicative of a ring-shaped distribution or arm consisting of cool clouds of molecular hydrogen at a galactocentric distance of approximately 5 kpc. The mean density of H2 in this region is estimated to be between 1 and 5 cu cm. Both a galactic and extra-galactic origin of cosmic rays are consistent with the observations, although the presence of dynamical effects and increased star formation at 5 kpc in the dense molecular clouds may be connected with an increase in cosmic-ray production.

  5. Spitzer-IRS High-Resolution Spectroscopy of the 12 μm Seyfert Galaxies. II. Results for the Complete Data Set

    NASA Astrophysics Data System (ADS)

    Tommasin, Silvia; Spinoglio, Luigi; Malkan, Matthew A.; Fazio, Giovanni

    2010-02-01

    We present our Spitzer-Infrared Spectrometer (IRS) spectroscopic survey from 10 μm to 37 μm of the Seyfert galaxies of the 12 μm Galaxy Sample, collected in a high-resolution mode (R ~ 600). The new spectra of 61 galaxies, together with the data we already published, give us a total of 91 12 μm Seyfert galaxies observed, out of 112. We discuss the mid-IR emission lines and features of the Seyfert galaxies, using an improved active galactic nucleus (AGN) classification scheme: instead of adopting the usual classes of Seyfert 1's and Seyfert 2's, we use the spectropolarimetric data from the literature to divide the objects into categories "AGN 1" and "AGN 2," where AGN 1's include all broad-line objects, including the Seyfert 2's showing hidden broad lines in polarized light. The remaining category, AGN 2's, contains only Seyferts with no detectable broad lines in either direct or polarized spectroscopy. We present various mid-IR observables, such as ionization-sensitive and density-sensitive line ratios, the polycyclic aromatic hydrocarbon (PAH) 11.25 μm feature and the H2 S(1) rotational line equivalent widths (EWs), the (60-25 μm) spectral index, and the source extendedness at 19 μm, to characterize similarities and differences in the AGN populations, in terms of AGN dominance versus star formation dominance. We find that the mid-IR emission properties characterize all the AGN 1's objects as a single family, with strongly AGN-dominated spectra. In contrast, the AGN 2's can be divided into two groups, the first one with properties similar to the AGN 1's except without detected broad lines, and the second with properties similar to the non-Seyfert galaxies, such as LINERs or starburst galaxies. We computed a semianalytical model to estimate the AGN and the starburst contributions to the mid-IR galaxy emission at 19 μm. For 59 galaxies with appropriate data, we can separate the 19 μm emission into AGN and starburst components using the measured mid-IR

  6. Inferring the evolutionary stages of the internal structures of NGC 7538 S and IRS1 from chemistry

    NASA Astrophysics Data System (ADS)

    Feng, S.; Beuther, H.; Semenov, D.; Henning, Th.; Linz, H.; Mills, E. A. C.; Teague, R.

    2016-09-01

    .g. NH2CHO, CH3OH, HCOOCH3, CH3OCH3), indicating that IRS1 is the most chemically evolved HMC presented here. We observe a continuum that is dominated by absorption features with at least three strong emission lines, potentially from CH3OH. The CH3OH lines which are purely in emission have higher excitation than the ones being purely in absorption. Potential reasons for this difference are discussed. Conclusions: This is the first comprehensive comparison of observations of the two high-mass cores NGC 7538 S and IRS1 and a chemical model. We have found that different chemical evolutionary stages can coexist in the same natal gas core. Our achievement illustrates the strength of chemical analysis for understanding HMSFRs.

  7. Lack of Arg972 polymorphism in the IRS1 gene in Parakanã Brazilian Indians.

    PubMed

    Bezerra, Rosângela M N; Chadid, Thiago T; Altemani, Claúdia M; Sales, Teresa S I; Menezes, Raimundo; Soares, Manoel C P; Saad, Sara T O; Saad, Mario J A

    2004-02-01

    Several polymorphisms in the insulin receptor substrate-1 (IRS1) gene have been reported in the last years. The most common IRS1 variant, a Gly --> Arg substitution at codon 972 (Arg972 IRS1), is more prevalent among subjects who have features of insulin resistance syndrome associated, or not, with type 2 diabetes in European populations. To determine whether the absence of IRS1 polymorphism is a more general characteristic of Paleo-Indian-derived populations, we examined the Arg972 IRS1 polymorphism in Parakanã Indians and found a lack of this polymorphism in the Parakanã population.

  8. The NASA Ames PAH IR Spectroscopic Database: A Demo of its Contents and Web Tools

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Sánchez de Armas, F.; Ricca, A.; Cami, J.; Peeters, E.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2009-01-01

    The features formerly known as the Unidentified Infrared (UIR) Emission Bands are now generally attributed to polycyclic aromatic hydrocarbons (PAHs). Exploitation of these features as astrophysical and astrochemical probes requires the IR properties of PAHs under interstellar conditions. To fulfill this need, we experimentally measured and theoretically computed the 2-2000 µm spectra of many PAHs over the past 18 years at NASA's Ames Research Center. Today's collection comprises about 600 theoretically computed and 60 laboratory measured spectra of PAHs in different forms. The molecules in the collection range in size from C10H8 to C130H28. For most of these, spectra are available for PAHs in their neutral and singly charged (+/-) states. In some cases, IR spectra of multiply charged species were also computed. The database includes pure PAHs; PAHs containing nitrogen (PANHs), oxygen, and silicon; PAHs with side groups; PAHs with extra hydrogens; and PAHs complexed with iron and magnesium. This collection of PAH spectra from 2 - 2000 µm has been assembled into a uniform database, which we will make publicly available on the web in early 2009. A WebGUI interface has been developed that can effectively interrogate the database using a variety of queries, such as formula, molecular name, charge, specific number of atoms, etc. Several molecules can be selected in such a process and one can obtain their 3-D structures, plot and co-add their spectra, adjust parameters such as the bandwidth, download their data and print graphs. The database can also be downloaded as a whole and IDL-routines are provided to interrogate it. This talk will present an overview of the contents and the web-GUI tools of the NASA Ames PAH IR Spectroscopic Database. Hands-on demonstrations will be available at the SOFIA Booth.

  9. Optical properties of PbIn6Te10 in the long-wave IR

    NASA Astrophysics Data System (ADS)

    Andreev, Yu M.; Badikov, V. V.; Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu M.; Kotkov, A. A.; Lanskii, G. V.; Svetlichnyi, V. A.

    2016-12-01

    Optical properties of nonlinear PbIn6Te10 (PIT) crystal were studied for the first time within 30-1200 µm (0.2-15 THz) by FTIR and THz-TDS. It was found that PIT possesses the most attractive transparency features for efficient generation of long-wave mid-IR emission including 20-60 µm (5-15 THz) region by optical rectification. This crystal is also found useful for phase matched DFG generation into the long-wave THz region. In particular, by model study phase matched down-conversion of CO and CO2 laser lines into 130-1200 µm (0.3-2.3 THz) range is shown possible by ooe and eoe type of three wave interaction. Noncritical 90° phase matching for eoe type of interactions can be realized by selecting samples with specified composition.

  10. Optical/IR from ground

    NASA Technical Reports Server (NTRS)

    Strom, Stephen; Sargent, Wallace L. W.; Wolff, Sidney; Ahearn, Michael F.; Angel, J. Roger; Beckwith, Steven V. W.; Carney, Bruce W.; Conti, Peter S.; Edwards, Suzan; Grasdalen, Gary

    1991-01-01

    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists)

  11. VLT near- to mid-IR imaging and spectroscopy of the M 17 UC1 - IRS5 region

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Jiang, Zhibo; Fang, Min

    2015-06-01

    Aims: We investigate the surroundings of the hypercompact H ii region M 17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Methods: We use diffraction-limited near-IR (VLT/NACO) and mid-IR (VLT/VISIR) images to reveal the different morphologies at various wavelengths. Likewise, we investigate the stellar and nebular content of the region with VLT/SINFONI integral field spectroscopy with a resolution R ˜ 1500 at H + K bands. Results: Five of the seven point sources in this region show L-band excess emission. A geometric match is found between the H2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H2 emission is typical for dense photodissociation regions (PDRs), which are initially far-ultraviolet pumped and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity LIR in the range 1-20 μm is derived for three objects; we obtain 2.0 × 103 L⊙ for IRS5A, 13 L⊙ for IRS5C, and 10 L⊙ for B273A. Conclusions: IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (˜9 M⊙, ˜1 × 105 yrs); it might have terminated accretion due to the feedback from stellar activities (radiation pressure, outflow) and the expanding H ii region of M 17. The object UC1 might also have terminated accretion because of the expanding hypercompact H ii region, which it ionizes. The disk clearing process of the low-mass young stellar objects in this region might be accelerated by the expanding H ii region. The outflows driven by UC1 are running south-north with its northeastern side suppressed by the expanding ionization front of M 17; the blue-shifted outflow lobe of IRS5A is seen in two types of tracers along the same line of sight in the form of H2 emission

  12. Atmospheric Effects in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 3, 2004 This image shows two representations of the same infra-red image covering parts of Ius Chasma and Oudemans Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    This image is dominated by atmospheric effects. The pink/magenta colors inside the canyon show areas with a large amount of atmospheric dust. In the bottom half of the image, the patchy blue/cyan colors indicate the presence of water ice clouds out on the plains. Water ice clouds and high amounts of dust do not generally occur at the same place and time on Mars because the dust absorbs sunlight and heats the atmosphere. The more dust that is present, the warmer the atmosphere becomes, sublimating the water ice into water vapor and dissipating any clouds.

    Image information: IR instrument. Latitude -8.2, Longitude 267.9 East (92.1.West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  13. Melas Chasma in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 11, 2004 This image shows two representations of the same infra-red image over Melas Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    There is a distinct purple/blue layer present in the northern wall of the Chasma. Although this layer likely has a composition different than the surrounding areas, it is difficult to interpret its specific composition due to the high variability of sunlit and shaded surfaces in this area, which cause a wide range of temperatures to be present within each pixel of the image. It is possible that this layer has a unique composition due to differences in the volcanic or sedimentary environment at the time that the rock formed, or it could be a layer of magma injected between two previously existing rock layers. Another possibility is that the wall is mostly covered by dust and debris, and this portion contains the only exposed bedrock. The light blue colors present in many other areas of the Chasma are due to water ice clouds.

    Image information: IR instrument. Latitude -8.9, Longitude 282 East (78 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey

  14. Ice Clouds in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 9, 2004 This image shows two representations of the same infra-red image in the Elysium region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The light blue area in the center of this image is a very nice example of a water ice cloud. Water ice is frequently present in the Martian atmosphere as a thin haze. Clouds such as this one can be difficult to identify in a temperature image, but are easy to spot in the DCS images. In this case, the water ice is relatively confined and concentrated which may be due to the topography of the Elysium volcanic construct.

    Image information: IR instrument. Latitude 23.2, Longitude 150.1 East (209.9 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed

  15. Basaltic Crater in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 6, 2004 This image shows two representations of the same infra-red image near Nili Fosse in the the Isidis region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. In many cases craters trap sand in their topographic depressions, interrupting the sand's migration across the Martian surface. This image is particularly interesting because there appears to be more than 1 type of sand in the bottom of this crater and in the hummocky terrain near the bottom of the image. The pink/magenta areas are characteristic of a basaltic composition, but there are also orange areas that are likely caused by the presence of andesite. These two compositions, basalt and andesite, are some of the most common found on Mars.

    Image information: IR instrument. Latitude 24, Longitude 80.7 East (297.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  16. Optical emission, vibrational feature, and shear-thinning aspect of Tb3+-doped Gd2O3 nanoparticle-based novel ferrofluids irradiated by gamma photons

    NASA Astrophysics Data System (ADS)

    Paul, Nibedita; Hazarika, Samiran; Saha, Abhijit; Mohanta, Dambarudhar

    2013-10-01

    The present work reports on the spectroscopic and rheological properties of un-exposed and gamma (γ-) irradiated rare earth (RE) oxide nanoparticle-based ferrofluids (FFs). The FFs were produced by dispersing surfactant coated terbium (Tb3+)-doped gadolinium oxide (Gd2O3) nanoparticles in the ethanol medium and later on they were subjected to energetic γ-irradiation (1.25 MeV) at select doses (97 Gy and 2.635 kGy). The synthesized RE oxide nanoparticles were of ˜7 nm size and having a cubic crystal structure, as predicted from transmission electron microscopy and x-ray diffraction studies. Fourier transformed infra-red (FT-IR) spectra showed an adequate blue shift of the Gd-O vibrational stretching mode from a wavenumber value of ˜558 cm-1, for the un-irradiated sample to a value of ˜540 cm-1 corresponding to the irradiated sample (2.635 kGy). In contrast, photoluminescence spectra have revealed modification of defect states along with Tb3+ assisted radiative transitions. The rheology measurements have illustrated unusual shear thinning behavior of the FFs, with an apparently improved power index (s) value from 0.34 to 0.50, obtained for increasing γ-dose cases. The variation of the decay parameter with irradiation dose, as predicted from the nature of apparent viscosity curves, is attributed to the defect formation, role of impurity ions (Tb3+), and weakening of inter nanoparticle bonding. The unusual properties of the novel RE oxide based FFs may find scope in sealing and shielding elements in the radiation environment including accelerator and other related zones.

  17. Qualification of security printing features

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.; Aronoff, Jason S.; Arnabat, Jordi

    2006-02-01

    This paper describes the statistical and hardware processes involved in qualifying two related printing features for their deployment in product (e.g. document and package) security. The first is a multi-colored tiling feature that can also be combined with microtext to provide additional forms of security protection. The color information is authenticated automatically with a variety of handheld, desktop and production scanners. The microtext is authenticated either following magnification or manually by a field inspector. The second security feature can also be tile-based. It involves the use of two inks that provide the same visual color, but differ in their transparency to infrared (IR) wavelengths. One of the inks is effectively transparent to IR wavelengths, allowing emitted IR light to pass through. The other ink is effectively opaque to IR wavelengths. These inks allow the printing of a seemingly uniform, or spot, color over a (truly) uniform IR emitting ink layer. The combination converts a uniform covert ink and a spot color to a variable data region capable of encoding identification sequences with high density. Also, it allows the extension of variable data printing for security to ostensibly static printed regions, affording greater security protection while meeting branding and marketing specifications.

  18. Molecular gas and star formation toward the IR dust bubble S 24 and its environs

    NASA Astrophysics Data System (ADS)

    Cappa, C. E.; Duronea, N.; Firpo, V.; Vasquez, J.; López-Caraballo, C. H.; Rubio, M.; Vazzano, M. M.

    2016-01-01

    Aims: We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods: Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5' × 5' in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results: The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ~0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact HII region. Part of the molecular gas bordering the S 24 HII region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 HII region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some

  19. CO excitation in four IR luminous galaxies

    NASA Technical Reports Server (NTRS)

    Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis

    1990-01-01

    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.

  20. CO excitation in four IR luminous galaxies

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis

    1990-07-01

    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, LFIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 1010 solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/LCO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.

