Sample records for ir imaging camera

  1. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  2. The sequence measurement system of the IR camera

    NASA Astrophysics Data System (ADS)

    Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo

    2011-08-01

    Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.

  3. Multi-spectral imaging with infrared sensitive organic light emitting diode

    PubMed Central

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  4. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  5. Observation sequences and onboard data processing of Planet-C

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  6. About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2017-05-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. For this purpose, we propose to use THz camera and IR camera. Below we continue a possibility of IR camera using for a detection of temperature trace on a human body. In contrast to passive THz camera using, the IR camera does not allow to see very pronounced the object under clothing. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To find possible ways for this disadvantage overcoming we make some experiments with IR camera, produced by FLIR Company and develop novel approach for computer processing of images captured by IR camera. It allows us to increase a temperature resolution of IR camera as well as human year effective susceptibility enhancing. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments are made with observing of temperature trace from objects placed behind think overall. Demonstrated results are very important for the detection of forbidden objects, concealed inside the human body, by using non-destructive control without using X-rays.

  7. Imaging of breast cancer with mid- and long-wave infrared camera.

    PubMed

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory.

  8. About possibility of temperature trace observing on the human skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2016-09-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. Three years ago, we have demonstrated principal possibility to see a temperature trace, induced by food eating or water drinking, on the human body skin by using a passive THz camera. However, this camera is very expensive. Therefore, for practice it will be very convenient if one can use the IR camera for this purpose. In contrast to passive THz camera using, the IR camera does not allow to see the object under clothing, if an image, produced by this camera, is used directly. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To overcome this disadvantage we develop novel approach for computer processing of IR camera images. It allows us to increase a temperature resolution of IR camera as well as increasing of human year effective susceptibility. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by T-shirt. Shown results are very important for the detection of forbidden objects, cancelled inside the human body, by using non-destructive control without using X-rays.

  9. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  10. Multiple-frame IR photo-recorder KIT-3M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E; Wilkins, P; Nebeker, N

    2006-05-15

    This paper reports the experimental results of a high-speed multi-frame infrared camera which has been developed in Sarov at VNIIEF. Earlier [1] we discussed the possibility of creation of the multi-frame infrared radiation photo-recorder with framing frequency about 1 MHz. The basis of the photo-recorder is a semiconductor ionization camera [2, 3], which converts IR radiation of spectral range 1-10 micrometers into a visible image. Several sequential thermal images are registered by using the IR converter in conjunction with a multi-frame electron-optical camera. In the present report we discuss the performance characteristics of a prototype commercial 9-frame high-speed IR photo-recorder.more » The image converter records infrared images of thermal fields corresponding to temperatures ranging from 300 C to 2000 C with an exposure time of 1-20 {micro}s at a frame frequency up to 500 KHz. The IR-photo-recorder camera is useful for recording the time evolution of thermal fields in fast processes such as gas dynamics, ballistics, pulsed welding, thermal processing, automotive industry, aircraft construction, in pulsed-power electric experiments, and for the measurement of spatial mode characteristics of IR-laser radiation.« less

  11. A dual-band adaptor for infrared imaging.

    PubMed

    McLean, A G; Ahn, J-W; Maingi, R; Gray, T K; Roquemore, A L

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  12. Image quality testing of assembled IR camera modules

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  13. Strategic options towards an affordable high-performance infrared camera

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise (<50e-), high dynamic range (100 dB), high-frame rates (> 500 frames per second (FPS)) at full resolution, and low power consumption (< 1 W) in a compact system. This camera paves the way towards mass market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  14. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  15. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  16. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  17. The use of near-infrared photography to image fired bullets and cartridge cases.

    PubMed

    Stein, Darrell; Yu, Jorn Chi Chung

    2013-09-01

    An imaging technique that is capable of reducing glare, reflection, and shadows can greatly assist the process of toolmarks comparison. In this work, a camera with near-infrared (near-IR) photographic capabilities was fitted with an IR filter, mounted to a stereomicroscope, and used to capture images of toolmarks on fired bullets and cartridge cases. Fluorescent, white light-emitting diode (LED), and halogen light sources were compared for use with the camera. Test-fired bullets and cartridge cases from different makes and models of firearms were photographed under either near-IR or visible light. With visual comparisons, near-IR images and visible light images were comparable. The use of near-IR photography did not reveal more details and could not effectively eliminate reflections and glare associated with visible light photography. Near-IR photography showed little advantages in manual examination of fired evidence when it was compared with visible light (regular) photography. © 2013 American Academy of Forensic Sciences.

  18. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E. V.; Nebeker, S.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF onmore » this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.« less

  19. Heterogeneous Vision Data Fusion for Independently Moving Cameras

    DTIC Science & Technology

    2010-03-01

    target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY

  20. ACS Data Handbook v.6.0

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2011-03-01

    ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.

  1. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  2. A high resolution IR/visible imaging system for the W7-X limiter

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Dunn, J. P.; Gamradt, M.

    2016-11-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (˜1-4.5 MW/m2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO's can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  3. A high resolution IR/visible imaging system for the W7-X limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P.; Stephey, L. A.

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphitemore » tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.« less

  4. Coherent infrared imaging camera (CIRIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerousmore » and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.« less

  5. Development of plenoptic infrared camera using low dimensional material based photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and expressed in compressive approach. The following computational algorithms are applied to reconstruct images beyond 2D static information. The super resolution signal processing was then used to enhance and improve the image spatial resolution. The whole camera system brings a deeply detailed content for infrared spectrum sensing.

  6. Low-speed flowfield characterization by infrared measurements of surface temperatures

    NASA Technical Reports Server (NTRS)

    Gartenberg, E.; Roberts, A. S., Jr.; Mcree, G. J.

    1989-01-01

    An experimental program was aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions. Implementing a new technique, a long electrically heated wire was placed across a laminar jet. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified. Furthermore, using Nusselt number correlations, the velocity distribution could be deduced. The same approach was used to survey wakes behind cylinders in a wind-tunnel. This method is suited to investigate flows with position dependent velocities, e.g., boundary layers, confined flows, jets, wakes, and shear layers. It was found that the IR imaging camera cannot accurately track high gradient temperature fields. A correlation procedure was devised to account for this limitation. Other wind-tunnel experiments included tracking the development of the laminar boundary layer over a warmed flat plate by measuring the chordwise temperature distribution. This technique was applied also to the flow downstream from a rearward facing step. Finally, the IR imaging system was used to study boundary layer behavior over an airfoil at angles of attack from zero up to separation. The results were confirmed with tufts observable both visually and with the IR imaging camera.

  7. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    NASA Astrophysics Data System (ADS)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  8. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  9. IR radiation characteristics and operating range research for a quad-rotor unmanned aircraft vehicle.

    PubMed

    Gong, Mali; Guo, Rui; He, Sifeng; Wang, Wei

    2016-11-01

    The security threats caused by multi-rotor unmanned aircraft vehicles (UAVs) are serious, especially in public places. To detect and control multi-rotor UAVs, knowledge of IR characteristics is necessary. The IR characteristics of a typical commercial quad-rotor UAV are investigated in this paper through thermal imaging with an IR camera. Combining the 3D geometry and IR images of the UAV, a 3D IR characteristics model is established so that the radiant power from different views can be obtained. An estimation of operating range to detect the UAV is calculated theoretically using signal-to-noise ratio as the criterion. Field experiments are implemented with an uncooled IR camera in an environment temperature of 12°C and a uniform background. For the front view, the operating range is about 150 m, which is close to the simulation result of 170 m.

  10. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    PubMed Central

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  11. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    PubMed

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  12. HandSight: Supporting Everyday Activities through Touch-Vision

    DTIC Science & Technology

    2015-10-01

    switches between IR and RGB o Large, low resolution, and fixed focal length > 1ft • Raspberry PI NoIR: https://www.raspberrypi.org/products/ pi -noir...camera/ o Raspberry Pi NoIR camera with external visible light filters o Good image quality, manually adjustable focal length, small, programmable 11...purpose and scope of the research. 2. KEYWORDS: Provide a brief list of keywords (limit to 20 words). 3. ACCOMPLISHMENTS: The PI is reminded that

  13. Image based performance analysis of thermal imagers

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  14. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS)

    PubMed Central

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P.

    2017-01-01

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent. PMID:28178215

  15. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    PubMed

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  16. Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Miao, Lidan; Qi, Hairong

    2006-04-01

    This paper presents algorithmic details of an unsupervised neural network and unbiased diagnostic methodology, that is, no lookup table is needed that labels the input training data with desired outputs. We deploy the smart algorithm on two satellite-grade infrared (IR) cameras. Although an early malignant tumor must be small in size and cannot be resolved by a single pixel that images about hundreds cells, these cells reveal themselves physiologically by emitting spontaneously thermal radiation due to the rapid cell growth angiogenesis effect (In Greek: vessels generation for increasing tumor blood supply), shifting toward, according to physics, a shorter IR wavelengths emission band. If we use those exceedingly sensitive IR spectral band cameras, we can in principle detect whether or not the breast tumor is perhaps malignant through a thin blouse in a close-up dark room. If this protocol turns out to be reliable in a large scale follow-on Vatican experiment in 2006, which might generate business investment interests of nano-engineering manufacture of nano-camera made of 1-D Carbon Nano-Tubes without traditional liquid Nitrogen coolant for Mid IR camera, then one can accumulate the probability of any type of malignant tumor at every pixel over time in the comfort of privacy without religious or other concerns. Such a non-intrusive protocol alone may not have enough information to make the decision, but the changes tracked over time will be surely becoming significant. Such an ill-posed inverse heat source transfer problem can be solved because of the universal constraint of equilibrium physics governing the blackbody Planck radiation distribution, to be spatio-temporally sampled. Thus, we must gather two snapshots with two IR cameras to form a vector data X(t) per pixel to invert the matrix-vector equation X=[A]S pixel-by-pixel independently, known as a single-pixel blind sources separation (BSS). Because the unknown heat transfer matrix or the impulse response function [A] may vary from the point tumor to its neighborhood, we could not rely on neighborhood statistics as did in a popular unsupervised independent component analysis (ICA) mathematical statistical method, we instead impose the physics equilibrium condition of the minimum of Helmholtz free-energy, H = E - T °S. In case of the point breast cancer, we can assume the constant ground state energy E ° to be normalized by those benign neighborhood tissue, and then the excited state can be computed by means of Taylor series expansion in terms of the pixel I/O data. We can augment the X-ray mammogram technique with passive IR imaging to reduce the unwanted X-rays during the chemotherapy recovery. When the sequence is animated into a movie, and the recovery dynamics is played backward in time, the movie simulates the cameras' potential for early detection without suffering the PD=0.1 search uncertainty. In summary, we applied two satellite-grade dual-color IR imaging cameras and advanced military (automatic target recognition) ATR spectrum fusion algorithm at the middle wavelength IR (3 - 5μm) and long wavelength IR (8 - 12μm), which are capable to screen malignant tumors proved by the time-reverse fashion of the animated movie experiments. On the contrary, the traditional thermal breast scanning/imaging, known as thermograms over decades, was IR spectrum-blind, and limited to a single night-vision camera and the necessary waiting for the cool down period for taking a second look for change detection suffers too many environmental and personnel variabilities.

  17. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  18. Field Characterization | Concentrating Solar Power | NREL

    Science.gov Websites

    receivers for performance issues. It uses an infrared (IR) camera, global positioning system (GPS each row of a parabolic trough plant, using the GPS data to automate IR imaging and analyze

  19. Optimization of subcutaneous vein contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2000-05-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This techniques uses a near IR light source and one or more IR sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using a n LCD video projector. The use of an IR transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults and children, both Caucasian and African-American, and it enhances veins quite well in all cases. The most difficult cases are those where significant deposits of subcutaneous fat are present which make the veins invisible under normal room illumination. Recent attempts to see through fat using different IR wavelength bands and both linearly and circularly polarized light were unsuccessful. The key to seeing through fat turns out to be a very diffuse source of RI light. Results on adult and pediatric subjects are shown with this new IR light source.

  20. Materials to enable vehicle and personnel identification from surveillance aircraft equipped with visible and IR cameras

    NASA Astrophysics Data System (ADS)

    O'Keefe, Eoin S.

    2005-10-01

    As thermal imaging technology matures and ownership costs decrease, there is a trend to equip a greater proportion of airborne surveillance vehicles used by security and defence forces with both visible band and thermal infrared cameras. These cameras are used for tracking vehicles on the ground, to aid in pursuit of villains in vehicles and on foot, while also assisting in the direction and co-ordination of emergency service vehicles as the occasion arises. These functions rely on unambiguous identification of police and the other emergency service vehicles. In the visible band this is achieved by dark markings with high contrast (light) backgrounds on the roof of vehicles. When there is no ambient lighting, for example at night, thermal imaging is used to track both vehicles and people. In the thermal IR, the visible markings are not obvious. At the wavelength thermal imagers operate, either 3-5 microns or 8-12 microns, the dark and light coloured materials have similar low reflectivity. To maximise the usefulness of IR airborne surveillance, a method of passively and unobtrusively marking vehicles concurrently in the visible and thermal infrared is needed. In this paper we discuss the design, application and operation of some vehicle and personnel marking materials and show airborne IR and visible imagery of materials in use.

  1. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  2. Discovery of hotspots on Io using disk-resolved infrared imaging

    NASA Technical Reports Server (NTRS)

    Spencer, J. R.; Shure, M. A.; Ressler, M. E.; Sinton, W. M.; Goguen, J. D.

    1990-01-01

    First results are presented using two new techniques for ground-based observation of Io's hotspots. An IR array camera was used to obtain direct IR images of Io with resolution better than 0.5 arcsec, so that more than one hotspot is seen on Io in Jupiter eclipse. The camera was also used to make the first observations of the Jupiter occultation of the hotspots. These new techniques have revealed and located at least three hotspots and will now permit routine ground-based monitoring of the locations, temperatures, and sizes of multiple hotspots on Io.

  3. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    NASA Astrophysics Data System (ADS)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  4. Helmet-mounted uncooled FPA camera for use in firefighting applications

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Feng, Shengrong; Li, Kai; Pan, Shunchen; Su, Junhong; Jin, Weiqi

    2000-05-01

    From the concept and need background of firefighters to the thermal imager, we discuss how the helmet-mounted camera applied in the bad environment of conflagration, especially at the high temperature, and how the better matching between the thermal imager with the helmet will be put into effect in weight, size, etc. Finally, give a practical helmet- mounted IR camera based on the uncooled focal plane array detector for in firefighting.

  5. Imaging bolometer

    DOEpatents

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  6. Imaging bolometer

    DOEpatents

    Wurden, Glen A.

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  7. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  8. Nonuniformity correction based on focal plane array temperature in uncooled long-wave infrared cameras without a shutter.

    PubMed

    Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo

    2017-02-01

    In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.

  9. SOAR Optical Imager (SOI) | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR ?: ADS link to SOI instrument SPIE paper Last update: C. Briceño, Aug 23, 2017 SOAR Optical Imager

  10. Looking at Art in the IR and UV

    NASA Astrophysics Data System (ADS)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  11. Application of infrared uncooled cameras in surveillance systems

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.

    2013-10-01

    The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.

  12. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    PubMed

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  13. Mitsubishi thermal imager using the 512 x 512 PtSi focal plane arrays

    NASA Astrophysics Data System (ADS)

    Fujino, Shotaro; Miyoshi, Tetsuo; Yokoh, Masataka; Kitahara, Teruyoshi

    1990-01-01

    MITSUBISHI THERMAL IMAGER model IR-5120A is high resolution and high sensitivity infrared television imaging system. It was exhibited in SPIE'S 1988 Technical Symposium on OPTICS, ELECTRO-OPTICS, and SENSORS, held at April 1988 Orlando, and acquired interest of many attendants of the symposium for it's high performance. The detector is a Platinium Silicide Charge Sweep Device (CSD) array containing more than 260,000 individual pixels manufactured by Mitsubishi Electric Co. The IR-5120A consists of a Camera Head. containing the CSD, a stirling cycle cooler and support electronics, and a Camera Control Unit containing the pixel fixed pattern noise corrector, video controllor, cooler driver and support power supplies. The stirling cycle cooler built into the Camera Head is used for keeping CSD temperature of approx. 80K with the features such as light weight, long life of more than 2000 hours and low acoustical noise. This paper describes an improved Thermal Imager, with more light weight, compact size and higher performance, and it's design philosophy, characteristics and field image.

  14. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  15. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

    PubMed

    Kopp, O; Markert, S; Tornow, R P

    2002-01-01

    To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

  16. More than Meets the Eye - Infrared Cameras in Open-Ended University Thermodynamics Labs

    NASA Astrophysics Data System (ADS)

    Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan

    2016-12-01

    Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property. One potential source of students' challenges with thermal science is the lack of opportunity to visualize energy transfer in intuitive ways with traditional measurement equipment. Thermodynamics laboratories have typically depended on point measures of temperature by use of thermometers (detecting heat conduction) or pyrometers (detecting heat radiation). In contrast, thermal imaging by means of an infrared (IR) camera provides a real-time, holistic image. Here we provide some background on IR cameras and their uses in education, and summarize five qualitative investigations that we have used in our courses.

  17. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolutionmore » of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.« less

  18. Projective rectification of infrared images from air-cooled condenser temperature measurement by using projection profile features and cross-ratio invariability.

    PubMed

    Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao

    2014-10-01

    In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.

  19. Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.

    PubMed

    Beer, S K; Lawson, S A

    2013-08-01

    An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.

  20. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.

  1. Application of IR imaging for free-surface velocity measurement in liquid-metal systems

    DOE PAGES

    Hvasta, M. G.; Kolemen, E.; Fisher, A.

    2017-01-05

    Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.

  2. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  3. Temperature resolution enhancing of commercially available IR camera using computer processing

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-09-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Using such THz camera, one can see a temperature difference on the human skin if this difference is caused by different temperatures inside the body. Because the passive THz camera is very expensive, we try to use the IR camera for observing of such phenomenon. We use a computer code that is available for treatment of the images captured by commercially available IR camera, manufactured by Flir Corp. Using this code we demonstrate clearly changing of human body skin temperature induced by water drinking. Nevertheless, in some cases it is necessary to use additional computer processing to show clearly changing of human body temperature. One of these approaches is developed by us. We believe that we increase ten times (or more) the temperature resolution of such camera. Carried out experiments can be used for solving the counter-terrorism problem and for medicine problems solving. Shown phenomenon is very important for the detection of forbidden objects and substances concealed inside the human body using non-destructive control without X-ray application. Early we have demonstrated such possibility using THz radiation.

  4. Particle and heat flux estimates in Proto-MPEX in Helicon Mode with IR imaging

    NASA Astrophysics Data System (ADS)

    Showers, M. A.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2016-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a linear plasma device developing the plasma source concept for the Material Plasma Exposure eXperiment (MPEX), which will address plasma material interaction (PMI) science for future fusion reactors. To better understand how and where energy is being lost from the Proto-MPEX plasma during ``helicon mode'' operations, particle and heat fluxes are quantified at multiple locations along the machine length. Relevant diagnostics include infrared (IR) cameras, four double Langmuir probes (LPs), and in-vessel thermocouples (TCs). The IR cameras provide temperature measurements of Proto-MPEX's plasma-facing dump and target plates, located on either end of the machine. The change in surface temperature is measured over the duration of the plasma shot to determine the heat flux hitting the plates. The IR cameras additionally provide 2-D thermal load distribution images of these plates, highlighting Proto-MPEX plasma behaviors, such as hot spots. The LPs and TCs provide additional plasma measurements required to determine particle and heat fluxes. Quantifying axial variations in fluxes will help identify machine operating parameters that will improve Proto-MPEX's performance, increasing its PMI research capabilities. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  5. Early forest fire detection using principal component analysis of infrared video

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Radjabi, Ryan; Jacobs, John T.

    2011-09-01

    A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.

  6. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    NASA Astrophysics Data System (ADS)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  7. Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Csorba, Illes P.

    Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.

  8. Wireless IR Image Transfer System for Autonomous Vehicles

    DTIC Science & Technology

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  9. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  10. Time-dependent spatial intensity profiles of near-infrared idler pulses from nanosecond optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Olafsen, L. J.; Olafsen, J. S.; Eaves, I. K.

    2018-06-01

    We report on an experimental investigation of the time-dependent spatial intensity distribution of near-infrared idler pulses from an optical parametric oscillator measured using an infrared (IR) camera, in contrast to beam profiles obtained using traditional knife-edge techniques. Comparisons show the information gained by utilizing the thermal camera provides more detail than the spatially- or time-averaged measurements from a knife-edge profile. Synchronization, averaging, and thresholding techniques are applied to enhance the images acquired. The additional information obtained can improve the process by which semiconductor devices and other IR lasers are characterized for their beam quality and output response and thereby result in IR devices with higher performance.

  11. IR sensors and imagers in networked operations

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang

    2005-05-01

    "Network-centric Warfare" is a common slogan describing an overall concept of networked operation of sensors, information and weapons to gain command and control superiority. Referring to IR sensors, integration and fusion of different channels like day/night or SAR images or the ability to spread image data among various users are typical requirements. Looking for concrete implementations the German Army future infantryman IdZ is an example where a group of ten soldiers build a unit with every soldier equipped with a personal digital assistant (PDA) for information display, day photo camera and a high performance thermal imager for every unit. The challenge to allow networked operation among such a unit is bringing information together and distribution over a capable network. So also AIM's thermal reconnaissance and targeting sight HuntIR which was selected for the IdZ program provides this capabilities by an optional wireless interface. Besides the global approach of Network-centric Warfare network technology can also be an interesting solution for digital image data distribution and signal processing behind the FPA replacing analog video networks or specific point to point interfaces. The resulting architecture can provide capabilities of data fusion from e.g. IR dual-band or IR multicolor sensors. AIM has participated in a German/UK collaboration program to produce a demonstrator for day/IR video distribution via Gigabit Ethernet for vehicle applications. In this study Ethernet technology was chosen for network implementation and a set of electronics was developed for capturing video data of IR and day imagers and Gigabit Ethernet video distribution. The demonstrator setup follows the requirements of current and future vehicles having a set of day and night imager cameras and a crew station with several members. Replacing the analog video path by a digital video network also makes it easy to implement embedded training by simply feeding the network with simulation data. The paper addresses the special capabilities, requirements and design considerations of IR sensors and imagers in applications like thermal weapon sights and UAVs for networked operating infantry forces.

  12. Forensic applications of infrared imaging for the detection and recording of latent evidence.

    PubMed

    Lin, Apollo Chun-Yen; Hsieh, Hsing-Mei; Tsai, Li-Chin; Linacre, Adrian; Lee, James Chun-I

    2007-09-01

    We report on a simple method to record infrared (IR) reflected images in a forensic science context. Light sources using ultraviolet light have been used previously in the detection of latent prints, but the use of infrared light has been subjected to less investigation. IR light sources were used to search for latent evidence and the images were captured by either video or using a digital camera with a CCD array sensitive to IR wavelength. Bloodstains invisible to the eye, inks, tire prints, gunshot residue, and charred document on dark background are selected as typical matters that may be identified during a forensic investigation. All the evidence types could be detected and identified using a range of photographic techniques. In this study, a one in eight times dilution of blood could be detected on 10 different samples of black cloth. When using 81 black writing inks, the observation rates were 95%, 88% and 42% for permanent markers, fountain pens and ball-point pens, respectively, on the three kinds of dark cloth. The black particles of gunshot residue scattering around the entrance hole under IR light were still observed at a distance of 60 cm from three different shooting ranges. A requirement of IR reflectivity is that there is a contrast between the latent evidence and the background. In the absence of this contrast no latent image will be detected, which is similar to all light sources. The use of a video camera allows the recording of images either at a scene or in the laboratory. This report highlights and demonstrates the robustness of IR to detect and record the presence of latent evidence.

  13. SLR digital camera for forensic photography

    NASA Astrophysics Data System (ADS)

    Har, Donghwan; Son, Youngho; Lee, Sungwon

    2004-06-01

    Forensic photography, which was systematically established in the late 19th century by Alphonse Bertillon of France, has developed a lot for about 100 years. The development will be more accelerated with the development of high technologies, in particular the digital technology. This paper reviews three studies to answer the question: Can the SLR digital camera replace the traditional silver halide type ultraviolet photography and infrared photography? 1. Comparison of relative ultraviolet and infrared sensitivity of SLR digital camera to silver halide photography. 2. How much ultraviolet or infrared sensitivity is improved when removing the UV/IR cutoff filter built in the SLR digital camera? 3. Comparison of relative sensitivity of CCD and CMOS for ultraviolet and infrared. The test result showed that the SLR digital camera has a very low sensitivity for ultraviolet and infrared. The cause was found to be the UV/IR cutoff filter mounted in front of the image sensor. Removing the UV/IR cutoff filter significantly improved the sensitivity for ultraviolet and infrared. Particularly for infrared, the sensitivity of the SLR digital camera was better than that of the silver halide film. This shows the possibility of replacing the silver halide type ultraviolet photography and infrared photography with the SLR digital camera. Thus, the SLR digital camera seems to be useful for forensic photography, which deals with a lot of ultraviolet and infrared photographs.

  14. High performance digital read out integrated circuit (DROIC) for infrared imaging

    NASA Astrophysics Data System (ADS)

    Mizuno, Genki; Olah, Robert; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.

    2016-05-01

    Banpil Photonics has developed a high-performance Digital Read-Out Integrated Circuit (DROIC) for image sensors and camera systems targeting various military, industrial and commercial Infrared (IR) imaging applications. The on-chip digitization of the pixel output eliminates the necessity for an external analog-to-digital converter (ADC), which not only cuts costs, but also enables miniaturization of packaging to achieve SWaP-C camera systems. In addition, the DROIC offers new opportunities for greater on-chip processing intelligence that are not possible in conventional analog ROICs prevalent today. Conventional ROICs, which typically can enhance only one high performance attribute such as frame rate, power consumption or noise level, fail when simultaneously targeting the most aggressive performance requirements demanded in imaging applications today. Additionally, scaling analog readout circuits to meet such requirements leads to expensive, high-power consumption with large and complex systems that are untenable in the trend towards SWaP-C. We present the implementation of a VGA format (640x512 pixels 15μm pitch) capacitivetransimpedance amplifier (CTIA) DROIC architecture that incorporates a 12-bit ADC at the pixel level. The CTIA pixel input circuitry has two gain modes with programmable full-well capacity values of 100K e- and 500K e-. The DROIC has been developed with a system-on-chip architecture in mind, where all the timing and biasing are generated internally without requiring any critical external inputs. The chip is configurable with many parameters programmable through a serial programmable interface (SPI). It features a global shutter, low power, and high frame rates programmable from 30 up 500 frames per second in full VGA format supported through 24 LVDS outputs. This DROIC, suitable for hybridization with focal plane arrays (FPA) is ideal for high-performance uncooled camera applications ranging from near IR (NIR) and shortwave IR (SWIR) to mid-wave IR (MWIR) and long-wave IR (LWIR) spectral bands.

  15. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  16. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  17. Hyper Suprime-Camera Survey of the Akari NEP Wide Field

    NASA Astrophysics Data System (ADS)

    Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team

    2017-03-01

    The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

  18. Thematic Conference on Remote Sensing for Exploration Geology, 6th, Houston, TX, May 16-19, 1988, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Papers concerning remote sensing applications for exploration geology are presented, covering topics such as remote sensing technology, data availability, frontier exploration, and exploration in mature basins. Other topics include offshore applications, geobotany, mineral exploration, engineering and environmental applications, image processing, and prospects for future developments in remote sensing for exploration geology. Consideration is given to the use of data from Landsat, MSS, TM, SAR, short wavelength IR, the Geophysical Environmental Research Airborne Scanner, gas chromatography, sonar imaging, the Airborne Visible-IR Imaging Spectrometer, field spectrometry, airborne thermal IR scanners, SPOT, AVHRR, SIR, the Large Format camera, and multitimephase satellite photographs.

  19. Hyperspectral techniques in analysis of oral dosage forms.

    PubMed

    Hamilton, Sara J; Lowell, Amanda E; Lodder, Robert A

    2002-10-01

    Pharmaceutical oral dosage forms are used in this paper to test the sensitivity and spatial resolution of hyperspectral imaging instruments. The first experiment tested the hypothesis that a near-infrared (IR) tunable diode-based remote sensing system is capable of monitoring degradation of hard gelatin capsules at a relatively long distance (0.5 km). Spectra from the capsules were used to differentiate among capsules exposed to an atmosphere containing 150 ppb formaldehyde for 0, 2, 4, and 8 h. Robust median-based principal component regression with Bayesian inference was employed for outlier detection. The second experiment tested the hypothesis that near-IR imaging spectrometry of tablets permits the identification and composition of multiple individual tablets to be determined simultaneously. A near-IR camera was used to collect thousands of spectra simultaneously from a field of blister-packaged tablets. The number of tablets that a typical near-IR camera can currently analyze simultaneously was estimated to be approximately 1300. The bootstrap error-adjusted single-sample technique chemometric-imaging algorithm was used to draw probability-density contour plots that revealed tablet composition. The single-capsule analysis provides an indication of how far apart the sample and instrumentation can be and still maintain adequate signal-to-noise ratio (S/N), while the multiple-tablet imaging experiment gives an indication of how many samples can be analyzed simultaneously while maintaining an adequate S/N and pixel coverage on each sample.

  20. Ultrahigh- and high-speed photography, videography, and photonics '91; Proceedings of the Meeting, San Diego, CA, July 24-26, 1991

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul A.

    1992-01-01

    This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.

  1. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    NASA Astrophysics Data System (ADS)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant literature. Let's devote a few more words to the section on pedagogical applications. It is the usual perception that the use of IR cameras for educational purposes is limited primarily to help visualize processes in thermodynamics such as heat conduction, evaporation, radiation and convection. In this book the authors show that the range of pedagogical applications of IR cameras is much wider. They describe concrete examples (from the descriptions it is clear that the authors have performed all experiments themselves) from mechanics (friction, inelastic collisions), electromagnetism (eddy currents, thermoelectric effect, analysis of standing waves in the microwave oven), optics (specular and diffuse reflection, wave optics in the IR region) and modern physics (selective absorption in gases). Readers who may want to repeat the experiments will appreciate the colour IR photos that are equipped with temperature scales from which one may learn which settings to use in order to achieve the best visibility of the phenomena to be observed. As said earlier, the decision to write a book for a wide range of readers requires authors to make certain compromises. The inclusion of interpretations and explanations at a basic level will certainly be welcomed by some readers, but due to the limited space some simplifications of this type of content were inevitable. Readers who might be put off by these simplifications should bear in mind that there are few authors who describe specialized topics such as this one and devote so much space to fundamentals. One can only wish that future authors of similar books will try to meet the standards set by this one.

  2. NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING

    PubMed Central

    Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.

    2017-01-01

    Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317

  3. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling

    PubMed Central

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-01-01

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method. PMID:27690028

  4. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.

    PubMed

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-09-27

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method.

  5. IR Imaging Study on Heater Performamnce of Outside Rearview Mirrors for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; England, Todd W

    Adhesive bonded electrical heaters have been used in outside rearview mirrors of automobiles in order to act as defrosters. Entrapment of air pockets between the heater and the mirror can affects the performance and structural integrity of the mirror assembly. Since painting over the mirror is not an option in the production environment, the biggest challenge for IR imaging is to minimize surface reflection. Looking through a smooth, highly reflective first-surface mirror and a 2 mm thick glass without picking up other heat sources in the room, such as people, electronics equipment and the camera itself, requires careful planning andmore » effective shielding. In this paper, we present our method of avoiding mirror reflection and IR images of the heated mirror in operation. Production heaters and heaters with artificial defect were studied. The IR imaging method has shown to be an effective tool for heater quality control and performance studies.« less

  6. Image-guided removal of occlusal caries lesions with a λ= 9.3-µm CO2 laser using near-IR transillumination

    PubMed Central

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-01-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-µm with a pulse duration of 10–15-µs and a pulse repetition rate of 100–300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited. PMID:25914498

  7. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination

    NASA Astrophysics Data System (ADS)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-02-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  8. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  9. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  10. Infrared imaging of subcutaneous veins.

    PubMed

    Zharov, Vladimir P; Ferguson, Scott; Eidt, John F; Howard, Paul C; Fink, Louis M; Waner, Milton

    2004-01-01

    Imaging of subcutaneous veins is important in many applications, such as gaining venous access and vascular surgery. Despite a long history of medical infrared (IR) photography and imaging, this technique is not widely used for this purpose. Here we revisited and explored the capability of near-IR imaging to visualize subcutaneous structures, with a focus on diagnostics of superficial veins. An IR device comprising a head-mounted IR LED array (880 nm), a small conventional CCD camera (Toshiba Ik-mui, Tokyo, Japan), virtual-reality optics, polarizers, filters, and diffusers was used in vivo to obtain images of different subcutaneous structures. The same device was used to estimate the IR image quality as a function of wavelength produced by a tunable xenon lamp-based monochrometer in the range of 500-1,000 nm and continuous-wave Nd:YAG (1.06 microm) and diode (805 nm) lasers. The various modes of optical illumination were compared in vivo. Contrast of the IR images in the reflectance mode was measured in the near-IR spectral range of 650-1,060 nm. Using the LED array, various IR images were obtained in vivo, including images of vein structure in a pigmented, fatty forearm, varicose leg veins, and vascular lesions of the tongue. Imaging in the near-IR range (880-930 nm) provides relatively good contrast of subcutaneous veins, underscoring its value for diagnosis. This technique has the potential for the diagnosis of varicose veins with a diameter of 0.5-2 mm at a depth of 1-3 mm, guidance of venous access, podiatry, phlebotomy, injection sclerotherapy, and control of laser interstitial therapy. Copyright 2004 Wiley-Liss, Inc.

  11. Real time capable infrared thermography for ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The cameramore » communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.« less

  12. Standoff Mid-Infrared Emissive Imaging Spectroscopy for Identification and Mapping of Materials in Polychrome Objects.

    PubMed

    Gabrieli, Francesca; Dooley, Kathryn A; Zeibel, Jason G; Howe, James D; Delaney, John K

    2018-06-18

    Microscale mid-infrared (mid-IR) imaging spectroscopy is used for the mapping of chemical functional groups. The extension to macroscale imaging requires that either the mid-IR radiation reflected off or that emitted by the object be greater than the radiation from the thermal background. Reflectance spectra can be obtained using an active IR source to increase the amount of radiation reflected off the object, but rapid heating of greater than 4 °C can occur, which is a problem for paintings. Rather than using an active source, by placing a highly reflective tube between the painting and camera and introducing a low temperature source, thermal radiation from the room can be reduced, allowing the IR radiation emitted by the painting to dominate. Thus, emissivity spectra of the object can be recovered. Using this technique, mid-IR emissivity image cubes of paintings were collected at high collection rates with a low-noise, line-scanning imaging spectrometer, which allowed pigments and paint binders to be identified and mapped. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Are There Hidden Supernovae?

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-01-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  14. Real-time Awake Animal Motion Tracking System for SPECT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon

    Enhancements have been made in the development of a real-time optical pose measurement and tracking system that provides 3D position and orientation data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained small animals. Three optical cameras with infrared (IR) illumination view the head movements of an animal enclosed in a transparent burrow. Markers placed on the head provide landmark points for image segmentation. Strobed IR LED s are synchronized to the cameras and illuminate the markers to prevent motion blur for each set of images. The system using the three cameras automatically segments themore » markers, detects missing data, rejects false reflections, performs trinocular marker correspondence, and calculates the 3D pose of the animal s head. Improvements have been made in methods for segmentation, tracking, and 3D calculation to give higher speed and more accurate measurements during a scan. The optical hardware has been installed within a Siemens MicroCAT II small animal scanner at Johns Hopkins without requiring functional changes to the scanner operation. The system has undergone testing using both phantoms and live mice and has been characterized in terms of speed, accuracy, robustness, and reliability. Experimental data showing these motion tracking results are given.« less

  15. Infrared On-Orbit RCC Inspection With the EVA IR Camera: Development of Flight Hardware From a COTS System

    NASA Technical Reports Server (NTRS)

    Gazanik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; hide

    2005-01-01

    In November 2004, NASA's Space Shuttle Program approved the development of the Extravehicular (EVA) Infrared (IR) Camera to test the application of infrared thermography to on-orbit reinforced carbon-carbon (RCC) damage detection. A multi-center team composed of members from NASA's Johnson Space Center (JSC), Langley Research Center (LaRC), and Goddard Space Flight Center (GSFC) was formed to develop the camera system and plan a flight test. The initial development schedule called for the delivery of the system in time to support STS-115 in late 2005. At the request of Shuttle Program managers and the flight crews, the team accelerated its schedule and delivered a certified EVA IR Camera system in time to support STS-114 in July 2005 as a contingency. The development of the camera system, led by LaRC, was based on the Commercial-Off-the-Shelf (COTS) FLIR S65 handheld infrared camera. An assessment of the S65 system in regards to space-flight operation was critical to the project. This paper discusses the space-flight assessment and describes the significant modifications required for EVA use by the astronaut crew. The on-orbit inspection technique will be demonstrated during the third EVA of STS-121 in September 2005 by imaging damaged RCC samples mounted in a box in the Shuttle's cargo bay.

  16. Application of low-noise CID imagers in scientific instrumentation cameras

    NASA Astrophysics Data System (ADS)

    Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.

    1991-07-01

    CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.

  17. SCC500: next-generation infrared imaging camera core products with highly flexible architecture for unique camera designs

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott

    2003-09-01

    A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.

  18. Infrared Camera System for Visualization of IR-Absorbing Gas Leaks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Immer, Christopher; Cox, Robert

    2010-01-01

    Leak detection and location remain a common problem in NASA and industry, where gas leaks can create hazardous conditions if not quickly detected and corrected. In order to help rectify this problem, this design equips an infrared (IR) camera with the means to make gas leaks of IR-absorbing gases more visible for leak detection and location. By comparing the output of two IR cameras (or two pictures from the same camera under essentially identical conditions and very closely spaced in time) on a pixel-by-pixel basis, one can cancel out all but the desired variations that correspond to the IR absorption of the gas of interest. This can be simply done by absorbing the IR lines that correspond to the gas of interest from the radiation received by one of the cameras by the intervention of a filter that removes the particular wavelength of interest from the "reference" picture. This can be done most sensitively with a gas filter (filled with the gas of interest) placed in front of the IR detector array, or (less sensitively) by use of a suitable line filter in the same location. This arrangement would then be balanced against the unfiltered "measurement" picture, which will have variations from IR absorption from the gas of interest. By suitable processing of the signals from each pixel in the two IR pictures, the user can display only the differences in the signals. Either a difference or a ratio output of the two signals is feasible. From a gas concentration viewpoint, the ratio could be processed to show the column depth of the gas leak. If a variation in the background IR light intensity is present in the field of view, then large changes in the difference signal will occur for the same gas column concentration between the background and the camera. By ratioing the outputs, the same signal ratio is obtained for both high- and low-background signals, even though the low-signal areas may have greater noise content due to their smaller signal strength. Thus, one embodiment would use a ratioed output signal to better represent the gas column concentration. An alternative approach uses a simpler multiplication of the filtered signal to make the filtered signal equal to the unfiltered signal at most locations, followed by a subtraction to remove all but the wavelength-specific absorption in the unfiltered sample. This signal processing can also reveal the net difference signal representing the leaking gas absorption, and allow rapid leak location, but signal intensity would not relate solely to gas absorption, as raw signal intensity would also affect the displayed signal. A second design choice is whether to use one camera with two images closely spaced in time, or two cameras with essentially the same view and time. The figure shows the two-camera version. This choice involves many tradeoffs that are not apparent until some detailed testing is done. In short, the tradeoffs involve the temporal changes in the field picture versus the pixel sensitivity curves and frame alignment differences with two cameras, and which system would lead to the smaller variations from the uncontrolled variables.

  19. Image simulation for HardWare In the Loop simulation in EO domain

    NASA Astrophysics Data System (ADS)

    Cathala, Thierry; Latger, Jean

    2015-10-01

    Infrared camera as a weapon sub system for automatic guidance is a key component for military carrier such as missile for example. The associated Image Processing, that controls the navigation, needs to be intensively assessed. Experimentation in the real world is very expensive. This is the main reason why hybrid simulation also called HardWare In the Loop (HWIL) is more and more required nowadays. In that field, IR projectors are able to cast IR fluxes of photons directly onto the IR camera of a given weapon system, typically a missile seeker head. Though in laboratory, the missile is so stimulated exactly like in the real world, provided a realistic simulation tool enables to perform synthetic images to be displayed by the IR projectors. The key technical challenge is to render the synthetic images at the required frequency. This paper focuses on OKTAL-SE experience in this domain through its product SE-FAST-HWIL. It shows the methodology and Return of Experience from OKTAL-SE. Examples are given, in the frame of the SE-Workbench. The presentation focuses on trials on real operational complex 3D cases. In particular, three important topics, that are very sensitive with regards to IG performance, are detailed: first the 3D sea surface representation, then particle systems rendering especially to simulate flares and at last sensor effects modelling. Beyond "projection mode", some information will be given on the SE-FAST-HWIL new capabilities dedicated to "injection mode".

  20. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  1. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energymore » reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.« less

  2. Infrared imaging of WENSS radio sources

    NASA Astrophysics Data System (ADS)

    Villani, D.; di Serego Alighieri, S.

    1999-03-01

    We have performed deep imaging in the IR J- and K- bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented. % This paper is based on data obtained at the Nordic Optical Telescope on La Palma (Canary Islands).

  3. Digital amateur observations of Venus at 0.9μm

    NASA Astrophysics Data System (ADS)

    Kardasis, E.

    2017-09-01

    Venus atmosphere is extremely dynamic, though it is very difficult to observe any features on it in the visible and even in the near-IR range. Digital observations with planetary cameras in recent years routinely produce high-quality images, especially in the near-infrared (0.7-1μm), since IR wavelengths are less influenced by Earth's atmosphere and Venus's atmosphere is partially transparent in this spectral region. Continuous observations over a few hours may track dark atmospheric features in the dayside and determine their motion. In this work we will present such observations and some dark-feature motion measurements at 0.9μm. Ground-based observations at this wavelength are rare and are complementary to in situ observations by JAXA's Akatsuki orbiter, that studies the atmospheric dynamics of Venus also in this band with the IR1 camera.

  4. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  5. STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J. C.; Lumpkin, A. H.

    We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. Themore » optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.« less

  6. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C.

    2007-12-01

    A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature is the main parameter affecting IR temperatures, while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 to January 2007, which suggests that origin of the changes were linked to anthropogenic activity, vegetation growth, and the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.

  7. VizieR Online Data Catalog: Strong lensing mass modeling of 4 HFF clusters (Kawamata+, 2016)

    NASA Astrophysics Data System (ADS)

    Kawamata, R.; Oguri, M.; Ishigaki, M.; Shimasaku, K.; Ouchi, M.

    2018-02-01

    We use the public HFF data (http://www.stsci.edu/hst/campaigns/frontier-fields/) for our analysis. The HFF targets six massive clusters, Abell 2744 (z=0.308), MACS J0416.1-2403 (z=0.397), MACS J0717.5+3745 (z=0.545), MACS J1149.6+2223 (z=0.541), Abell S1063 (z=0.348), and Abell 370 (z=0.375), which have been chosen according to their lensing strength and also their accessibility from major ground-based telescopes. The cluster core and parallel field region of each cluster are observed deeply with the IR channel of Wide Field Camera 3 (WFC3/IR) and the Advanced Camera for Surveys (ACS). As of 2015 October, HST observations for the first four clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, are completed. In this study, we use the Version 1.0 data products of drizzled images with a pixel scale of 0.03"/pixel provided by the Space Telescope Science Institute (STScI). The images for each cluster consist of F435W (B435), F606W (V606), and F814W (i814) images from ACS, and F105W (Y105), F125W (J125), F140W (JH140), and F160W (H160) images from WFC3/IR. (7 data files).

  8. The NOAO NEWFIRM Data Handling System

    NASA Astrophysics Data System (ADS)

    Zárate, N.; Fitzpatrick, M.

    2008-08-01

    The NOAO Extremely Wide-Field IR Mosaic (NEWFIRM) is a new 1-2.4 micron IR camera that is now being commissioned for the 4m Mayall telescope at Kitt Peak. The focal plane consists of a 2x2 mosaic of 2048x2048 arrays offerring a field-of-view of 27.6' on a side. The use of dual MONSOON array controllers permits very fast readout, a scripting interface allows for highly efficient observing modes. We describe the Data Handling System (DHS) for the NEWFIRM camera which is designed to meet the performance requirements of the instrument as well as the observing environment in which in operates. It is responsible for receiving the data stream from the detector and instrument software, rectifying the image geometry, presenting a real-time display of the image to the user, final assembly of a science-grade image with complete headers, as well as triggering automated pipeline and archival functions. The DHS uses an event-based messaging system to control multiple processes on a distributed network of machines. The asynchronous nature of this processing means the DHS operates independently from the camera readout and the design of the system is inherently scalable to larger focal planes that use a greater number of array controllers. Current status and future plans for the DHS are also discussed.

  9. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  10. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  11. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall.

    PubMed

    Huber, V; Huber, A; Kinna, D; Balboa, I; Collins, S; Conway, N; Drewelow, P; Maggi, C F; Matthews, G F; Meigs, A G; Mertens, Ph; Price, M; Sergienko, G; Silburn, S; Wynn, A; Zastrow, K-D

    2016-11-01

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  12. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, V., E-mail: V.Huber@fz-juelich.de; Huber, A.; Mertens, Ph.

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  13. Development of imaging bolometers for magnetic fusion reactors (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko

    2008-10-15

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version ofmore » this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.« less

  14. Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.

  15. Teaching physics and understanding infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  16. Compact Kirkpatrick–Baez microscope mirrors for imaging laser-plasma x-ray emission

    DOE PAGES

    Marshall, F. J.

    2012-07-18

    Compact Kirkpatrick–Baez microscope mirror components for use in imaging laser-plasma x-ray emission have been manufactured, coated, and tested. A single mirror pair has dimensions of 14 × 7 × 9 mm and a best resolution of ~5 μm. The mirrors are coated with Ir providing a useful energy range of 2-8 keV when operated at a grazing angle of 0.7°. The mirrors can be circularly arranged to provide 16 images of the target emission a configuration best suited for use in combination with a custom framing camera. As a result, an alternative arrangement of the mirrors would allow alignment ofmore » the images with a fourstrip framing camera.« less

  17. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  18. Visible, Very Near IR and Short Wave IR Hyperspectral Drone Imaging System for Agriculture and Natural Water Applications

    NASA Astrophysics Data System (ADS)

    Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.

    2017-10-01

    The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high (  50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.

  19. Medical Applications of IR Focal Plane Arrays

    DTIC Science & Technology

    1998-03-15

    University of Memphis, USA, E. Wolf, H. Bada C Leffler - University of Tennessee at Memphis, USA, M. Daley ■ University of Memphis, USA A two channel ...optical aperture versus thermal sensitivity at two different resolution settings for an optimized medical IR camera LIST OF TABLES TABLE 1 Advantages...34. Technology Transferred: Through this work, infrared imaging in medicine was exposed to ever-growing audiences. For the first time, the work of the last two

  20. Infrared Observations of the Neutron Star X-ray Transient KS 1731-260

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome A.; Bailyn, Charles D.; Whitman, Katie

    2001-09-01

    We have obtained J-band images of the field of the neutron star X-ray transient KS 1731-260 on July 13, 2001 using the YALO 1m telescope at Cerro Tololo Interamerican Observatory and the ANDICAM optical/IR camera. We compared our image with the J-band image obtained June 1, 1996 with the Canada-France-Hawaii Telescope (Barret, Motch, & Predehl, 1998, A&A, 329, 965).

  1. Profiling defect depth in composite materials using thermal imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2018-04-01

    Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.

  2. Thermal imaging application for behavior study of chosen nocturnal animals

    NASA Astrophysics Data System (ADS)

    Pregowski, Piotr; Owadowska, Edyta; Pietrzak, Jan

    2004-04-01

    This paper presents preliminary results of the project brought up with aim to verify the hypothesis that small, nocturnal rodents use common paths which form a common, rather stable system for fast movement. This report concentrates on results of merging uniquely good detecting features of modern IR thermal cameras with newly elaborated software. Among the final results offered by this method there are both thermal movies and single synthetic graphic images of paths traced during a few minutes or hours of investigations, as well as detailed numerical data of the ".txt" type about chosen detected events. Although it is to early to say that elaborated method will allow us to answer all ecological questions, it is possible to say that we worked out a new, valuable tool for the next steps of our project. We expect that this method enables us to solve the important ecological problems of nocturnal animals study. Supervised, stably settled area can be enlarged by use of a few thermal imagers or IR thermographic cameras, simultaneously. Presented method can be applied in other uses, even distant from presented e.g. ecological corridors detection.

  3. The advanced linked extended reconnaissance and targeting technology demonstration project

    NASA Astrophysics Data System (ADS)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  4. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.

  5. Computational multispectral video imaging [Invited].

    PubMed

    Wang, Peng; Menon, Rajesh

    2018-01-01

    Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

  6. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with the NAC will emphasize pathfinding toward the next generation of IR imaging spectrometers for the Advanced Technology Solar Telescope, whose 4 m aperture finally will bring sorely needed high spatial resolution to daytime infrared astronomy. In the meantime, the NAC is available to qualified solar physicists from around the world to conduct forefront research in the 1-5 mu region, on the venerable--but infrared friendly--McMath-Pierce telescope.

  7. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  8. Continuous-wave terahertz digital holography by use of a pyroelectric array camera.

    PubMed

    Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi

    2011-06-01

    Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America

  9. Multiple pedestrian detection using IR LED stereo camera

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Zeifman, Michael I.; Gibson, David R. P.

    2007-09-01

    As part of the U.S. Department of Transportations Intelligent Vehicle Initiative (IVI) program, the Federal Highway Administration (FHWA) is conducting R&D in vehicle safety and driver information systems. There is an increasing number of applications where pedestrian monitoring is of high importance. Visionbased pedestrian detection in outdoor scenes is still an open challenge. People dress in very different colors that sometimes blend with the background, wear hats or carry bags, and stand, walk and change directions unpredictably. The background is various, containing buildings, moving or parked cars, bicycles, street signs, signals, etc. Furthermore, existing pedestrian detection systems perform only during daytime, making it impossible to detect pedestrians at night. Under FHWA funding, we are developing a multi-pedestrian detection system using IR LED stereo camera. This system, without using any templates, detects the pedestrians through statistical pattern recognition utilizing 3D features extracted from the disparity map. A new IR LED stereo camera is being developed, which can help detect pedestrians during daytime and night time. Using the image differencing and denoising, we have also developed new methods to estimate the disparity map of pedestrians in near real time. Our system will have a hardware interface with the traffic controller through wireless communication. Once pedestrians are detected, traffic signals at the street intersections will change phases to alert the drivers of approaching vehicles. The initial test results using images collected at a street intersection show that our system can detect pedestrians in near real time.

  10. Transillumination and reflectance probes for in vivo near-IR imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Lucas, Seth A.; Staninec, Michal; Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.

  11. Of Detection Limits and Effective Mitigation: The Use of Infrared Cameras for Methane Leak Detection

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; McGuire, M.; Bell, C.; Brandt, A. R.

    2017-12-01

    Mitigating methane emissions, a short-lived and potent greenhouse gas, is critical to limiting global temperature rise to two degree Celsius as outlined in the Paris Agreement. A major source of anthropogenic methane emissions in the United States is the oil and gas sector. To this effect, state and federal governments have recommended the use of optical gas imaging systems in periodic leak detection and repair (LDAR) surveys to detect for fugitive emissions or leaks. The most commonly used optical gas imaging systems (OGI) are infrared cameras. In this work, we systematically evaluate the limits of infrared (IR) camera based OGI system for use in methane leak detection programs. We analyze the effect of various parameters that influence the minimum detectable leak rates of infrared cameras. Blind leak detection tests were carried out at the Department of Energy's MONITOR natural gas test-facility in Fort Collins, CO. Leak sources included natural gas wellheads, separators, and tanks. With an EPA mandated 60 g/hr leak detection threshold for IR cameras, we test leak rates ranging from 4 g/hr to over 350 g/hr at imaging distances between 5 ft and 70 ft from the leak source. We perform these experiments over the course of a week, encompassing a wide range of wind and weather conditions. Using repeated measurements at a given leak rate and imaging distance, we generate detection probability curves as a function of leak-size for various imaging distances, and measurement conditions. In addition, we estimate the median detection threshold - leak-size at which the probability of detection is 50% - under various scenarios to reduce uncertainty in mitigation effectiveness. Preliminary analysis shows that the median detection threshold varies from 3 g/hr at an imaging distance of 5 ft to over 150 g/hr at 50 ft (ambient temperature: 80 F, winds < 4 m/s). Results from this study can be directly used to improve OGI based LDAR protocols and reduce uncertainty in estimated mitigation effectiveness. Furthermore, detection limits determined in this study can be used as standards to compare new detection technologies.

  12. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  13. High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi

    2017-02-01

    Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.

  14. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  15. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the secondmore » parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.« less

  16. Preliminary investigation of Large Format Camera photography utility in soil mapping and related agricultural applications

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Hudnall, W. H.

    1987-01-01

    The use of Space Shuttle Large Format Camera (LFC) color, IR/color, and B&W images in large-scale soil mapping is discussed and illustrated with sample photographs from STS 41-6 (October 1984). Consideration is given to the characteristics of the film types used; the photographic scales available; geometric and stereoscopic factors; and image interpretation and classification for soil-type mapping (detecting both sharp and gradual boundaries), soil parent material topographic and hydrologic assessment, natural-resources inventory, crop-type identification, and stress analysis. It is suggested that LFC photography can play an important role, filling the gap between aerial and satellite remote sensing.

  17. Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system

    NASA Astrophysics Data System (ADS)

    Vítek, S.

    2017-07-01

    The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.

  18. OSTA-3 Shuttle payload

    NASA Technical Reports Server (NTRS)

    Dillman, R. D.; Eav, B. B.; Baldwin, R. R.

    1984-01-01

    The Office of Space and Terrestrial Applications-3 payload, scheduled for flight on STS Mission 17, consists of four earth-observation experiments. The Feature Identification and Location Experiment-1 will spectrally sense and numerically classify the earth's surface into water, vegetation, bare earth, and ice/snow/cloud-cover, by means of spectra ratio techniques. The Measurement of Atmospheric Pollution from Satellite experiment will measure CO distribution in the middle and upper troposphere. The Imaging Camera-B uses side-looking SAR to create two-dimensional images of the earth's surface. The Large Format Camera/Attitude Reference System will collect metric quality color, color-IR, and black-and-white photographs for topographic mapping.