  1. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron

  2. ToO IRS Observations of Novae

    NASA Astrophysics Data System (ADS)

    Woodward, Charles; Black, John; Bode, Michael; Evans, Aneuryn; Geballe, Thomas; Gehrz, Robert; Greenhouse, Matthew; Hauschildt, Peter; Helton, Andrew; Krautter, Joachim; Liller, William; Lyke, James; Lynch, David; Rudy, Richard; Salama, Alberto; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, Jim; Vanlandingham, Karen; Wagner, R. Mark

    2006-05-01

    Stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments and enrich the ambient interstellar medium with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Using Spitzer (+IRS), we propose a 25.8 hrs no-impact ToO program to study (in temporal detail) the evolutionary stages of CN by targeting 4 Galactic and 2 Magellanic Cloud (MC) novae. Spitzer is a unique facility that enables us to investigate aspects of the CN phenomenon including the in situ formation and astromineralogy of nova dust, the elemental abundances resulting from thermonuclear runaway, the correlation of ejecta masses with progenitor type, the bolometric luminosities of the outburst, and the kinematics and structure of the ejected envelopes. Synoptic, high signal-to-noise IRS spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; 3) measurement of the density and masses of the ejecta; 4) characterization of the geometry and structure of ejected shells at early stages during which the initial mixing of the chemical abundances can be studied in detail; and 5) exploration of the characteristics of CN in low metallicity systems (MC) at mid- to far-IR wavelengths. Observations of CN with Spitzer will be complemented by extensive ground-based, as well as space-based (e.g., Chandra, Swift, XMM-Newton), DDT and ToO programs led by team CoIs.

  3. Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations.

    PubMed

    Jaeqx, Sander; Oomens, Jos; Cimas, Alvaro; Gaigeot, Marie-Pierre; Rijs, Anouk M

    2014-04-01

    Vibrational spectroscopy provides an important probe of the three-dimensional structures of peptides. With increasing size, these IR spectra become very complex and to extract structural information, comparison with theoretical spectra is essential. Harmonic DFT calculations have become a common workhorse for predicting vibrational frequencies of small neutral and ionized gaseous peptides. Although the far-IR region (<500 cm(-1)) may contain a wealth of structural information, as recognized in condensed phase studies, DFT often performs poorly in predicting the far-IR spectra of peptides. Here, Born-Oppenheimer molecular dynamics (BOMD) is applied to predict the far-IR signatures of two γ-turn peptides. Combining experiments and simulations, far-IR spectra can provide structural information on gas-phase peptides superior to that extracted from mid-IR and amide A features.

  4. Active IR-applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  5. Bond strength and electronic structures of coherent Ir /Ir3Zr interfaces

    NASA Astrophysics Data System (ADS)

    Gong, H. R.; Liu, Yong; Tang, Hui Ping; Xiang, Chang Shu

    2008-05-01

    First principles calculation reveals that the coherent Ir /Ir3Zr interfaces possess high values of bond strength and that interface orientation and atomic configuration have important effects on interface bonding and interface energy. Calculation also shows that the interface dipole is formed in the Ir /Ir3Zr interface due to an unequal loss of the electrons from Ir and Ir3Zr atoms, and density of states suggests that a stronger covalent bonding is formed in the interface than corresponding Ir or Ir3Zr bulks, which results in the strengthening effect of the Ir3Zr precipitation in the Ir-base superalloys from experimental observations in the literature.

  6. Automatic identification of various spectral features at the time-resolved excitation emission matrix of dissolved organic matters and phytoplankton cells in seawater

    NASA Astrophysics Data System (ADS)

    Krikun, Vladimir A.; Salyuk, Pavel A.

    2016-10-01

    The variation of the different parameters of the exciting radiation and the registration of the fluorescence of the investigated object allows to obtain multidimensional spectral images: from three-dimensional (length of the exciting radiation, the wavelength of the emitted radiation, the fluorescence intensity) to eight and more dimensions (in addition to three of these dimensions: spatial coordinates x, y, z; time of measurements; the duration and the intensity of the exciting radiation and etc.). In the case of measurements in natural conditions is highly desirable that the result of the processing performed during a single measurement for the operation in real time. In this paper we consider the approach described for the treatment of fluorescence measurements of dissolved organic matter and chlorophyll-a in seawater. Joint analysis of the various pairs of wavelengths of excitation / emission fluorescence, fluorescence analysis at different durations of the exciting radiation and the time-spatial analysis of the received signal allow identifying different types of fluorescent dissolved organic matter and estimate their stage of biodegradation, to study the functional state of phytoplankton cells. So it is possible to provide real-time investigation of environmental indicators of seawater.

  7. Dual-single photon emission computed tomography and contrast-enhanced magnetic resonance imaging to evaluate dissimilar features of apical hypertrophic cardiomyopathy.

    PubMed

    Okayama, Satoshi; Kawata, Hiroyuki; Sung, Ji Hee; Okada, Sadanori; Nishida, Taku; Onoue, Kenji; Soeda, Tsunenari; Uemura, Shiro; Saito, Yoshihiko

    2010-01-01

    Apical hypertrophic cardiomyopathy (HCM) is an uncommon variant of HCM characterized by hypertrophy located in the left ventricular apex that occurs at a rate of about 30% in the Japanese population. Although the prognosis of most patients with apical HCM is relatively benign, it can be poor if apical left ventricular aneurysms develop. However, the mechanism of aneurysmal formation is unclear. We describe two patients with apical HCM and dissimilar findings in 201Thallous chloride ((201)TlCl) and (123)I-betamethyl-p-iodophenyl-pentadecanoic acid ((123)I-BMIPP) dual single-photon emission computed tomography (dual-SPECT), but no myocardial fibrosis on contrast-enhanced magnetic resonance images (MRI). One had apparently normal myocardial perfusion and metabolism, whereas the other had exercise-induced myocardial ischemia and impaired myocardial metabolism. These findings indicated that even apical HCM without myocardial fibrosis is pathophysiologically heterogeneous. Apical HCM has been evaluated by either dual-SPECT or cardiac MRI, but not by both. Thus, a combination of imaging modalities is apparently essential for elucidating the pathophysiology of apical HCM. These dissimilar findings in dual-SPECT might be important in identifying patients with apical HCM who are at high risk of forming aneurysms.

  8. Surface emissivity and temperature retrieval for a hyperspectral sensor

    SciTech Connect

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  9. Filling the gap --near UV, optical and near IR extinction

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    2014-10-01

    We propose a SNAP program to obtain STIS low resolution near-UV, optical and near-IR (G430L and G750L) spectra for a set of O7-B7 class III-V stars in the Galaxy and Magellanic Clouds with available IUE or HST/STIS UV spectropotometry, optical photometry and 2MASS IR photometry. Together with the existing data, the new observations will provide complete photometric and spectrophotometric coverage from 1150 to 10000 A and enable us to produce complete extinction curves from the far-UV to the near-IR, with well-determined values of R(V). The proposed set of 150 program sight lines includes the full range of interstellar extinction curve types from both the Galaxy and the Magellanic Clouds. The new data will allow us to examine variability in the near-UV through near-IR spectral regions, including the UV-optical "knee", and the "Very Broad Structure" and to verify the applicability of the near IR extinction law recently derived by Fitzpatrick and Massa (2009). We will examine the response of these features to different interstellar environments and their relationship to other curve features. These are largely unexplored aspects of the extinction curves which will provide additional constraints on the properties of interstellar grains. The curves will be derived using model atmospheres for the program stars, eliminating the need for standard stars.

  10. Measurement of the 1s2l3l’ Dielectronic Recombination Emission Line in Li-Like Ar and Its Contribution to the Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gall, Amy Christina; Silwal, Roshani; Dreiling, Joan; Borovik, Alexander; Ajello, Marco; Gillaspy, John; Kilgore, Ethan; Ralchenko, Yuri; Takacs, Endre

    2016-06-01

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, we investigated the resonant DR process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l’ was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our investigation. Apart from the mentioned transitions, we have found other features that can be possible contributors to the emission in this region. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. The DR cross sections were measured and normalized to the well-known photoionization cross sections using radiative recombination peaks in the measured spectra. Corrections for different instrument and method related effects such as charge state balance, electron beam space charge, and charge exchange have been considered. Our high-resolution crystal spectra allowed the experimental separation of features that are less than 2 eV apart. We have used a collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for the corrections and uncertainties. Experimental results were compared to the AtomDB theoretical emission lines used to fit the galaxy cluster spectra containing the unidentified 3.57 keV line. These data points can be added benchmarks in the database and used to accurately interpret spectra from current x-ray satellites, including Hitomi, Chandra, and XMM-Newton x-ray observatories.[1] Bulbul E. et al., 2014, ApJ, 789, 13[2] Ralchenko Yu. et al., 2014, JQSRT, 71

  11. Infrared Emission From Interstellar PAHs, New Probes of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    2002-01-01

    Tremendous strides have been made in the understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational IR astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely unknown and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, impossibly large molecules by early interstellar chemistry standards, is very strong. PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. Aromatic carbon-rich materials ranging in size from PAHs and PAH nanoclusters, to sub-micron and micron-sized dust grains represent an important component of the ISM. These species: (1) dominate the heating and cooling of interstellar clouds via energetic photoelectron ejection and infrared (IR) emission; (2) moderate the ionization balance in photodissociation regions and molecular clouds; (3) moderate the composition of the gas phase and play an important role in determining the chemistry of the ISM; (4) contribute to the interstellar extinction in the near IR, visible, and UV spectral regions; and (5) convert UV, visible, and near-IR radiation to mid- and far-IR radiation in the ISM and, as such, are responsible for the well known, widespread family of mid-IR emission features with major components near 3.3, 6.2, 7.7, 8.6, and 11.3 microns.

  12. Properties of Discrete and Axisymmetric Features in Jupiter's Atmosphere from Observations of Thermal Emission: Recent Updates on the Eve of the Juno Mission Arrival at Jupiter

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fletcher, L. N.; Giles, R.; Sinclair, J.; Greathouse, T. K.; Momary, T.; Yanamandra-Fisher, P. A.; Fujiyoshi, T.; Fisher, B.; Payne, A.; Seede, R.; Simon, J.; Lai, M.; Nguyen, M.; Fernandez, J.; Baines, K. H.

    2015-12-01

    We have derived the spatial distribution and evolution of key properties of Jupiter's atmosphere through the analysis of imaging and spatially resolved spectroscopy of its thermal emission. These observations and their analysis represent a source of data we plan to acquire as a key component of support for the Juno mission's atmospheric investigation. From thermal imaging and spectroscopy in the 7-25 µm region, we can derive temperatures between 10 and 500 mbar atmospheric pressure, cloud opacities between 500 mbar and 5 bars, the para-H2 fraction near 300 mbar, the 100-400 mbar distributions of ammonia and phosphine, and the distribution of hydrocarbons in the stratosphere (~1 µbar - 10 mbar). Earlier work determined atmospheric properties of Jupiter's Great Red Spot (Fletcher et al. 2010, Icarus 208, 306) and the evolution of the South Equatorial Belt (SEB) fade (whitening) in 2009-2010 (Fletcher et al. 2011 Icarus, 213, 564). We will illustrate recent results from an examination of (1) the revival (re-darkening) of the SEB in 2010-2011, (2) discovery of uniquely dry regions of the atmosphere that are identified with visible "brown barges" typically located at the northern edge of Jupiter's North Equatorial Belt (NEB), (3) vertical structure of stratospheric waves constituting Jupiter's Quadrennial Oscillation (QQO) (Leovy et al. 1991, Nature 354, 380), and (4) previously unsuspected long-term tropospheric thermal waves uncovered in our multi-year program covering well over a Jovian year. Efforts are underway to provide mission-supporting observations using mid-infrared facility and guest instruments at several observatories during the 14-day orbits of the Juno mission, particularly - but not exclusively - the early orbits dedicated to remote sensing observations.

  13. Diversity of Methane-Oxidizing Bacteria in Soils from “Hot Lands of Medolla” (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission

    PubMed Central

    Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano

    2016-01-01

    “Terre Calde di Medolla” (TCM) (literally, “Hot Lands of Medolla”) refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard’s analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of “Terre Calde di Medolla” with the presence of microbial methane-oxidizing bacteria. PMID:27645100

  14. Diversity of Methane-Oxidizing Bacteria in Soils from "Hot Lands of Medolla" (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission.

    PubMed

    Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano

    2016-12-23

    "Terre Calde di Medolla" (TCM) (literally, "Hot Lands of Medolla") refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard's analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of "Terre Calde di Medolla" with the presence of microbial methane-oxidizing bacteria.

  15. The IRS 1 circumstellar disk, and the origin of the jet and CO outflow in B5.

    PubMed

    Langer, W D; Velusamy, T; Xie, T

    1996-09-01

    We report the discovery of the inner edge of the high velocity CO outflow associated with the bipolar jet originating from IRS 1 in Barnard 5 and the first ever resolution of its circumstellar disk in the 2.6 mm dust continuum and C18O. From high spatial resolution observations made with the Owens Valley Millimeter Array we are able to locate the origin of the outflow to within approximately 500 AU on either side of IRS 1 and apparently at the edge of, or possibly within, its circumstellar disk. The orientation of the continuum disk is perpendicular to the highly collimated jet outflow recently seen in optical emission at much farther distances. The disk has been detected in C18O giving a disk mass approximately 0.16 M (solar). Our HCO+ and HCN maps indicate significant chemical differentiation in the circumstellar region on small scales with HCO+ tracing an extended disk of material. The 12CO interferometer maps of the outflow show two conelike features originating at IRS 1, the blue one fanning open to the northeast and the red one to the southwest. The vertices of the cones are on either side of the circumstellar disk and have a projected opening angle of about 90 degrees. The intrinsic opening angle is in the range of 60 degrees-90 degrees which leads to significant interaction between outflow and infall.

  16. Nuclear obscuration in LINERs. Clues from Spitzer/IRS spectra on the Compton thickness and the existence of the dusty torus

    NASA Astrophysics Data System (ADS)

    González-Martín, O.; Masegosa, J.; Márquez, I.; Rodríguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Ramos Almeida, C.; Dultzin, D.; Hernández-García, L.; Ruschel-Dutra, D.; Alonso-Herrero, A.

    2015-06-01

    Context. Most of the optically classified low-ionisation, narrow emission-line regions (LINERs) nuclei host an active galactic nucleus (AGN). However, how they fit into the unified model (UM) of AGN is still an open question. Aims: The aims of this work are to study at mid-infrared (mid-IR) (1) the Compton-thick nature of LINERs (i.e. hydrogen column densities of NH> 1.5 × 1024 cm-2) and (2) the disappearance of the dusty torus in LINERs predicted from theoretical arguments. Methods: We have compiled all the available low spectral-resolution, mid-IR spectra of LINERs from the InfraRed Spectrograph (IRS) onboard Spitzer. The sample contains 40 LINERs. We have complemented the LINER sample with Spitzer/IRS spectra of PG QSOs, Type-1 Seyferts (S1s), Type-2 Seyferts (S2s), and StarBurst (SB) nuclei. We studied the AGN compared to the starburst content in our sample using different indicators: the equivalent width of the polycyclic aromatic hydrocarbon at 6.2 μm, the strength of the silicate feature at 9.7 μm, and the steepness of the mid-IR spectra. We classified the spectra as SB-dominated and AGN-dominated, according to these diagnostics and compared the average mid-IR spectra of the various classes. Moreover, we studied the correlation between the 12 μm luminosity, νLν(12 μm), and the 2-10 keV energy band X-ray luminosity, LX(2-10 keV). Results: In 25 out of the 40 LINERs (i.e. 62.5%), the mid-IR spectra are not SB-dominated, similar to the comparison S2 sample (67.7%). The average spectra of both SB-dominated LINERs and S2s are very similar to the average spectrum of the SB class. The average spectrum of AGN-dominated LINERs is different from the average spectra of the other optical classes, showing a rather flat spectrum at 6-28 μm. We find that the average spectrum of AGN-dominated LINERs with X-ray luminosities LX(2-10 keV) > 1041 erg/s is similar to the average mid-IR spectrum of AGN-dominated S2s. However, faint LINERs (i.e. LX(2-10 keV) < 1041 erg

  17. A FORCAST Mid-IR Study of the Classical Nova V1369 Cen (Nova Centauri 2013)

    NASA Astrophysics Data System (ADS)

    Helton, L.