  19. Near-IR and CP-OCT Imaging of Suspected Occlusal Caries Lesions

    PubMed Central

    Simon, Jacob C.; Kang, Hobin; Staninec, Michal; Jang, Andrew T.; Chan, Kenneth H.; Darling, Cynthia L.; Lee, Robert C.; Fried, Daniel

    2017-01-01

    Introduction Radiographic methods have poor sensitivity for occlusal lesions and by the time the lesions are radiolucent they have typically progressed deep into the dentin. New more sensitive imaging methods are needed to detect occlusal lesions. In this study, cross-polarization optical coherence tomography (CP-OCT) and near-IR imaging were used to image questionable occlusal lesions (QOC's) that were not visible on radiographs but had been scheduled for restoration on 30 test subjects. Methods Near-IR reflectance and transillumination probes incorporating a high definition InGaAs camera and near-IR broadband light sources were used to acquire images of the lesions before restoration. The reflectance probe utilized cross-polarization and operated at wavelengths from 1500–1700-nm where there is an increase in water absorption for higher contrast. The transillumination probe was operated at 1300-nm where the transparency of enamel is highest. Tomographic images (6×6×7 mm3) of the lesions were acquired using a high-speed swept-source CP-OCT system operating at 1300-nm before and after removal of the suspected lesion. Results Near-IR reflectance imaging at 1500–1700-nm yielded significantly higher contrast (p<0.05) of the demineralization in the occlusal grooves compared with visible reflectance imaging. Stains in the occlusal grooves greatly reduced the lesion contrast in the visible range yielding negative values. Only half of the 26 lesions analyzed showed the characteristic surface demineralization and increased reflectivity below the dentinal-enamel junction (DEJ) in 3D OCT images indicative of penetration of the lesion into the dentin. Conclusion This study demonstrates that near-IR imaging methods have great potential for improving the early diagnosis of occlusal lesions. PMID:28339115

  20. Improved calibration-based non-uniformity correction method for uncooled infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao

    2017-08-01

    With the latest improvements of microbolometer focal plane arrays (FPA), uncooled infrared (IR) cameras are becoming the most widely used devices in thermography, especially in handheld devices. However the influences derived from changing ambient condition and the non-uniform response of the sensors make it more difficult to correct the nonuniformity of uncooled infrared camera. In this paper, based on the infrared radiation characteristic in the TEC-less uncooled infrared camera, a novel model was proposed for calibration-based non-uniformity correction (NUC). In this model, we introduce the FPA temperature, together with the responses of microbolometer under different ambient temperature to calculate the correction parameters. Based on the proposed model, we can work out the correction parameters with the calibration measurements under controlled ambient condition and uniform blackbody. All correction parameters can be determined after the calibration process and then be used to correct the non-uniformity of the infrared camera in real time. This paper presents the detail of the compensation procedure and the performance of the proposed calibration-based non-uniformity correction method. And our method was evaluated on realistic IR images obtained by a 384x288 pixels uncooled long wave infrared (LWIR) camera operated under changed ambient condition. The results show that our method can exclude the influence caused by the changed ambient condition, and ensure that the infrared camera has a stable performance.

  1. Lead Apron Inspection Using Infrared Light: A Model Validation Study.

    PubMed

    McKenney, Sarah E; Otero, Hansel J; Fricke, Stanley T

    2018-02-01

    To evaluate defect detection in radiation protective apparel, typically called lead aprons, using infrared (IR) thermal imaging. The use of IR lighting eliminates the need for access to x-ray-emitting equipment and radiation dose to the inspector. The performance of radiation workers was prospectively assessed using both a tactile inspection and the IR inspection with a lead apron phantom over a 2-month period. The phantom was a modified lead apron with a series of nine holes of increasing diameter ranging from 2 to 35 mm in accordance with typical rejection criteria. Using the tactile method, a radiation worker would feel for the defects in the lead apron. For the IR inspection, a 250-W IR light source was used to illuminate the lead apron phantom; an IR camera detected the transmitted radiation. The radiation workers evaluated two stills from the IR camera. From the 31 participants inspecting the lead apron phantom with the tactile method, only 2 participants (6%) correctly discovered all 9 holes and 1 participant reported a defect that was not there; 10 of the 20 participants (50%) correctly identified all 9 holes using the IR method. Using a weighted average, 5.4 defects were detected with the tactile method and 7.5 defects were detected with the IR method. IR light can penetrate an apron's protective outer fabric and illuminate defects below the current standard rejection size criteria. The IR method improves defect detectability as compared with the tactile method. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    NASA Technical Reports Server (NTRS)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  3. Fluorescent Microscopy Enhancement Using Imaging

    NASA Astrophysics Data System (ADS)

    Conrad, Morgan P.; Reck tenwald, Diether J.; Woodhouse, Bryan S.

    1986-06-01

    To enhance our capabilities for observing fluorescent stains in biological systems, we are developing a low cost imaging system based around an IBM AT microcomputer and a commercial image capture board compatible with a standard RS-170 format video camera. The image is digitized in real time with 256 grey levels, while being displayed and also stored in memory. The software allows for interactive processing of the data, such as histogram equalization or pseudocolor enhancement of the display. The entire image, or a quadrant thereof, can be averaged over time to improve the signal to noise ratio. Images may be stored to disk for later use or comparison. The camera may be selected for better response in the UV or near IR. Combined with signal averaging, this increases the sensitivity relative to that of the human eye, while still allowing for the fluorescence distribution on either the surface or internal cytoskeletal structure to be observed.

  4. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

    PubMed

    Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T

    2018-04-24

    Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

  5. IR gas cloud imaging in oil and gas applications: immunity to false stimuli

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward; Baliga, Shakar; Park, John; Bernascolle, Philippe

    2011-05-01

    Fixed gas detection equipment for the petroleum industries is no ordinary equipment. It is designed for continued unattended surveillance in harsh environments. The equipment must be reliable and require limited field maintenance. An additional requirement is a high resistance to false alarms and interferences, which can potentially reduce the detector's efficacy and the level of protection provided. In recent years, several manufactures of IR imaging devices have launched commercial models that are applicable to a wide range of chemical species and suitable for industrial use. These cameras are rugged and sufficiently sensitive to detect low concentrations of combustible and toxic gases. Nonetheless, as users become acquainted with these imaging systems, questions of resilience to solar and flame radiation and other IR sources, interferences by fog or steam, have begun to emerge. These questions, in fact, reflect similar concerns as those raised with open path IR gas detectors when they first appeared in the market over 20 years ago. This paper examines an IR gas imager's performance when exposed to several false alarm sources. Gas detection sensitivity in the presence of false stimuli and response and recovery times under an uncontrolled outdoor environment were measured. The results show the specific model tested is reasonably immune to false alarms, while response times were unaffected by the presence of these sources.

  6. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    PubMed

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  7. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  8. 2001 Mars Odyssey: Geologic Questions for Global Geochemical and Mineralogical Mapping

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Meyer, M. A.

    2001-01-01

    2001 Mars Odyssey has three experiments. GRS will map the surface elemental composition. MARIE will characterize the Mars radiation environment for risk to humans. THEMIS will map the mineralogy and morphology with a camera and thermal IR imaging. Additional information is contained in the original extended abstract.

  9. Goodman High Throughput Spectrograph | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR 320-850 nm wavelength range. The paper describing the instrument is Clemens et al. (2004) Applying for IRAF. Publishing results based on Goodman data?: ADS link to 2004 SPIE Goodman Spectrograph paper

  10. Spectroscopic imaging of limiter heat and particle fluxes and the resulting impurity sources during Wendelstein 7-X startup plasmas.

    PubMed

    Stephey, L; Wurden, G A; Schmitz, O; Frerichs, H; Effenberg, F; Biedermann, C; Harris, J; König, R; Kornejew, P; Krychowiak, M; Unterberg, E A

    2016-11-01

    A combined IR and visible camera system [G. A. Wurden et al., "A high resolution IR/visible imaging system for the W7-X limiter," Rev. Sci. Instrum. (these proceedings)] and a filterscope system [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)] were implemented together to obtain spectroscopic data of limiter and first wall recycling and impurity sources during Wendelstein 7-X startup plasmas. Both systems together provided excellent temporal and spatial spectroscopic resolution of limiter 3. Narrowband interference filters in front of the camera yielded C-III and H α photon flux, and the filterscope system provided H α , H β , He-I, He-II, C-II, and visible bremsstrahlung data. The filterscopes made additional measurements of several points on the W7-X vacuum vessel to yield wall recycling fluxes. The resulting photon flux from both the visible camera and filterscopes can then be compared to an EMC3-EIRENE synthetic diagnostic [H. Frerichs et al., "Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X," Rev. Sci. Instrum. (these proceedings)] to infer both a limiter particle flux and wall particle flux, both of which will ultimately be used to infer the complete particle balance and particle confinement time τ P .

  11. Standoff aircraft IR characterization with ABB dual-band hyper spectral imager

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lantagne, Stéphane; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2012-09-01

    Remote sensing infrared characterization of rapidly evolving events generally involves the combination of a spectro-radiometer and infrared camera(s) as separated instruments. Time synchronization, spatial coregistration, consistent radiometric calibration and managing several systems are important challenges to overcome; they complicate the target infrared characterization data processing and increase the sources of errors affecting the final radiometric accuracy. MR-i is a dual-band Hyperspectal imaging spectro-radiometer, that combines two 256 x 256 pixels infrared cameras and an infrared spectro-radiometer into one single instrument. This field instrument generates spectral datacubes in the MWIR and LWIR. It is designed to acquire the spectral signatures of rapidly evolving events. The design is modular. The spectrometer has two output ports configured with two simultaneously operated cameras to either widen the spectral coverage or to increase the dynamic range of the measured amplitudes. Various telescope options are available for the input port. Recent platform developments and field trial measurements performances will be presented for a system configuration dedicated to the characterization of airborne targets.

  12. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  13. A New Method for Wide-field Near-IR Imaging with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; van Dokkum, Pieter G.; van der Wel, Arjen; Brammer, Gabriel B.; MacKenty, John; Nelson, Erica J.; Leja, Joel; Muzzin, Adam; Franx, Marijn

    2017-01-01

    We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 s between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this “drift and shift” (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 H 160 pointings in 57 orbits, covering an area of 0.6 degree in the COSMOS field down to H 160 = 25. When completed, the program will more than triple the area of extra-galactic survey fields covered by near-IR imaging at HST resolution. We demonstrate the viability of the method with the first four orbits (32 pointings) of this program. We show that the resolution of the WFC3 camera is preserved, and that structural parameters of galaxies are consistent with those measured in guided observations.

  14. REVIEW OF DEVELOPMENTS IN SPACE REMOTE SENSING FOR MONITORING RESOURCES.

    USGS Publications Warehouse

    Watkins, Allen H.; Lauer, D.T.; Bailey, G.B.; Moore, D.G.; Rohde, W.G.

    1984-01-01

    Space remote sensing systems are compared for suitability in assessing and monitoring the Earth's renewable resources. Systems reviewed include the Landsat Thematic Mapper (TM), the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), the French Systeme Probatoire d'Observation de la Terre (SPOT), the German Shuttle Pallet Satellite (SPAS) Modular Optoelectronic Multispectral Scanner (MOMS), the European Space Agency (ESA) Spacelab Metric Camera, the National Aeronautics and Space Administration (NASA) Large Format Camera (LFC) and Shuttle Imaging Radar (SIR-A and -B), the Russian Meteor satellite BIK-E and fragment experiments and MKF-6M and KATE-140 camera systems, the ESA Earth Resources Satellite (ERS-1), the Japanese Marine Observation Satellite (MOS-1) and Earth Resources Satellite (JERS-1), the Canadian Radarsat, the Indian Resources Satellite (IRS), and systems proposed or planned by China, Brazil, Indonesia, and others. Also reviewed are the concepts for a 6-channel Shuttle Imaging Spectroradiometer, a 128-channel Shuttle Imaging Spectrometer Experiment (SISEX), and the U. S. Mapsat.

  15. Verification of the test stand for microbolometer camera in accredited laboratory

    NASA Astrophysics Data System (ADS)

    Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz

    2017-10-01

    Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.

  16. Estimation of wetland evapotranspiration in northern New York using infrared thermometry

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.

    2016-12-01

    Evapotranspiration (ET) is an important component of the water budget and often regarded as a major water loss. In freshwater wetlands, cumulative annual ET can equal precipitation under well-watered conditions. Wetland ET is therefore an important control on contaminant and nutrient transport. Yet, quantification of wetland ET is challenged by complex surface characteristics, diverse plant species and density, and variations in wetland shape and size. As handheld infrared (IR) cameras have become available, studies exploiting the new technology have increased, especially in agriculture and hydrology. The benefits of IR cameras include (1) high spatial resolution, (2) high sample rates, (3) real-time imaging, (4) a constant viewing geometry, and (5) no need for atmosphere and cloud corrections. Compared with traditional methods, infrared thermometer is capable of monitoring at the scale of a small pond or localized plant community. This enables finer scale survey of heterogeneous land surfaces rather than strict dependence on atmospheric variables. Despite this potential, there has been a limited number of studies of ET and drought stress with IR cameras. In this study, the infrared thermometry-based method was applied to estimate ET over wetland plant species in St. Lawrence River Valley, NY. The results are evaluated with traditional methods to test applicability over multiple vegetation species in a same area.

  17. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  18. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.

  19. Status and performance of HST/Wide Field Camera 3

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; MacKenty, John W.; O'Connell, Robert W.

    2006-06-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera currently in development for installation into the Hubble Space Telescope. WFC3 provides two imaging channels. The UVIS channel features a 4096 x 4096 pixel CCD focal plane covering 200 to 1000 nm wavelengths with a 160 x 160 arcsec field of view. The UVIS channel provides unprecedented sensitivity and field of view in the near ultraviolet for HST. It is particularly well suited for studies of the star formation history of local galaxies and clusters, searches for Lyman alpha dropouts at moderate redshift, and searches for low surface brightness structures against the dark UV sky background. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 800 to 1700 nm with a 139 x 123 arcsec field of view, providing a major advance in IR survey efficiency for HST. IR channel science goals include studies of dark energy, galaxy formation at high redshift, and star formation. The instrument is being prepared for launch as part of HST Servicing Mission 4, tentatively scheduled for late 2007, contingent upon formal approval of shuttle-based servicing after successful shuttle return-to-flight. We report here on the status and performance of WFC3.

  20. Symbolic Image Understanding

    DTIC Science & Technology

    1991-11-01

    publication. APPROVED: a LEE A. UVANNI Project Engineer FOR THE COMMANDER: GARRY W. BARRINGER Technical Director Intelligence & Reconnaissance...f Od1cAtl nd ir-’bm a UNl tofU~rtaw ."t Pu’ o scrxr± ing twra fa revrl r Jt,= seagrg d un zla souLces gahwtW" r T , iUm rm , rruk4 c adiwvctws coa w...1990j matches straight lines extracted from an image with model lines r projected to the image plane using an assumed location of the camera. This

  1. Images of the 10-micron source in the Cygnus 'Egg'

    NASA Technical Reports Server (NTRS)

    Jaye, D.; Fienberg, R. Tresch; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.

    1989-01-01

    Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening.

  2. Silicon Based Schottky Barrier Infrared Sensors For Power System And Industrial Applications

    NASA Astrophysics Data System (ADS)

    Elabd, Hammam; Kosonocky, Walter F.

    1984-03-01

    Schottky barrier infrared charge coupled device sensors (IR-CCDs) have been developed. PtSi Schottky barrier detectors require cooling to liquid Nitrogen temperature and cover the wavelength range between 1 and 6 μm. The PtSi IR-CCDs can be used in industrial thermography with NEAT below 0.1°C. Pd Si-Schottkybarrier detectors require cooling to 145K and cover the spectral range between 1 and 3.5 μm. 11d2Si-IR-CCDs can be used in imaging high temperature scenes with NE▵T around 100°C. Several high density staring area and line imagers are available. Both interlaced and noninterlaced area imagers can be operated with variable and TV compatible frame rates as well as various field of view angles. The advantages of silicon fabrication technology in terms of cost and high density structures opens the doors for the design of special purpose thermal camera systems for a number of power aystem and industrial applications.

  3. Distinction of Green Sweet Peppers by Using Various Color Space Models and Computation of 3 Dimensional Location Coordinates of Recognized Green Sweet Peppers Based on Parallel Stereovision System

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-06-01

    This paper presents the comparative study of various color space models to determine the suitable color space model for detection of green sweet peppers. The images were captured by using CCD cameras and infrared cameras and processed by using Halcon image processing software. The LED ring around the camera neck was used as an artificial lighting to enhance the feature parameters. For color images, CieLab, YIQ, YUV, HSI and HSV whereas for infrared images, grayscale color space models were selected for image processing. In case of color images, HSV color space model was found more significant with high percentage of green sweet pepper detection followed by HSI color space model as both provides information in terms of hue/lightness/chroma or hue/lightness/saturation which are often more relevant to discriminate the fruit from image at specific threshold value. The overlapped fruits or fruits covered by leaves can be detected in better way by using HSV color space model as the reflection feature from fruits had higher histogram than reflection feature from leaves. The IR 80 optical filter failed to distinguish fruits from images as filter blocks useful information on features. Computation of 3D coordinates of recognized green sweet peppers was also conducted in which Halcon image processing software provides location and orientation of the fruits accurately. The depth accuracy of Z axis was examined in which 500 to 600 mm distance between cameras and fruits was found significant to compute the depth distance precisely when distance between two cameras maintained to 100 mm.

  4. IR in Norway

    NASA Astrophysics Data System (ADS)

    Haakenaasen, Randi; Lovold, Stian

    2003-01-01

    Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.

  5. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  6. Infrared imaging-based combat casualty care system

    NASA Astrophysics Data System (ADS)

    Davidson, James E., Sr.

    1997-08-01

    A Small Business Innovative Research (SBIR) contract was recently awarded to a start up company for the development of an infrared (IR) image based combat casualty care system. The company, Medical Thermal Diagnostics, or MTD, is developing a light weight, hands free, energy efficient uncooled IR imaging system based upon a Texas Instruments design which will allow emergency medical treatment of wounded soldiers in complete darkness without any type of light enhancement equipment. The principal investigator for this effort, Dr. Gene Luther, DVM, Ph.D., Professor Emeritus, LSU School of Veterinary Medicine, will conduct the development and testing of this system with support from Thermalscan, Inc., a nondestructive testing company experienced in IR thermography applications. Initial research has been done with surgery on a cat for feasibility of the concept as well as forensic research on pigs as a close representation of human physiology to determine time of death. Further such studies will be done later as well as trauma studies. IR images of trauma injuries will be acquired by imaging emergency room patients to create an archive of emergency medical situations seen with an infrared imaging camera. This archived data will then be used to develop training material for medical personnel using the system. This system has potential beyond military applications. Firefighters and emergency medical technicians could directly benefit from the capability to triage and administer medical care to trauma victims in low or no light conditions.

  7. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial cost advantages and the freedom to fly along nearly any groundtrack route for transient event tracking such as occultations and eclipses.

  8. Material of LAPAN's thermal IR camera equipped with two microbolometers in one aperture

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2017-11-01

    Besides the wavelength used, there is another factor that we have to notice in designing an optical system. It is material used which is correct for the spectral bands determined. Basically, due the limitation of the available range and expensive, choosing and determining materials for Infra Red (IR) wavelength are more difficult and complex rather than visible spectrum. We also had the same problem while designing our thermal IR camera equipped with two microbolometers sharing aperture. Two spectral bands, 3 - 4 μm (MWIR) and 8 - 12 μm (LWIR), have been decided to be our thermal IR camera spectrum to address missions, i.e., peat land fire, volcanoes activities, and Sea Surface Temperature (SST). Referring those bands, we chose the appropriate material for LAPAN's IR camera optics. This paper describes material of LAPAN's IR camera equipped with two microbolometer in one aperture. First of all, we were learning and understanding of optical materials properties all matters of IR technology including its bandwidths. Considering some aspects, i.e., Transmission, Index of Refraction, Thermal properties covering the index gradient and coefficient of thermal expansion (CTE), the analysis then has been accomplished. Moreover, we were utilizing a commercial software, Thermal Desktop/Sinda Fluint, to strengthen the process. Some restrictions such as space environment, low cost, and performance mainly durability and transmission, were also cared throughout the trade off the works. The results of all those analysis, either in graphs or in measurement, indicate that the lens of LAPAN's IR camera with sharing aperture is based on Germanium/Zinc Selenide materials.

  9. VizieR Online Data Catalog: New young stellar cluster towards IRAS 04186+5143 (Yun+, 2015)

    NASA Astrophysics Data System (ADS)

    Yun, J. L.; Elia, D.; Djupvik, A. A.; Torrelles, J. M.; Molinari, S.

    2016-01-01

    Near-IR (J, H, and KS) images were obtained on 2009 September 8 using the Nordic Optical Telescope near-IR Camera and Spectrograph (NOTCam). The region around the position of the IRAS source was mapped using the single-dish Onsala Space Observatory (OSO) 20-m radio telescope (Onsala, Sweden) in 2009 April. Three maps were obtained in the rotational lines of 12CO(1-0), 13CO(1-0), and CS(2-1) at 115.271, 110.201, and 97.981GHz, respectively. (2 data files).

  10. Investigations of High Resolution Imaging through the Earth’s Atmosphere Using Speckle Interferometry

    DTIC Science & Technology

    1984-03-07

    improved the SO/AFGL speckle camera for use at any conventionai`teescop" by pErv’-ion ofmicro-processor controlled " Risley prisms, shutter mechanisms...condition in the IR because of the all-reflecting system (the wedges used for mode . C are normally not used for IR work). In the 2ptical Experiments the...of pairs of •’ 16 fl**S ’ ,**S * !, S glass wedges (mode C). Beckers and Roddier (1982) used the Roddier rotation sholaring interferometer to obtain

  11. The Infrared Sensor Suite for SnowEx 2017

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Chickadel, C. C.; Crawford, C. J.; DeMarco, E. L.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Lundquist, J. D.; Lunsford, A. W.

    2017-01-01

    SnowEx is a winter airborne and field campaign designed to measure snow-water equivalent in forested landscapes. A major focus of Year 1 (2016-17) of NASA's SnowEx campaign will be an extensive field program involving dozens of participants from U.S. government agencies and from many universities and institutions, both domestic and foreign. Along with other instruments, two infrared (IR) sensors will be flown on a Naval Research Laboratory P-3 aircraft. Surface temperature is a critical input to hydrologic models and will be measured during the SnowEx mission. A Quantum Well Infrared Photodetector (QWIP) IR imaging camera system will be flown along with a KT-15 remote thermometer to aid in the calibration of the IR image data. Together, these instruments will measure surface temperature of snow and ice targets to an expected accuracy of less than 1C.

  12. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  13. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy)

    NASA Astrophysics Data System (ADS)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.

    2017-12-01

    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been created to select polygonal areas corresponding only to the cells containing the georeferenced TIR images acquired by different TIRnet stations. Preliminary results of this integration approach has been analyzed in order to produce systematic reports to the Italian Civil Protection for the Napolitan Volcanoes.

  14. Thermal Image Sensing Model for Robotic Planning and Search.

    PubMed

    Castro Jiménez, Lídice E; Martínez-García, Edgar A

    2016-08-08

    This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image's intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot's course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach.

  15. General Astrophysics with the HabEx Workhorse Camera

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.

  16. Early Results from the Odyssey THEMIS Investigation

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Bandfield, Joshua L.; Bell, James F., III; Hamilton, Victoria E.; Ivanov, Anton; Jakosky, Bruce M.; Kieffer, Hugh H.; Lane, Melissa D.; Malin, Michael C.; McConnochie, Timothy

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) began studying the surface and atmosphere of Mars in February, 2002 using thermal infrared (IR) multi-spectral imaging between 6.5 and 15 m, and visible/near-IR images from 450 to 850 nm. The infrared observations continue a long series of spacecraft observations of Mars, including the Mariner 6/7 Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM) investigations, the Phobos Termoscan, and the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). The THEMIS investigation's specific objectives are to: (1) determine the mineralogy of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; (4) investigate polar cap processes at all seasons; and (5) provide a high spatial resolution link to the global hyperspectral mineral mapping from the TES investigation. THEMIS provides substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MGS cameras.

  17. Don't get burned: thermal monitoring of vessel sealing using a miniature infrared camera

    NASA Astrophysics Data System (ADS)

    Lin, Shan; Fichera, Loris; Fulton, Mitchell J.; Webster, Robert J.

    2017-03-01

    Miniature infrared cameras have recently come to market in a form factor that facilitates packaging in endoscopic or other minimally invasive surgical instruments. If absolute temperature measurements can be made with these cameras, they may be useful for non-contact monitoring of electrocautery-based vessel sealing, or other thermal surgical processes like thermal ablation of tumors. As a first step in evaluating the feasibility of optical medical thermometry with these new cameras, in this paper we explore how well thermal measurements can be made with them. These cameras measure the raw flux of incoming IR radiation, and we perform a calibration procedure to map their readings to absolute temperature values in the range between 40 and 150 °C. Furthermore, we propose and validate a method to estimate the spatial extent of heat spread created by a cautery tool based on the thermal images.

  18. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  19. Star Formation as Seen by the Infrared Array Camera on Spitzer

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Allen, L.; Megeath, T.; Barmby, P.; Calvet, N.; Fazio, G.; Hartmann, L.; Myers, P.; Marengo, M.; Gutermuth, R.

    2004-01-01

    The Infrared Array Camera (IRAC) onboard Spitzer has imaged regions of star formation (SF) in its four IR bands with spatial resolutions of approximately 2"/pixel. IRAC is sensitive enough to detect very faint, embedded young stars at levels of tens of Jy, and IRAC photometry can categorize their stages of development: from young protostars with infalling envelopes (Class 0/1) to stars whose infrared excesses derive from accreting circumstellar disks (Class 11) to evolved stars dominated by photospheric emission. The IRAC images also clearly reveal and help diagnose associated regions of shocked and/or PDR emission in the clouds; we find existing models provide a good start at explaining the continuum of the SF regions IRAC observes.

  20. Spectroscopic imaging of limiter heat and particle fluxes and the resulting impurity sources during Wendelstein 7-X startup plasmas

    DOE PAGES

    Stephey, L.; Wurden, G. A.; Schmitz, O.; ...

    2016-08-08

    A combined IR and visible camera system [G. A. Wurden et al., “A high resolution IR/visible imaging system for the W7-X limiter,” Rev. Sci. Instrum. (these proceedings)] and a filterscope system [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)] were implemented together to obtain spectroscopic data of limiter and first wall recycling and impurity sources during Wendelstein 7-X startup plasmas. Both systems together provided excellent temporal and spatial spectroscopic resolution of limiter 3. Narrowband interference filters in front of the camera yielded C-III and Hα photon flux, and the filterscope system provided H α, H β, He-I,more » He-II, C-II, and visible bremsstrahlung data. The filterscopes made additional measurements of several points on the W7-X vacuum vessel to yield wall recycling fluxes. Finally, the resulting photon flux from both the visible camera and filterscopes can then be compared to an EMC3-EIRENE synthetic diagnostic [H. Frerichs et al., “Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X,” Rev. Sci. Instrum. (these proceedings)] to infer both a limiter particle flux and wall particle flux, both of which will ultimately be used to infer the complete particle balance and particle confinement time τ P.« less

  1. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    DOE PAGES

    van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; ...

    2016-07-12

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm 2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. Here, the optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less

  2. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eden, G. G. van; Morgan, T. W.; Reinke, M. L.

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less

  3. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Eden, G. G.; Reinke, M. L.; Peterson, B. J.

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm 2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. Here, the optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less

  4. Calibrating IR Cameras for In-Situ Temperature Measurement During the Electron Beam Melting Process using Inconel 718 and Ti-Al6-V4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Lloyd, Peter D; Dehoff, Ryan R

    2016-01-01

    The Department of Energy s (DOE) Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides world-leading capabilities in advanced manufacturing (AM) facilities which leverage previous, on-going government investments in materials science research and characterization. MDF contains systems for fabricating components with complex geometries using AM techniques (i.e. 3D-Printing). Various metal alloy printers, for example, use electron beam melting (EBM) systems for creating these components which are otherwise extremely difficult- if not impossible- to machine. ORNL has partnered with manufacturers on improving the final part quality of components and developing new materials for further advancing these devices. One methodmore » being used to study (AM) processes in more depth relies on the advanced imaging capabilities at ORNL. High performance mid-wave infrared (IR) cameras are used for in-situ process monitoring and temperature measurements. However, standard factory calibrations are insufficient due to very low transmissions of the leaded glass window required for X-ray absorption. Two techniques for temperature calibrations will be presented and compared. In-situ measurement of emittance will also be discussed. Ample information can be learned from in-situ IR process monitoring of the EBM process. Ultimately, these imaging systems have the potential for routine use for online quality assurance and feedback control.« less

  5. Characteristics of the Secondary Divertor on DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Lasnier, C. J.; Leonard, A. W.; Evans, T. E.; Pitts, R.; Stangeby, P. C.; Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.

    2009-11-01

    In order to address a concern that the ITER secondary divertor strike plates may be insufficiently robust to handle the incident pulses of particles and energy from ELMs, we performed dedicated studies of the secondary divertor plasma and scrape-off layer (SOL). Detailed measurements of the ELM energy and particle deposition footprint on the secondary divertor target plates were made with a fast IR camera and Langmuir probes and SOL profile and transport measurements were made with reciprocating probes. The secondary divertor and SOL conditions depended on changes in the magnetic balance and the core plasma density. Larger density resulted in smaller ELMs and the magnetic balance affected how many ELM particles coupled to the secondary SOL and divertor. Particularly striking are the images from a new fast IR camera that resolve ELM heat pulses and show spiral patterns with multiple peaks during ELMs in the secondary divertor.