    2014-10-01

    The Galactic cycle of chemical evolution depends on the redistribution into the ambient interstellar medium (ISM) of elements synthesized by thermonuclear processes. Classical novae (CNe) contribute to this cycle by deposition into the ISM of gas enriched through explosive nucleosynthesis and dust grains condensed in their ejecta providing the material from which the next generation of stars and planets grow. We propose to observe the nova V1369 Cen (Nova Centauri 2013) in the mid-IR with FORCAST to determine the ejecta mass, the degree of elemental enrichment in the ejecta, the dust grain mineralogy, and the processes of dust grain growth and destruction. FORCAST observations fulfill these goals by providing high S/N data in which we can 1.) measure H recombination, nebular, and coronal emission lines necessary to determine ejecta abundances and masses; 2.) measure prominent dust features from silicates and polycyclic aromatic hydrocarbons to track dust condensation, mass, grain size distribution, and processing; and 3.) estimate the energy budget of the eruption providing insight into the underlying white dwarf and the eruption's contribution to the energy budget of the ISM. These observations will complement our extensive, on-going Chandra, Swift, and ground based optical and near-IR observing programs.

  18. Blinded By The Lines: Mid-IR Spectra Of Mira Variables Taken With Spitzer

    NASA Astrophysics Data System (ADS)

    Baylis-Aguirre, Dana; Creech-Eakman, Michelle J.; Luttermoser, Donald G.; Güth, Tina

    2016-08-01

    We present preliminary analysis of mid-infrared spectra of M-type and C-type Mira variables. Due to the brightness of this sample, it is straightforward to monitor changes with phase in the infrared spectral features of these regular pulsators. We have spectra of 25 Mira variables, taken with phase, using the Spitzer Infrared Spectrograph (IRS) high-resolution module. Each star has multiple spectra obtained over a one-year period from 2008-09. This is a rich, unique data set due to multiple observations of each star and the high signal-to-noise ratio from quick exposure times to prevent saturation of the IRS instrument. This paper focuses on the 17.6 and 33.2 micron lines shared by M-types and C-types. These are mostly emission lines that change with phase. We discuss preliminary physical diagnostics for the atmospheres based on the lines, as well as possible line identifications such as fluorescence of metal species.

  19. IR spectral analysis for the diagnostics of crust earthquake precursors

    NASA Astrophysics Data System (ADS)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  20. PERIODIC ACCRETION INSTABILITIES IN THE PROTOSTAR L1634 IRS 7

    SciTech Connect

    Hodapp, Klaus W.; Chini, Rolf E-mail: rolf.chini@astro.ruhr-uni-bochum.de

    2015-11-10

    The small molecular cloud Lynds 1634 contains at least three outflow sources. We found one of these, IRS 7, to be variable with a period of 37.14 ± 0.04 days and an amplitude of approximately 2 mag in the K{sub s} band. The light curve consists of a quiescent phase with little or no variation, and a rapid outburst phase. During the outburst phase, the rapid variation in brightness generates light echoes that propagate into the surrounding molecular cloud, allowing a measurement of the distance to IRS 7 of 404 pc ± 35 pc. We observed only a marginally significant change in the H − K color during the outburst phase. The K-band spectrum of IRS 7 shows CO bandhead emission but its equivalent width does not change significantly with the phase of the light curve. The H{sub 2} 1–0 S(1) line emission does not follow the variability of the continuum flux. We also used the imaging data for a proper motion study of the outflows originating from the IRS 7 and the far-infrared source IRAS 05173-0555, and confirm that these are indeed distinct outflows.

  1. IRS View of a Planetary Collision in the Pleiades

    NASA Astrophysics Data System (ADS)

    Song, Inseok; Lisse, Carey; Rhee, Joseph; Zuckerman, Ben

    2008-03-01

    Recently, we identified a sun-like Pleiades member, HD 23514, hosting a huge quantity of warm dust grains. Next to BD+20 307 (a field sun-like star), HD 23514 is currently the second dustiest, adolescent-age, star known with warm excess IR emission. Very short removal timescales of warm dust grains and adolescent ages of these two stars (>~100 Myr) indicate that the very dusty, warm excess, phenomenon is a transient event. A catastrophic collision between planetary embryos or planets is the most plausible origin of so much warm dust and such a collision mimics the postulated Moon-creation event in our terrestrial system. But the N-band spectra of BD+20 307 and HD 23514 appear very different, with peculiar emission at HD 23514 peaking at ~9 microns, a peak wavelength hardly seen among young stars and other main sequence excess stars. The strange N-band spectrum may point to an extra-ordinary condition around HD 23514 such as a very thick crust of a planet, a freakish chemical composition, or shocked silicates from a planetary collision. An IRS spectrum covering the 5-35um spectral range, rather than the highly restricted ground-based N-band spectrum will provide much stronger and clearer constraints on the dusty environment of HD 23514. We propose IRS observations with all four low resolution modules to obtain a diagnostic mid-IR spectrum of this rare, fascinating star.

  2. Using The Cornell Atlas of Spitzer/IRS Sources

    NASA Astrophysics Data System (ADS)

    Samsonyan, A. L.

    2016-06-01

    I summarize my research studying details of the emission line profiles of the mid infrared [NeII] 12.8 microns and [NeIII] 15.6 microns emission lines. Observations are from the Spitzer Infrared Spectrograph (IRS) (Houck et al. 2004), so I illustrate use of the archive of these spectra. The IRS team developed the Cornell Atlas of Spitzer IRS Sources (CASSIS) found at cassis.sirtf.com. At present, all low resolution (Lebouteiller et al. 2011) and high resolution (Lebouteiller et al. 2015) staring observations with the IRS are available (more than 20,000 spectra of about 15,000 distinct sources). Spectra are provided in various formats to enable easy viewing or measurements. Spectra cover 5 microns to 37 microns in low resolution (R ˜ 60 to 125) and 10 microns to 37 microns in high resolution (R ˜ 600) modes. CASSIS is intended as a long term resource for the astronomical community so that this fundamental data base of mid-infrared spectra will be easily usable perpetually, and I demonstrate some examples of its use.

  3. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  4. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  5. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    SciTech Connect

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas E-mail: najita@noao.edu E-mail: pascucci@stsci.edu E-mail: henning@mpia.de

    2011-06-10

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  6. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

    SciTech Connect

    Morris, James R; Averill, Frank; Cooper, Valentino R

    2014-01-01

    Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

  7. L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas

    2010-06-01

    Intermediate between the prestellar and Class 0 protostellar phases, the first core is a quasi-equilibrium hydrostatic object with a short lifetime and an extremely low luminosity. Recent magnetohydrodynamic (MHD) simulations suggest that the first core can even drive a molecular outflow before the formation of the second core (i.e., protostar). Using the Submillimeter Array and the Spitzer Space Telescope, we present high angular resolution observations toward the embedded dense core IRS2E in L1448. We find that source L1448 IRS2E is not visible in the sensitive Spitzer infrared images (at wavelengths from 3.6 to 70 {mu}m) and has weak (sub-) millimeter dust continuum emission. Consequently, this source has an extremely low bolometric luminosity (<0.1 L {sub sun}). Infrared and (sub-) millimeter observations clearly show an outflow emanating from this source; L1448 IRS2E represents thus far the lowest luminosity source known to be driving a molecular outflow. Comparisons with prestellar cores and Class 0 protostars suggest that L1448 IRS2E is more evolved than prestellar cores but less evolved than Class 0 protostars, i.e., at a stage intermediate between prestellar cores and Class 0 protostars. All these results are consistent with the theoretical predictions of the radiative/MHD simulations, making L1448 IRS2E the most promising candidate of the first hydrostatic core revealed so far.

  8. IR Camera Report for the 7 Day Production Test

    SciTech Connect

    Holloway, Michael Andrew

    2016-02-22

    The following report gives a summary of the IR camera performance results and data for the 7 day production run that occurred from 10 Sep 2015 thru 16 Sep 2015. During this production run our goal was to see how well the camera performed its task of monitoring the target window temperature with our improved alignment procedure and emissivity measurements. We also wanted to see if the increased shielding would be effective in protecting the camera from damage and failure.

  9. How does the far-IR properties of star-forming galaxies depend on environment?

    NASA Astrophysics Data System (ADS)

    Guo, Qi

    2015-08-01

    Traditionally, most observational studies estimate SFRs using rest-frame UV luminosities or emission lines, which are subject to uncertain corrections for dust extinction. In star-forming regions, UV photons heat the dust, and their energy is re-emitted in the mid- and far-IR range. About half of the starlight is absorbed and re-emitted over the history of the Universe. Observations at IR wavelengths are thus an essential complement to UV and optical tracers of star formation. We use far-IR selected galaxies from the Herschel ATLAS (H-ATLAS) survey and optically selected galaxies from the Galaxy and Mass Assembly (GAMA) redshift survey to study the environmental effects on far-IR properties. It includes the following aspects. What is the typical halo mass of the low-redshift H-ATLAS sources? How does far-IR luminosity depend on host halo mass? How do the far-IR conditional luminosity functions depend on group masses and redshifts? How is the total far-IR light-to-mass ratio in groups of different masses at different redshifts? How much of the far-IR luminosity is contributed by galaxies in groups? Are there any environmental effects on the far-IR-to-optical colour? How does the far-IR properties depend on large-scale environments? Can we pose constrains on current galaxy formation models?

  10. New Dust Features Observed with ISO

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    This paper will review our current knowledge of circumstellar and interstellar dust with the emphasis on infrared spectroscopy with ISO. Objects embedded in or located behind molecular clouds show a wealth of absorption features due to simple molecules in an icy mantle. The SWS on ISO has provided us, for the first time, with complete 3-45 um spectra which allow an inventory of interstellar ice. Among the species identified are H2O, CH3OH, CH4, CO2, CO, and OCS. These species are formed through simple reactions among gas phase species accreted on grain surfaces, possibly modified by FUV photolysis and warm-up (ie., outgassing). The implications of the observations for our understanding of these processes will be reviewed. The IR spectra of many UV bright objects are dominated by strong emission features at 3.3, 6.2, 7.7, and 11.3 micrometers. These are generally attributed to Polycyclic Aromatic Hydrocarbons (PAHs) molecules. The observational evidence will be reviewed. The emphasis will be on recent data which show widespread spectral variations, particularly among protoplanetary and planetary nebulae, and their implications. One of the most exciting, recent discoveries on interstellar and circumstellar dust has been the detection of spectral structure due to crystalline olivine and enstatite in a variety of objects surrounded by circumstellar silicates. These spectra will be reviewed and circumstellar silicate mineralogy will be discussed.

  11. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  12. Deciphering IR Excess Observed by the Spitzer Space Telescope in Short Period Interacting Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Chun, Howard; Brinkworth, Carolyn; Ciardi, David; Hoard, Don; Howell, Steve; Stefaniak, Linda; Thomas, , Beth

    2006-03-01

    During the first year of the Spitzer Space Telescope Observing Program for Students and Teachers, our team observed a small sample of short orbital period interacting white dwarf binaries. Our scientific investigation was aimed at detection and characterization of the low mass, cool, brown dwarf-like mass donors in these systems. We used the Infrared Array Camera to obtain photometric observations of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 microns. In all our targets, we detected excess emission in the 3-8 micron region over that expected from a brown dwarf alone. One of the exciting discoveries we made with our IRAC observations is that the star EF Eri was found to be unexpectedly bright in the mid-IR (compared to its 2MASS magnitudes). This fact highlights an opportunity for us to observe EF Eri with the IRS as a follow-up proposal. EF Eri has a flux level of ~700 ?Jy at 8 microns. Thus, we are asking for time to obtain IRS data for only this star, our brightest source. We plan to obtain SL1 (7.4-14.5 microns) and SL2 (5.2-8.7 microns) spectroscopy only. We know the IRAC fluxes so our integration toies are well constrained and the spectral region covered by SL1, SL2 will yield sufficient S/N to differentiate between cool dust (rising BB like spectrum with PAH and other molecular features allowing us to determine dust size, temperature, and disk extent) and a T type dwarf showing characteristic spectral signatures and a falling Rayleigh-Jeans tail.

  13. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    NASA Technical Reports Server (NTRS)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  14. Evaluating uniformity of IR reference sources

    NASA Astrophysics Data System (ADS)

    Barrat, Catherine; Violleau, Sébastien

    2015-10-01

    Infrared reference sources such as blackbodies are used to calibrate and test IR sensors and cameras.. Applications requiring a high thermal uniformity over the emissive surface become more and more frequent compared to the past applications. Among these applications are non uniformity correction of infrared cameras focused at short distance and simultaneous calibration of a set of sensor facing a large area blackbody. Facing these demanding applications requires to accurately measuring thee thermal radiation of each point of the emissive surface of the reference source. The use of an infrared camera for this purpose turns out to be absolutely inefficient since the uniformity off response of this camera is usually worse than the uniformity of thee source to bee measured. Consequently, HGH has developed a testing bench for accurate measurement of uniformity of infrared sources based on a low noise radiometer mounted of translating stages and using an exclusive drift correction method. This bench delivers a reliable thermal map of any kind of infrared reference source.

  15. PAH emission from Herbig AeBe stars: Do hydrocarbons in proto-planetary disks have a unique aroma?

    NASA Astrophysics Data System (ADS)

    Keller, Luke; Sloan, Greg

    2008-03-01

    Over half of the intermediate-mass young stellar objects in the Galaxy (e.g. Herbig AeBe stars or HAeBe) have high-contrast emission in the mid-infrared spectral features of polycyclic aromatic hydrocarbons (PAHs) above the continuum produced by thermal emission from dust in the circumstellar disks. We have examined the PAH emission in detail for a sample of 19 HAeBe stars observed with the Spitzer IRS as part of the IRS Disks GTO program. Even with this relatively small sample, we have identified some trends that, should they survive in a larger sample of HAeBe stars, will allow us to infer large-scale disk geometry (both inner and outer) and the degree of photo-processing of organic molecular material in HAeBe disks. The bottom line of our work thus far is that HAeBe apparently have distinctive PAH spectra among the many other astronomical environments that are characterized by strong PAH emission. We therefore propose to apply our spectral analysis methods to an additional 57 HAeBe observed with the IRS and currently (or soon to be) available in the Spitzer archive. Our total sample of 76 HAeBe stars will allow closer scrutiny of the trends that we have identified in our empirical study and will also be the subject of a detailed disk modeling effort that will include the PAH emission.