  6. Infrared stereo calibration for unmanned ground vehicle navigation

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  7. Monitoring system for phreatic eruptions and thermal behavior on Poás volcano hyperacidic lake, with permanent IR and HD cameras

    NASA Astrophysics Data System (ADS)

    Ramirez, C. J.; Mora-Amador, R. A., Sr.; Alpizar Segura, Y.; González, G.

    2015-12-01

    Monitoring volcanoes have been on the past decades an expanding matter, one of the rising techniques that involve new technology is the digital video surveillance, and the automated software that come within, now is possible if you have the budget and some facilities on site, to set up a real-time network of high definition video cameras, some of them even with special features like infrared, thermal, ultraviolet, etc. That can make easier or harder the analysis of volcanic phenomena like lava eruptions, phreatic eruption, plume speed, lava flows, close/open vents, just to mention some of the many application of these cameras. We present the methodology of the installation at Poás volcano of a real-time system for processing and storing HD and thermal images and video, also the process to install and acquired the HD and IR cameras, towers, solar panels and radios to transmit the data on a volcano located at the tropics, plus what volcanic areas are our goal and why. On the other hand we show the hardware and software we consider necessary to carry on our project. Finally we show some early data examples of upwelling areas on the Poás volcano hyperacidic lake and the relation with lake phreatic eruptions, also some data of increasing temperature on an old dome wall and the suddenly wall explosions, and the use of IR video for measuring plume speed and contour for use on combination with DOAS or FTIR measurements.

  8. IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert M. Malone, Ian J. McKenna

    2008-03-01

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolicmore » mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.« less

  9. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  10. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  11. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.

  12. Ambient and Cryogenic Alignment Verification and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mink, Ronald G.; Mentzell, J. Eric; Saha, Timo T.; Tveekrem, June L.; Hylan, Jason E.; Sparr, Leroy M.; Chambers, V. John; Hagopian, John G.

    2003-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.

  13. Coaxial fundus camera for opthalmology

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  14. A new high-speed IR camera system

    NASA Technical Reports Server (NTRS)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  15. MIRIS observation of near-infrared diffuse Galactic light

    NASA Astrophysics Data System (ADS)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  16. Lunar UV-visible-IR mapping interferometric spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  17. Olympus Mons at Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is of a portion of the flank of Olympus Mons. In last week's Arsia Mons flow images, it was easy to delineate lava flows. While this image is also of a region of extensive flows, it is nearly impossible to identify any flows. This illustrates one of the problems imaging high altitudes in nighttime IR, the surface is almost as cold as the atmosphere and is emitting very little signal back to the IR camera.

    Image information: IR instrument. Latitude 16.4, Longitude 230.6 East (129.4 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. An embedded face-classification system for infrared images on an FPGA

    NASA Astrophysics Data System (ADS)

    Soto, Javier E.; Figueroa, Miguel

    2014-10-01

    We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.

  19. Combining spectral material properties in the infrared and the visible spectral range for qualification and nondestructive evaluation of components

    NASA Astrophysics Data System (ADS)

    Eisler, K.; Goldammer, M.; Rothenfusser, M.; Arnold, W.; Homma, C.

    2012-05-01

    The spectral selective thermography with infrared filters can be used to determine or to distinguish materials such as contaminations on a metallic component. With additional visual information, the indications by the IR signal can be selectively accentuated or suppressed for easier evaluation of passive and active thermography measurements. For flash thermography the detected IR signal between 3.4 and 5.1 μm is analyzed with regard to the spectral material information. The presented hybrid camera uses beam overlapping to obtain combined images of both in the infrared and the visual range.

  20. Multiwavelength study of Chandra X-ray sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  1. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  2. Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.

  3. Synchronous infrared imaging methods to characterize thermal properties of materials

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhong

    1999-11-01

    A fundamental thermal property of a material is its thermal conductivity. The current state-of-the art for measurement of thermal conductivity is inadequate, especially in the case of composite materials. This dissertation addresses the need for a rapid and accurate measurement of thermal conductivity that can provide values for three orthogonal directions in a single measurement. The theoretical approach is based on three-dimensional thermal wave propagation and scattering treatments that have been developed earlier at Wayne State University. The experimental approach makes use of a state-of-the-art focal-plane-array infrared camera, which is used to follow the time- and spatial-progression of the planar heat pulse on both surfaces of the slab. The method has been used to determine the thermal diffusivity of six pure elemental single crystal materials (Cu, Ti, Bi, Al, Ag, Pb). The results are in good agreement (better than 1%) with the diffusivities calculated from the handbook. The diffusivities of some alloys and unidirectional graphite-fiber-reinforced-polymer composite also are determined by this method. As a byproduct of one of the experimental approaches measuring the IR radiation from the heated surface, direct evidence is obtained for the presence of a thermal wave "echo". The theory and confirming measurements in this dissertation represent its first clear confirmation. A second experimental method which is studied in this dissertation, and which may be used to characterize thermal properties of materials, is that of lock-in thermal wave imaging. In this technique, pioneered earlier at Wayne State University, a periodic heat source is applied to the surface of the material, and synchronous, phase-sensitive detection of the IR radiation from that surface is used to determine the effects of thermal wave propagation to subsurface features, and the effects of reflected thermal waves from those features on the observed IR radiation from the surface. The rationale for re-visiting this technique is the availability of the focal-plane-array IR camera, with its "snapshot" capability, its high spatial resolution, and its high pixel rate. A lock-in imaging method is developed for use with this camera, which can be used at frequencies that considerably exceed the maximum frame rate, with illustrative applications to characterize the thermal properties of printed circuits and electronic packages.

  4. Penetration of pyrotechnic effects with SWIR laser gated viewing in comparison to VIS and thermal IR bands

    NASA Astrophysics Data System (ADS)

    Göhler, Benjamin; Lutzmann, Peter

    2016-10-01

    In this paper, the potential capability of short-wavelength infrared laser gated-viewing for penetrating the pyrotechnic effects smoke and light/heat has been investigated by evaluating data from conducted field trials. The potential of thermal infrared cameras for this purpose has also been considered and the results have been compared to conventional visible cameras as benchmark. The application area is the use in soccer stadiums where pyrotechnics are illegally burned in dense crowds of people obstructing visibility of stadium safety staff and police forces into the involved section of the stadium. Quantitative analyses have been carried out to identify sensor performances. Further, qualitative image comparisons have been presented to give impressions of image quality during the disruptive effects of burning pyrotechnics.

  5. Preparing for Themis Controlled Global Mars Mosaics

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Weller, L.; Sides, S.; Cushing, G.; Kirk, R. L.; Soderblom, L. A.; Duxbury, T. C.

    2004-01-01

    We have begun work to prepare for producing controlled 2001 Mars Odyssey THEMIS infrared (IR) and visible (VIS) global mosaics of Mars. This effort is being coordinated with colleagues from Arizona State University and on the THEMIS team who plan to address radiometric issues in making such mosaics. We are concentrating on geometric issues. Several areas of investigation are now in progress, including: a) characterizing the absolute pointing accuracy of THEMIS images; b) investigating whether automatic tie point matching algorithms could be used to provide connections between overlapping THEMIS images; c) developing algorithms to allow for the photogrammetric (bundle) adjustment of the THEMIS IR (line scanner) camera images. Our primary goal in this pilot study effort will be to make several test control THEMIS mosaics and better determine which methods could be used, which require development, and what level of effort is required, in order to make large regional or global controlled THEMIS mosaics.

  6. A Portable Burn Pan for the Disposal of Gun Propellants

    DTIC Science & Technology

    2016-11-01

    Scorching of vegetation in vacinity of burn pan caused by radiant heat .............................. 39 11 Wet propellant (12-0 kg burn) and dry ...45 14 IR Camera thermal image 30 seconds after a test burn ........................................................ 46 15 Commander...so that setting up tests was a lot easier than anticipated. Dr. Packer also fully embraced the concept, requesting background reports and papers as

  7. Deep Near-Infrared Surveys and Young Brown Dwarf Populations in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Naoi, T.; Oasa, Y.; Nakajima, Y.; Nagashima, C.; Nagayama, T.; Baba, D.; Nagata, T.; Sato, S.; Kato, D.; Kurita, M.; Sugitani, K.; Itoh, Y.; Nakaya, H.; Pickles, A.

    2003-06-01

    We are currently conducting three kinds of IR surveys of star forming regions (SFRs) in order to seek for very low-mass young stellar populations. First is a deep JHKs-bands (simultaneous) survey with the SIRIUS camera on the IRSF 1.4m or the UH 2.2m telescopes. Second is a very deep JHKs survey with the CISCO IR camera on the Subaru 8.2m telescope. Third is a high resolution companion search around nearby YSOs with the CIAO adaptive optics coronagraph IR camera on the Subaru. In this contribution, we describe our SIRIUS camera and present preliminary results of the ongoing surveys with this new instrument.

  8. Automatic panoramic thermal integrated sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.

    2005-05-01

    Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.

  9. AMICA: The First camera for Near- and Mid-Infrared Astronomical Imaging at Dome C

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Dolci, M.; Valentini, A.; Valentini, G.; di Rico, G.; Ragni, M.; Giuliani, C.; di Cianno, A.; di Varano, I.; Corcione, L.; Bortoletto, F.; D'Alessandro, M.; Magrin, D.; Bonoli, C.; Giro, E.; Fantinel, D.; Zerbi, F. M.; Riva, A.; de Caprio, V.; Molinari, E.; Conconi, P.; Busso, M.; Tosti, G.; Abia, C. A.

    AMICA (Antarctic Multiband Infrared CAmera) is an instrument designed to perform astronomical imaging in the near- (1{-}5 μm) and mid- (5 27 μm) infrared wavelength regions. Equipped with two detectors, an InSb 2562 and a Si:As 1282 IBC, cooled at 35 and 7 K respectively, it will be the first instrument to investigate the potential of the Italian-French base Concordia for IR astronomy. The main technical challenge is represented by the extreme conditions of Dome C (T ˜ -90 °C, p ˜640 mbar). An environmental control system ensures the correct start-up, shut-down and housekeeping of the various components of the camera. AMICA will be mounted on the IRAIT telescope and will perform survey-mode observations in the Southern sky. The first task is to provide important site-quality data. Substantial contributions to the solution of fundamental astrophysical quests, such as those related to late phases of stellar evolution and to star formation processes, are also expected.

  10. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  11. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  12. Investigation into the Use of the Concept Laser QM System as an In-Situ Research and Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) is using a Concept Laser Fusing (Cusing) M2 powder bed additive manufacturing system for the build of space flight prototypes and hardware. NASA MSFC is collecting and analyzing data from the M2 QM Meltpool and QM Coating systems for builds. This data is intended to aide in understanding of the powder-bed additive manufacturing process, and in the development of a thermal model for the process. The QM systems are marketed by Concept Laser GmbH as in-situ quality management modules. The QM Meltpool system uses both a high-speed near-IR camera and a photodiode to monitor the melt pool generated by the laser. The software determines from the camera images the size of the melt pool. The camera also measures the integrated intensity of the IR radiation, and the photodiode gives an intensity value based on the brightness of the melt pool. The QM coating system uses a high resolution optical camera to image the surface after each layer has been formed. The objective of this investigation was to determine the adequacy of the QM Meltpool system as a research instrument for in-situ measurement of melt pool size and temperature and its applicability to NASA's objectives in (1) Developing a process thermal model and (2) Quantifying feedback measurements with the intent of meeting quality requirements or specifications. Note that Concept Laser markets the system only as capable of giving an indication of changes between builds, not as an in-situ research and evaluation tool. A secondary objective of the investigation is to determine the adequacy of the QM Coating system as an in-situ layer-wise geometry and layer quality evaluation tool.

  13. Detection of latent bloodstains beneath painted surfaces using reflected infrared photography.

    PubMed

    Farrar, Andrew; Porter, Glenn; Renshaw, Adrian

    2012-09-01

    Bloodstain evidence is a highly valued form of physical evidence commonly found at scenes involving violent crimes. However, painting over bloodstains will often conceal this type of evidence. There is limited research in the scientific literature that describes methods of detecting painted-over bloodstains. This project employed a modified digital single-lens reflex camera to investigate the effectiveness of infrared (IR) photography in detecting latent bloodstain evidence beneath a layer or multiple layers of paint. A qualitative evaluation was completed by comparing images taken of a series of samples using both IR and standard (visible light) photography. Further quantitative image analysis was used to verify the findings. Results from this project indicate that bloodstain evidence can be detected beneath up to six layers of paint using reflected IR; however, the results vary depending on the characteristics of the paint. This technique provides crime scene specialists with a new field method to assist in locating, visualizing, and documenting painted-over bloodstain evidence. © 2012 American Academy of Forensic Sciences.

  14. Measurements of Infrared and Acoustic Source Distributions in Jet Plumes

    NASA Technical Reports Server (NTRS)

    Agboola, Femi A.; Bridges, James; Saiyed, Naseem

    2004-01-01

    The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.

  15. Low-cost telepresence for collaborative virtual environments.

    PubMed

    Rhee, Seon-Min; Ziegler, Remo; Park, Jiyoung; Naef, Martin; Gross, Markus; Kim, Myoung-Hee

    2007-01-01

    We present a novel low-cost method for visual communication and telepresence in a CAVE -like environment, relying on 2D stereo-based video avatars. The system combines a selection of proven efficient algorithms and approximations in a unique way, resulting in a convincing stereoscopic real-time representation of a remote user acquired in a spatially immersive display. The system was designed to extend existing projection systems with acquisition capabilities requiring minimal hardware modifications and cost. The system uses infrared-based image segmentation to enable concurrent acquisition and projection in an immersive environment without a static background. The system consists of two color cameras and two additional b/w cameras used for segmentation in the near-IR spectrum. There is no need for special optics as the mask and color image are merged using image-warping based on a depth estimation. The resulting stereo image stream is compressed, streamed across a network, and displayed as a frame-sequential stereo texture on a billboard in the remote virtual environment.

  16. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  17. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    NASA Astrophysics Data System (ADS)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  18. IR Camera Report for the 7 Day Production Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holloway, Michael Andrew

    2016-02-22

    The following report gives a summary of the IR camera performance results and data for the 7 day production run that occurred from 10 Sep 2015 thru 16 Sep 2015. During this production run our goal was to see how well the camera performed its task of monitoring the target window temperature with our improved alignment procedure and emissivity measurements. We also wanted to see if the increased shielding would be effective in protecting the camera from damage and failure.

  19. Assessment of remineralized dentin lesions with thermal and near-infrared reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Accurate detection and measurement of the highly mineralized surface layer that forms on caries lesions is important for the diagnosis of lesion activity. Previous studies have demonstrated that optical imaging methods can be used to measure the degree of remineralization on enamel lesions. The purpose of this study was to determine if thermal and near-IR reflectance imaging could be used to assess the remineralization process in simulated dentin lesions. Artificial bovine (n=15) dentin lesions were prepared by immersion in a demineralization solution for 24 hours and they were subsequently placed in an acidic remineralization solution for up to 12 days. The samples were dehydrated using an air spray for 30 seconds and imaged using thermal and InGaAs cameras. The area enclosed by the time-temperature curve, ΔQ, from thermal imaging decreased significantly with longer periods of remineralization. However, near-IR reflectance intensity differences, ΔI, before and after dehydration failed to show any significant relationship with the degree of remineralization. This study shows that thermal imaging can be used for the assessment of the remineralization of dentin lesions.

  20. Alignment and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mentzell, J. Eric; Madison, Timothy J.; Hylan, Jason E.; Mink, Ronald G.; Saha, Timo T.; Tveekrem, June L.; Sparr, Leroy M.; Chambers, V. John; hide

    2004-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nanometers, a blackbody source provides a line at 1550 nanometers, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.

  1. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  2. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  3. Mesospheric circulation at the cloud top level of Venus according to Venus Monitoring Camera images

    NASA Astrophysics Data System (ADS)

    Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Titov, Dmitri; Markiewicz, Wojciech; Turin, Alexander

    We present results of wind speed measurements at the cloud top level of Venus derived from manual cloud tracking in the UV (365 nm) and IR (965 nm) channels of the Venus Monitoring Camera Experiment (VMC) [1] on board the Venus Express mission. Cloud details have a maximal contrast in the UV range. More then 90 orbits have been processed. 30000 manual vectors were obtained. The period of the observations covers more than 4 venusian year. Zonal wind speed demonstrates the local solar time dependence. Possible diurnal and semidiurnal components are observed [2]. According to averaged latitude profile of winds at level of the upper clouds: -The zonal speed is slightly increasing by absolute values from 90 on the equator to 105 m/s at latitudes —47 degrees; -The period of zonal rotation has the maximum at the equator (5 earth days). It has the minimum (3 days) at altitudes —50 degrees. After minimum periods are slightly increasing toward the South pole; -The meridional speed has a value 0 on the equator, and then it is linear increasing up to 10 m/s (by absolute value) at 50 degrees latitude. "-" denotes movement from the equator to the pole. -From 50 to 80 degrees the meridional speed is again decreasing by absolute value up to 0. IR (965+10 nm) day side images can be used for wind tracking. The obtained speed of the zonal wind in the low and middle latitudes are systematically less than the wind speed derived from the UV images. The average zonal speed obtained from IR day side images in the low and average latitudes is about 65-70 m/s. The given fact can be interpreted as observation of deeper layers of mesosphere in the IR range in comparison with UV. References [1] Markiewicz W. J. et al. (2007) Planet. Space Set V55(12). P.1701-1711. [2] Moissl R., et al. (2008) J. Geophys. Res. 2008. doi:10.1029/2008JE003117. V.113.

  4. QWIP technology for both military and civilian applications

    NASA Astrophysics Data System (ADS)

    Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.

    2001-10-01

    Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.

  5. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  6. Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Rappaport, S.

    1977-01-01

    An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.

  7. Quantitative imaging of volcanic plumes — Results, needs, and future trends

    USGS Publications Warehouse

    Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph

    2015-01-01

    Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.

  8. "Wow, It Turned out Red! First, a Little Yellow, and Then Red!" 1st-Graders' Work with an Infrared Camera

    ERIC Educational Resources Information Center

    Jeppsson, Fredrik; Frejd, Johanna; Lundmark, Frida

    2017-01-01

    This study focuses on investigating how students make use of their bodily experiences in combination with infrared (IR) cameras, as a way to make meaning in learning about heat, temperature, and friction. A class of 20 primary students (age 7-8 years), divided into three groups, took part in three IR camera laboratory experiments. The qualitative…

  9. High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi; Jiang, Naibo; Cutler, Andrew D.; Felver, Josef J.; Slipchenko, Mikhail N.; Danehy, Paul M.; Gord, James R.; Roy, Sukesh

    2018-03-01

    High-repetition-rate interferometric-Rayleigh-scattering (IRS) velocimetry is demonstrated for non-intrusive, high-speed flow-velocity measurements. High temporal resolution is obtained with a quasi-continuous burst-mode laser that is capable of operating at 10-100 kHz, providing 10-ms bursts with pulse widths of 5-1000 ns and pulse energy > 100 mJ at 532 nm. Coupled with a high-speed camera system, the IRS method is based on imaging the flow field through an etalon with 8-GHz free spectral range and capturing the Doppler shift of the Rayleigh-scattered light from the flow at multiple points having constructive interference. The seed-laser linewidth permits a laser linewidth of < 150 MHz at 532 nm. The technique is demonstrated in a high-speed jet, and high-repetition-rate image sequences are shown.

  10. Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared

    DTIC Science & Technology

    2011-07-01

    taken with the same camera head, operating temperature, range of calibrated blackbody illuminations, and using the same long-wavelength IR ( LWIR ) f/2...measurements shown in this article and are tabulated for comparison purposes only. Images were taken with all four devices using an f/2 LWIR lens (8–12 μm...These were acquired after a nonuniformity correction. A custom image-scaling algorithm was used to avoid the standard nonuniformity corrected scaling

  11. Web-based data acquisition and management system for GOSAT validation Lidar data analysis

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra N.; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei

    2012-11-01

    An web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data analysis is developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS ground-level meteorological data, Rawinsonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data.

  12. Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging

    NASA Astrophysics Data System (ADS)

    Jaffery, Zainul Abdin; Dubey, Ashwani Kumar; Irshad; Haque, Ahteshamul

    2017-06-01

    Degradation of PV modules can cause excessive overheating which results in a reduced power output and eventually failure of solar panel. To maintain the long term reliability of solar modules and maximize the power output, faults in modules need to be diagnosed at an early stage. This paper provides a comprehensive algorithm for fault diagnosis in solar modules using infrared thermography. Infrared Thermography (IRT) is a reliable, non-destructive, fast and cost effective technique which is widely used to identify where and how faults occurred in an electrical installation. Infrared images were used for condition monitoring of solar modules and fuzzy logic have been used to incorporate intelligent classification of faults. An automatic approach has been suggested for fault detection, classification and analysis. IR images were acquired using an IR camera. To have an estimation of thermal condition of PV module, the faulty panel images were compared to a healthy PV module thermal image. A fuzzy rule-base was used to classify faults automatically. Maintenance actions have been advised based on type of faults.

  13. Further development of image processing algorithms to improve detectability of defects in Sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2017-02-01

    Sonic Infrared imaging (SIR) technology is a relatively new NDE technique that has received significant acceptance in the NDE community. SIR NDE is a super-fast, wide range NDE method. The technology uses short pulses of ultrasonic excitation together with infrared imaging to detect defects in the structures under inspection. Defects become visible to the IR camera when the temperature in the crack vicinity increases due to various heating mechanisms in the specimen. Defect detection is highly affected by noise levels as well as mode patterns in the image. Mode patterns result from the superposition of sonic waves interfering within the specimen during the application of sound pulse. Mode patterns can be a serious concern, especially in composite structures. Mode patterns can either mimic real defects in the specimen, or alternatively, hide defects if they overlap. In last year's QNDE, we have presented algorithms to improve defects detectability in severe noise. In this paper, we will present our development of algorithms on defect extraction targeting specifically to mode patterns in SIR images.

  14. Tissue warming and regulatory responses induced by radio frequency energy deposition on a whole-body 3-Tesla magnetic resonance imager.

    PubMed

    Boss, Andreas; Graf, Hansjörg; Berger, Alexander; Lauer, Ulrike A; Wojtczyk, Hanne; Claussen, Claus D; Schick, Fritz

    2007-11-01

    To quantify the B1-field induced tissue warming on a 3T-whole-body scanner, to test whether the patient is able to sense the temperature change, and to evaluate whether the imaging procedure constitutes a significant cardiovascular stress. A total of 18 volunteers were divided into three equal groups for 3.0T MRI of the pelvis, the head, or the knee. An imaging protocol operating at first level mode was applied, allowing radio frequency (RF) irradiation up to the legal specific absorption rate (SAR) limits. An identical placebo protocol with active gradient switching but without RF transmission was used. Temperature changes were measured with a fiber-optic thermometer (FO) and an infrared camera (IR). Temperature differences to the placebo were highest for imaging of the pelvis (FO: DeltaT = 0.88 +/- 0.13 degrees C, IR: DeltaT = 1.01 +/- 0.15 degrees C) as compared to the head (FO: DeltaT = 0.46 +/- 0.12 degrees C, IR: DeltaT = 0.47 +/- 0.10 degrees C) and the knee (FO: DeltaT = 0.33 +/- 0.11 degrees C, IR: DeltaT = 0.37 +/- 0.09 degrees C). The volunteers were able to discriminate between imaging and placebo for pelvic (P < 0.0001) and head (P = 0.0005) imaging but not for knee imaging (P = 0.209). No changes in heart rate or blood pressure were detected. The 3.0T MRI in the first operational mode may lead to measurable and perceptible thermal energy deposition. However, it may be regarded as safe concerning the thermoregulatory cardiovascular stress.

  15. Stand-off CWA imaging system: second sight MS

    NASA Astrophysics Data System (ADS)

    Bernascolle, Philippe F.; Elichabe, Audrey; Fervel, Franck; Haumonté, Jean-Baptiste

    2012-06-01

    In recent years, several manufactures of IR imaging devices have launched commercial models applicable to a wide range of chemical species. These cameras are rugged and sufficiently sensitive to detect low concentrations of toxic and combustible gases. Bertin Technologies, specialized in the design and supply of innovating systems for industry, defense and health, has developed a stand-off gas imaging system using a multi-spectral infrared imaging technology. With this system, the gas cloud size, localization and evolution can be displayed in real time. This technology was developed several years ago in partnership with the CEB, a French MoD CBRN organization. The goal was to meet the need for early warning caused by a chemical threat. With a night & day efficiency of up to 5 km, this process is able to detect Chemical Warfare Agents (CWA), critical Toxic Industrial Compounds (TIC) and also flammable gases. The system has been adapted to detect industrial spillage, using off-the-shelf uncooled infrared cameras, allowing 24/7 surveillance without costly frequent maintenance. The changes brought to the system are in compliance with Military Specifications (MS) and primarily focus on the signal processing improving the classification of the detected products and on the simplification of the Human Machine Interface (HMI). Second Sight MS is the only mass produced, passive stand-off CWA imaging system with a wide angle (up to 60°) already used by several regular armies around the world. This paper examines this IR gas imager performance when exposed to several CWA, TIC and simulant compounds. First, we will describe the Second Sight MS system. The theory of gas detection, visualization and classification functions has already been described elsewhere, so we will just summarize it here. We will then present the main topic of this paper which is the results of the tests done in laboratory on live agents and in open field on simulant. The sensitivity threshold of the camera measured in laboratory, on some CWA (G, H agents...) and TIC (ammonia, sulfur dioxide...) will be given. The result of the detection and visualization of a gas cloud in open field testing for some simulants (DMMP, SF6) at a far distance will be also shown.

  16. Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Khatuntsev, I. V.; Patsaeva, M. V.; Titov, D. V.; Ignatiev, N. I.; Turin, A. V.; Fedorova, A. A.; Markiewicz, W. J.

    2017-11-01

    For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49-57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5-65°S) the velocity of the retrograde zonal wind was found to be 68-70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65-70°S. The mean meridional speed has a positive sign at 5-65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55-65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from -67.18 ± 1.81 m/s to -77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.

  17. Continuous monitoring of Hawaiian volcanoes using thermal cameras

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with Matlab, includes automated measurements of lava lake level and surface crust velocity, tracking temperatures and hot areas in real-time, and alerts which notify users of notable temperature increases via text messaging. Lastly, real-time image and processed data display, which is vital for effective use of the images at the observatory, is done through a custom Web-based environment . Near real-time webcam images are displayed for the public at hvo.wr.usgs.gov/cams. Thermal cameras are costly, but have proven to be an extremely effective monitoring and research tool at the Hawaiian Volcano Observatory.

  18. PyEmir: Data Reduction Pipeline for EMIR, the GTC Near-IR Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Pascual, S.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.

    2010-12-01

    EMIR is the near-infrared wide-field camera and multi-slit spectrograph being built for Gran Telescopio Canarias. We present here the work being done on its data processing pipeline. PyEmir is based on Python and it will process automatically data taken in both imaging and spectroscopy mode. PyEmir is begin developed by the UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation.

  19. ALLFlight: detection of moving objects in IR and ladar images

    NASA Astrophysics Data System (ADS)

    Doehler, H.-U.; Peinecke, Niklas; Lueken, Thomas; Schmerwitz, Sven

    2013-05-01

    Supporting a helicopter pilot during landing and takeoff in degraded visual environment (DVE) is one of the challenges within DLR's project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites). Different types of sensors (TV, Infrared, mmW radar and laser radar) are mounted onto DLR's research helicopter FHS (flying helicopter simulator) for gathering different sensor data of the surrounding world. A high performance computer cluster architecture acquires and fuses all the information to get one single comprehensive description of the outside situation. While both TV and IR cameras deliver images with frame rates of 25 Hz or 30 Hz, Ladar and mmW radar provide georeferenced sensor data with only 2 Hz or even less. Therefore, it takes several seconds to detect or even track potential moving obstacle candidates in mmW or Ladar sequences. Especially if the helicopter is flying with higher speed, it is very important to minimize the detection time of obstacles in order to initiate a re-planning of the helicopter's mission timely. Applying feature extraction algorithms on IR images in combination with data fusion algorithms of extracted features and Ladar data can decrease the detection time appreciably. Based on real data from flight tests, the paper describes applied feature extraction methods for moving object detection, as well as data fusion techniques for combining features from TV/IR and Ladar data.

  20. Field trials for determining the visible and infrared transmittance of screening smoke

    NASA Astrophysics Data System (ADS)

    Sánchez Oliveros, Carmen; Santa-María Sánchez, Guillermo; Rosique Pérez, Carlos

    2009-09-01

    In order to evaluate the concealment capability of smoke, the Countermeasures Laboratory of the Institute of Technology "Marañosa" (ITM) has done a set of tests for measuring the transmittances of multispectral smoke tins in several bands of the electromagnetic spectrum. The smoke composition based on red phosphorous has been developed and patented by this laboratory as a part of a projectile development. The smoke transmittance was measured by means of thermography as well as spectroradiometry. Black bodies and halogen lamps were used as infrared and visible source of radiation. The measurements were carried out in June of 2008 at the Marañosa field (Spain) with two MWIR cameras, two LWIR cameras, one CCD visible camera, one CVF IR spectroradiometer covering the interval 1.5 to 14 microns and one array silicon based spectroradiometer for the 0.2 to 1.1 μm spectra. The transmittance and dimensions of the smoke screen were characterized in the visible band, MWIR (3 - 5 μm and LWIR (8 - 12 μm) regions. The size of the screen was about 30 meters wide and 5 meters high. The transmittances in the IR bands were about 0.3 and better than 0.1 in the visible one. The screens showed to be effective over the time of persistence for all of the tests. The results obtained from the imaging and non-imaging systems were in good accordance. The meteorological conditions during tests such as the wind speed are determinant for the use of this kind of optical countermeasures.

  1. VizieR Online Data Catalog: 14 unusual IR transients with Spitzer (SPRITEs) (Kasliwal+, 2017)

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Bally, J.; Masci, F.; Cody, A. M.; Bond, H. E.; Jencson, J. E.; Tinyanont, S.; Cao, Yi; Contreras, C.; Dykhoff, D. A.; Amodeo, S.; Armus, L.; Boyer, M.; Cantiello, M.; Carlon, R. L.; Cass, A. C.; Cook, D.; Corgan, D. T.; Faella, J.; Fox, O. D.; Green, W.; Gehrz, R. D.; Helou, G.; Hsiao, E.; Johansson, J.; Khan, R. M.; Lau, R. M.; Langer, N.; Levesque, E.; Milne, P.; Mohamed, S.; Morrell, N.; Monson, A.; Moore, A.; Ofek, E. O.; O'Sullivan, D.; Parthasarathy, M.; Perez, A.; Perley, D. A.; Phillips, M.; Prince, T. A.; Shenoy, D.; Smith, N.; Surace, J.; van Dyk, S. D.; Whitelock, P. A.; Williams, R.

    2017-11-01

    The SPitzer InfraRed Intensive Transients Survey (SPIRITS) survey uses the IRAC instrument (FoV 5'x5') on board the warm Spitzer telescope to search for IR transients at 3.6um ([3.6]) and 4.5um ([4.5]). SPIRITS is a five-year survey from 2014 to 2018 (Kasliwal+ 2013sptz.prop10136K, 2016sptz.prop13053K). We are undertaking concomitant ground-based surveys to monitor the SPIRITS galaxy sample in the near-IR and the optical at roughly a monthly cadence. At the University of Minnesota's Mt. Lemmon Observing Facility (MLOF), we use the three-channel Two Micron All Sky Survey cameras mounted on the 1.52m IR telescope. At Las Campanas, we undertake near-IR monitoring with the Retrocam on Dupont 100 inch telescope and optical monitoring using the CCD on the Swope 40 inch telescope. At Palomar, we use the Samuel Oschin 48 inch (primarily gr-band) and Palomar 60 inch telescopes (gri-bands) for optical monitoring. Using the LCOGT network, we obtain additional optical monitoring in gri-bands. In addition, a follow-up of discovered transients was undertaken by a myriad of facilities including Keck, Magellan, Palomar 200 inch, SALT, and RATIR. Following non-detections from the ground, we were able to set even deeper magnitude limits for two transients based on a small HST Director's Discretionary program (GO/DD-13935, PI H. Bond). We imaged SPIRITS 14aje (in M101) and SPIRITS 14axa (in M81) with the Wide Field Camera 3 (WFC3) in 2014 September. (5 data files).

  2. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    NASA Astrophysics Data System (ADS)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  3. Time-of-flight range imaging for underwater applications

    NASA Astrophysics Data System (ADS)

    Merbold, Hannes; Catregn, Gion-Pol; Leutenegger, Tobias

    2018-02-01

    Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.

  4. Planetary investigation utilizing an imaging spectrometer system based upon charge injection technology

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Harvey, P.; Swift, R.

    1975-01-01

    An intrinsic silicon charge injection device (CID) television sensor array has been used in conjunction with a CaMoO4 colinear tunable acousto optic filter, a 61 inch reflector, a sophisticated computer system, and a digital color TV scan converter/computer to produce near IR images of Saturn and Jupiter with 10A spectral resolution and approximately 3 inch spatial resolution. The CID camera has successfully obtained digitized 100 x 100 array images with 5 minutes of exposure time, and slow-scanned readout to a computer. Details of the equipment setup, innovations, problems, experience, data and final equipment performance limits are given.

  5. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.

    PubMed

    Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A

    2014-11-01

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  6. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    DOE PAGES

    Lasnier, Charles J.; Allen, Steve L.; Ellis, Ronald E.; ...

    2014-08-26

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in divertedmore » and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. As a result, demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.« less

  7. Mars global digital dune database: MC-30

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2012-01-01

    The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System (THEMIS) Infrared (IR) images. In the previous two reports, some dune fields may have been unintentionally excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100 m/pixel) certainly caused us to exclude smaller dune fields. In this report, mapping is more complete. The Arizona State University THEMIS daytime IR mosaic provided complete IR coverage, and it is unlikely that we missed any large dune fields in the South Pole (SP) region. In addition, the increased availability of higher resolution images resulted in the inclusion of more small (~1 km2) sand dune fields and sand patches. To maintain consistency with the previous releases, we have identified the sand features that would not have been included in earlier releases. While the moderate to large dune fields in MGD3 are likely to constitute the largest compilation of sediment on the planet, we acknowledge that our database excludes numerous small dune fields and some moderate to large dune fields as well. Please note that the absence of mapped dune fields does not mean that dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera (MOC) narrow angle, Mars Express High Resolution Stereo Camera, or Mars Reconnaissance Orbiter Context Camera and High Resolution Imaging Science Experiment images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the approximate prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model is also included. In addition to polygons locating dune fields, the database includes ~700 of the THEMIS VIS and MOC images that were used to build the database.

  8. Close-up multispectral images of the surface of comet 67P/Churyumov-Gerasimenko by the ROLIS camera onboard the Rosetta Philae lander

    NASA Astrophysics Data System (ADS)

    Schroeder, S.; Mottola, S.; Arnold, G.; Grothues, H. G.; Jaumann, R.; Michaelis, H.; Neukum, G.; Pelivan, I.; Bibring, J. P.

    2014-12-01

    In November 2014 the Philae lander onboard Rosetta is scheduled to land on the surface of comet 67P/Churyumov-Gerasimenko. The ROLIS camera will provide the ground truth for the Rosetta OSIRIS camera. ROLIS will acquire images both during the descent and after landing. In this paper we concentrate on the post-landing images. The close-up images will enable us to characterize the morphology and texture of the surface, and the shape, albedo, and size distribution of the particles on scales as small as 0.3 mm per pixel. We may see evidence for a dust mantle, a refractory crust, and exposed ice. In addition, we hope to identify features such as pores, cracks, or vents that allow volatiles to escape the surface. We will not only image the surface during the day but also the night, when LEDs will illuminate the surface in four different colors (blue, green, red, near-IR). This will characterize the spectral properties and heterogeneity of the surface, helping us to identify its composition. Although the ROLIS spectral range and resolution are too limited to allow an exact mineralogical characterization, a study of the spectral slope and albedo will allow a broad classification of the solid surface phases. We expect to be able to distinguish between organic material, silicates and ices. By repeated imaging over the course of the mission ROLIS may detect long term changes associated with cometary activity.

  9. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  10. Near-Infrared Hyperspectral Image Cubes of Mars during the 1999 Opposition

    NASA Technical Reports Server (NTRS)

    Hillman, John J.; Glenar, D.; Espenak, F.; Chanover, N.; Murphy, J.; Young, L.; Blass, W.

    1999-01-01

    We used the Goddard Space Flight Center, Acousto-Optic Tunable Filter (AOTF) Camera to obtain near-IR spectral image sets of Mars over the 1.6-3.6 micron region during the April 1999 opposition. A complete image set consists of 280 images with a spectral full-width-half maximum of 10 wavenumbers (fixed in frequency), 90 images in H-band (1.55-1.80 micron), 115 images in K-band (1.95-2.50 micron) and 75 images in L-band (2.90-3.70 micron). The short-wavelength limit is set by transmission of AOTF cell and long-wavelength limit is imposed by sensitivity of PICNIC, 256x256, HgCdTe array detector. We will discuss the new array performance and provide preliminary interpretations of some of these results. These measurements were part of a 4-observatory coordinated effort whose overall objective was to assemble a photometrically calibrated, spectrally complete ground-based image cube over the visible and near-IR spectral region. To accomplish this, four observing teams conducted the investigations with instruments spanning 0.4 to 5.0 micron. The instruments and observing facilities were (a) AOTF camera at Apache Point Observatory, 3.5m, f/10, Nasymth focus (this abstract). Primary science targets included the 3 micron water-of hydration feature and CO2, H2O ice (polar regions and clouds); (b) Visible/NIR interference-filter (24 filters) camera at Lowell Observatory, 72" telescope. 430-1050 nm. Science targets were Fe(2+), Fe(3+) mineralogy and coarse grain hematite search; (c) NMSU Tortugas Mountain Observatory, 60 cm telescope, CCD photometry with same filter set as Lowell; (d) KPNO cryogenic grating/slit spectrometer (CRSP/SALLY) at KPNO 2.1 m, f/15 Cassegrain focus (see abstract by D. Glenar, et. al., this meeting). Selected wavelengths in 3-5 micron region (L, M band). Science targets included water-of-hydration feature (3-4 micron long wave extension) and sulfate mineralogy. Observers participating in this campaign included Dave Glenar, John Hillman, Gordon Bjoraker and Fred Espenak from GSFC, Nancy Chanover, Jim Murphy and A. S. MurTell from NMSU, Leslie Young from BU, Diana Blaney from JPL and Dick Joyce from KPNO.

  11. Overview of diagnostic implementation on Proto-MPEX at ORNL

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T.; Caughman, J. B. O.; Fehling, D.; Goulding, R. H.; Gray, T. K.; Isler, R. C.; Martin, E. H.; Meitner, S.; Rapp, J.; Unterberg, E. A.; Dhaliwal, R. S.; Donovan, D.; Kafle, N.; Ray, H.; Shaw, G. C.; Showers, M.; Mosby, R.; Skeen, C.

    2015-11-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) recently began operating with an expanded diagnostic set. Approximately 100 sightlines have been established, delivering the plasma light emission to a ``patch panel'' in the diagnostic room for distribution to a variety of instruments: narrow-band filter spectroscopy, Doppler spectroscopy, laser induced breakdown spectroscopy, optical emission spectroscopy, and Thomson scattering. Additional diagnostic systems include: IR camera imaging, in-vessel thermocouples, ex-vessel fluoroptic probes, fast pressure gauges, visible camera imaging, microwave interferometry, a retarding-field energy analyzer, rf-compensated and ``double'' Langmuir probes, and B-dot probes. A data collection and archival system has been initiated using the MDSplus format. This effort capitalizes on a combination of new and legacy diagnostic hardware at ORNL and was accomplished largely through student labor. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  12. IR-MALDESI MASS SPECTROMETRY IMAGING OF BIOLOGICAL TISSUE SECTIONS USING ICE AS A MATRIX

    PubMed Central

    Robichaud, Guillaume; Barry, Jeremy A.; Muddiman, David C.

    2014-01-01

    Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry imaging of biological tissue sections using a layer of deposited ice as an energy absorbing matrix was investigated. Dynamics of plume ablation were first explored using a nanosecond exposure shadowgraphy system designed to simultaneously collect pictures of the plume with a camera and collect the FT-ICR mass spectrum corresponding to that same ablation event. Ablation of fresh tissue analyzed with and without using ice as a matrix were both compared using this technique. Effect of spot-to-spot distance, number of laser shots per pixel and tissue condition (matrix) on ion abundance was also investigated for 50 µm thick tissue sections. Finally, the statistical method called design of experiments was used to compare source parameters and determine the optimal conditions for IR-MALDESI of tissue sections using deposited ice as a matrix. With a better understanding of the fundamentals of ablation dynamics and a systematic approach to explore the experimental space, it was possible to improve ion abundance by nearly one order of magnitude. PMID:24385399

  13. Disentangling the outflow and protostars in HH 900 in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay

    2015-04-01

    HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.

  14. Fire service and first responder thermal imaging camera (TIC) advances and standards

    NASA Astrophysics Data System (ADS)

    Konsin, Lawrence S.; Nixdorff, Stuart

    2007-04-01

    Fire Service and First Responder Thermal Imaging Camera (TIC) applications are growing, saving lives and preventing injury and property damage. Firefighters face a wide range of serious hazards. TICs help mitigate the risks by protecting Firefighters and preventing injury, while reducing time spent fighting the fire and resources needed to do so. Most fire safety equipment is covered by performance standards. Fire TICs, however, are not covered by such standards and are also subject to inadequate operational performance and insufficient user training. Meanwhile, advancements in Fire TICs and lower costs are driving product demand. The need for a Fire TIC Standard was spurred in late 2004 through a Government sponsored Workshop where experts from the First Responder community, component manufacturers, firefighter training, and those doing research on TICs discussed strategies, technologies, procedures, best practices and R&D that could improve Fire TICs. The workshop identified pressing image quality, performance metrics, and standards issues. Durability and ruggedness metrics and standard testing methods were also seen as important, as was TIC training and certification of end-users. A progress report on several efforts in these areas and their impact on the IR sensor industry will be given. This paper is a follow up to the SPIE Orlando 2004 paper on Fire TIC usage (entitled Emergency Responders' Critical Infrared) which explored the technological development of this IR industry segment from the viewpoint of the end user, in light of the studies and reports that had established TICs as a mission critical tool for firefighters.

  15. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  16. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  17. Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.

    PubMed

    Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  18. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    PubMed Central

    Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180

  19. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have acquired more than 3000 256x256 images totaling nearly two gigabytes of data detailing the near-IR development of the impact sites of the S-L9 fragments on Jupiter. These data were obtained using the University of Rochester Imaging IR Camera at the cassegrain focus of the 92" at WIRO. The WIRO data set covers 8 days and is, to our knowledge, one of the most extensive observational records of the S-L/Jupiter encounter obtained by any ground-based telescope. This program benefitted from the compilation during these last few months of an upgrade to the data acquisition program at WIRO with support of this NASA contract.

  20. Leading Edge. Sensors Challenges and Solutions for the 21st Century. Volume 7, Issue Number 2

    DTIC Science & Technology

    2010-01-01

    above, microbolometer technology is not very sen- sitive. To gain sensitivity, one needs to go to IR cam- eras that have cryogenically cooled detector ...QWIP) and detector arrays made from mercury cadmium telluride ( MCT ). Both types can be very sensitive. QWIP cameras have spectral detection bands...commercially available IR camera to meet the needs of CAPTC. One MCT camera was located that had a detection band from 7.7 µ to 11.6 µ and included an

  1. WE-FG-202-01: Early Prediction of Radiotherapy Induced Skin Reactions Using Dynamic Infrared Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, N; Cifter, G; Sun, J

    Purpose: To predict radiotherapy induced skin reactions using dynamic infrared imaging. Methods: Thermal images were captured by our homebuilt system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 oC from ∼1 ms flashes. The camera then captured a series of IR images for 10 seconds. For each image, a baseline skin temperature was recorded for 0.5sec before heat impulse. The temporal temperature gradients were calculated between a reference point (immediately after the flash) and at a time point 9sec after that. Thermal effusivity, an intrinsic thermalmore » property of a material, was calculated from the surface temperature decay of skin. We present experimental data in five patients undergoing radiation therapy, of which 2 were Head & Neck, 1 was Sarcoma and 2 were Breast cancer patients. The prescribed doses were 45 – 60 Gy in 25 – 30 fractions. Each patient was imaged before treatment and after every fifth fraction until end of the treatment course. An area on the skin, outside the radiation field, was imaged as control region. During imaging, each patient’s irradiated skins were scored based on RTOG skin morbidity scoring criteria. Results: Temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue. It was observed that, the skin temperature and temporal temperature gradient increases with delivered radiation dose and skin RTOG score. The treatment does not change effusivity of superficial skin layer, however there was a significant difference in effusivity between treated and control areas at depth of ∼ 1.5 – 1.8 mm, increases with dose. Conclusion: The higher temporal temperature gradient and effusivity from irradiated areas suggest that there is more fluid under the irradiated skin, which causes faster temperature recovery. The mentioned effects may be predictors of Moist Desquamation.« less

  2. Electronic Materials and Applications 2014 (Abstracts)

    DTIC Science & Technology

    2015-04-02

    the thermal image using IR camera and surface tempera- ture using thermo couple. Lastly, we conducted a surface coating to change the surface...progress in the superconducting films and coated conductors of iron chalcogenides. With a CeO2 buffer , critical current densities (Jc) over 7 MA/cm2...Roosen, University of Erlangen-Nuremberg, Germany Kato, N. 23-Jan 11:15AM Pacific 11:30 AM (EMA-S1-021-2014) Glass-like Thermal Conductivity of (010

  3. Comparison of experimental three-band IR detection of buried objects and multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.

    2018-04-01

    A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.

  4. Infrared thermography for examination of paper structure

    NASA Astrophysics Data System (ADS)

    Kiiskinen, Harri T.; Pakarinen, Pekka I.

    1998-03-01

    The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.

  5. Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.

  6. Transient thermography testing of unpainted thermal barrier coating surfaces

    NASA Astrophysics Data System (ADS)

    Ptaszek, Grzegorz; Cawley, Peter; Almond, Darryl; Pickering, Simon

    2013-01-01

    This paper has investigated the effects of uneven surface discolouration of a thermal barrier coating (TBC) and of its IR translucency on the thermal responses observed by using mid and long wavelength IR cameras. It has been shown that unpainted blades can be tested satisfactorily by using a more powerful flash heating system and a long wavelength IR camera. The problem of uneven surface emissivity can be overcome by applying 2nd derivative processing of the log-log surface cooling curves.

  7. VizieR Online Data Catalog: NGC 7538 IRS 1-3 and IRS 9 sources (Mallick+, 2014)

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Tamura, M.; Pandey, A. K.; Dib, S.; Ghosh, S. K.; Sunada, K.; Zinchenko, I.; Pirogov, L.; Tsujimoto, M.

    2015-04-01

    Deep NIR imaging observations of the NGC 7538 IRS 1-3 region (centred on RA2000=23:13:43, DE2000=+61:28:22) in J (λ=1.25um), H (λ=1.64um), and K (λ=2.21um) bands, and the NGC 7538 IRS 9 region (centred on RA2000=23:13:58, DE2000=+61:27:26) in H and K bands were obtained on 2005 August 19, using the Cooled Infrared Spectrograph and Camera for OHS (CISCO) mounted at the Cassegrain focus of the 8.2m Subaru telescope. Radio continuum observations were carried out using the Giant Metrewave Radio Telescope (GMRT) for the frequency bands 325MHz (2004 July 03), 610MHz (2004 September 18), and 1280MHz (2004 January 25). The H13CO+ (J=1-0) (formylium) molecular line (86.754GHz) observations were carried out on 2004 May 02 with the Nobeyama 45m radio telescope. (3 data files).

  8. ATTICA family of thermal cameras in submarine applications

    NASA Astrophysics Data System (ADS)

    Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold

    2001-10-01

    Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.

  9. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  10. Volcanological applications of the Kinect sensor

    NASA Astrophysics Data System (ADS)

    Tortini, R.; Carn, S. A.

    2012-12-01

    The Kinect is a motion capture device designed for the Microsoft Xbox system. The device comprises a visible (RGB) camera and an infrared (IR) camera, refractor and light emitter emitting a known structured light pattern at a near-infrared wavelength of 830 nm, plus a three-axis accelerometer and four microphones. Moreover, by combining the signal from the IR camera and the light emitter it is possible to produce a distance image (depth). Thanks to the efforts of the free and open source software community, although originally intended to be used for videogames the Kinect can be exploited as a short range low-cost LiDAR sensor by scientists in various fields. The main limitation of the Kinect is its working distance, which ranges from ~0.5 to 15 m, with a distance sensitivity of ~1 mm at 0.5 m and ~8 cm at 5 m estimated by Mankoff et al. (2011). After their co-registration, we will present the calibration process for the RGB, depth and IR intensity images, and a sensitivity analysis of the IR intensity to the color spectrum will be performed. We expect the intensity to exhibit a non-linear correlation with distance of the target from the sensor, with lower sensitivity and larger errors at greater distances. We envisage several possible applications of the small-scale, precise topographic data acquired by the Kinect in volcanology, and solicit other ideas from the community. Possible applications could include monitoring of light tephra accumulation to characterize mass flux, monitoring of active lava flows or mapping inactive lava tubes, capturing topographic data on the outcrop scale, mapping surface roughness variations on volcanic mass flow deposits, or visualizing analog volcano models in the lab. As a demonstration, we will present an application of the Kinect as a tool for 3D visualization of volcanic rock samples. Data will be collected with free and open source software, demonstrating the cost-effectiveness of the Kinect for volcanological applications, particularly where conditions may be unsuitable for the deployment of more costly instruments. K.D. Mankoff, T.A. Russo, B.K. Norris, S. Hossainzadeh, L. Beem, J.I. Walter, and S.M. Tulaczyk, "Kinects as sensors in earth science: glaciological, geomorphological, and hydrological applications". AGU Fall Meeting 2012, San Francisco (USA), poster.

  11. Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parchamy, H.; Peterson, B. J.; Konoshima, S.

    2006-10-15

    The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9x7 cm{sup 2} and a thickness of 2.5 {mu}m. The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity {kappa} and the product of the thermal conductivity k and the thickness t{sub f} of themore » foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for kt{sub f}) and their decays (for {kappa}) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.« less

  12. Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.

    PubMed

    Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena

    2016-12-01

    The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.

  13. Cryogenic solid Schmidt camera as a base for future wide-field IR systems

    NASA Astrophysics Data System (ADS)

    Yudin, Alexey N.

    2011-11-01

    Work is focused on study of capability of solid Schmidt camera to serve as a wide-field infrared lens for aircraft system with whole sphere coverage, working in 8-14 um spectral range, coupled with spherical focal array of megapixel class. Designs of 16 mm f/0.2 lens with 60 and 90 degrees sensor diagonal are presented, their image quality is compared with conventional solid design. Achromatic design with significantly improved performance, containing enclosed soft correcting lens behind protective front lens is proposed. One of the main goals of the work is to estimate benefits from curved detector arrays in 8-14 um spectral range wide-field systems. Coupling of photodetector with solid Schmidt camera by means of frustrated total internal reflection is considered, with corresponding tolerance analysis. The whole lens, except front element, is considered to be cryogenic, with solid Schmidt unit to be flown by hydrogen for improvement of bulk transmission.

  14. Automatic target recognition and detection in infrared imagery under cluttered background

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Koç, Aykut; Alatan, A. Aydın.

    2017-10-01

    Visual object classification has long been studied in visible spectrum by utilizing conventional cameras. Since the labeled images has recently increased in number, it is possible to train deep Convolutional Neural Networks (CNN) with significant amount of parameters. As the infrared (IR) sensor technology has been improved during the last two decades, labeled images extracted from IR sensors have been started to be used for object detection and recognition tasks. We address the problem of infrared object recognition and detection by exploiting 15K images from the real-field with long-wave and mid-wave IR sensors. For feature learning, a stacked denoising autoencoder is trained in this IR dataset. To recognize the objects, the trained stacked denoising autoencoder is fine-tuned according to the binary classification loss of the target object. Once the training is completed, the test samples are propagated over the network, and the probability of the test sample belonging to a class is computed. Moreover, the trained classifier is utilized in a detect-by-classification method, where the classification is performed in a set of candidate object boxes and the maximum confidence score in a particular location is accepted as the score of the detected object. To decrease the computational complexity, the detection step at every frame is avoided by running an efficient correlation filter based tracker. The detection part is performed when the tracker confidence is below a pre-defined threshold. The experiments conducted on the real field images demonstrate that the proposed detection and tracking framework presents satisfactory results for detecting tanks under cluttered background.

  15. VizieR Online Data Catalog: PHAT X. UV-IR photometry of M31 stars (Williams+, 2014)

    NASA Astrophysics Data System (ADS)

    Williams, B. F.; Lang, D.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Bell, E. F.; Bianchi, L.; Byler, N.; Gilbert, K. M.; Girardi, L.; Gordon, K.; Gregersen, D.; Johnson, L. C.; Kalirai, J.; Lauer, T. R.; Monachesi, A.; Rosenfield, P.; Seth, A.; Skillman, E.

    2015-01-01

    The data for the Panchromatic Hubble Andromeda Treasury (PHAT) survey were obtained from 2010 July 12 to 2013 October 12 using the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC), the Wide Field Camera 3 (WFC3) IR (infrared) channel, and the WFC3 UVIS (ultraviolet-optical) channel. The observing strategy is described in detail in Dalcanton et al. (2012ApJS..200...18D). A list of the target names, observing dates, coordinates, orientations, instruments, exposure times, and filters is given in Table 1. Using the ACS and WFC3 cameras aboard HST, we have photometered 414 contiguous WFC3/IR footprints covering 0.5deg2 of the M31 star-forming disk. (4 data files).

  16. Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II

    NASA Astrophysics Data System (ADS)

    Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea

    2016-04-01

    In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.

  17. 360 degree vision system: opportunities in transportation

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2007-09-01

    Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.

  18. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.

  19. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  20. Quantifying biodiversity using digital cameras and automated image analysis.

    NASA Astrophysics Data System (ADS)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and enabling automatic deletion of images generated by erroneous triggering (e.g. cloud movements). This is the first step to a hierarchical image processing framework, where situation subclasses such as birds or climatic conditions can be fed into more appropriate automated or semi-automated data mining software.

  1. HUBBLE SNAPS 'FAMILY PORTRAIT'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has peered into the Cone Nebula, revealing a stunning image of six baby sun-like stars surrounding their mother, a bright, massive star. Known as NGC 2264 IRS, the massive star triggered the creation of these baby stars by releasing high-speed particles of dust and gas during its formative years. The image on the left, taken in visible light by a ground-based telescope, shows the Cone Nebula, located 2,500 light-years away in the constellation Monoceros. The white box pinpoints the location of the star nursery. The nursery cannot be seen in this image because dust and gas obscure it. The large cone of cold molecular hydrogen and dust rising from the lefthand edge of the image was created by the outflow from NGC 2264 IRS. The NICMOS image on the right shows this massive star - the brightest source in the region - and the stars formed by its outflow. The baby stars are only .04 to .08 light-years away from their brilliant mother. The rings surrounding the massive star and the spikes emanating from it are not part of the image. This pattern demonstrates the near-perfect optical performance of NICMOS. A near-perfect optical system should bend light from point-like sources, such as NGC 2264 IRS, forming these diffraction patterns of rings and spikes. This false color image was taken with 1.1-, 1.6-, and 2.2-micron filters. The image was taken on April 28, 1997. Credits: Rodger Thompson, Marcia Rieke and Glenn Schneider (University of Arizona), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  2. Identification of Active Galactic Nuclei through HST optical variability in the GOODS South field

    NASA Astrophysics Data System (ADS)

    Pouliasis, Ektoras; Georgantopoulos; Bonanos, A.; HCV Team

    2016-08-01

    This work aims to identify AGN in the GOODS South deep field through optical variability. This method can easily identify low-luminosity AGN. In particular, we use images in the z-band obtained from the Hubble Space Telescope with the ACS/WFC camera over 5 epochs separated by ~45 days. Aperture photometry has been performed using SExtractor to extract the lightcurves. Several variability indices, such as the median absolute deviation, excess variance, and sigma were applied to automatically identify the variable sources. After removing artifacts, stars and supernovae from the variable selected sample and keeping only those sources with known photometric or spectroscopic redshift, the optical variability was compared to variability in other wavelengths (X-rays, mid-IR, radio). This multi-wavelength study provides important constraints on the structure and the properties of the AGN and their relation to their hosts. This work is a part of the validation of the Hubble Catalog of Variables (HCV) project, which has been launched at the National Observatory of Athens by ESA, and aims to identify all sources (pointlike and extended) showing variability, based on the Hubble Source Catalog (HSC, Whitmore et al. 2015). The HSC version 1 was released in February 2015 and includes 80 million sources imaged with the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR cameras.