  16. Titan's Aerosol and Condensation Cloud Properties in the Far-IR Between 2005 and 2010

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Samuelson, Robert

    2011-01-01

    Analyses of far-IR spectra between 20 and 560 cm(exp -1) (500 to 18 micron) recorded by the Cassini Composite Infrared Spectrometer (CIRS) yield the spectral dependence and the vertical distribution of Titan's photochemical aerosol and ice clouds. Titan's aerosol appears to be well mixed between the surface and an altitude of 300 km, with a spectral shape that does not change with latitude or time. The aerosol exhibits an extremely broad emission feature with a spectral peak at 140 cm(exp -1) (71 micron), which is not evident in laboratory simulated Titan aerosols (tholin). This low- energy aerosol emission feature may arise from low-energy molecules such as polycyclic aromatic hydrocarbons and/or nitrogenated aromatics. Unlike the vertically well-mixed aerosol, Titan's condensate clouds are located in highly restricted altitudes in the lower stratosphere, ranging between 60 and 100 km at low and moderate latitudes, to between 150 and 165 km at high northern latitudes during northern winter. Such clouds are located at altitudes where nitrile vapors are expected to condense and appear to be dominated by HCN and HC3N, which are the two most abundant nitriles in Titan's atmosphere. Associated with this ice cloud is a broad emission feature that spectrally peaks near 160 cm(exp -1) (62.5 micron). This ice composite appears to chemically change with altitude and latitude, probably as a result of differences in vapor abundance and condensation temperature, and the ice cloud appears to be global in extent. Both CIRS and the Huygens Descent Imager and Spectral Radiometer (DISR) show evidence of cloud layering in Titan's lower stratosphere. The 15 km difference in cloud altitude indicated by the two instruments suggests a difference in ice composition. CIRS also indicates a second ice cloud that exists at isolated latitudes and is consistent with hydrocarbon condensation above the tropopause. This cloud exhibits an emission feature that spectrally peaks near 80 cm(exp -1

  17. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  18. Laboratory technique for quantitative thermal emissivity measurements of geological samples

    NASA Astrophysics Data System (ADS)

    Mathew, George; Nair, Archana; Gundu Rao, T. K.; Pande, Kanchan

    2009-08-01

    Thermal infrared spectroscopy is a powerful technique for the compositional analysis of geological materials. The spectral feature in the mid-IR region is diagnostic of the mineralogy and spectral signatures of mixtures of minerals that add linearly, and therefore, can be used as an important tool to determine the mineralogy of rocks in the laboratory and remotely for planetary exploration. The greatest challenge in the emission measurement lies in the measurement of the weak thermal photons emitted from geological materials in a laboratory setup, and accurately records the temperature of the rock sample. The present work pertains to the details of a new Thermal Emission Spectrometer (TES) laboratory that has been developed under the ISRO Planetary Science and Exploration (PLANEX) programme, for emission related mineralogical investigations of planetary surfaces. The focus of the paper is on the acquisition and calibration technique for obtaining emissivity, and the deconvolution procedure to obtain the modal abundances of the thermal emission spectra in the range of 6-25 µm using Fourier Transform Infrared (FTIR) spectroscopy. The basic technique is adopted from the work of Ruff et al (1997). This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (<65 µm), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future Indian Moon mission programme (Chandrayan-II) to determine evidences of varied lithologies on the lunar surface.

  19. ALLFlight: detection of moving objects in IR and ladar images

    NASA Astrophysics Data System (ADS)

    Doehler, H.-U.; Peinecke, Niklas; Lueken, Thomas; Schmerwitz, Sven

    2013-05-01

    Supporting a helicopter pilot during landing and takeoff in degraded visual environment (DVE) is one of the challenges within DLR's project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites). Different types of sensors (TV, Infrared, mmW radar and laser radar) are mounted onto DLR's research helicopter FHS (flying helicopter simulator) for gathering different sensor data of the surrounding world. A high performance computer cluster architecture acquires and fuses all the information to get one single comprehensive description of the outside situation. While both TV and IR cameras deliver images with frame rates of 25 Hz or 30 Hz, Ladar and mmW radar provide georeferenced sensor data with only 2 Hz or even less. Therefore, it takes several seconds to detect or even track potential moving obstacle candidates in mmW or Ladar sequences. Especially if the helicopter is flying with higher speed, it is very important to minimize the detection time of obstacles in order to initiate a re-planning of the helicopter's mission timely. Applying feature extraction algorithms on IR images in combination with data fusion algorithms of extracted features and Ladar data can decrease the detection time appreciably. Based on real data from flight tests, the paper describes applied feature extraction methods for moving object detection, as well as data fusion techniques for combining features from TV/IR and Ladar data.

  20. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NASA Technical Reports Server (NTRS)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  1. IR Excesses of Four Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Bilikova, Jana; Chu, Y.; Gruendl, R. A.; Su, K. Y. L.

    2008-03-01

    An infrared excess of a star indicates the presence of an additional object that is cooler and dimmer and therefore undetectable at optical wavelengths, such as a low-mass companion, a planet, or a dust disk. Dust disks have been detected around post-AGB stars and a number of white dwarfs (WDs). An intermediate stage between these two, the central stars of planetary nebulae (CSPNs), have been neglected in the search for dust disks. PN researches focus more on the nebulosity than the CSPN, and any detected excess is usually assumed to originate from stellar ejecta without further investigation. The Helix Nebula's central star was the first one found to exhibit IR excess after careful subtraction of nebular emission, and the origin of this excess was found to be a dust continuum. To search for more cases of IR excess of CSPNs, we have surveyed 40 resolved PNe in the Spitzer archive. For the PNe with resolved central stars, we carried out photometric measurements, and combined them with supplemental optical and near-IR data to construct their spectral energy distributions (SEDs). We further modeled stellar emission using appropriate stellar temperature, distance, and de-reddened V or B magnitude. We find four CSPNs that exhibit IR excess - NGC 2346, NGC 2438, NGC 6804 and NGC 7139. The nature and the origin of the IR excess in these CSPNs is still unclear and needs to be verified spectroscopically. If it is indeed continuous in nature, it is likely due to the presence of a dust disk, which could be produced in a common-envelope binary evolution, or result from tidal breakup of asteroids or collisions among Kuiper-Belt-like objects.

  2. Detection of spectral variability of the optical component of the IR source IRAS 20508+2011

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Panchuk, V. E.; Tavolzhanskaya, N. S.; Zhao, G.

    2006-03-01

    Our high-resolution spectral observations have revealed variability of the optical spectrum of the cool star identified with the IR source IRAS 20508+2011. We measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths 4300 7930 Å, along with the corresponding radial velocities. Over the four years of our observations, the radial velocity derived from photospheric absorption lines varied in the interval V r⊙ = 15 30 km/s. In the same period, the Hα profile varied from being an intense bell-shaped emission line with a small amount of core absorption to displaying two-peaked emission with a central absorption feature below the continuum level. At all but one epoch, the positions of the metallic photospheric lines were systematically shifted relative to the Hα emission: ΔV r = V r(met) - V r(Hα, emis) ≈ -23 km/s. The Na D doublet displayed a complex profile with broad (half-width ≈ 120 km/s) emission and photospheric absorption, as well as an interstellar component. We used model atmospheres to determine the physical parameters and chemical composition of the star’s atmosphere: T eff = 4800 K, log g = 1.5, ξt = 4.0 km/s. The metallicity of the star differs little from the solar value: [Fe/H]⊙ = -0.36. We detected overabundances of oxygen [O/Fe]⊙ = +1.79 (with the ratio [C/O] ≈ -0.9), and α-process elements, as well as a deficit of heavy metals. The entire set of the star’s parameters suggests that the optical component of IRAS 20508+2011 is an “O-rich” AGB star with luminosity M v ≈ -3m that is close to its evolutionary transition to the post-AGB stage.

  3. [Luminescence characteristics of PVK doped with Ir(ppy)3].

    PubMed

    Yang, Shao-Peng; Zhang, Xue-Feng; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Yang, Ya-Ru; Li, Qing; Pang, Xue-Xia

    2008-03-01

    With the increasing development of organic light emitting devices (OLED), interest in the mechanisms of charge carrier photogeneration, separation, transport and recombination continues to grow. Electromodulation of photoluminescence has been used as an efficient probe to investigate the evolution of primary excitation in all electric field. This method can provide useful information on carrier photogeneration, the formation and dissociation of excitons, energy transfer, and exciton recombination in the presence of electric field. The operation of OLED brings electrons and holes from opposite electrodes and generates singlet and triplet excitons. However, triplet excitons are wasted because a radiative transition from triplets is spin-forbidden. Spin statistics predicts that singlet-to-triplet ratio is 1 : 3 in organic semiconductors. One way to harvest light from triplet excitons is to use phosphorescent materials. These materials incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling. As a result, a spin forbidden transition may occur allowing an enhanced triplet emission. Among phosphorescent materials, Ir(ppy)3 has attracted much attention because of its short triplet lifetime to minimize the triplet-triplet annihilation. High quantum efficiencies have been obtained by doping organic molecules and in polymers with Ir(ppy)3. In the present paper, the photoluminescence and electroluminescence spectra of Ir(ppy)3 doped PVK film are measured at room temperature. The device structure is ITO/PEDOT : PSS/PVK Ir(ppy)3/BCP/Alq3/Al. The results show that the luminescence capabilities of devices are different when the concentration of Ir(ppy)3 is different. When the concentration of Ir(ppy)3 is suitable, the luminescence of PVK is lower but that of Ir(ppy)3 is stronger relatively, indicating that the energy transfer from the host materials to the guest materials is sufficient. It is concluded that the device with 5% of Ir(ppy)3

  4. Non-LTE Modeling of Infrared Molecular Line Emission From Protoplanetary Disks: Evidence for Dust Settling

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Watson, D. M.; Harrold, S. T.

    2010-01-01

    Spitzer IRS spectra of disks around T Tauri stars show emission in the 13.9 and 13.7 um Q branches of HCN and C2H2 (Carr & Najita, 2008). In order to explain these emission features, we made a non-LTE radiative transfer and excitation model of molecular gas and dust in disks. The model assumes the molecules are in rotational LTE, but it includes both radiative and collisional excitation of the vibrational states. We found that the strengths of the emission features are most sensitive to dust settling and/or grain growth, which moves the mid-IR dust photosphere to a larger gas density and column density, where vibrational states can be efficiently collisionally excited. Good fits were obtained by assuming that the dust scale height is 1/2 of the hydrostatic equilibrium gas scale height. To test this explanation, we compared the observed emission strengths with SED indices which are thought to be indicators of dust settling. A good correlation was found, supporting our model and the interpretation of the SEDs. This work was supported by NSF grant AST-0607312.

  5. Dust emission in simulated dwarf galaxies using GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Santos-Santos, I. M.; Domínguez-Tenreiro, R.; Granato, G. L.; Brook, C. B.; Obreja, A.

    2017-03-01

    Recent Herschel observations of dwarf galaxies have shown a wide diversity in the shapes of their IR-submm spectral energy distributions as compared to more massive galaxies, presenting features that cannot be explained with the current models. In order to understand the physics driving these differences, we have computed the emission of a sample of simulated dwarf galaxies using the radiative transfer code GRASIL-3D. This code separately treats the radiative transfer in dust grains from molecular clouds and cirri. The simulated galaxies have masses ranging from 10^6-10^9 M_⊙ and have evolved within a Local Group environment by using CLUES initial conditions. We show that their IR band luminosities are in agreement with observations, with their SEDs reproducing naturally the particular spectral features observed. We conclude that the GRASIL-3D two-component model gives a physical interpretation to the emission of dwarf galaxies, with molecular clouds (cirri) as the warm (cold) dust components needed to recover observational data.

  6. High temperature Ir segregation in Ir-B ceramics: Effect of oxygen presence on stability of IrB2 and other Ir-B phases

    DOE PAGES

    Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; ...

    2015-05-13

    The formation of IrB2, IrB1.35, IrB1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB2 type IrB2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Ir segregation along disordered domains ofmore » the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less

  7. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  8. Using Graded Relevance Assessments in IR Evaluation.

    ERIC Educational Resources Information Center

    Kekalalainen, Jaana; Jarvelin, Kalervo

    2002-01-01

    Proposes evaluation methods based on the use of nondichotomous relevance judgements in information retrieval (IR) experiments. Argues that evaluation methods should credit IR methods for their ability to retrieve highly relevant documents. This is desirable from the user point of view in modern large IR environments. (Author/AEF)

  9. IR-780 Dye for Near-Infrared Fluorescence Imaging in Prostate Cancer

    PubMed Central

    Yi, Xiaomin; Yan, Fei; Wang, Fuli; Qin, Weijun; Wu, Guojun; Yang, Xiaojian; Shao, Chen; Chung, Leland W.K.; Yuan, Jianlin

    2015-01-01

    Background The aim of this study was to investigate near-infrared fluorescence (NIRF) imaging as a novel imaging modality that allows for early detection of cancer and real-time monitoring to acquire related information. IR-780 iodide, a lipophilic dye, accumulates selectively in breast cancer cells and drug-resistant human lung cancer cells, with a peak emission at 780 nm that can be easily detected by the NIRF imaging system. The application of IR-780 for prostate cancer imaging was thoroughly investigated to further expand its clinical value. Material/Methods The impact of IR-780 on the survival of prostate cancer cells PC-3 and LNCaP as well as normal prostate epithelial cells RWPE-1 was determined. Duration of IR-780 dye staining was optimized in PC-3 cells. The involvement of specific OATP1B3 inhibitor in the selective accumulation of IR-780 was investigated. IR-780 for prostate cancer imaging was carried out in athymic nude mouse models and, acute toxicity of IR-780 was evaluated. Results IR-780 incubation resulted in a dose-dependent inhibition to cell proliferation. Mean fluorescence intensity of prostate cancer cells peaked at 20-min IR-780 incubation. Specific uptake of IR-780 dye in prostate cancer cells was mainly through the function of OATP1B3. We also demonstrated that NIRF dye effectively identified the subcutaneous prostate cancer xenografts, subsequently confirmed by histological examination. There was no significant impact on the physical activity, weight, and tissue histology of BABL/C mice with 10-fold imaging dose of 1-month IR-780 dye administration. Conclusions NIRF imaging using IR-780 dye is a feasible and practicable method for prostate cancer detection, with potential tumor-killing ability, although more investigations are needed before clinical translation. PMID:25686161

  10. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range

    PubMed Central

    Ghosh, Batu; Shirahata, Naoto

    2014-01-01

    This review describes a series of representative synthesis processes, which have been developed in the last two decades to prepare silicon quantum dots (QDs). The methods include both top-down and bottom-up approaches, and their methodological advantages and disadvantages are presented. Considerable efforts in surface functionalization of QDs have categorized it into (i) a two-step process and (ii) in situ surface derivatization. Photophysical properties of QDs are summarized to highlight the continuous tuning of photoluminescence color from the near-UV through visible to the near-IR range. The emission features strongly depend on the silicon nanostructures including QD surface configurations. Possible mechanisms of photoluminescence have been summarized to ascertain the future challenges toward industrial use of silicon-based light emitters. PMID:27877634

  11. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range.

    PubMed

    Ghosh, Batu; Shirahata, Naoto

    2014-02-01

    This review describes a series of representative synthesis processes, which have been developed in the last two decades to prepare silicon quantum dots (QDs). The methods include both top-down and bottom-up approaches, and their methodological advantages and disadvantages are presented. Considerable efforts in surface functionalization of QDs have categorized it into (i) a two-step process and (ii) in situ surface derivatization. Photophysical properties of QDs are summarized to highlight the continuous tuning of photoluminescence color from the near-UV through visible to the near-IR range. The emission features strongly depend on the silicon nanostructures including QD surface configurations. Possible mechanisms of photoluminescence have been summarized to ascertain the future challenges toward industrial use of silicon-based light emitters.