  3. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Seery, Bernard (Technical Monitor)

    2001-01-01

    The Next Generation Space Telescope NGST is an 6-7 m class radiatively cooled telescope, planned for launch to the Lagrange point L2 in 2009, to be built by a partnership of NASA, ESA, and CSA. The NGST science program calls for three core instruments: 1) Near IR camera, 0.6 - 5 micrometer; 2) Near IR multiobject spectrometer, 1 - 5 micrometer, and 3) Mid IR camera and spectrometer, 5 - 28 micrometers. I will report on the scientific goals, project status, and the recent reduction in aperture from the target of 8 m.

  4. How Accurate Are Infrared Luminosities from Monochromatic Photometric Extrapolation?

    NASA Astrophysics Data System (ADS)

    Lin, Zesen; Fang, Guanwen; Kong, Xu

    2016-12-01

    Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ({L}{IR}) of galaxies. By utilizing multi-wavelength data that covers across 0.35-500 μm in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated {L}{IR} based on three IR spectral energy distribution (SED) templates out to z˜ 3.5. We find that the Chary & Elbaz template provides the best estimate of {L}{IR} in Herschel/Photodetector Array Camera and Spectrometer (PACS) bands, while the Dale & Helou template performs best in Herschel/Spectral and Photometric Imaging Receiver (SPIRE) bands. To estimate {L}{IR}, we suggest that extrapolations from the available longest wavelength PACS band based on the Chary & Elbaz template can be a good estimator. Moreover, if the PACS measurement is unavailable, extrapolations from SPIRE observations but based on the Dale & Helou template can also provide a statistically unbiased estimate for galaxies at z≲ 2. The emission with a rest-frame 10-100 μm range of IR SED can be well described by all three templates, but only the Dale & Helou template shows a nearly unbiased estimate of the emission of the rest-frame submillimeter part.

  5. Image Registration of High-Resolution Uav Data: the New Hypare Algorithm

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.; Lasica, R.; Giessel, D.

    2013-08-01

    Unmanned aerial vehicles play an important role in the present-day civilian and military intelligence. Equipped with a variety of sensors, such as SAR imaging modes, E/O- and IR sensor technology, they are due to their agility suitable for many applications. Hence, the necessity arises to use fusion technologies and to develop them continuously. Here an exact image-to-image registration is essential. It serves as the basis for important image processing operations such as georeferencing, change detection, and data fusion. Therefore we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of 39 still images from a high-resolution image stream, acquired with a Aeryon Photo3S™ camera on an Aeryon Scout micro-UAV™.

  6. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  7. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    PubMed Central

    Cano-García, Angel E.; Galilea, José Luis Lázaro; Fernández, Pedro; Infante, Arturo Luis; Pompa-Chacón, Yamilet; Vázquez, Carlos Andrés Luna

    2013-01-01

    Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m. PMID:23727954

  8. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2017-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)

  9. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  10. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    NASA Astrophysics Data System (ADS)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  11. Pipeline Processing for VISTA

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  12. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Shepherd, R; Booth, R

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2)more » temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.« less

  13. Stereo-Optic High Definition Imaging: A New Technology to Understand Bird and Bat Avoidance of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Evan; Goodale, Wing; Burns, Steve

    There is a critical need to develop monitoring tools to track aerofauna (birds and bats) in three dimensions around wind turbines. New monitoring systems will reduce permitting uncertainty by increasing the understanding of how birds and bats are interacting with wind turbines, which will improve the accuracy of impact predictions. Biodiversity Research Institute (BRI), The University of Maine Orono School of Computing and Information Science (UMaine SCIS), HiDef Aerial Surveying Limited (HiDef), and SunEdison, Inc. (formerly First Wind) responded to this need by using stereo-optic cameras with near-infrared (nIR) technology to investigate new methods for documenting aerofauna behavior around windmore » turbines. The stereo-optic camera system used two synchronized high-definition video cameras with fisheye lenses and processing software that detected moving objects, which could be identified in post-processing. The stereo- optic imaging system offered the ability to extract 3-D position information from pairs of images captured from different viewpoints. Fisheye lenses allowed for a greater field of view, but required more complex image rectification to contend with fisheye distortion. The ability to obtain 3-D positions provided crucial data on the trajectory (speed and direction) of a target, which, when the technology is fully developed, will provide data on how animals are responding to and interacting with wind turbines. This project was focused on testing the performance of the camera system, improving video review processing time, advancing the 3-D tracking technology, and moving the system from Technology Readiness Level 4 to 5. To achieve these objectives, we determined the size and distance at which aerofauna (particularly eagles) could be detected and identified, created efficient data management systems, improved the video post-processing viewer, and attempted refinement of 3-D modeling with respect to fisheye lenses. The 29-megapixel camera system successfully captured 16,173 five-minute video segments in the field. During nighttime field trials using nIR, we found that bat-sized objects could not be detected more than 60 m from the camera system. This led to a decision to focus research efforts exclusively on daytime monitoring and to redirect resources towards improving the video post- processing viewer. We redesigned the bird event post-processing viewer, which substantially decreased the review time necessary to detect and identify flying objects. During daytime field trials, we determine that eagles could be detected up to 500 m away using the fisheye wide-angle lenses, and eagle-sized targets could be identified to species within 350 m of the camera system. We used distance sampling survey methods to describe the probability of detecting and identifying eagles and other aerofauna as a function of distance from the system. The previously developed 3-D algorithm for object isolation and tracking was tested, but the image rectification (flattening) required to obtain accurate distance measurements with fish-eye lenses was determined to be insufficient for distant eagles. We used MATLAB and OpenCV to improve fisheye lens rectification towards the center of the image, but accurate measurements towards the image corners could not be achieved. We believe that changing the fisheye lens to rectilinear lens would greatly improve position estimation, but doing so would result in a decrease in viewing angle and depth of field. Finally, we generated simplified shape profiles of birds to look for similarities between unknown animals and known species. With further development, this method could provide a mechanism for filtering large numbers of shapes to reduce data storage and processing. These advancements further refined the camera system and brought this new technology closer to market. Once commercialized, the stereo-optic camera system technology could be used to: a) research how different species interact with wind turbines in order to refine collision risk models and inform mitigation solutions; and b) monitor aerofauna interactions with terrestrial and offshore wind farms replacing costly human observers and allowing for long-term monitoring in the offshore environment. The camera system will provide developers and regulators with data on the risk that wind turbines present to aerofauna, which will reduce uncertainty in the environmental permitting process.« less

  14. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  15. Human body thermal images generated by conduction or radiation heat

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe; Sofron, Emil; Fumarel, Radu

    2009-01-01

    Humans and animals in general, are usually in a thermal steady state with respect to their surroundings. The tissues heat, generated at normal or diseases states, is lost to environment though several mechanisms: radiation, conduction, convection, evaporation, etc. Skin temperature is not the same on the entire body and a thermal body signature can be got. The temperature at skin level was measured by a thermistor, conduction component and by an IR camera, radiation component. A theoretical analysis using Weinhaum and JIJI model was done. The three images are investigated in order to get a cheap method for the early cancer diagnosis.

  16. Embedded mobile farm robot for identification of diseased plants

    NASA Astrophysics Data System (ADS)

    Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh

    2013-07-01

    This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.

  17. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation) on gross histologic examination. The laparoscopic IR camera is able to monitor the surface renal temperatures during RF treatment. Thermocouple measurements during RF ablation confirmed the thermographic findings and demonstrated that lethal temperatures at the margin of the intended treatment zone are routinely obtained and that a rapid decline in temperature occurs beyond the predicted ablation margin.

  18. Techniques for Surface-Temperature Measurements and Transition Detection on Projectiles at Hypersonic Velocities--Status Report No. 2

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Wilder, M. C.

    2006-01-01

    The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.

  19. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphsmore » and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.« less

  20. IR Hiding: A Method to Prevent Video Re-shooting by Exploiting Differences between Human Perceptions and Recording Device Characteristics

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Gohshi, Seiichi; Echizen, Isao

    A method is described to prevent video images and videos displayed on screens from being re-shot by digital cameras and camcorders. Conventional methods using digital watermarking for re-shooting prevention embed content IDs into images and videos, and they help to identify the place and time where the actual content was shot. However, these methods do not actually prevent digital content from being re-shot by camcorders. We developed countermeasures to stop re-shooting by exploiting the differences between the sensory characteristics of humans and devices. The countermeasures require no additional functions to use-side devices. It uses infrared light (IR) to corrupt the content recorded by CCD or CMOS devices. In this way, re-shot content will be unusable. To validate the method, we developed a prototype system and implemented it on a 100-inch cinema screen. Experimental evaluations showed that the method effectively prevents re-shooting.

  1. Observational Studies of Protoplanetary Disks at Mid-Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Li, Dan; Telesco, Charles; Wright, Christopher; Packham, Christopher; Marinas, Naibi

    2013-07-01

    We have used mid-infrared cameras on 8-to-10 m class telescopes to study the properties of young circumstellar disks. During the initial phases of this program we examined a large sample of mid-IR images of standard stars delivered by T-ReCS at Gemini South to evaluate its on-sky performance as characterized by, for example the angular resolution, the PSF shape, and the PSF temporal stability, properties that are most relevant to our high-angular resolution study of disks. With this information we developed an Interactive Data Language (IDL) package of routines optimized for reducing the data and correcting for image defects commonly seen in ground-based mid-IR data. We obtained, reduced, and analyzed mid-IR images and spectra of several Herbig Ae/Be disks (including HD 259431, MWC 1080, VV Ser) and the debris disk (β Pic), and derived their physical properties by means of radiative transfer modeling or spectroscopic decomposition and analyses. These results are highlighted here. During this study, we also helped commission CanariCam, a new mid-IR facility instrument built by the University of Florida for the 10.4 m Gran Telescopio Canarias (GTC) on La Palma, Canary Islands, Spain. CanariCam is an imager with spectroscopic, polarimetric, and coronagraphic capabilities, with the dual-beam polarimetry being a unique mode introduced with CanariCam for the first time to a 10 m telescope at mid-IR wavelengths. It is well known that measurements of polarization, originating from aligned dust grains in the disks and their environments, have the potential to shed light on the morphologies of the magnetic fields in these regions, information that is critical to understanding how stars and planets form. We have obtained polarimetric data of several Herbig Ae/Be disks and YSOs, and the data reduction and analyses are in process. We present preliminary results here. This poster is based upon work supported by the NSF under grant AST-0903672 and AST-0908624 awarded to C.M.T.

  2. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  3. HALO: a reconfigurable image enhancement and multisensor fusion system

    NASA Astrophysics Data System (ADS)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  4. Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography

    NASA Astrophysics Data System (ADS)

    Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon

    2011-04-01

    Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

  5. Gamma-Ray Bursts, their Hosts, and their Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, David; Rhoads, James; Rest, Armin; Merrill, Michael; Levan, Andrew; Fruchter, Andrew; Gorosabel Urkia, Javier; Kouveliotou, Chryssa; Hjorth, Jens; Castro Cerón, J. M.; Patel, Sandeep; Strolger, Lou; Tanvir, Nial

    2005-08-01

    We request rapid optical and near-IR followup observations of gamma ray bursts (GRBs), which will exploit unique NOAO capabilities to obtain (a) rapid afterglow identifications and (b) detailed physical information on selected events. We will use the Mosaic cameras on the 4m telescopes for rapid identification of GRB afterglows. These instruments provide unsurpassed sensitivity over a wide field. This cycle, they will (a) help identify low-redshift bursts found by HETE-2, which may constitute a large fraction of low-z bursts even in the Swift era; and (b) search for Swift bursts found by the hard X-ray BAT instrument in case the Swift narrow- field instruments do not find a bright counterpart. Afterglow IDs from this program will provide targets for our imaging and spectroscopy programs with Spitzer and Gemini. Large area near-IR imaging with ISPI and FLAMINGOS, and simultaneous multicolor imaging with SQIID, will help address several open questions about GRBs and their afterglows: (1) Are ``dark'' GRBs (without detected optical afterglows) a consequence of dust absorption in the GRB environment? (2) Are observed breaks in GRB light curves truly wavelength-independent, as predicted under models of beamed burst afterglows? (3) Can IR observations find bursts at extreme redshifts? (4) How well do afterglow models stand up to detailed comparison with high precision spectral slope and light curve measurements?

  6. DETECTION OF A COMPANION LENS GALAXY USING THE MID-INFRARED FLUX RATIOS OF THE GRAVITATIONALLY LENSED QUASAR H1413+117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Chelsea L.; Agol, Eric; Kochanek, Christopher S.

    2009-07-10

    We present the first resolved mid-infrared (IR) (11 {mu}m) observations of the four-image quasar lens H1413+117 using the Michelle camera on Gemini North. All previous observations (optical, near-IR, and radio) of this lens show a 'flux anomaly', where the image flux ratios cannot be explained by a simple, central lens galaxy. We attempt to reproduce the mid-IR flux ratios, which are insensitive to extinction and microlensing, by modeling the main lens as a singular isothermal ellipsoid. This model fails to reproduce the flux ratios. However, we can explain the flux ratios simply by adding to the model a nearby galaxymore » detected in the H band by the Hubble Space Telescope. This perturbing galaxy lies 4.''0 from the main lens and it has a critical radius of 0.''63 {+-} 0.''02 which is similar to that of the main lens, as expected from their similar H-band fluxes. More remarkably, this galaxy is not required to obtain a good fit to the system astrometry, so this represents the first clear detection of an object through its effect on the image fluxes of a gravitational lens. This is a parallel to the detections of visible satellites from astrometric anomalies, and provides a proof of the concept of searching for substructure in galaxies using anomalous flux ratios.« less

  7. Opto-mechanical system design of test system for near-infrared and visible target

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhu, Guodong; Wang, Yuchao

    2014-12-01

    Guidance precision is the key indexes of the guided weapon shooting. The factors of guidance precision including: information processing precision, control system accuracy, laser irradiation accuracy and so on. The laser irradiation precision is an important factor. This paper aimed at the demand of the precision test of laser irradiator,and developed the laser precision test system. The system consists of modified cassegrain system, the wide range CCD camera, tracking turntable and industrial PC, and makes visible light and near infrared target imaging at the same time with a Near IR camera. Through the analysis of the design results, when it exposures the target of 1000 meters that the system measurement precision is43mm, fully meet the needs of the laser precision test.

  8. Present status of the Japanese Venus climate orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  9. Extraction and analysis of the image in the sight field of comparison goniometer to measure IR mirrors assembly

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping

    2010-11-01

    The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.

  10. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    NASA Astrophysics Data System (ADS)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  11. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  12. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  13. The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

    2002-12-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide the ability to validate the radiometric and geometric calibration on Mars. Pancam relies heavily on use of the JPL ICER wavelet compression algorithm to maximize data return within stringent mission downlink limits. The scientific goals of the Pancam investigation are to: (a) obtain monoscopic and stereoscopic image mosaics to assess the morphology, topography, and geologic context of each MER landing site; (b) obtain multispectral visible to short-wave near-IR images of selected regions to determine surface color and mineralogic properties; (c) obtain multispectral images over a range of viewing geometries to constrain surface photometric and physical properties; and (d) obtain images of the Martian sky, including direct images of the Sun, to determine dust and aerosol opacity and physical properties. In addition, Pancam also serves a variety of operational functions on the MER mission, including (e) serving as the primary Sun-finding camera for rover navigation; (f) resolving objects on the scale of the rover wheels to distances of ~100 m to help guide navigation decisions; (g) providing stereo coverage adequate for the generation of digital terrain models to help guide and refine rover traverse decisions; (h) providing high resolution images and other context information to guide the selection of the most interesting in situ sampling targets; and (i) supporting acquisition and release of exciting E/PO products.

  14. Application of infrared camera to bituminous concrete pavements: measuring vehicle

    NASA Astrophysics Data System (ADS)

    Janků, Michal; Stryk, Josef

    2017-09-01

    Infrared thermography (IR) has been used for decades in certain fields. However, the technological level of advancement of measuring devices has not been sufficient for some applications. Over the recent years, good quality thermal cameras with high resolution and very high thermal sensitivity have started to appear on the market. The development in the field of measuring technologies allowed the use of infrared thermography in new fields and for larger number of users. This article describes the research in progress in Transport Research Centre with a focus on the use of infrared thermography for diagnostics of bituminous road pavements. A measuring vehicle, equipped with a thermal camera, digital camera and GPS sensor, was designed for the diagnostics of pavements. New, highly sensitive, thermal cameras allow to measure very small temperature differences from the moving vehicle. This study shows the potential of a high-speed inspection without lane closures while using IR thermography.

  15. Thermal Image Sensing Model for Robotic Planning and Search

    PubMed Central

    Castro Jiménez, Lídice E.; Martínez-García, Edgar A.

    2016-01-01

    This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image’s intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot’s course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach. PMID:27509510

  16. Experimental Visualizations of a Generic Launch Vehicle Flow Field: Time-Resolved Shadowgraph and Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.

    2017-01-01

    Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher

  17. Mapping the Spatial Distribution of Dust Extinction in NGC 959 Using Broadband Visible and Mid-Infrared Filters

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.

    2009-12-01

    We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.

  18. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  19. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  20. A New Digital Imaging and Analysis System for Plant and Ecosystem Phenological Studies

    NASA Astrophysics Data System (ADS)

    Ramirez, G.; Ramirez, G. A.; Vargas, S. A., Jr.; Luna, N. R.; Tweedie, C. E.

    2015-12-01

    Over the past decade, environmental scientists have increasingly used low-cost sensors and custom software to gather and analyze environmental data. Included in this trend has been the use of imagery from field-mounted static digital cameras. Published literature has highlighted the challenge scientists have encountered with poor and problematic camera performance and power consumption, limited data download and wireless communication options, general ruggedness of off the shelf camera solutions, and time consuming and hard-to-reproduce digital image analysis options. Data loggers and sensors are typically limited to data storage in situ (requiring manual downloading) and/or expensive data streaming options. Here we highlight the features and functionality of a newly invented camera/data logger system and coupled image analysis software suited to plant and ecosystem phenological studies (patent pending). The camera has resulted from several years of development and prototype testing supported by several grants funded by the US NSF. These inventions have several unique features and functionality and have been field tested in desert, arctic, and tropical rainforest ecosystems. The system can be used to acquire imagery/data from static and mobile platforms. Data is collected, preprocessed, and streamed to the cloud without the need of an external computer and can run for extended time periods. The camera module is capable of acquiring RGB, IR, and thermal (LWIR) data and storing it in a variety of formats including RAW. The system is full customizable with a wide variety of passive and smart sensors. The camera can be triggered by state conditions detected by sensors and/or select time intervals. The device includes USB, Wi-Fi, Bluetooth, serial, GSM, Ethernet, and Iridium connections and can be connected to commercial cloud servers such as Dropbox. The complementary image analysis software is compatible with all popular operating systems. Imagery can be viewed and analyzed in RGB, HSV, and l*a*b color space. Users can select a spectral index, which have been derived from published literature and/or choose to have analytical output reported as separate channel strengths for a given color space. Results of the analysis can be viewed in a plot and/or saved as a .csv file for additional analysis and visualization.

  1. Invisible marker based augmented reality system

    NASA Astrophysics Data System (ADS)

    Park, Hanhoon; Park, Jong-Il

    2005-07-01

    Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.

  2. Investigating Mars: Russell Crater - False Color

    NASA Image and Video Library

    2017-08-11

    This image shows the western part of the dune field on the floor of Russell Crater. This is a false color image of Russell crater and it's surroundings. Sand Dunes usually appear "blue" in false color images. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 59591 Latitude: -54.471 Longitude: 13.1288 Instrument: VIS Captured: 2015-05-21 10:57 https://photojournal.jpl.nasa.gov/catalog/PIA21808

  3. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2015-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).

  4. Mid-IR Imaging of Orion BN/KL: Modeling of Physical Conditions and Energy Balance

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel; Varosi, Frank; Dwek, Eli; Danchi, William C.; Tan, Jonathan; Okumura, Shin-ichiro

    2016-01-01

    We have modeled two mid-infrared imaging photometry data sets to determine the spatial distribution of physical conditions in the BN/KL (Becklin-Neugebauer / Kleinmann-Low) infrared complex. We observed the BN/KL region using the 10-meter Keck I telescope and the LWS (Living With a Star) in the direct imaging mode, over a 13 inch by 19 inch field . We also modeled images obtained with COMICS (Cooled Mid-Infrared Camera and Spectrometer, Kataza et al. 2000) at the 8.2-meter SUBARU telescope, over a total field of view [which] is 31 inches by 41 inches in a total of nine bands: 7.8, 8.8, 9.7, 10.5, 11.7, 12.4, 18.5, 20.8 and 24.8 microns with 1-micron bandwidth interference filters.

  5. Broadband upconversion imaging around 4 μm using an all-fiber supercontinuum source

    NASA Astrophysics Data System (ADS)

    Huot, Laurent; Moselund, Peter M.; Leick, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    We present a novel mid-infrared imaging system born from the combination of an all-fiber mid-IR supercontinuum source developed at NKT with ultra-sensitive upconversion detection technology from DTU Fotonik. The source delivers 100 mW of average power and its spectrum extends up to 4.5 μm. The infrared signal is passed through a sample and then focused into a bulk AgGaS2 crystal and subsequently mixed with a synchronous mixing signal at 1550 nm extracted from the pump laser of the supercontinuum. Through sum frequency generation, an upconverted signal ranging from 1030 nm to 1155 nm is generated and acquired using an InGaAs camera.

  6. Nanophotonic projection system.

    PubMed

    Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali

    2015-08-10

    Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.

  7. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, N C; Wu, Z; Chu, J

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) andmore » at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.« less

  8. Students' Framing of Laboratory Exercises Using Infrared Cameras

    ERIC Educational Resources Information Center

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N = 30) partook in four IR-camera laboratory activities, designed around the…

  9. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K.; SOKENDAI

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a timemore » resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.« less

  10. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE PAGES

    Peterson, B. J.; Sano, R.; Reinke, M. L.; ...

    2016-08-03

    The InfraRed imaging Video Bolometer measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 μm Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm 2 for a time resolutionmore » of 33 (20) ms. Synthetic images derived from SOLPS data using the IRVB geometry show peak signal levels ranging from ~0.8 - ~80 (~0.36 - ~26) mW/cm 2.« less

  11. Exploration of the environments of nearby stars with the NICMOS coronagraph: instrumental performance considerations

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Thompson, Rodger I.; Smith, Bradford A.; Terrile, Richard J.

    1998-08-01

    The Near IR Camera and Multi-Object Spectrometer (NICMOS), installed into the Hubble Space Telescope (HST) in February 1997, incorporates a coronagraphic imaging capability. The coronagraph is comprised of two optical elements. The camera 2 field divider mirror, upon which the HST f/24 input beam is imaged, includes a 170 micrometers diameter hole which contains approximately 93 percent of the encircled energy from a stellar Point Spread Function (PSF) at a wavelength of 1.6 micrometers . The coronagraphic hole lowers both the diffracted energy in the surrounding region by reducing the high spatial frequency components of the occulted core of the PSF< and down stream scattering. The geometrical radius of this occulting spot, when re-imaged through the camera 2 f/45 optics, is approximately 4 pixels at the detector focal plane. An oversized cold pupil-plane mask, with radial structures co-aligned with the HST secondary mirror spider, acts over the whole 19.1 inch by 19.2 field to further reduce the diffracted energy in the direction of the spider vanes. The absolute performance levels of the coronagraph were ascertained during the servicing mission observatory verification program. Using a differential imaging strategy we expect to achieve statistically significant detectors of sub-stellar companions at 1.6 micrometers with a (Delta) H of approximately 10 and separations as close as 0.5 inch. The NICMOS environments of nearby stars programs is exploiting this capability in systematic surveys of nearby, and young stars searching for brown dwarfs and giant planets, and protoplanetary disks around main-sequence stars.

  12. Report of the optical conference on the 7.6-meter telescope held in Austin, Texas, March 22 - 24, 1982.

    NASA Astrophysics Data System (ADS)

    Smith, H. J.; Barnes, T. G., III; Tull, R. G.; Nather, R. E.; Angel, R.; Meinel, A.; Macfarlane, M.; Brault, J.; Neugebauer, G.; Gillett, F.; Richardson, E. H.

    Contents: Introductions (H. J. Smith). History of the project (H. J. Smith). Project constraints (T. G. Barnes III).Project constraints (R. G. Tull). Telescope concept (R. E. Nather). Auxiliary instruments (R. E. Nather). Paul-Baker prime focus (R. Angel). Prime focus and Nasmyth cameras (A. Meinel). Nasmyth focal reducers (M. MacFarlane). Spectrometry (R. Angel, R. G. Tull, J. Brault). Infrared sites (G. Neugebauer). IR instrumentation (F. Gillett). Prime focus imaging (E. H. Richardson). Primary mirror figure control (R. G. Tull).

  13. Minimalist identification system based on venous map for security applications

    NASA Astrophysics Data System (ADS)

    Jacinto G., Edwar; Martínez S., Fredy; Martínez S., Fernando

    2015-07-01

    This paper proposes a technique and an algorithm used to build a device for people identification through the processing of a low resolution camera image. The infrared channel is the only information needed, sensing the blood reaction with the proper wave length, and getting a preliminary snapshot of the vascular map of the back side of the hand. The software uses this information to extract the characteristics of the user in a limited area (region of interest, ROI), unique for each user, which applicable to biometric access control devices. This kind of recognition prototypes functions are expensive, but in this case (minimalist design), the biometric equipment only used a low cost camera and the matrix of IR emitters adaptation to construct an economic and versatile prototype, without neglecting the high level of effectiveness that characterizes this kind of identification method.

  14. Analysis of the hand vein pattern for people recognition

    NASA Astrophysics Data System (ADS)

    Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.

    2015-09-01

    The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.

  15. Bending strength measurements at different materials used for IR-cut filters in mobile camera devices

    NASA Astrophysics Data System (ADS)

    Dietrich, Volker; Hartmann, Peter; Kerz, Franca

    2015-03-01

    Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.

  16. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  17. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury

    PubMed Central

    Roberts, John; Chen, Bo; Curtis, Lisa M.; Agarwal, Anupam; Sanders, Paul W.; Zinn, Kurt R.

    2012-01-01

    Accurate determination of renal function in mice is a major impediment to the use of murine models in acute kidney injury. The purpose of this study was to determine whether early changes in renal function could be detected using dynamic gamma camera imaging in a mouse model of ischemia-reperfusion (I/R) injury. C57BL/6 mice (n = 5/group) underwent a right nephrectomy, followed by either 30 min of I/R injury or sham surgery of the remaining kidney. Dynamic renal studies (21 min, 10 s/frame) were conducted before surgery (baseline) and at 5, 24, and 48 h by injection of 99mTc-mercaptoacetyltriglycine (MAG3; ~1.0 mCi/mouse) via the tail vein. The percentage of injected dose (%ID) in the kidney was calculated for each 10-s interval after MAG3 injection, using standard region of interest analyses. A defect in renal function in I/R-treated mice was detected as early as 5 h after surgery compared with sham-treated mice, identified by the increased %ID (at peak) in the I/R-treated kidneys at 100 s (P < 0.01) that remained significantly higher than sham-treated mice for the duration of the scan until 600 s (P < 0.05). At 48 h, the renal scan demonstrated functional renal recovery of the I/R mice and was comparable to sham-treated mice. Our study shows that using dynamic imaging, renal dysfunction can be detected and quantified reliably as early as 5 h after I/R insult, allowing for evaluation of early treatment interventions. PMID:17634403

  18. Overview of image processing tools to extract physical information from JET videos

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Gelfusa, M.; Tiseanu, I.; Zoita, V.; EFDA Contributors, JET

    2014-11-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the automatic detection of MARFE (multifaceted asymmetric radiation from the edge) occurrences, which precede disruptions in density limit discharges. An original spot detection method has been developed for large surveys of videos in JET, and for the assessment of the long term trends in their evolution. The analysis of JET IR videos, recorded during JET operation with the ITER-like wall, allows the retrieval of data and hence correlation of the evolution of spots properties with macroscopic events, in particular series of intentional disruptions.