  12. A spectrophotometric study of IR Gem at outburst and quiescence

    NASA Technical Reports Server (NTRS)

    Feinswog, Laurie; Szkody, Paula; Garnavich, Peter

    1988-01-01

    Optical spectra with 2.5-A resolution obtained throughout the orbit of IR Gem during a five-day sequence beginning at an outburst state and ending at quiescence are compared with B magnitude and IUE spectra obtained throughout other quiescent-state orbits. No obvious second component is found in the emission lines. In contrast to previous results, little high-excitation He II 4686-A emission is noted, and no variation of the equivalent widths of the Balmer emission is found over the orbital cycle. The results suggest that large changes in the excitation level and in the modulation from a heated zone can take place during different quiescent states, possibly due to the interoutburst phase.

  13. Low-cost uncooled IR sensor for battlefield surveillance

    NASA Astrophysics Data System (ADS)

    Gallo, Michael A.; Willits, David S.; Lubke, Roger A.; Thiede, Edwin C.

    1993-11-01

    Operation Desert Storm has identified the need for improved battlefield surveillance sensors to see and assess enemy threats under all battlefield conditions, including darkness. Current imaging sensors usually employ visible light cameras, Low Light Level (L3), Image Intensified (I2), or conventional Infrared (IR) cameras to detect and observe hostile forces. However, these sensors have serious deficiencies. The visible TV camera requires well lighted areas and cannot image in darkness. The L3 TV cameras have a difficult time operating in bright sunlight or in total darkness. Image intensifiers require some ambient light and cannot penetrate camouflage or battlefield obscurants. Conventional FLIRS are costly, require an initial cool down period, and need additional power for cooling pump or periodic gas replenishment for long-term operation. Uncooled Focal Plane Array (FPA) LWIR sensors offer advantages over other imaging sensors. Uncooled IR sensors operating from 8 to 12 microns can easily operate in bright sunlight, or total darkness. They use the naturally radiated IR scene energy to create high resolution images and are not dependent on artificial light sources. Their long wave-length of operation also provides better weather penetration. Enemy vehicles and soldiers can easily camouflage themselves in the visible, but cannot hide their thermal emissions from the IR sensor.

  14. Thermal Behavior of Unusual Local-Scale Features on Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, Federico; Capria, Maria Teresa; DeSanctis, Maria Cristina; Palomba, Ernesto; Capaccioni, Fabrizio; Combe, Jean-Philippe; Titus, Timothy; Mittlefehldt, David W.; Li, Jian-Yang; Russell, Christopher T.

    2012-01-01

    On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes are used to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were re-observed by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low-Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In particular, bright and dark surface materials on Vesta, and pitted materials, are currently being investigated by the Dawn team. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. To calculate surface temperatures, we applied a Bayesian approach to nonlinear inversion based on the Kirchhoff law and the Planck function, and whose results were compared with those provided by the application of alternative methods. Data from the IR channel of VIR show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K for similar local solar times. However, pitted

  15. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  16. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  17. Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions

    SciTech Connect

    Ohashi, Nagayoshi; Saigo, Kazuya; Aso, Yusuke; Koyamatsu, Shin; Aikawa, Yuri; Machida, Masahiro N.; Saito, Masao; Takahashi, Sanemichi Z.; Takakuwa, Shigehisa; Yen, Hsi-Wei; Tomida, Kengo; Tomisaka, Kohji

    2014-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) cycle 0 observations of the C{sup 18}O (J = 2-1), SO (J{sub N} = 6{sub 5}-5{sub 4}), and the 1.3 mm dust continuum toward L1527 IRS, a class 0 solar-type protostar surrounded by an infalling and rotating envelope. C{sup 18}O emission shows strong redshifted absorption against the bright continuum emission associated with L1527 IRS, strongly suggesting infall motions in the C{sup 18}O envelope. The C{sup 18}O envelope also rotates with a velocity mostly proportional to r {sup –1}, where r is the radius, whereas the rotation profile at the innermost radius (∼54 AU) may be shallower than r {sup –1}, suggestive of formation of a Keplerian disk around the central protostar of ∼0.3 M {sub ☉} in dynamical mass. SO emission arising from the inner part of the C{sup 18}O envelope also shows rotation in the same direction as the C{sup 18}O envelope. The rotation is, however, rigid-body-like, which is very different from the differential rotation shown by C{sup 18}O. In order to explain the line profiles and the position-velocity (PV) diagrams of C{sup 18}O and SO observed, simple models composed of an infalling envelope surrounding a Keplerian disk of 54 AU in radius orbiting a star of 0.3 M {sub ☉} are examined. It is found that in order to reproduce characteristic features of the observed line profiles and PV diagrams, the infall velocity in the model has to be smaller than the free-fall velocity yielded by a star of 0.3 M {sub ☉}. Possible reasons for the reduced infall velocities are discussed.

  18. Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications.

    PubMed

    Wan, Qing; Liu, Meiying; Mao, Liucheng; Jiang, Ruming; Xu, Dazhuang; Huang, Hongye; Dai, Yanfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    Self-assembly of amphiphilic luminescent copolymers is a general route to fabricate fluorescent polymeric microparticles (FPMs). In this work, the FPMs with aggregation-induced emission (AIE) feature were fabricated via the combination of the chain transfer free radical polymerization and "one-pot" multicomponent reaction, which conjugated the aldehyde-containing AIE active dye AIE (CHO-An-CHO) and amino-terminated hydrophilic polymer (ATPPEGMA) using mercaptoacetic acid (MTA) as the "lock" molecule. The structure, chemical compositions, optical properties as well as biological properties of the PPEGMA-An-PPEGMA FPMs were characterized and investigated by means of a series of techniques and experiments in detail. We demonstrated the final copolymers showed amphiphilic properties, strong yellow fluorescence and high water dispersibility. Biological evaluation suggested that PPEGMA-An-PPEGMA FPMs possess low cytotoxicity and can be used for cell imaging. More importantly, many other AIE active FPMs are expected to be fabricated using the similar strategy because of the good substrate and monomer applicability of the multicomponent reaction and chain transfer living radical polymerization. Therefore, we could conclude that the strategy described in this work should be of great interest for fabrication of multifunctional AIE active nanoprobes for biomedical applications.

  19. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  20. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  1. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification.

    PubMed

    Yang, Liyang; Han, Dae Ho; Lee, Bo-Mi; Hur, Jin

    2015-05-01

    The quantity and spectroscopic features of dissolved organic matter (DOM) in treated wastewaters were studied for up to 57 facilities across 12 industrial categories to evaluate the potential influences of the effluents on downstream ecosystems and the feasibility of spectroscopic techniques in discriminating pollution sources. The average dissolved organic carbon (DOC) concentration was 3.30±0.70-73.4±14.0 mg L(-1) for each category, high enough to pollute downstream waterbodies. The average specific UV absorbance at 254 nm (SUVA) for each category spanned a broad range between 0.79±0.24 and 5.35±1.41 L(mg m)(-1), suggesting a variable aromaticity of DOM. Fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC) identified four humic-like and two protein-like components. The EEMs were grouped into seven clusters, five of which were dominated by a single PARAFAC component in each cluster. Fourier transform infrared (FT-IR) spectroscopy revealed notable variations in relative intensities of several characteristic absorbance bands among different wastewaters. The large variability in SUVA, PARAFAC and FT-IR features indicated that the chemical composition of DOM greatly differ among industrial wastewaters, and further implied variable biogeochemical reactivity in downstream waterbodies. The results also suggested the potential of DOM features in discriminating different wastewaters, although the variations within each industrial category were also significant.

  2. The Venus Emissivity Mapper

    NASA Astrophysics Data System (ADS)

    Helbert, Joern; Marcq, Emmanuel; Widemann, Thomas; Mueller, Nils; Kappel, David; Tsang, Constantine; Maturilli, Alessandro; Ferrari, Sabrina; D'Amore, Mario; Dyar, Melinda; Smrekar, Suzanne

    2016-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over the entire visible spectral range. Fortunately, Venus' atmospheric gases are largely transparent in narrow spectral windows near 1 mm. Ground observers were the first to successfully use these windows, followed by spacecraft observations during the flyby of the Galileo mission on its way to Jupiter and most recently from Venus orbit by ESA's Venus Express with the VMC and VIRTIS instruments. Analyses of VIRTIS measurements have successfully demonstrated that surface information can be extracted from these windows, but the design of the instrument limited its use for more in-depth surface investigations.Based on experience gained from using VIRTIS to observe the surface of Venus and new high temperature laboratory experiments currently performed at the Planetary Spectroscopy Laboratory of DLR, we have designed the multi-spectral Venus Emissivity Mapper (VEM). Observations from VIRTIS have revealed surface emissivity variations correlated with geological features, but existing data sets contain only three spectral channels. VEM is optimized to map the surface composition and texture, and to search for active volcanism using the narrow atmospheric windows, building on lessons from prior instrumentation and methodology. It offers an opportunity to gain important information about surface mineralogy and texture by virtue of having six different channels for surface mapping.VEM is focused mainly on observing the surface, mapping in all near-IR atmospheric windows using filters with spectral characteristics optimized for the wavelengths and widths of those windows. It also observes bands necessary for correcting atmospheric effects; these bands also provide valuable scientific data on composition as well as altitude and size distribution of the cloud particles, and on H2O vapor abundance variations in the lowest 15 km of the atmosphere.In combination with a

  3. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  4. Design and fabrication of payload for OH emission experiment onboard Spacelab - A case study

    NASA Astrophysics Data System (ADS)

    Muralikrishna, P.

    1982-11-01

    Design features of the ISRO-CNES experiment for photographing near-IR emissions in the earth's mesosphere during the first Spacelab mission are described. The instrument will be used to photograph waves in the mesosphere at around 85 km, targetting on the emissions from OH clouds in a region 10-15 km thick. The instrument contains a high gain image intensifier, a fast lens, a filter to form an image of the OH emission layer, and a filter for lower wavelength cutoff. Photocells will activate a mechanical shutter in the event of sunlight or lunar reflected light raising the illumination to dangerous levels. The instrument will be housed and mounted on a pallet to obtain a oblique view of the earth when the Orbiter is in an upside down configuration. The casings are made of an aluminum alloy, stainless steel, and 30 percent glass filled teflon.

  5. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  6. Nearby early-type galaxies with ionized gas. VI. The Spitzer-IRS view. Basic data set analysis and empirical spectral classification

    NASA Astrophysics Data System (ADS)

    Panuzzo, P.; Rampazzo, R.; Bressan, A.; Vega, O.; Annibali, F.; Buson, L. M.; Clemens, M. S.; Zeilinger, W. W.

    2011-04-01

    Context. A large fraction of early-type galaxies (ETGs) shows emission lines in their optical spectra, mostly with LINER characteristics. Despite the number of studies, the nature of the ionization mechanisms is still debated. Many ETGs also show several signs of rejuvenation episodes. Aims: We aim to investigate the ionization mechanisms and the physical processes of a sample of ETGs using mid-infrared spectra. Methods: We present here low resolution Spitzer-IRS spectra of 40 ETGs, 18 of which from our proposed Cycle 3 observations, selected from a sample of 65 ETGs showing emission lines in their optical spectra. We homogeneously extract the mid-infrared (MIR) spectra, and after the proper subtraction of a "passive" ETG template, we derive the intensity of the ionic and molecular lines and of the polycyclic aromatic hydrocarbon (PAH) emission features. We use MIR diagnostic diagrams to investigate the powering mechanisms of the ionized gas. Results: The mid-infrared spectra of early-type galaxies show a variety of spectral characteristics. We empirically sub-divide the sample into five classes of spectra with common characteristics. Class-0, accounting for 20% of the sample, are purely passive ETGs with neither emission lines nor PAH features. Class-1 show emission lines but no PAH features, and account for 17.5% of the sample. Class-2, in which 50% of the ETGs are found, as well as having emission lines, show PAH features with unusual ratios, e.g. 7.7 μm/11.3 μm ≤ 2.3. Class-3 objects (7.5% of the sample) have emission lines and PAH features with ratios typical of star-forming galaxies. Class-4, containing only 5% of the ETGs, is dominated by a hot dust continuum. The diagnostic diagram [Ne iii]15.55 μm/[Ne ii]12.8 μm vs. [S iii]33.48 μm/[Si ii]34.82 μm, is used to investigate the different mechanisms ionizing the gas. According to the above diagram most of our ETGs contain gas ionized via either AGN-like or shock phenomena, or both. Conclusions: Most of

  7. Disintegration rate measurement of a 192Ir solution.

    PubMed

    Fonseca, K A; Koskinas, M F; Dias, M S

    2001-01-01

    The disintegration rate of 192Ir has been measured using the 4pibeta-gamma coincidence technique. This radionuclide decays by electron capture (EC) and beta-emission. Since the EC contribution is low (4.5%), it has been corrected using decay scheme data taken from the literature. This measurement has been performed in collaboration with the Laboratório Nacional de Metrologia das Radiações Ionizantes (IRDDM), in Rio de Janeiro. The results, which were obtained independently and employed different techniques, are compared with the Systéme International Reference (SIR) maintained at the Bureau International des Poids et Mesures.

  8. DDA Modeling for the Mid-IR Absorption of Irregularly Shaped Crystalline Forsterite Grains

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean; Wooden, D. H.; Kelley, M. S.; Harker, D. E.; Woodward, C. E.; Murphy, J.

    2010-10-01

    An analysis of the Spitzer IRS spectra of the Deep Impact ejecta of comet 9P/Tempel 1 (Wooden et al. 2010, 42nd DPS Meeting) in conjunction with the dynamics of the ejecta grains (Kelley et al. 2010, 42nd DPS Meeting) strongly suggests that ecliptic comets have comae dominated by large (> 10 - 20 micron in radii) porous grains with Mg-rich crystal inclusions. In fact, Kelley et al. (2010) conclude that many ecliptic comets may be dominated by such grains with a high crystalline fraction, approximately 40% by mass, despite their generally weak silicate emission feature. To date, no model for the optical properties in the mid-IR of multi-mineralic large porous grains with silicate crystal inclusions, has been performed. We have initiated a program to compute the absorption and scattering efficiencies for these grains. Presented here are the 3 - 40 micron absorption efficiencies for models of sub-micron sized crystalline forsterite grains of irregular shape. We use the Discrete Dipole Approximation (DDA) to create discrete targets of forsterite that can be included in large porous aggregates. Computations are performed on the NAS Pleiades supercomputer. Our calculated absorption efficiencies for individual grains of forsterite are in agreement with laboratory measurements (Tamanai et al. 2006; Koike et al. 2003) and the continuous distribution of ellipsoids (CDE) method by Harker et al. (2007). We find for discrete grains that grain shape has a strong effect on the peak location of a crystalline resonance and that mimicking the physical properties of forsterite is important. Also presented are the absorption efficiencies for simple multi-component aggregates and for collections of forsterite crystals of different size and shape to replicate laboratory samples. This research is supported by the NASA GSRP Program.

  9. Applications of IR Thermography in Capturing Thermal Transients and Other High-Speed Thermal Events

    SciTech Connect

    Dinwiddie, R.B.; Graham, S.; Wang, H.

    1999-06-07

    The high-speed, snap-shot mode, and the external triggering capability of an IR camera allows thermal transients to be captured. These advanced features were used to capture thermal transients during electrical breakdown of ZnO varistors and to freeze the rotation of an automobile disk brake in order to study thermoplastic instability in the braking system. The IR camera also showed the thermoplastic effect during cyclic fatigue testing of a glass matrix composite.

  10. HST WFC3/IR Calibration Updates

    NASA Astrophysics Data System (ADS)

    Durbin, Meredith; Brammer, Gabriel; Long, Knox S.; Pirzkal, Norbert; Ryan, Russell E.; McCullough, Peter R.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; HST WFC3 Team

    2016-01-01

    We report on several improvements to the characterization, monitoring, and calibration of the HST WFC3/IR detector. The detector performance has remained overall stable since its installation during HST Servicing Mission 4 in 2009. We present an updated persistence model that takes into account effects of exposure time and spatial variations in persistence across the detector, new grism wavelength solutions and master sky images, and a new SPARS sample sequence. We also discuss the stability of the IR gain, the time evolution and photometric properties of IR "snowballs," and the effect of IR "blobs" on point-source photometry.

  11. Infrared emission from interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-IR absorption and Raman spectra of polycyclic aromatic hydrocarbons (PAHs) and the mechanisms determining them are reviewed, and the implications for observations of similar emission spectra in interstellar clouds are considered. Topics addressed include the relationship between PAHs and amorphous C, the vibrational spectroscopy of PAHs, the molecular emission process, molecular anharmonicity, and the vibrational quasi-continuum. Extensive graphs, diagrams, and sample spectra are provided, and the interstellar emission bands are attributed to PAHs with 20-30 C atoms on the basis of the observed 3.3/3.4-micron intensity ratios.

  12. k - dependent Jeff=1/2 band splitting and the electron-hole asymmetry in SrIrO3

    NASA Astrophysics Data System (ADS)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The Ir ion in Srn+1 IrnO 3 n + 1 series of compounds is octahedrally coordinated. However, unlike Sr2IrO4 (n=1) and Sr3Ir2O7 (n=2) which are insulating due to spin-orbit induced Jeff splitting of the t2g bands, SrIrO3 (n= ∞) is conducting. To explore whether such a splitting is relevant in SrIrO3, and if so to what extent, we investigate the electronic structure of orthorhombic SrIrO3 using density functional theory. Calculations reveal that the crystal field split Ir t2 g bands in SrIrO3 are indeed split into Jeff=3/2 and and Jeff=1/2 states. However, the splitting is found to be strongly k - dependent with its magnitude determined by the Ir - O orbital hybridization. Besides, we find that the spin-orbit induced pseudo-gap, into which the Fermi energy is positioned, is composed of both light electron-like and heavy hole-like bands. These features in the band structure of SrIrO3 suggest that variations in the carrier concentration control the electronic transport properties in SrIrO3, which is consistent with the experiments.

  13. Atmospheric Entry Experiments at IRS

    NASA Astrophysics Data System (ADS)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  14. Small-body Colors From the UV to the IR: Bringing Together all Space and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Penteado, Paulo F.; Trilling, D.; Fuentes, C. I.

    2013-10-01

    The main current asteroid taxonomical systems are defined from ground-based observations, limited to 3100-10600 Å (Tholen, Zellner et al. (1985)), and 4400-9200 Å (SMASS, Bus and Binzel (2002))), which do not include several useful regions, such as: 1) the well-known spectral features in the near-IR (20000-50000 Å) that differentiate between common asteroid and meteorite minerals and indicate the presence of volatiles; 2) the far IR, which probes the bodies' emission, thermal inertia and albedo; 3) the UV, where the degree of darkening probes the surface grain properties and space weathering. The few existing studies using multiple instruments from the UV to the IR (ground, Earth-orbit and flyby observations) have been limited to targeted observations of special-interest bodies. We aim to obtain UV to IR colors of a large sample of bodies, to study how they are distributed and how these colors differentiate among bodies with similar spectra on the standard taxonomies. The data are being gathered from archives of multiple space- and ground-based instruments: GALEX, HST, SDSS, 2MASS, Spitzer, WISE and Herschel. Such a combined use of multiple archived observations is commonly done for fixed (non-Solar System) astronomical targets, which can be easily found by their RA and Dec. To obtain such data for Solar System bodies, we are building a database of all archive observations of each known body. We are using their orbits, integrated into the past, to build an index, which will be used to determine whether an observation contains a known body. We present a preliminary cluster analysis, using a small sample of objects identified in multiple instruments, as well as the magnitude distributions on different colors, for a larger sample of objects. In the future we will expand the database to include more observations (more instruments and more bodies), and the populations we identify will be compared to spacecraft UV to IR spectra of those few bodies observed in close

  15. Excitation transfer mechanism along the visible to the Near-IR in rhodamine J-heteroaggregates.

    PubMed

    Sánchez-Valencia, Juan R; Toudert, Johann; González-García, Lola; González-Elipe, Agustín R; Barranco, Angel

    2010-06-28

    An enhanced fluorescent emission of the dye Rhodamine 800 in the Near-IR is observed in the presence of other xanthene dye molecules (RhX) when they are hosted in different matrices due to the formation of a new type of fluorescent J-heteroaggregates. This enhanced emission of the acceptor occurs despite the low spectral overlapping and the low quantum yield of Rh800.

  16. What Powers the 12 μm Luminosities in AGNs: Spitzer/IRS Spectroscopic Study of the 12 μm Seyfert Sample

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Huang, J.; Charmandaris, V.

    2009-10-01

    We present a mid-IR study of the 12 μm Seyfert sample, using 5-35 μm low-resolution spectroscopy from Spitzer/IRS. Sources in this sample display a wide variety of spectral shapes. We perform an analysis of the continuum emission, the strength of the Polycyclic Aromatic Hydrocarbon (PAH) emission, as well as fine-structure lines, in order to study the mid-IR properties of the local Seyfert galaxies. We find that the equivalent widths of PAHs decrease with increasing dust temperature. We also propose a method to estimate the AGN contribution to the integrated 12 μm emission of the galaxy.

  17. Spatial Resolution of the Silicate Feature in T Tauri Binary Stars

    NASA Astrophysics Data System (ADS)

    Van Cleve, J. E.; Hayward, T. L.; Houck, J. R.; Miles, J.

    1994-05-01

    We took low resolution spectra from 7.9 to 13.0 microns of the T Tauri binary systems T Tau and Haro 6-10, as well as images of these systems and UY Aur, FV Tau, and FX Tau at 7.9 or 8.8, 10.3, and 12.5 microns, using the Cornell SpectroCam-10 imaging spectrometer on the 5-m Hale telescope. These binaries resemble planetary systems in that the projected separation of the components (100 to 180 AU) is roughly the diameter of our Solar System. For the images, the observed flux distribution along the axis of the binary was deconvolved by the flux distribution perpendicular to that axis. The resulting visibility function was then fitted to a two point-source model to obtain the relative flux of the components. The spectra were deconvolved by calibrator star spectra, and the model was fit to each wavelength of the visibility function spectrum to obtain the relative flux. Images and spectra agree and show that in binaries which contain an infrared companion -- such as T Tau and Haro 6-10 -- the IR companion has a deep silicate absorption feature, while the other component is featureless or shows a weak emission feature. In Haro 6-10, for example, the optical depth of the silicate absorption in the IR companion (Haro 6-10 N) is ~ 1 near its maximum at 9.7 microns. These results suggest that the components (including dust shells or disks around each star) of an IR companion system are not both coplanar and coeval. For a giant planet and a single star, however, we'd expect a circumplanetary disk to lie in the plane of the circumstellar disk, and be about the same age. At least for the IR companion systems, the analogy of binary stars and planetary systems is not a good one in this respect.

  18. SPITZER DETECTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SILICATE FEATURES IN POST-AGB STARS AND YOUNG PLANETARY NEBULAE

    SciTech Connect

    Cerrigone, Luciano; Hora, Joseph L.; Umana, Grazia; Trigilio, Corrado

    2009-09-20

    We have observed a small sample of hot post-asymptotic giant branch (AGB) stars with the Infrared Array Camera (IRAC) and the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The stars were selected from the literature on the basis of their far-infrared (IR) excess (i.e., post-AGB candidates) and B spectral type (i.e., close to the ionization of the envelope). The combination of our IRAC observations with Two Micron All Sky Survey and IRAS catalog data, along with previous radio observations in the cm range (where available) allowed us to model the spectral energy distributions of our targets and find that in almost all of them at least two shells of dust at different temperatures must be present, the hot dust component ranging up to 10{sup 3} K. In several targets, grains larger than 1 {mu}m are needed to match the far-IR data points. In particular, in IRAS 17423-1755 grains up to 100 {mu}m must be introduced to match the emission in the millimeter range. We obtained IRS spectra to identify the chemistry of the envelopes and found that more than one-third of the sources in our sample have mixed chemistry, showing both mid-IR bands attributed to polycyclic aromatic hydrocarbons (PAHs) and silicate features. The analysis of the PAH features indicates that these molecules are located in the outflows, far away from the central stars. We consider the larger than expected percentage of mixed-chemistry targets as a selection bias toward stars with a disk or torus around them. Our results strengthen the current picture of mixed chemistry being due to the spatial segregation of different dust populations in the envelopes.

  19. Tyrosine hydroxylase immunoreactive neurons in the forebrain of the trout: organization, cellular features and innervation.

    PubMed

    Anadón, Ramón; Rodríguez-Moldes, Isabel; González, Agustín

    We studied the segmental distribution and cellular features of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the forebrain of trout. Large differences in cell size, general morphology, and complexity of cell processes were observed between TH-ir nuclei of different regions, and a new type of complex spiny TH-ir neurons in the ventral telencephalon is described for the first time. The distribution of TH-ir fibers was also analyzed and discussed.

  20. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila.

    PubMed

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan Dt; Garrity, Paul A

    2016-04-29

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.

  1. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    PubMed Central

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan DT; Garrity, Paul A

    2016-01-01

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI: http://dx.doi.org/10.7554/eLife.13254.001 PMID:27126188

  2. Gold-black as IR Absorber and Solar Cell Enhancer

    SciTech Connect

    Peale, Robert E.; Cleary, Justin W.; Ishimaru, Manabu; Smith, C. W.; Baillie, K.; Colwell, J. E.; Beck, Kenneth M.; Joly, Alan G.; Edwards, Oliver; Fredricksen, C. J.

    2010-03-01

    Infrared absorbance and visible/near-IR excited plasmon resonances are investigated in gold-black, a porous nano-structured conducting film. A two level full factorial optimization study with evaporation-chamber pressure, boat current, substrate temperature, and degree of polymer infusion (for hardening) was performed. Polymer infusion was found generally to reduce absorbance in the long wave IR but has little effect at THz wavelengths, although for samples with the highest absorbance there is a slight improvement in the absorbance figure of merit (FOM) in both wavelength regimes. The characteristic length scales of the structured films vary considerably as a function of deposition parameters, but the IR FOM is found to be only weakly correlated with these distributions, which are determined by wavelet analysis of scanning electron micrographs images. Initial investigations of gold-black by photoelectron emission microscopy (PEEM) reveal plasmon resonances, which have potential to enhance the efficiency of thin film solar cells. For films with different characteristic length scales, the plasmon resonances appear in portions of the film with similar length scales.

  3. Blackbody radiation sources for the IR spectral range

    SciTech Connect

    Ogarev, S. A.; Morozova, S. P.; Katysheva, A. A.; Lisiansky, B. E.; Samoylov, M. L.

    2013-09-11

    Metrological radiometric facilities for optoelectronic instruments calibration utilize in terms of standards as radiation detectors in a form of cryogenic radiometers (CR), so as radiation sources. However in practice, there are no CR working within IR spectral range. An alternative way of radiometric calibration in middle and far IR ranges is to develop a parametric series of standard radiation sources - blackbody (BB) models. The paper describes some of BBs developed at VNIIOFI for the last time [1] from cryogenic (80 K to 200 K), to low (about 200 K to 400 K) and medium (400 K to 700 K) temperature regions for calibration of the IR instruments under cryogenic-vacuum conditions. These BBs are presented by models of both types: variable-temperature and based on fixed points of Ga or In. BBs are characterized with high temperature uniformity and stability. Copper and aluminum alloys are used as the radiation cavity materials. The required value of emissivity ε{sub λ} is achieved by using different black coatings. Low-temperature and cryogenic BBs are based on the principles of indirect multi-zone electric heating (with heat isolation from LN2 cooling loop, or by using an external liquid thermostat with circulating heat-transfer agent. The principles of operation, design and test results of BBs are described.

  4. Develop algorithms to improve detectability of defects in Sonic IR imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2016-02-01

    Sonic Infrared (IR) technology is relative new in the NDE family. It is a fast, wide area imaging method. It combines ultrasound excitation and infrared imaging while the former to apply ultrasound energy thus induce friction heating in defects and the latter to capture the IR emission from the target. This technology can detect both surface and subsurface defects such as cracks and disbands/delaminations in various materials, metal/metal alloy or composites. However, certain defects may results in only very small IR signature be buried in noise or heating patterns. In such cases, to effectively extract the defect signals becomes critical in identifying the defects. In this paper, we will present algorithms which are developed to improve the detectability of defects in Sonic IR.

  5. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    SciTech Connect

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  6. VIS-IR transmitting windows

    NASA Astrophysics Data System (ADS)

    Bayya, S. S.; Chin, G. D.; Villalobos, G.; Sanghera, J. S.; Aggarwal, I. D.

    2005-05-01

    The U.S. Naval Research Laboratory (NRL) has developed two unique materials with excellent properties for various military and commercial applications in the UV-Vis-IR wavelength range. These materials are: an amorphous Barium Gallo-Germanate (BGG) glass and a polycrystalline Magnesium Aluminate Spinel. The BGG glass is made using traditional glass melting techniques, and was developed as a low cost alternative to the currently used window materials. Large prototype windows have been fabricated for a Navy reconnaissance program. BGG windows have been successfully tested for environmental ruggedness (MIL-F-48616) and rain erosion durability up to 300 mph. BGG glass is currently under development and evaluation for High Energy Laser (HEL) applications. A new process has been developed to sinter spinel to clear transparency with very high yields. This process has been used to make various sizes and shapes (flats and domes) and is readily scalable to industrial sizes to produce large windows & domes for various applications. NRL has also developed modified BGG glasses, which are compatible with Spinel and ALON substrates for bonding.

  7. Recent catalysis measurements at IRS

    NASA Astrophysics Data System (ADS)

    Massuti-Ballester, B.; Pidan, S.; Herdrich, G.; Fertig, M.

    2015-08-01

    At the Institute of Space Systems (IRS), experiments have been performed using the high enthalpy, inductively heated plasma generator (IPG) in plasma wind tunnel 3 (PWK3), in order to assess the catalytic behaviour of different materials. Utilising the Upwind Relaxation Algorithm for Non-equilibrium Flows of the University of Stuttgart (URANUS), a methodology for determining catalytic efficiencies by obtaining atomic recombination probabilities γ for high temperature materials, has been developed. This method eliminates the inherent uncertainties produced when using catalytic properties of previously tested materials to infer those of new materials. In this work, eight different candidates for the Thermal Protection System (TPS) of an entry vehicle have been studied, of which six are ceramic materials and the other two are metallic alloys. Thermochemical properties of these specimens are given for surface temperatures between 1000 and 2000 K in pure oxygen and pure nitrogen plasmas. The high enthalpies and relatively low pressure conditions in which these material samples have been tested in PWK3 are relevant for entry applications from Low Earth Orbit (LEO).