  19. An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2015-09-01

    Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is <0.25. This camera specific depth of focus is transferred in the object space by paraxial relations. It follows a general applicable Depth of Field diagram which could be applied to lenses realizing a lateral magnification range -0.05…0. Easy to handle formulas are provided between hyperfocal distance and the borders of the Depth of Field in dependence on sharp distances. These relations are in line with the classical Depth of Field-theory. Thermal pictures, taken by different IR-camera cores, illustrate the new approach. The quite often requested graph "MTF versus distance" choses the half Nyquist frequency as reference. The paraxial transfer of the through focus MTF in object space distorts the MTF-curve: hard drop at closer distances than sharp distance, smooth drop at further distances. The formula of a general Diffraction-Limited-Through-Focus-MTF (DLTF) is deducted. Arbitrary detector-lens combinations could be discussed. Free variables in this analysis are waveband, aperture based F-number (lens) and pixel pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.

  20. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera.

    PubMed

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  1. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera

    NASA Astrophysics Data System (ADS)

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  2. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  3. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet's nucleus. ?? 2007 Springer Science+Business Media, Inc.

  5. Thermographic imaging for high-temperature composite materials: A defect detection study

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Bodis, James R.; Bishop, Chip

    1995-01-01

    The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

  6. Using optical flow for the detection of floating mines in IR image sequences

    NASA Astrophysics Data System (ADS)

    Borghgraef, Alexander; Acheroy, Marc

    2006-09-01

    In the first Gulf War, unmoored floating mines proved to be a real hazard for shipping traffic. An automated system capable of detecting these and other free-floating small objects, using readily available sensors such as infra-red cameras, would prove to be a valuable mine-warfare asset, and could double as a collision avoidance mechanism, and a search-and-rescue aid. The noisy background provided by the sea surface, and occlusion by waves make it difficult to detect small floating objects using only algorithms based upon the intensity, size or shape of the target. This leads us to look at the sequence of images for temporal detection characteristics. The target's apparent motion is such a determinant, given the contrast between the bobbing motion of the floating object and the strong horizontal component present in the propagation of the wavefronts. We have applied the Proesmans optical flow algorithm to IR video footage of practice mines, in order to extract the motion characteristic and a threshold on the vertical motion characteristic is then imposed to detect the floating targets.

  7. Virtual Keyboard for Hands-Free Operations

    NASA Technical Reports Server (NTRS)

    Abou-Ali, Abdel-Latief; Porter, William A.

    1996-01-01

    The measurement of direction of gaze (d.o.g.) has been used for clinical purposes to detect illness, such as nystagmus, unusual fixation movements and many others. It also is used to determine the points of interest in objects. In this study we employ a measurement of d.o.g. as a computer interface. The interface provides a full keyboard as well as a mouse function. Such an interface is important to computer users with paralysis or in environments where hand-free machine interface is required. The study utilizes the commercially available (ISCAN Model RK426TC) headset which consists of an InfraRed (IR) source and an IR camera to sense deflection of the illuminating beam. It also incorporates image processing package that provides the position of the pupil as well as the pupil size. The study shows the ability of implementing a full keyboard, together with some control functions, imaged on a head mounted monitor screen. This document is composed of four sections: (1) The Nature of the Equipment; (2) The Calibration Process; (3) Running Process; and (4) Conclusions.

  8. Multi-color IR sensors based on QWIP technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Cook, Robert; Bundas, Jason

    2006-05-01

    Room-temperature targets are detected at the furthest distance by imaging them in the long wavelength (LW: 8-12 μm) infrared spectral band where they glow brightest. Focal plane arrays (FPAs) based on quantum well infrared photodetectors (QWIPs) have sensitivity, noise, and cost metrics that have enabled them to become the best commercial solution for certain security and surveillance applications. Recently, QWIP technology has advanced to provide pixelregistered dual-band imaging in both the midwave (MW: 3-5 μm) and longwave infrared spectral bands in a single chip. This elegant technology affords a degree of target discrimination as well as the ability to maximize detection range for hot targets (e.g. missile plumes) by imaging in the midwave and for room-temperature targets (e.g. humans, trucks) by imaging in the longwave with one simple camera. Detection-range calculations are illustrated and FPA performance is presented.

  9. The CASTLES Imaging Survey of Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.

    1997-12-01

    The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.

  10. Innovative Methodologies for thermal Energy Release Measurement: case of La Solfatara volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Marfe`, Barbara; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Marotta, Enrica; Peluso, Rosario

    2015-04-01

    This work is devoted to improve the knowledge on the parameters that control the heat flux anomalies associated with the diffuse degassing processes of volcanic and hydrothermal areas. The methodologies currently used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. A new method, based on the use of thermal imaging cameras, has been applied to estimate the heat flux and its time variations. This approach will allow faster heat flux measurement than already accredited methods, improving in this way the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The idea is to extrapolate the heat flux from the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. We use thermal imaging cameras, at short distances (meters to hundreds of meters), to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature. Preliminary studies have been carried out throughout the whole of the La Solfatara crater in order to investigate a possible correlation between the surface temperature and the shallow thermal gradient. We have used a FLIR SC640 thermal camera and K type thermocouples to assess the two measurements at the same time. Results suggest a good correlation between the shallow temperature gradient ΔTs and the surface temperature Ts depurated from background, and despite the campaigns took place during a period of time of a few years, this correlation seems to be stable over the time. This is an extremely motivating result for a further development of a measurement method based only on the use of small range thermal imaging camera. Surveys with thermal cameras may be manually done using a tripod to take thermal images of small contiguous areas and then joining them together in a bigger map of the whole area. However this kind of scanning does not fully solve the low speed problem of traditional techniques: a future development of this technique will be the use of drone-born IR cameras.

  11. Investigating Mars: Moreux Crater

    NASA Image and Video Library

    2017-11-22

    This image of Moreux Crater shows the western floor of the crater and the multitude of sand dunes that are found on the floor of the crater. A large sand sheet with surface dunes forms is located at the top of the image, and smaller individual dunes stretch from the bottom of the sand sheet to the bottom of the image. In this false color image sand dunes are "blue". Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 10384 Latitude: 41.841 Longitude: 44.087 Instrument: VIS Captured: 2004-04-17 10:07 https://photojournal.jpl.nasa.gov/catalog/PIA22035

  12. Supportive Noninvasive Tool for the Diagnosis of Breast Cancer Using a Thermographic Camera as Sensor

    PubMed Central

    Garduño-Ramón, Marco Antonio; Vega-Mancilla, Sofia Giovanna; Morales-Henández, Luis Alberto; Osornio-Rios, Roque Alfredo

    2017-01-01

    Breast cancer is the leading disease in incidence and mortality among women in developing countries. The opportune diagnosis of this disease strengthens the survival index. Mammography application is limited by age and periodicity. Temperature is a physical magnitude that can be measured by using multiple sensing techniques. IR (infrared) thermography using commercial cameras is gaining relevance in industrial and medical applications because it is a non-invasive and non-intrusive technology. Asymmetrical temperature in certain human body zones is associated with cancer. In this paper, an IR thermographic sensor is applied for breast cancer detection. This work includes an automatic breast segmentation methodology, to spot the hottest regions in thermograms using the morphological watershed operator to help the experts locate the tumor. A protocol for thermogram acquisition considering the required time to achieve a thermal stabilization is also proposed. Breast thermograms are evaluated as thermal matrices, instead of gray scale or false color images, increasing the certainty of the provided diagnosis. The proposed tool was validated using the Database for Mastology Research and tested in a voluntary group of 454 women of different ages and cancer stages with good results, leading to the possibility of being used as a supportive tool to detect breast cancer and angiogenesis cases. PMID:28273793

  13. Supportive Noninvasive Tool for the Diagnosis of Breast Cancer Using a Thermographic Camera as Sensor.

    PubMed

    Garduño-Ramón, Marco Antonio; Vega-Mancilla, Sofia Giovanna; Morales-Henández, Luis Alberto; Osornio-Rios, Roque Alfredo

    2017-03-03

    Breast cancer is the leading disease in incidence and mortality among women in developing countries. The opportune diagnosis of this disease strengthens the survival index. Mammography application is limited by age and periodicity. Temperature is a physical magnitude that can be measured by using multiple sensing techniques. IR (infrared) thermography using commercial cameras is gaining relevance in industrial and medical applications because it is a non-invasive and non-intrusive technology. Asymmetrical temperature in certain human body zones is associated with cancer. In this paper, an IR thermographic sensor is applied for breast cancer detection. This work includes an automatic breast segmentation methodology, to spot the hottest regions in thermograms using the morphological watershed operator to help the experts locate the tumor. A protocol for thermogram acquisition considering the required time to achieve a thermal stabilization is also proposed. Breast thermograms are evaluated as thermal matrices, instead of gray scale or false color images, increasing the certainty of the provided diagnosis. The proposed tool was validated using the Database for Mastology Research and tested in a voluntary group of 454 women of different ages and cancer stages with good results, leading to the possibility of being used as a supportive tool to detect breast cancer and angiogenesis cases.

  14. Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.

    2005-01-01

    At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.

  15. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less

  16. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    NASA Astrophysics Data System (ADS)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  17. Acoustic holography: Problems associated with construction and reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.

  18. Nonintrusive methodology for wellness baseline profiling

    NASA Astrophysics Data System (ADS)

    Chung, Danny Wen-Yaw; Tsai, Yuh-Show; Miaou, Shaou-Gang; Chang, Walter H.; Chang, Yaw-Jen; Chen, Shia-Chung; Hong, Y. Y.; Chyang, C. S.; Chang, Quan-Shong; Hsu, Hon-Yen; Hsu, James; Yao, Wei-Cheng; Hsu, Ming-Sin; Chen, Ming-Chung; Lee, Shi-Chen; Hsu, Charles; Miao, Lidan; Byrd, Kenny; Chouikha, Mohamed F.; Gu, Xin-Bin; Wang, Paul C.; Szu, Harold

    2007-04-01

    We develop an accumulatively effective and affordable set of smart pair devices to save the exuberant expenditure for the healthcare of aging population, which will not be sustainable when all the post-war baby boomers retire (78 millions will cost 1/5~1/4 GDP in US alone). To design an accessible test-bed for distributed points of homecare, we choose two exemplars of the set to demonstrate the possibility of translation of modern military and clinical know-how, because two exemplars share identically the noninvasive algorithm adapted to the Smart Sensor-pairs for the real world persistent surveillance. Currently, the standard diagnoses for malignant tumors and diabetes disorders are blood serum tests, X-ray CAT scan, and biopsy used sometime in the physical checkup by physicians as cohort-average wellness baselines. The loss of the quality of life in making second careers productive may be caused by the missing of timeliness for correct diagnoses and easier treatments, which contributes to the one quarter of human errors generating the lawsuits against physicians and hospitals, which further escalates the insurance cost and wasteful healthcare expenditure. Such a vicious cycle should be entirely eliminated by building an "individual diagnostic aids (IDA)," similar to the trend of personalized drug, developed from daily noninvasive intelligent databases of the "wellness baseline profiling (WBP)". Since our physiology state undulates diurnally, the Nyquist anti-aliasing theory dictates a minimum twice-a-day sampling of the WBP for the IDA, which must be made affordable by means of noninvasive, unsupervised and unbiased methodology at the convenience of homes. Thus, a pair of military infrared (IR) spectral cameras has been demonstrated for the noninvasive spectrogram ratio test of the spontaneously emitted thermal radiation from a normal human body at 37°C temperature. This invisible self-emission spreads from 3 microns to 12 microns of the radiation wavelengths. This pair of cameras are used in the military satellite surveillance imaging operated at 3~5 mid IR band and 8~12 long IR band accompanied by several other UV and visible bands cameras. We can thereby measure accurately both the thermal emission bands at the mid IR and the long IR (X I X II). The spectral ratio will be independent of the depth and imaging environment. Similarly, we will take six times per pair saliva samples (X I X II) inside the upper jaw for three meals daily, of which the dynamics is shown as a delayed mirror image of "blood glucose level". And for which we must design a portable lab "system on chip (SOC)," and the micro-fluidity of pair channels per chemical reactions. According to the same biochemical principle of spontaneity, we apply the identical algorithm to determine both the ratio of hidden malignant and benign heat sources (s I, s II) and the blood glucose & other sources (s I, s II) leaking into the saliva. This is possible because of the Gibbs isothermal spontaneous process, in which the Helmholtz free energy must be minimized for the spontaneous thermal radiation from unknown mixing of malign and benign sources or the diffusion mixing of glucose s I * and other sources s II *. We have derived a general formula relating two equilibrium values, before and after, in order to design our devices. Daily tracking the spectrogram ratio and saliva glucose levels are, nevertheless, needed for a reliable prediction of individual malignant angiogenesis and blood glucose level in real time.

  19. Study on seasonal IR signature change of a ship by considering seasonal marine environmental conditions

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hwi; Han, Kuk-Il; Choi, Jun-Hyuk; Kim, Tae-Kuk

    2017-05-01

    Infrared (IR) signal emitted from objects over 0 degree Kelvin has been used to detect and recognize the characteristics of those objects. Recently more delicate IR sensors have been applied for various guided missiles and they affect a crucial influence on object's survivability. Especially, in marine environment it is more vulnerable to be attacked by IR guided missiles since there are nearly no objects for concealment. To increase the survivability of object, the IR signal of the object needs to be analyzed properly by considering various marine environments. IR signature of a naval ship consists of the emitted energy from ship surface and the reflected energy by external sources. Surface property such as the emissivity and the absorptivity on the naval ship varies with different paints applied on the surface and the reflected IR signal is also affected by the surface radiative property, the sensor's geometric position and various climatic conditions in marine environment. Since the direct measurement of IR signal using IR camera is costly and time consuming job, computer simulation methods are developing rapidly to replace those experimental tasks. In this study, we are demonstrate a way of analyzing the IR signal characteristics by using the measured background IR signals using an IR camera and the estimated target IR signals from the computer simulation to find the seasonal trends of IR threats of a naval ship. Through this process, measured weather data are used to analyze more accurate IR signal conditions for the naval ship. The seasonal change of IR signal contrast between the naval ship and the marine background shows that the highest contrast radiant intensity (CRI) value is appeared in early summer.

  20. Investigating Mars: Nili and Meroe Paterae

    NASA Image and Video Library

    2017-10-27

    This false color image covers the region from Nili Patera at the top of the frame to the dunes near Meroe Patera (which is off the bottom of the image). High resolution imaging by other spacecraft has revealed that the dunes in this region are moving. Winds are blowing the dunes across a rough surface of regional volcanic lava flows. The paterae are calderas on the volcanic complex called Syrtis Major Planum. Dunes are found in both Nili and Meroe Paterae and in the region between the two calderas. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 61810 Latitude: 8.37503 Longitude: 67.4659 Instrument: VIS Captured: 2015-11-20 04:48 https://photojournal.jpl.nasa.gov/catalog/PIA22015

  1. Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE - II. Redshift distribution and nature of the submillimetre galaxy population

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Scott, K. S.; Guo, Yicheng; Aretxaga, I.; Giavalisco, M.; Austermann, J. E.; Capak, P.; Chen, Yuxi; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Iono, D.; Johnson, S.; Kawabe, R.; Kohno, K.; Lowenthal, J.; Miller, N.; Morrison, G.; Oshima, T.; Perera, T. A.; Salvato, M.; Silverman, J.; Tamura, Y.; Williams, C. C.; Wilson, G. W.

    2012-02-01

    We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1-mm wavelength imaging survey of the Great Observatories Origins Deep Survey-South (GOODS-S) field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment. One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera, and Large APEX Bolometer Camera 870 μm data. Five of the sources (10 per cent) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analysing ultraviolet(UV)-to-optical and infrared(IR)-to-radio spectral energy distributions (SEDs). The median redshift of zmed˜ 2.6 is similar to other earlier estimates, but we show that 80 per cent of the AzTEC-GOODS sources are at z≥ 2, with a significant high-redshift tail (20 per cent at z≥ 3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 mag in the i- and K-band photometry (a factor of 104 in flux density) with median values of i= 25.3 and K= 22.6 and a broad range of red colour (i-K= 0-6) with an average value of i-K≈ 3. These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z≥ 2, with inferred stellar masses M*= (1-30) × 1010 M⊙ and UV-derived SFRs of SFRUV≳ 101-3 M⊙ yr-1. The IR-derived SFR, 200-2000 M⊙ yr-1, is independent of z or M*. The resulting specific star formation rates, SSFR ≈ 1-100 Gyr-1, are 10-100 times higher than similar mass galaxies at z= 0, and they extend the previously observed rapid rise in the SSFR with redshift to z= 2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time. We find only marginal evidence for an active galactic nucleus (AGN) contribution to the near-IR and mid-IR SEDs, even among the X-ray detected sources, and the derived M* and SFR show little dependence on the presence of an X-ray bright AGN.

  2. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    PubMed Central

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  3. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  4. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    PubMed

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  5. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    NASA Astrophysics Data System (ADS)

    Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.

    2008-07-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.

  6. Study on field weed recognition in real time

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-02-01

    This research aimed to identify weeds from crops in early stage in the field by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ir red), which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. In this research, MS3100 3CCD camera is used to get images of 6 kinds of weeds and crops. Part of these images contained more than 2 kinds of plants. The leaves' shapes, sizes and colors may be very similar or differs from each other greatly. Some are sword-shaped and some (are) round. Some are large as palm and some small as peanut. Some are little brown while other is blue or green. Different combinations are taken into consideration. By the application of image-processing toolkit in MATLAB, the different areas in the image can be segmented clearly. The texture of the images was also analyzed. The processing methods include operations, such as edge detection, erosion, dilation and other algorithms to process the edge vectors and textures. It is of great importance to segment, in real time, the different areas in digital images in field. When the technique is applied in precision farming, many energies and herbicides and many other materials can be saved. At present time large scale softwares as MATLAB on PC are also used, but the computation can be reduced and integrated into a small embedded system. The research results have shown that the application of this technique in agricultural engineering is feasible and of great economical value.

  7. Investigating Mars: Nili and Meroe Paterae

    NASA Image and Video Library

    2017-10-18

    This is a false color image of part of the Nili Patera dune field. High resolution imaging by other spacecraft has revealed that the dunes in this region are moving. Winds are blowing the dunes across a rough surface of regional volcanic lava flows. The paterae are calderas on the volcanic complex called Syrtis Major Planum. Dunes are found in both Nili and Meroe Paterae and in the region between the two calderas. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 19306 Latitude: 8.80756 Longitude: 67.4616 Instrument: VIS Captured: 2006-04-22 00:12 https://photojournal.jpl.nasa.gov/catalog/PIA22008

  8. Investigating Mars: Moreux Crater

    NASA Image and Video Library

    2017-11-23

    This image of Moreux Crater shows the eastern side of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12518 Latitude: 41.8223 Longitude: 44.7638 Instrument: VIS Captured: 2004-10-10 02:55 https://photojournal.jpl.nasa.gov/catalog/PIA22126

  9. Investigating Mars: Nili and Meroe Paterae

    NASA Image and Video Library

    2017-10-19

    This is a false color image of part of the Nili Patera dune field. High resolution imaging by other spacecraft has revealed that the dunes in this region are moving. Winds are blowing the dunes across a rough surface of regional volcanic lava flows. The paterae are calderas on the volcanic complex called Syrtis Major Planum. Dunes are found in both Nili and Meroe Paterae and in the region between the two calderas. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 48021 Latitude: 8.95091 Longitude: 67.3366 Instrument: VIS Captured: 2012-10-11 05:22 https://photojournal.jpl.nasa.gov/catalog/PIA22009

  10. Investigating Mars: Moreux Crater

    NASA Image and Video Library

    2017-11-24

    This image of Moreux Crater shows the highest elevations of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 46786 Latitude: 41.7667 Longitude: 44.3482 Instrument: VIS Captured: 2012-07-01 13:41 https://photojournal.jpl.nasa.gov/catalog/PIA22127

  11. Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Da Deppo, V.; Lazzarin, M.; Bertini, I.; Ferri, F.; Pajola, M.; Barbieri, M.; Naletto, G.; Barbieri, C.; Tubiana, C.; Küppers, M.; Fornasier, S.; Jorda, L.; Sierks, H.

    2015-02-01

    Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims: A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods: The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results: We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions: The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.

  12. Getting small: new 10μm pixel pitch cooled infrared products

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Decaens, G.; Bourqui, M.-L.; Manissadjian, A.; Billon-Lanfrey, D.; Bisotto, S.; Gravrand, O.; Destefanis, G.; Druart, G.; Guerineau, N.

    2014-06-01

    Recent advances in miniaturization of IR imaging technology have led to a burgeoning market for mini thermalimaging sensors. Seen in this context our development on smaller pixel pitch has opened the door to very compact products. When this competitive advantage is mixed with smaller coolers, thanks to HOT technology, we achieve valuable reductions in size, weight and power of the overall package. In the same time, we are moving towards a global offer based on digital interfaces that provides our customers lower power consumption and simplification on the IR system design process while freeing up more space. Additionally, we are also investigating new wafer level camera solution taking advantage of the progress in micro-optics. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI and ONERA.

  13. Passive IR flexi-scope with two spectral colors for household screening of gastrointestinal disorders

    NASA Astrophysics Data System (ADS)

    Byrd, Kenneth; Szu, Harold

    2006-04-01

    According to our generalized Shannon Sampling Theorem of developmental system biology, we should increase the sampling frequency of the passive Infrared (IR) spectrum ratio test, (I 8~12mm / I 3~5mm). This procedure proved to be effective in DCIS using the satellite-grade IR spectrum cameras for an early developmental symptom of the "angiogenesis" effect. Thus, we propose to augment the annual hospital checkup of, or biannual Colonoscopy, with an inexpensive non-imaging IR-Flexi-scope intensity measurement device which could be conducted regularly at a household residence without the need doctoral expertise or a data basis system. The only required component would be a smart PC, which would be used to compute the degree of thermal activities through the IR spectral ratio. It will also be used to keep track of the record and send to the medical center for tele-diagnosis. For the purpose of household screening, we propose to have two integrated passive IR probes of dual-IR-color spectrum inserted into the body via the IR fiber-optic device. In order to extract the percentage of malignancy, based on the ratio of dual color IR measurements, the key enabler is the unsupervised learning algorithm in the sense of the Duda & Hart Unlabelled Data Classifier without lookup table exemplars. This learning methodology belongs to the Natural Intelligence (NI) of the human brain, which can effortlessly reduce the redundancy of pair inputs and thereby enhance the Signal to Noise Ratio (SNR) better than any single sensor for the salient feature extraction. Thus, we can go beyond a closed data basis AI expert system to tailor to the individual ground truth without the biases of the prior knowledge.

  14. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details

    NASA Astrophysics Data System (ADS)

    Kuula, Jaana; Pölönen, Ilkka; Puupponen, Hannu-Heikki; Selander, Tuomas; Reinikainen, Tapani; Kalenius, Tapani; Saari, Heikki

    2012-06-01

    Detecting invisible details and separating mixed evidence is critical for forensic inspection. If this can be done reliably and fast at the crime scene, irrelevant objects do not require further examination at the laboratory. This will speed up the inspection process and release resources for other critical tasks. This article reports on tests which have been carried out at the University of Jyväskylä in Finland together with the Central Finland Police Department and the National Bureau of Investigation for detecting and separating forensic details with hyperspectral technology. In the tests evidence was sought after at an assumed violent burglary scene with the use of VTT's 500-900 nm wavelength VNIR camera, Specim's 400- 1000 nm VNIR camera, and Specim's 1000-2500 nm SWIR camera. The tested details were dried blood on a ceramic plate, a stain of four types of mixed and absorbed blood, and blood which had been washed off a table. Other examined details included untreated latent fingerprints, gunshot residue, primer residue, and layered paint on small pieces of wood. All cameras could detect visible details and separate mixed paint. The SWIR camera could also separate four types of human and animal blood which were mixed in the same stain and absorbed into a fabric. None of the cameras could however detect primer residue, untreated latent fingerprints, or blood that had been washed off. The results are encouraging and indicate the need for further studies. The results also emphasize the importance of creating optimal imaging conditions into the crime scene for each kind of subjects and backgrounds.

  15. Infrared techniques for comet observations

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Tokunaga, Alan T.

    1991-01-01

    The infrared spectral region (1-1000 microns) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2D arrays leading to IR cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

  16. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  17. Development of a prototype infrared imaging bolometer for NSTX-U

    NASA Astrophysics Data System (ADS)

    van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration

    2015-11-01

    Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.

  18. Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat

    NASA Astrophysics Data System (ADS)

    Ibarra, Juan G.; Tao, Yang; Xin, Hongwei

    2000-11-01

    A noninvasive method for the estimation of internal temperature in chicken meat immediately following cooking is proposed. The external temperature from IR images was correlated with measured internal temperature through a multilayer neural network. To provide inputs for the network, time series experiments were conducted to obtain simultaneous observations of internal and external temperatures immediately after cooking during the cooling process. An IR camera working at the spectral band of 3.4 to 5.0 micrometers registered external temperature distributions without the interference of close-to-oven environment, while conventional thermocouples registered internal temperatures. For an internal temperature at a given time, simultaneous and lagged external temperature observations were used as the input of the neural network. Based on practical and statistical considerations, a criterion is established to reduce the nodes in the neural network input. The combined method was able to estimate internal temperature for times between 0 and 540 s within a standard error of +/- 1.01 degree(s)C, and within an error of +/- 1.07 degree(s)C for short times after cooking (3 min), with two thermograms at times t and t+30s. The method has great potential for monitoring of doneness of chicken meat in conveyor belt type cooking and can be used as a platform for similar studies in other food products.

  19. Imaging the Surfaces of Stars from Space

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  20. Comparative analysis of three different methods for monitoring the use of green bridges by wildlife.

    PubMed

    Gužvica, Goran; Bošnjak, Ivana; Bielen, Ana; Babić, Danijel; Radanović-Gužvica, Biserka; Šver, Lidija

    2014-01-01

    Green bridges are used to decrease highly negative impact of roads/highways on wildlife populations and their effectiveness is evaluated by various monitoring methods. Based on the 3-year monitoring of four Croatian green bridges, we compared the effectiveness of three indirect monitoring methods: track-pads, camera traps and active infrared (IR) trail monitoring system. The ability of the methods to detect different species and to give good estimation of number of animal crossings was analyzed. The accuracy of species detection by track-pad method was influenced by granulometric composition of track-pad material, with the best results obtained with higher percentage of silt and clay. We compared the species composition determined by track-pad and camera trap methods and found that monitoring by tracks underestimated the ratio of small canids, while camera traps underestimated the ratio of roe deer. Regarding total number of recorder events, active IR detectors recorded from 11 to 19 times more events then camera traps and app. 80% of them were not caused by animal crossings. Camera trap method underestimated the real number of total events. Therefore, an algorithm for filtration of the IR dataset was developed for approximation of the real number of crossings. Presented results are valuable for future monitoring of wildlife crossings in Croatia and elsewhere, since advantages and disadvantages of used monitoring methods are shown. In conclusion, different methods should be chosen/combined depending on the aims of the particular monitoring study.

  1. Analysis of the configuration and the location of thermographic equipment for the inspection in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Álvarez-Tey, G.; Jiménez-Castañeda, R.; Carpio, J.