  8. A neutral dinuclear Ir(iii) complex for anti-counterfeiting and data encryption.

    PubMed

    Jiang, Yang; Li, Guangfu; Che, Weilong; Liu, Yingjie; Xu, Bin; Shan, Guogang; Zhu, Dongxia; Su, Zhongmin; Bryce, Martin R

    2017-03-09

    A neutral dinuclear Ir(iii) Schiff base complex PIBIP has been synthesized and shown to exhibit both piezochromic luminescence (PCL) and aggregation induced emission (AIE) behaviour. An efficient second-level anti-counterfeit trademark and a data encryption device were fabricated using PIBIP as the active material.

  9. PAH Emission from Disks around Intermediate-Mass Stars: The Peculiar Aroma of Hydrocarbons Orbiting Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Keller, L. D.; Sloan, G. C.

    2009-12-01

    Over half of the intermediate-mass young stellar objects in the Galaxy (e.g. Herbig Ae/Be stars or HAeBe) have high-contrast emission in the mid-infrared spectral features of polycyclic aromatic hydrocarbons (PAHs) above the continuum produced by thermal emission from dust in the circumstellar disks. We have examined the PAH emission in detail for 30 HAeBe stars observed with the Spitzer IRS. We have identified some trends that, should they survive in a larger sample of HAeBe stars, will allow us to infer large-scale disk geometry (both inner and outer) and the degree of photo-processing of organic molecular material in HAeBe disks: HAeBe stars apparently have distinctive PAH spectra among the many other astronomical environments that are characterized by strong PAH emission; strong PAH emission is not necessarily an indicator of a particular disk geometry; PAH spectra of HAeBe stars change systematically with stellar effective temperature; PAH in HAeBe disks are ionized. As part of a Spitzer archival project we are applying our spectral analysis methods to an even larger sample of HAeBe stars observed with the IRS and currently available in the Spitzer archive. Here we report preliminary results as we begin the larger study.

  10. NEW MASER EMISSION FROM NONMETASTABLE AMMONIA IN NGC 7538. II. GREEN BANK TELESCOPE OBSERVATIONS INCLUDING WATER MASERS

    SciTech Connect

    Hoffman, Ian M.; Seojin Kim, Stella

    2011-12-15

    We present new maser emission from {sup 14}NH{sub 3} (9,6) in NGC 7538. Our observations include the known spectral features near v{sub LSR} = -60 km s{sup -1} and -57 km s{sup -1} and several more features extending to -46 km s{sup -1}. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other {sup 14}NH{sub 3} (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km s{sup -1} < v{sub LSR} < -4 km s{sup -1}, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H{sub 2}O and, now, {sup 14}NH{sub 3} are the only masers known to exhibit emission outside of the velocity range -62 km s{sup -1} < v{sub LSR} < -51 km s{sup -1}. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search to date toward any source for emission from the CC{sup 32}S and CC{sup 34}S molecules, indicating an age greater than Almost-Equal-To 10{sup 4} yr for IRS 1-3. We discuss these findings in the context of embedded stellar cores and recent models of the region.

  11. High temperature Ir segregation in Ir-B ceramics: Effect of oxygen presence on stability of IrB2 and other Ir-B phases

    SciTech Connect

    Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; Blair, Richard G.; Orlovskaya, Nina

    2015-05-13

    The formation of IrB2, IrB1.35, IrB1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB2 type IrB2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Ir segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.

  12. Hydrogen intercalation under graphene on Ir(111)

    NASA Astrophysics Data System (ADS)

    Grånäs, Elin; Gerber, Timm; Schröder, Ulrike A.; Schulte, Karina; Andersen, Jesper N.; Michely, Thomas; Knudsen, Jan

    2016-09-01

    Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted -0.10 to -0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.

  13. Status Of Sofradir IR-CCD Detectors

    NASA Astrophysics Data System (ADS)

    Tribolet, Philippe; Radisson, Patrick

    1988-05-01

    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  14. General features

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

  15. Emissions Inventory

    EPA Pesticide Factsheets

    This page describes the role of emission inventories in the air quality management process, a description of how emission inventories are developed, and where U.S. emission inventory information can be found.

  16. The WFC3 IR "Blobs" Monitoring

    NASA Astrophysics Data System (ADS)

    Pirzkal, N.; Hilbert, B.

    2012-11-01

    We present new results on the WFC3 IR "Blobs" based on analysis of data acquired using the WFC3 IR channel from 2010 to 2012. In particular, we trace the date of appearance of each of the Blobs we identified in our deep IR sky flats. The number of Blobs identified in the WFC3 IR channel is now 40, and increase of a factor of 2 from our earlier 2010 ISR. We also discuss the color of the blobs, as measured using the F105W, F125W and F160W filters. We find Blobs to be more opaque to bluer light and their effect is therefore slightly stronger in the F105W and F125W filters when comparing these to the F160W filter. We find that the IR Blobs have appeared during somewhat discrete events and that there was a period a little over one year long when no new Blobs appeared.

  17. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  18. IR-based spot weld NDT in automotive applications

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  19. Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms.

    PubMed

    Sykes, Daniel; Cankut, Ahmet J; Ali, Noorshida Mohd; Stephenson, Andrew; Spall, Steven J P; Parker, Simon C; Weinstein, Julia A; Ward, Michael D

    2014-05-07

    A series of blue-luminescent Ir(III) complexes with a pendant binding site for lanthanide(III) ions has been synthesized and used to prepare Ir(III)/Ln(III) dyads (Ln = Eu, Tb, Gd). Photophysical studies were used to establish mechanisms of Ir→Ln (Ln = Tb, Eu) energy-transfer. In the Ir/Gd dyads, where direct Ir→Gd energy-transfer is not possible, significant quenching of Ir-based luminescence nonetheless occurred; this can be ascribed to photoinduced electron-transfer from the photo-excited Ir unit (*Ir, (3)MLCT/(3)LC excited state) to the pendant pyrazolyl-pyridine site which becomes a good electron-acceptor when coordinated to an electropositive Gd(III) centre. This electron transfer quenches the Ir-based luminescence, leading to formation of a charge-separated {Ir(4+)}˙-(pyrazolyl-pyridine)˙(-) state, which is short-lived possibly due to fast back electron-transfer (<20 ns). In the Ir/Tb and Ir/Eu dyads this electron-transfer pathway is again operative and leads to sensitisation of Eu-based and Tb-based emission using the energy liberated from the back electron-transfer process. In addition direct Dexter-type Ir→Ln (Ln = Tb, Eu) energy-transfer occurs on a similar timescale, meaning that there are two parallel mechanisms by which excitation energy can be transferred from *Ir to the Eu/Tb centre. Time-resolved luminescence measurements on the sensitised Eu-based emission showed both fast and slow rise-time components, associated with the PET-based and Dexter-based energy-transfer mechanisms respectively. In the Ir/Tb dyads, the Ir→Tb energy-transfer is only just thermodynamically favourable, leading to rapid Tb→Ir thermally-activated back energy-transfer and non-radiative deactivation to an extent that depends on the precise energy gap between the *Ir and Tb-based (5)D4 states. Thus, the sensitised Tb(iii)-based emission is weak and unusually short-lived due to back energy transfer, but nonetheless represents rare examples of Tb(III) sensitisation by

  20. A radiative model for Titan's atmosphere in the IR

    NASA Astrophysics Data System (ADS)

    Cofano, A.; Sindoni, G.

    2015-10-01

    The aim of this work is the development of a model of Titan atmosphere between 1 and 5 micron, using data from Cassini-Huygens mission. The simulations will be useful to remove the atmospheric features from the measured spectrum, to study the surface. The radiative transfer model is performed with ARS (Atmosphere Radiation Spectrum), a a group of Fortran 77 routines, able to calculate absorption coefficients, radiance and other parameters about gas and aerosols at LTE (Local Thermal Equilibrium) [5] and considering multiple scattering in nadir geometry. Our study covers the IR spectral range but it would be extended also to the visible spectrum.

  1. C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Augereau, J.-C.; van Dishoeck, E. F.; Merín, B.; Grosso, N.; Ménard, F.; Blake, G. A.; Monin, J.-L.

    2010-09-01

    Context. Dust particles evolve in size and lattice structure in protoplanetary disks, due to coagulation, fragmentation and crystallization, and are radially and vertically mixed in disks due to turbulent diffusion and wind/radiation pressure forces. Aims: This paper aims at determining the mineralogical composition and size distribution of the dust grains in planet forming regions of disks around a statistical sample of 58 T Tauri stars observed with Spitzer/IRS as part of the Cores to Disks (c2d) Legacy Program. Methods: We present a spectral decomposition model, named “B2C”, that reproduces the IRS spectra over the full spectral range (5-35 μm). The model assumes two dust populations: a warm component responsible for the 10 μm emission arising from the disk inner regions (≲1 AU) and a colder component responsible for the 20-30 μm emission, arising from more distant regions (≲10 AU). The fitting strategy relies on a random exploration of parameter space coupled with a Bayesian inference method. Results: We show evidence for a significant size distribution flattening in the atmospheres of disks compared to the typical MRN distribution, providing an explanation for the usual flat, boxy 10 μm feature profile generally observed in T Tauri star spectra. We reexamine the crystallinity paradox, observationally identified by Olofsson et al. (2009 , A&A, 507, 327), and we find a simultaneous enrichment of the crystallinity in both the warm and cold regions, while grain sizes in both components are uncorrelated. We show that flat disks tend to have larger grains than flared disk. Finally our modeling results do not show evidence for any correlations between the crystallinity and either the star spectral type, or the X-ray luminosity (for a subset of the sample). Conclusions: The size distribution flattening may suggests that grain coagulation is a slightly more effective process than fragmentation (helped by turbulent diffusion) in disk atmospheres, and that

  2. Quantifying Flaw Characteristics from IR NDE Data

    SciTech Connect

    Miller, W; Philips, N R; Burke, M W; Robbins, C L

    2003-02-14

    Work is presented which allows flaw characteristics to be quantified from the transient IR NDE signature. The goal of this effort was to accurately determine the type, size and depth of flaws revealed with IR NDE, using sonic IR as the example IR NDE technique. Typically an IR NDE experiment will result in a positive qualitative indication of a flaw such as a cold or hot spot in the image, but will not provide quantitative data thereby leaving the practitioner to make educated guesses as to the source of the signal. The technique presented here relies on comparing the transient IR signature to exact heat transfer analytical results for prototypical flaws, using the flaw characteristics as unknown fitting parameters. A nonlinear least squares algorithm is used to evaluate the fitting parameters, which then provide a direct measure of the flaw characteristics that can be mapped to the imaged surface for visual reference. The method uses temperature data for the heat transfer analysis, so radiometric calibration of the IR signal is required. The method provides quantitative data with a single thermal event (e.g. acoustic pulse or flash), as compared to phase-lock techniques that require many events. The work has been tested with numerical data but remains to be validated by experimental data, and that effort is underway.

  3. Detecting explosive substances by the IR spectrography

    NASA Astrophysics Data System (ADS)

    Kuula, J.; Rinta, Heikki J.; Pölönen, I.; Puupponen, H.-H.; Haukkamäki, Marko; Teräväinen, T.

    2014-05-01

    Fast and safe detection methods of explosive substances are needed both before and after actualized explosions. This article presents an experiment of the detection of three selected explosives by the ATR FTIR spectrometer and by three different IR hyperspectral imaging devices. The IR spectrometers give accurate analyzing results, whereas hyperspectral imagers can detect and analyze desired samples without touching the unidentified target at all. In the controlled explosion experiment TNT, dynamite and PENO were at first analyzed as pure substances with the ATR FTIR spectrometer and with VNIR, SWIR and MWIR cameras. After three controlled explosions also the residues of TNT, dynamite and PENO were analyzed with the same IR devices. The experiments were performed in arctic outdoor conditions and the residues were collected on ten different surfaces. In the measurements the spectra of all three explosives were received as pure substances with all four IR devices. Also the explosion residues of TNT were found on cotton with the IR spectrometer and with VNIR, SWIR and MWIR hyperspectral imagers. All measurements were made directly on the test materials which had been placed on the explosion site and were collected for the analysis after each blast. Measurements were made with the IR spectrometer also on diluted sample. Although further tests are suggested, the results indicate that the IR spectrography is a potential detection method for explosive subjects, both as pure substances and as post-blast residues.

  4. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation

    PubMed Central

    Takatani, Tomozumi; Shirakawa, Jun; Roe, Michael W.; Leech, Colin A.; Maier, Bernhard F.; Mirmira, Raghavendra G.; Kulkarni, Rohit N.

    2016-01-01

    Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER. PMID:27378176

  5. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  6. Work function measurements by the field emission retarding potential method

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Strayer, R. W.; Mackie, W. A.

    1971-01-01

    Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.

  7. Empirical Models for the WFC3/IR PSF

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2016-03-01

    The severely undersampled nature of the WFC3/IR PSF introduces significant complications in the analysis of point sources and barely resolved objects. We have made use of observations of an outer field in Omega Centauri in order to construct PSFs in four wide-band WFC3/IR filters: F105W, F125W, F140W, and F160W. Since the F110W PSF is also popular, we used observations of the 47 Tuc calibration field to construct a model for it as well. This document describes the construction of these PSFs, describes their features, and gives a brief tutorial of how to use them to fit objects in images. A follow-on document will make use of the large archive of observations to come up with PSFs for many other WFC3/IR filters. In order to help the community make use of these PSFs, we are currently developing software that can be used to (1) measure stars in images with this PSF and (2) insert stars into flt images such that they can be realistically inserted into drizzled images.

  8. Mid-IR photoluminescence and lasing of chromium doped II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Kim, C.; Moskalev, I. S.; Fedorov, V. V.; Mirov, S. B.

    2008-02-01

    Here we report a new method for transition-metal (TM) doped II-VI Quantum Dots (QD) fabrication and first mid-IR (2-3 μm) lasing at 77K of Cr 2+:ZnS QD powder (~ 27 nm grain size). Cr 2+:ZnS nanocrystalline dots (NCDs) were prepared using laser ablation. The mid-IR photoluminescence (PL) and lasing were studied. The dependence of PL spectrum profile on pump energy demonstrated a threshold behavior accompanied by the appearance of a sharp stimulated emission band around 2230 nm. The stimulated emission band is shifted to the longer wavelength with respect to the spontaneous emission and corresponds to the peak of the Cr:ZnS gain spectrum. This was also accompanied by a considerable lifetime shortening.

  9. The Physical and Chemical Conditions in Luminous Galaxies: A Systematic IR Analysis

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alfonso, Eduardo

    Star formation, in both its normal and active burst phases, drives and is driven by the physical conditions in galaxies that are forming stars, from massive outflows to the heating of dust. It also governs the evolution of metallicity, enrichment of the IGM, and many other processes. To better understand the physical conditions that initiate - and quench - star formation, including its apparent symbiotic relationship with AGN activity in later-stage mergers, we propose the first large and coherent radiative transfer study of the extreme objects that are forming stars most rapidly: the luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). Our study will be based on radiative transfer modeling of all (U)LIRGs with reliable archival Herschel/SPIRE and PACS molecular spectra. Our goals are to (1) model the conditions in the dense circumnuclear gas clouds as a function of LFIR, M(H2), and merger stage, and to derive star formation rates (SFR), radiation pressure, dust and gas temperatures, optical depths, and gas depletion rates; (2) understand the nuclear molecular outflow/inflow phenomena and how and why they differ for LIRGS (log[LIR/Lsun] > 11) and ULIRGs (log[LIR/Lsun] > 12); and (3) test the reality of the two putative modes of star formation (main sequence and starburst) as a function of galaxy luminosity and merger stage, quantify the differences, and reveal the physical causes (merger properties, IMF differences, etc.) Our modeling will emphasize radiatively excited molecular species - key diagnostics of the ISM components in star forming galaxies - and will include atomic features and the UV-submmillimeter continua. We have successfully used our radiative transfer code to probe compact components as small as tens of parsecs in diameter, scales that cannot be distinguished by the far-IR beams of any past or near future observatories. We will include photoionization modeling of the mid-IR lines and template modeling of PAH features for those objects

  10. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2016-06-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4(th) dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed.

  11. Experimental bandstructure of the 5 d transition metal oxide IrO2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  12. Test projectors to demonstrate the performance of IR missile warning sensors

    NASA Astrophysics Data System (ADS)

    Roth, Thomas; Barth, Jochen; Gadaleta, Sabino

    2008-10-01

    Dual color infrared imaging systems are being developed as missile warning sensors operating within the 3μm to 5μm spectral regime. To demonstrate the sensor performance of such sensors we introduce IR test projectors which provide an optical output within the required spectral band (3µm to 5µm). A bispectral objective serves as the projection optics while also forming a part of a telescope which allows visual alignment of the projection axis with high precision, e.g. by autocollimation. A compact IR source generates the IR radiation by resistive heating with heating and decay times close to 10 ms and a large dynamic range. These characteristics are exploited for the generation of intensity sequences which simulate the IR signature of an approaching missile, accomplished by a programmable control electronics driving the IR source. Results are shown which compare the required design intensity sequence with the measured projector output intensity. As an additional design feature we have also integrated an electrically tunable Fabry-Perot filter into the test projector thus making it a tunable monochromatic IR source. This allows the measurement of the spectral sensitivity of IR sensors which is of particular importance to characterize the sensor for evaluating its performance by simulation.

  13. UNUSUAL PAH EMISSION IN NEARBY EARLY-TYPE GALAXIES: A SIGNATURE OF AN INTERMEDIATE-AGE STELLAR POPULATION?

    SciTech Connect

    Vega, O.; Bressan, A.; Panuzzo, P.; Granato, G. L.; Silva, L.; Zeilinger, W. W.

    2010-10-01

    We present the analysis of Spitzer-IRS spectra of four early-type galaxies (ETGs), NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H{sub 2} rotational emission lines in the range 5-38 {mu}m, atomic lines, and prominent polycyclic aromatic hydrocarbon (PAH) features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6-9/11.3 {mu}m interband ratios. After the subtraction of a passive ETG template, we find that the 7-9 {mu}m spectral region requires dust features not normally present in star-forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star-forming galaxies, where cationic PAH emission prevails, our 6-14 {mu}m spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6-9/11.3 {mu}m ratios, plus two broad dust emission features peaking at 8.2 {mu}m and 12 {mu}m. These broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30%-50% of the total PAH flux in the 6-14 {mu}m region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material that is continuously released by a population of carbon stars, formed in a rejuvenation episode that occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked and excited by the weak UV interstellar radiation field of our ETGs.

  14. Far-infrared surface emissivity and climate

    PubMed Central

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-01-01

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m−2 difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m−2, and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change. PMID:25368189

  15. Far-infrared surface emissivity and climate.

    PubMed

    Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-18

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  16. Far-infrared surface emissivity and climate

    SciTech Connect

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  17. Far-infrared surface emissivity and climate

    DOE PAGES

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; ...

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  18. Analysis of Carbon Emission Characteristics of China

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng

    Since the opening-up, our economy develops fastly with the energy consume and the carbon emission increasing year by year. At present, China is the biggest country of the carbon emission in the world. We face the huge pressure to control the green house gases emissions. So, the text analyses the feature of carbon emission applying the indexs of the carbon emission aggregate, per captial carbon emission and the carbon emission elasticity efficient, and puts forward the countermeasures of lessoning the carbon emission.

  19. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing

    2016-12-01

    Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  20. Comparison of satellite IR rain estimates with radar rain observations in hurricanes

    NASA Technical Reports Server (NTRS)

    Morris, K. Robert; Negri, Andrew J.; Adler, Robert F.

    1988-01-01

    Radar-observed rainrates and rain areas obtained for the Hurricanes Frederic (1979), Alicia (1983), and Diana (1984) were used in conjunction with GOES IR data to examine the validity of three satellite IR rain estimation techniques: the Arkin (1983) method, the Negri-Adler-Wetzel (1984) technique, and the convective-stratiform technique of Adler and Negri (1987). The Alicia hurricane was also monitored using the subjective manual technique of Spayd and Scofield (1984). It is shown that the success of IR techniques in identifying areas of rainfall depends on the hurricane feature being addressed. Thus, the three objective IR techniques were unable to identify the locations of radar-observed eyewall and inner band precipitation areas because of strong vertical wind shear in the eyewall and the lack of the vertical extent of stratiform precipitation beneath the central dense overcast.

  1. Completely automated open-path FT-IR spectrometry.

    PubMed

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  2. PKCdelta-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function.

    PubMed

    Greene, Michael W; Ruhoff, Mary S; Roth, Richard A; Kim, Jeong-A; Quon, Michael J; Krause, Jean A

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  3. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  4. Infrared emission from desorbed NO2(*) and NO(*)

    NASA Technical Reports Server (NTRS)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Infrared photons from the radiative cascade accompany both the gas phase NO2 continuum chemiluminescence (which originates from its 2B2 and 2B1 states) and the NO beta bands. When these upper electronic states are excited by recombination/desorption at surfaces of low Earth orbiting spacecraft, similar IR emission spectrums will be observed. The principal NO2 features (other than the long wavelength tail of its electronic transitions) are the nu sub 3 fundamental sequence near 6.2 microns and nu sub 1 + nu sub 3 intercombination bands near 3.6 microns; NO would emit the delta v=1 and delta v=2 systems above 5.3 and 2.7 microns. Because of the long radiative lifetimes of the upper vibrational states, the infrared radiances in projections parallel to the vehicle surface (which we estimate) are substantially less than those of the visible and ultraviolet glows.

  5. A windswept cometary tail on the Galactic center supergiant IRS 7

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Morris, Mark

    1991-01-01

    High-resolution VLA observations provide evidence of optically thick radio emission from IRS 7, a cool red supergiant star, located at a projected distance of roughly 1 1t-yr from the Galactic center. IRS 7 shows a remarkable tail of ionized gas pointing directly away from the compact nonthermal radio source at the Galactic center, Sgr A(asterisk). Given previous evidence for a strong source of UV emission and for a strong circumnuclear wind emanating from the Galactic center, the free-free emission from IRS 7 and its associated tail are interpreted in terms of the ionization and removal of the circumstellar envelope of the red supergiant either by the ram pressure of the nuclear wind or by the pressure of radiation arising from the immediate vicinity of Sgr A(asterisk). The wind mechanism is preferred because: (1) the force it can potentially exert is much greater; and (2) Sgr A(asterisk) is clearly not a known source of luminous energy in the near-IR, whereas it remains a plausible source of a hot, high-velocity wind. Also considered is the potential effect of a nuclear wind upon the atmospheres of red giants in the inner parsec.

  6. The structure and nature of NGC 2017 IRS. 1: High-resolution radio continuum maps

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Beck, Sara C.

    1994-01-01

    We have observed the star formation cluster NGC 2071 IRS 1, 2, and 3, with 0.14 sec spatial resolution at 2 cm. The strong source IRS 1 breaks up into a bright peak sitting on a narrow line emission extending over about 400 AU, with three much weaker peaks. This ridge, which has a p.a. = 100 deg, is not aligned with any of the other structures that have previously been seen around IRS 1: its orientation is about 55 deg from the CO outflow direction, and 35 deg from a hypothetical disk direction. The spectral and spatial results, combined with earlier radio and infrared observations, indicate that most likely the radio and infrared emission from the exciting source, IRS 1, is produced by a dense wind hidden by at least 100 visual magnitudes of extinction; the extended ridge of emission comes from an optically thin H II region with characteristic dimensions of approximately AU and which may result from a clumpy distribution of local gas and dust.

  7. Occupational radiodermatitis from Ir192 exposure.

    PubMed

    Condé-Salazar, L; Guimaraens, D; Romero, L V

    1986-10-01

    3 cases of occupational radiodermatitis from Ir192 exposure in personnel handling a gamma ray projector in industrial radiography are presented. The diagnosis was confirmed histologically. The nature and use of the industrial machines are described.

  8. Spitzer IRAC Observations of IR Excess in Holmberg IX X-1: A Circumbinary Disk or a Variable Jet?

    NASA Astrophysics Data System (ADS)

    Dudik, R. P.; Berghea, C. T.; Roberts, T. P.; Grisé, F.; Singh, A.; Pagano, R.; Winter, L. M.

    2016-11-01

    We present Spitzer Infrared Array Camera photometric observations of the ultraluminous X-ray source (ULX, X-1) in Holmberg IX. We construct a spectral energy distribution (SED) for Holmberg IX X-1 based on published optical, UV, and X-ray data combined with the IR data from this analysis. We modeled the X-ray and optical data with disk and stellar models; however, we find a clear IR excess in the ULX SED that cannot be explained by fits or extrapolations of any of these models. Instead, further analysis suggests that the IR excess results from dust emission, possibly a circumbinary disk, or a variable jet.

  9. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    SciTech Connect

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M.; Fu, Hai; Wardlow, J.; Amber, S.; Baker, A. J.; Baes, M.; Bock, J.; Bourne, N.; Dye, S.; Bussmann, R. S.; Chapman, S. C.; Clements, D. L.; Conley, A.; Dannerbauer, H.; Dunne, L.; Eales, S.; and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  10. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.

    2016-10-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  11. IR diver vision for turbidity mitigation

    NASA Astrophysics Data System (ADS)

    Milam, Jerry A.

    2010-04-01

    Commercial, forensic, and military divers often encounter turbid conditions which reduce visibility to zero. Under such conditions, work must be performed completely blind. The darkness resulting from high levels of turbidity is complete, and can be dangerous as well as disorienting. Such darkness can even occur near the surface on a bright and sunny day. Artificial underwater lighting is of no use in such situations, as it only makes matters worse (similar to the use of high beam headlights in dense fog). Certain wavelengths of infrared (IR) light have the ability to penetrate this underwater "fog," and thus form the basis of the current development. Turbidity results from clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, plankton and microscopic organisms suspended in water. The IR Diver Vision system described herein consists of a standard commercial diving mask of any of several configurations whereby an IR light source, IR video camera, video display, and power source may be integrated within or attached to the mask. The IR light source wavelength is compatible with the spectral bandwidth of the video camera. The camera field-of-view (FOV) is matched to the video display in order to provide a unity magnification and hence prevent diver ocular fatigue. The IR video camera, video display, power source and controls are compatible with extended use in a submarine environment. Some such masks will incorporate tilt/heading sensors and video indicators. 3-D Imaging, Inc. has developed prototypes and has patents pending on such devices.

  12. Stereo vision for small targets in IR image sequences

    NASA Astrophysics Data System (ADS)

    Jutzi, Boris; Gabler, Richard; Jaeger, Klaus

    2001-11-01

    Surveillance systems against missile attacks require the automatic detection of targets with low false alarm rate (FAR). Infrared Search and Track (IRST) systems offer a passive detection of threats at long ranges. For maximum reaction time and the arrangement of counter measurements, it is necessary to declare the objects as early as possible. For this purpose the detection and tracking algorithms have to deal with point objects. Conventional object features like shape, size and texture are usually unreliable for small objects. More reliable features of point objects are three-dimensional spatial position and velocity. At least two sensors observing the same scene are required for multi-ocular stereo vision. Mainly three steps are relevant for successful stereo image processing. First of all the precise camera calibration (estimating the intrinsic and extrinsic parameters) is necessary to satisfy the demand of high degree of accuracy, especially for long range targets. Secondly the correspondence problem for the detected objects must be solved. Thirdly the three-dimensional location of the potential target has to be determined by projective transformation. For an evaluation a measurement campaign to capture image data was carried out with real targets using two identical IR cameras and additionally synthetic IR image sequences have been generated and processed. In this paper a straightforward solution for stereo analysis based on stationary bin-ocular sensors is presented, the current results are shown suggestions for future work are given.

  13. Investigation of the mineralization process of biosystems by IR diffuse reflection spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.

    2014-04-01

    Particular features of the application of Fourier-transform IR diffuse reflection spectroscopy methods to the in situ investigation of spectra of porous rough objects have been considered. The reciprocal influence of the scattering and absorption of porous objects on the formation of the impurity-band contour in the diffuse reflection spectrum when the impurity center is in the vicinity of the fundamental IR absorption band has been analyzed. Using methods of Fourier-transform IR diffuse reflection spectroscopy, processes of mineralization of fragments of mammoth tusks from a multilayer paleolithic site at Yudinovo (Bryansk oblast, Russia) and fragments of mammoth tusks from Yakutia (Russia) have been investigated. Particular features of mineralization processes (carbonate formation and silicification) on the surface and in the volume of objects at different conditions of their burial (humidity, temperature, soil acidity) have been studied.

  14. Deep-blue phosphorescent organic light-emitting diode with external quantum efficiency over 30% using novel Ir complex

    NASA Astrophysics Data System (ADS)

    Inoue, Hideko; Yamada, Yui; Ohsawa, Nobuharu; Seo, Satoshi; Hosoumi, Shunsuke; Watabe, Takeyoshi; Mitsumori, Satomi; Kido, Hiromitsu

    2016-09-01

    We report a newly developed deep-blue phosphorescent iridium complex exhibiting a narrow emission spectrum. The use of this complex resulted in a deep-blue organic light-emitting diode (OLED) with an external quantum efficiency (EQE) exceeding 30%. Two iridium complexes with a 4H-1,2,4-triazole ligand which has an adamantyl group at the 4-position were synthesized, with the resulting effects of the adamantyl group on photoluminescence (PL) behavior investigated. [Ir(Adm1)3] having a 1-adamantyl group did not exhibit any emissions at room temperature, whereas [Ir(Adm2)3] having a 2-adamantyl group exhibited a blue emission with a peak wavelength of 459 nm and a high PL quantum yield of 0.94. Structural transformations between the ground state and excited state were estimated by molecular orbital calculations, which suggests that [Ir(Adm1)3] undergoes a considerably more extensive change than [Ir(Adm2)3]. It is therefore probable that [Ir(Adm1)3] ultimately experiences thermal deactivation owing to structural relaxation. Furthermore, an OLED was fabricated using [Ir(Adm2)3] as a dopant. The associated electroluminescence spectrum had an emission peak at 457 nm and a relatively small shoulder peak at 485 nm, which are consistent with the PL spectrum. A narrowed emission spectrum with a full width at half maximum of 58 nm was obtained, leading to a deep-blue emission with high