    2017-12-01

    The infrared (IR) thermography is a non-destructive technique (NDT) which is used to carry out maintenance quickly and easily in photovoltaic (PV) systems. IR imaging with thermographic cameras under steady state conditions is a usual method for quality control of PV modules and plants in operation. For the proper IR inspection which determines the severity or the importance of the detected findings, it is necessary to consider different aspects of the configuration and the location of the thermographic equipment which allow reducing measuring errors. This paper considers some elements which contribute to the accurate configuration of the thermographic equipment. The influence of the reflected apparent temperature in outdoor IR inspections is analysed and it is proposed a simple method for obtaining it. Besides, the importance of the emissivity in IR thermography is analysed. For that, the value of the emissivity in PV modules of various types both front and rear shape is determined experimentally. It is also studied the proper location of the thermographic equipment in order to minimize reflections of the sun and the sky. For this objective, it is studied the ideal and minimum height of inspection according to the layout of the PV system. In a particular case, it is also analysed the influence of the horizontal angle of thermographic inspection and the reflected radiation.

  2. The star-forming cores in the centre of the Trifid nebula (M 20): from Herschel to the near-infrared

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Román-Zúñiga, C.; Elia, D.; Giovannelli, F.; Sabau-Graziati, L.

    2018-04-01

    A new detailed infrared (IR) study of eight star-forming dense condensations (TCs) in M 20, the Trifid nebula, is presented. The aim is to determine the physical properties of the dust in such globules and establish the presence and properties of their embedded protostellar and/or young stellar population. For this, we analysed new Herschel far-IR and Calar Alto near-IR images of the region, combined with Spitzer Infrared Array Camera (Spitzer/IRAC) archival observations. We confirm the presence of several young stellar objects (YSOs), most with mid-IR colours of Class II sources in all but one of the observed cores. Five TCs are dominated in the far-IR by Class I sources with bolometric luminosities between 100 and 500 L⊙. We report the discovery of a possible counterjet to HH 399 and its protostellar engine inside the photodissociation region TC2, as well as a bipolar outflow system, signposted by symmetric H2 emission knots, embedded in TC3. The present results are compatible with previous suggestions that star formation has been active in the region for some 3 × 105 yr, and that the most recent events in some of these TCs may have been triggered by the expansion of the H II region. We also obtained a revised value for the distance to M 20 of 2.0 ± 0.1 kpc.

  3. Taking on the Heat—a Narrative Account of How Infrared Cameras Invite Instant Inquiry

    NASA Astrophysics Data System (ADS)

    Haglund, Jesper; Jeppsson, Fredrik; Schönborn, Konrad J.

    2016-10-01

    Integration of technology, social learning and scientific models offers pedagogical opportunities for science education. A particularly interesting area is thermal science, where students often struggle with abstract concepts, such as heat. In taking on this conceptual obstacle, we explore how hand-held infrared (IR) visualization technology can strengthen students' understanding of thermal phenomena. Grounded in the Swedish physics curriculum and part of a broader research programme on educational uses of IR cameras, we have developed laboratory exercises around a thermal storyline, in conjunction with the teaching of a heat-flow model. We report a narrative analysis of how a group of five fourth-graders, facilitated by a researcher, predicts, observes and explains (POE) how the temperatures change when they pour hot water into a ceramic coffee mug and a thin plastic cup. Four chronological episodes are described and analysed as group interaction unfolded. Results revealed that the students engaged cognitively and emotionally with the POE task and, in particular, held a sustained focus on making observations and offering explanations for the scenarios. A compelling finding was the group's spontaneous generation of multiple "what-ifs" in relation to thermal phenomena, such as blowing on the water surface, or submerging a pencil into the hot water. This was followed by immediate interrogation with the IR camera, a learning event we label instant inquiry. The students' expressions largely reflected adoption of the heat-flow model. In conclusion, IR cameras could serve as an access point for even very young students to develop complex thermal concepts.

  4. Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image

    NASA Astrophysics Data System (ADS)

    Araki, Kan

    2012-06-01

    We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.

  5. A protection system for the JET ITER-like wall based on imaging diagnostics.

    PubMed

    Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  6. A protection system for the JET ITER-like wall based on imaging diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Arnoux, G.; Devaux, S.; Alves, D.; Balboa, I.; Balorin, C.; Balshaw, N.; Beldishevski, M.; Carvalho, P.; Clever, M.; Cramp, S.; de Pablos, J.-L.; de la Cal, E.; Falie, D.; Garcia-Sanchez, P.; Felton, R.; Gervaise, V.; Goodyear, A.; Horton, A.; Jachmich, S.; Huber, A.; Jouve, M.; Kinna, D.; Kruezi, U.; Manzanares, A.; Martin, V.; McCullen, P.; Moncada, V.; Obrejan, K.; Patel, K.; Lomas, P. J.; Neto, A.; Rimini, F.; Ruset, C.; Schweer, B.; Sergienko, G.; Sieglin, B.; Soleto, A.; Stamp, M.; Stephen, A.; Thomas, P. D.; Valcárcel, D. F.; Williams, J.; Wilson, J.; Zastrow, K.-D.; JET-EFDA Contributors

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  7. Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-09-01

    In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.

  8. AUGUSTO'S Sundial: Image-Based Modeling for Reverse Engeneering Purposes

    NASA Astrophysics Data System (ADS)

    Baiocchi, V.; Barbarella, M.; Del Pizzo, S.; Giannone, F.; Troisi, S.; Piccaro, C.; Marcantonio, D.

    2017-02-01

    A photogrammetric survey of a unique archaeological site is reported in this paper. The survey was performed using both a panoramic image-based solution and by classical procedure. The panoramic image-based solution was carried out employing a commercial solution: the Trimble V10 Imaging Rover (IR). Such instrument is an integrated cameras system that captures 360 degrees digital panoramas, composed of 12 images, with a single push. The direct comparison of the point clouds obtained with traditional photogrammetric procedure and V10 stations, using the same GCP coordinates has been carried out in Cloud Compare, open source software that can provide the comparison between two point clouds supplied by all the main statistical data. The site is a portion of the dial plate of the "Horologium Augusti" inaugurated in 9 B.C.E. in the area of Campo Marzio and still present intact in the same position, in a cellar of a building in Rome, around 7 meter below the present ground level.

  9. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and <1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0'' and 1.5'' from X-ray sources. Based on a detailed study of the surface density of IR sources near the X-ray sources, we expect only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts to be chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 IR clusters in the Antennae, we find with a >99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  10. Performance assessment of a single-pixel compressive sensing imaging system

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Preece, Bradley L.

    2016-05-01

    Conventional electro-optical and infrared (EO/IR) systems capture an image by measuring the light incident at each of the millions of pixels in a focal plane array. Compressive sensing (CS) involves capturing a smaller number of unconventional measurements from the scene, and then using a companion process known as sparse reconstruction to recover the image as if a fully populated array that satisfies the Nyquist criteria was used. Therefore, CS operates under the assumption that signal acquisition and data compression can be accomplished simultaneously. CS has the potential to acquire an image with equivalent information content to a large format array while using smaller, cheaper, and lower bandwidth components. However, the benefits of CS do not come without compromise. The CS architecture chosen must effectively balance between physical considerations (SWaP-C), reconstruction accuracy, and reconstruction speed to meet operational requirements. To properly assess the value of such systems, it is necessary to fully characterize the image quality, including artifacts and sensitivity to noise. Imagery of the two-handheld object target set at range was collected using a passive SWIR single-pixel CS camera for various ranges, mirror resolution, and number of processed measurements. Human perception experiments were performed to determine the identification performance within the trade space. The performance of the nonlinear CS camera was modeled with the Night Vision Integrated Performance Model (NV-IPM) by mapping the nonlinear degradations to an equivalent linear shift invariant model. Finally, the limitations of CS modeling techniques will be discussed.

  11. Phantom Limb

    NASA Image and Video Library

    2017-09-25

    The brightly lit limb of a crescent Enceladus looks ethereal against the blackness of space. The rest of the moon, lit by light reflected from Saturn, presents a ghostly appearance. Enceladus (313 miles or 504 kilometers across) is back-lit in this image, as is apparent by the thin crescent. However, the Sun-Enceladus-spacecraft (or phase) angle, at 141 degrees, is too low to make the moon's famous plumes easily visible. This view looks toward the Saturn-facing hemisphere of Enceladus. North on Enceladus is up. The above image is a composite of images taken with the Cassini spacecraft narrow-angle camera on March 29, 2017 using filters that allow infrared, green, and ultraviolet light. The image filter centered on 930 nm (IR) was is red in this image, the image filter centered on the green is green, and the image filter centered on 338 nm (UV) is blue. The view was obtained at a distance of approximately 110,000 miles (180,000 kilometers) from Enceladus. Image scale is 0.6 miles (1 kilometer) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21346

  12. Image processing with the radial Hilbert transform of photo-thermal imaging for carious detection

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.

    2014-03-01

    Knowledge of heat transfer in biological bodies has many diagnostic and therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. The present paper therefore aims to design and implementation of laser therapeutic and imaging system used for carious tracking and drilling by develop a mathematical algorithm using Hilbert transform for edge detection of photo-thermal imaging. photothermal imaging has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, Q- switching Nd:YAG laser at wavelength 1064 nm has been extensively used in human teeth to study the sub-surface deposition of laser radiation. The high absorption coefficient of the carious rather than normal region rise its temperature generating IR thermal radiation captured by high resolution thermal camera. Changing the pulse repetition frequency of the laser pulses affects the penetration depth of the laser, which can provide three-dimensional (3D) images in arbitrary planes and allow imaging deep within a solid tissue.

  13. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-08-01

    This image shows individual dunes on the floor of Russell Crater. These dunes are in the southern part of the dune field. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! https://photojournal.jpl.nasa.gov/catalog/PIA21799

  14. CHARACTERIZING THE ATMOSPHERES OF THE HR8799 PLANETS WITH HST/WFC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Patience, Jennifer; Barman, Travis

    We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets in the HR8799 system. The images were taken over 15 orbits in three near-infrared (near-IR) medium-band filters—F098M, F127M, and F139M—using the Wide Field Camera 3. One of the three filters is sensitive to a water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging (ADI), and the full data set was analyzed with the Karhunen–Loévemore » Image Projection routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at subarcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered ADI data with an algorithm designed to both improve the image resolution and accurately measure the photometry. The results include F127M (J) detections of the outer planets, HR8799b and c, and the first detection of HR8799b in the water-band (F139M) filter. The F127M photometry for HR8799c agrees well with fitted atmospheric models, resolving the longstanding difficulty in consistently modeling the near-IR flux of the planet.« less

  15. Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua

    2015-11-01

    Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.

  16. Infrared target simulation environment for pattern recognition applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; George, Nicholas

    1994-07-01

    The generation of complete databases of IR data is extremely useful for training human observers and testing automatic pattern recognition algorithms. Field data may be used for realism, but require expensive and time-consuming procedures. IR scene simulation methods have emerged as a more economical and efficient alternative for the generation of IR databases. A novel approach to IR target simulation is presented in this paper. Model vehicles at 1:24 scale are used for the simulation of real targets. The temperature profile of the model vehicles is controlled using resistive circuits which are embedded inside the models. The IR target is recorded using an Inframetrics dual channel IR camera system. Using computer processing we place the recorded IR target in a prerecorded background. The advantages of this approach are: (1) the range and 3D target aspect can be controlled by the relative position between the camera and model vehicle; (2) the temperature profile can be controlled by adjusting the power delivered to the resistive circuit; (3) the IR sensor effects are directly incorporated in the recording process, because the real sensor is used; (4) the recorded target can embedded in various types of backgrounds recorded under different weather conditions, times of day etc. The effectiveness of this approach is demonstrated by generating an IR database of three vehicles which is used to train a back propagation neural network. The neural network is capable of classifying vehicle type, vehicle aspect, and relative temperature with a high degree of accuracy.

  17. Characterizing the vibration behavior in crack vicinity in sonic infrared imaging NDE

    NASA Astrophysics Data System (ADS)

    Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan

    2018-04-01

    Sonic Infrared Imaging uses ultrasound excitation and infrared imaging to detect defects in different materials, including metals, metal alloys, and composites. In this NDE technology, the ultrasound excitation applied is typically a short pulse, usually a fraction of a second. The ultrasound causes the opposing surfaces of a crack or a defect to rub each other and result in temperature change with noticeable infrared radiation increase. This thermal signal can be captured by IR camera and used to locate the defect within the target. Probability of detection of defects can be significantly improved when chaotic sound is introduced to the materials. This nonlinearity between the ultrasound transducer and the target materials is an important phenomenon, and the understanding is critical to improve the repeatability and reliability of this technology. In this paper, we will present our study on this topic with emphasis of characterizing vibration in the crack vicinity.

  18. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  19. Cloud level winds from UV and IR images obtained by VMC onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Khatuntsev, Igor; Patsaeva, Marina; Titov, Dmitri; Ignatiev, Nikolay; Turin, Alexander; Bertaux, Jean-Loup

    2017-04-01

    During eight years Venus Monitoring Camera (VMC) [1] onboard the Venus Express orbiter has observed the upper cloud layer of Venus. The largest set of images was obtained in the UV (365 nm), visible (513 nm) and two infrared channels - 965 nm and 1010 nm. The UV dayside images were used to study the atmospheric circulation at the Venus cloud tops [2], [3]. Mean zonal and meridional profiles of winds and their variability were derived from cloud tracking of UV images. In low latitudes the mean retrograde zonal wind at the cloud top (67±2 km) is about 95 m/s with a maximum of about 102 m/s at 40-50°S. Poleward from 50°S the zonal wind quickly fades out with latitude. The mean poleward meridional wind slowly increases from zero value at the equator to about 10 m/s at 50°S. Poleward from this latitude, the absolute value of the meridional component monotonically decreases to zero at the pole. The VMC observations suggest clear diurnal signature in the wind field. They also indicate a long term trend for the zonal wind speed at low latitudes to increase from 85 m/s in the beginning of the mission to 110 m/s by the middle of 2012. The trend was explained by influence of the surface topography on the zonal flow [4]. Cloud features tracking in the IR images provided information about winds in the middle cloud deck (55±4 km). In the low and middle latitudes (5-65°S) the IR mean retrograde zonal velocity is about 68-70 m/s. In contrast to poleward flow at the cloud tops, equatorward motions dominate in the middle cloud with maximum speed of 5.8±1.2 m/s at latitude 15°S. The meridional speed slowly decreases to 0 at 65-70°S. At low latitudes the zonal and meridional speed demonstrate long term variations. Following [4] we explain the observed long term trend of zonal and meridional components by the influence of surface topography of highland region Aphrodite Terra on dynamic processes in the middle cloud deck through gravity waves. Acknowledgements: I.V. Khatuntsev, M.V. Patsaeva, N.I. Ignatiev, J.-L. Bertaux were supported by the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. References: [1] Markiewicz W. J. et al.: Venus Monitoring Camera for Venus Express // Planet. Space Sci., 55(12), 1701-1711. doi:10.1016/j.pss.2007.01.004, 2007. [2] Khatuntsev I.V. et al.: Cloud level winds from the Venus Express Monitoring Camera imaging // Icarus, 226, 140-158. 2013. [3] Patsaeva M.V. et al.: The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express // Planet. Space Sci., 113(08), 100-108, doi:10.1016/j.pss.2015.01.013, 2015. [4] Bertaux J.-L. et al.: Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves // J. Geophys. Res. Planets, 121, 1087-1101, doi:10.1002/2015JE004958, 2016.

  20. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  1. Dependence of wind speed and UV albedo at Venus top cloud layer on topography and local time revealed from VMC images

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Turin, Alexander; Zasova, Ludmila; Bertaux, Jean-loup

    2017-04-01

    A set of UV (365 nm) and IR (965 nm) images obtained by the Venus Monitoring Camera (VMC) was used to study the circulation of the mesosphere at two altitude levels. Displacement vectors were obtained by wind tracking in automated mode for observation period from 2006 to 2014 for UV images [1,2] and from 2006 to 2012 for IR images. The long observation period and good longitude-latitude coverage by single measurements allowed us to focus on the study of the slow-periodic component. The influence of the underlying surface topography on the change of speed of the average zonal wind at UV level at low latitudes, discovered by visual methods has been described in [3]. Analysis of the longitude-latitude distribution of the zonal and meridional components for 172000 (257 orbits) digital individual wind measurements at UV level and for 32,000 (150 orbits) digital individual wind measurements at IR level allows us to compare the influence of Venus topography on the change of the zonal and meridional components at both cloud levels. At the UV level (67±2 km) longitudinal profiles of the zonal speed for different latitude bins in low latitudes correlate with surface profiles. These correlations are most noticeable in the region of Aphrodite Terra. The correlation shift depends on the surface height. Albedo profiles correlate with surface profiles also at high latitudes. Zonal speed profiles at low latitude (5-15°S) depend not only on altitude, but also on local time. Minimum of the zonal speed is observed over Aphrodite Terra (90-100°E) at about 12 LT. A diurnal harmonic with an extremum over Aphrodite Terra was found. It can be considered as a superposition of a solar-synchronous tide and a stationary wave caused by interaction of the windstream with the surface. At the IR level (55±4 km) a correlation between surface topography and meridional speed was found in the region 10-30°S. The average meridional flow is equatorward at the IR level, but in the region Aphrodite Terra it is poleward. Acknowledgements: M.V. Patsaeva, I.V. Khatuntsev and J.-L. Bertaux were supported by the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. References: [1] Khatuntsev, I.V., M.V. Patsaeva, D.V. Titov, N.I. Ignatiev, A.V. Turin, S.S. Limaye, W.J. Markiewicz, M. Almeida, T. Roatsch and R. Moissl (2013), Cloud level winds from the Venus Express Monitoring Camera imaging., Icarus, 226, 140-158. [2] Patsaeva, M.V., I.V. Khatuntsev, D.V. Patsaev, D.V. Titov, N.I. Ignatiev, W.J. Markiewicz, A.V. Rodin (2015), The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express, Planet. Space Sci. 113(08), 100-108, doi:10.1016/j.pss.2015.01.013. [3] Bertaux, J.-L., I. V. Khatuntsev, A. Hauchecorne, W. J. Markiewicz, E. Marcq, S. Lebonnois, M. Patsaeva, A. Turin, and A. Fedorova (2016), Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res. Planets, 121, 1087-1101, doi:10.1002/2015JE004958.

  2. Sodium Laser Guide Star Technique, Spectroscopy and Imaging with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ge, Jian

    A sodium laser guide star (LGS) adaptive optics (AO) system developed at Stewart Observatory is to be used at the 6.5m MMT. Annual measurements at Kitt Peak show that the mean mesospheric sodium column density varies from ~2×109cm-2 (summer) to ~5×109cm-2 (winter). The sodium column density also varies by a factor of two during a one hour period. The first simultaneous measurements of sodium LGS brightness, sodium column density and laser power were obtained. The absolute sodium return for a continuous wave circularly polarized beam is 1.2([/pm]0.3)× 106 photons s-1m-2W-1 for the sodium column density of 3.7×109cm-2. Theoretical studies demonstrate that the 6.5m MMT LGS AO can provide Strehl ratios better than 0.15 and about 50% flux concentration within 0.2'' aperture for 1-5.5μm under median seeing. This correction will be available for the full sky. Better Strehl and higher flux concentration can be achieved with natural guide stars, but limited sky coverage. The AO corrected field-of-view is about 60''. The Arizona IR Imager and Echelle Spectrograph (ARIES) was designed to match the 6.5m MMT AO. Detection limits of more than 2 magnitude fainter can be reached with the AO over without the AO. A pre-ARIES wide field near-IR camera was designed, built and tested. The camera provides 1'' images in the near-IR over an 8.5 × 8.5arcmin2 field. The 10-σ detection limit with one minute exposures is 17.9 mag. in the K band. A prototype very high resolution cross-dispersed optical echelle spectrograph was designed and built to match the Starfire Optical Range 1.5m AO images. Interstellar KI 7698A absorption lines have been detected in the spectra of αCyg and ζPer. The spectral resolution is 250.000. About 300A wavelengths were covered in a single exposure. Total detection efficiency of 1% has been achieved. For the first time, a near-single-mode fiber with 10μm core size was applied to transmit the Mt. Wilson 100inch AO corrected beams to a spectrograph. The coupling efficiency of the fiber reached up to 70%. Spectra of αOri were recorded. The spectral resolution is 200,000. The total wavelength coverage is about 650A per exposure.

  3. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this processmore » that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.« less

  4. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  5. Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Levy, Arie; Gannot, Israel

    2008-04-01

    Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.

  6. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  7. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  8. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  9. SU-G-201-16: Thermal Imaging in Source Visualization and Radioactivity Measurement for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X; Lei, Y; Zheng, D

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy poses a special challenge to radiation safety and quality assurance (QA) due to its high radioactivity, and it is thus critical to verify the HDR source location and its radioactive strength. This study demonstrates a new method for measuring HDR source location and radioactivity utilizing thermal imaging. A potential application would relate to HDR QA and safety improvement. Methods: Heating effects by an HDR source were studied using Finite Element Analysis (FEA). Thermal cameras were used to visualize an HDR source inside a plastic applicator made of polyvinylidene difluoride (PVDF). Using different source dwellmore » times, correlations between the HDR source strength and heating effects were studied, thus establishing potential daily QA criteria using thermal imaging Results: For an Ir1?2 source with a radioactivity of 10 Ci, the decay-induced heating power inside the source is ∼13.3 mW. After the HDR source was extended into the PVDF applicator and reached thermal equilibrium, thermal imaging visualized the temperature gradient of 10 K/cm along the PVDF applicator surface, which agreed with FEA modeling. For Ir{sup 192} source activities ranging from 4.20–10.20 Ci, thermal imaging could verify source activity with an accuracy of 6.3% with a dwell time of 10 sec, and an accuracy of 2.5 % with 100 sec. Conclusion: Thermal imaging is a feasible tool to visualize HDR source dwell positions and verify source integrity. Patient safety and treatment quality will be improved by integrating thermal measurements into HDR QA procedures.« less

  10. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}⊙ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}⊙ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ˜100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  11. MSTI-3 sensor package optical design

    NASA Astrophysics Data System (ADS)

    Horton, Richard F.; Baker, William G.; Griggs, Michael; Nguyen, Van; Baker, H. Vernon

    1995-06-01

    The MSTI-3 sensor package is a three band imaging telescope for military and dual use sensing missions. The MSTI-3 mission is one of the Air Force Phillips Laboratory's Pegasus launched space missions, a third in the series of state-of-the-art lightweight sensors on low cost satellites. The satellite is planned for launch into a 425 Km orbit in late 1995. The MSTI- 3 satellite is configured with a down looking two axis gimbal and gimbal mirror. The gimbal mirror is an approximately 13 cm by 29 cm mirror which allows a field of regard approximately 100 degrees by 180 degrees. The optical train uses several novel optical features to allow for compactness and light weight. A 105 mm Ritchey Chretien Cassegrain imaging system with a CaF(subscript 2) dome astigmatism corrector is followed by a CaF(subscript 2) beamsplitter cube assembly at the systems first focus. The dichroic beamsplitter cube assembly separates the light into a visible and two IR channels of approximately 2.5 to 3.3, (SWIR), and 3.5 to 4.5, (MWIR), micron wavelength bands. The two IR imaging channels each consist of unity power re-imaging lens cluster, a cooled seven position filter wheel, a cooled Lyot stop and an Amber 256 X 256 InSb array camera. The visible channel uses a unity power re- imaging system prior to a linear variable filter with a Sony CCD array, which allows for a multispectral imaging capability in the 0.5 to 0.8 micron region. The telescope field of view is 1.4 degrees square.

  12. New high spectral resolution spectrograph and mid-IR camera for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, Schelte J.; Connelley, Michael; Rayner, John

    2016-10-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0 m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. We show new observational capabilities resulting from the completion of iSHELL, a 1-5 μm echelle spectrograph with resolving power of 70,000 using a 0.375 arcsec slit. This instrument will be commissioned starting in August 2016. The spectral grasp of iSHELL is enormous due to the cross-dispersed design and use of a 2Kx2K HgCdTe array. Raw fits files will be publicly archived, allowing for more effective use of the large amount of spectral data that will be collected. The preliminary observing manual for iSHELL, containing the instrument description, observing procedures and estimates of sensitivity can be downloaded at http://irtfweb.ifa.hawaii.edu/~ishell/iSHELL_observing_manual.pdf. This manual and instrument description papers can be downloaded at http://bit.ly/28NFiMj. We are also working to restore to service our 8-25 μm camera, MIRSI. It will be upgraded with a closed cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable a wider range of Solar System studies at mid-IR wavelengths, with particular focus on thermal observations of NEOs. The MIRSI upgrade includes plans to integrate a visible CCD camera that will provide simultaneous imaging and guiding capabilities. This visible imager will utilize similar hardware and software as the MORIS system on SpeX. The MIRSI upgrade is being done in collaboration with David Trilling (NAU) and Joseph Hora (CfA). For further information on the IRTF and its instruments including visitor instruments, see: http:// irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate, and NASA grant NNX15AF81G (Trilling, Hora) for the upgrade of MIRSI.

  13. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be to use a multi-spectral thermal camera to perform a complete near remote sensing to detect, not only temperature, but gas, sensitive to particular wavelengths.

  14. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  15. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  16. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  17. Hubble Space Telescope Discovery of a Probable Caustic-Crossing Event in the MACS1149 Galaxy Cluster Field

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Rodney, Steven; Diego, Jose Maria; Zitrin, Adi; Broadhurst, Tom; Selsing, Jonatan; Balestra, Italo; Benito, Alberto Molino; Bradac, Marusa; Bradley, Larry; Brammer, Gabriel; Cenko, Brad; Christensen, Lise; Coe, Dan; Filippenko, Alexei V.; Foley, Ryan; Frye, Brenda; Graham, Melissa; Graur, Or; Grillo, Claudio; Hjorth, Jens; Howell, Andy; Jauzac, Mathilde; Jha, Saurabh; Kaiser, Nick; Kawamata, Ryota; Kneib, Jean-Paul; Lotz, Jennifer; Matheson, Thomas; McCully, Curtis; Merten, Julian; Nonino, Mario; Oguri, Masamune; Richard, Johan; Riess, Adam; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Smith, Nathan; Strolger, Lou; Treu, Tommaso; Wang, Xin; Weiner, Ben; Williams, Liliya; Zheng, Weikang

    2016-05-01

    While monitoring the MACS1149 (z = 0.54) galaxy cluster as part of the RefsdalRedux program (PID 14199; PI Kelly) with the Hubble Space Telescope (HST) WFC3 IR camera, we have detected a rising transient that appears to be coincident ( Target-of-opportunity optical follow-up imaging in several ACS and WFC3 bands with the FrontierSN program (PID 14208; PI Rodney) has revealed that its rest-frame ultraviolet through optical spectrum may be reasonably well fit with that of a B star at z=1.49 exhibiting a strong Balmer break.

  18. Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina

    NASA Astrophysics Data System (ADS)

    Reyes, J. A.; Porras, B. A.

    2013-04-01

    We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.

  19. Nevertheless, It Moves

    NASA Image and Video Library

    2017-09-04

    The heavens often seem vast and unchanging as seen from Earth, but movement in the skies is the norm. The relative motions of both Cassini and Enceladus over a 15-minute period create the movement seen in this movie sequence. Cassini has monitored Enceladus (313 miles or 504 kilometers across) with a particular interest in the plumes and the geology of the south polar region for many years. Different viewing geometries give scientists different information, and the resulting animation gives us a unique "spacecraft's eye" view of the flyby. The movie is a composite of six images taken with the Cassini spacecraft narrow-angle camera on Aug. 1, 2017 using filters that allow infrared, green, and ultraviolet light. The image filter centered on 930 nm (IR) is red in this image, the image filter centered on the green is green, and the image filter centered on 338 nm (UV) is blue. The view was obtained at a distance of approximately 112,000 miles (181,000 kilometers) from Enceladus. Image scale is about 0.6 mile (1 kilometer) per pixel. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21344

  20. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  1. Image quality prediction - An aid to the Viking lander imaging investigation on Mars

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Wall, S. D.

    1976-01-01

    Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).

  2. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less

  3. Research on simulated infrared image utility evaluation using deep representation

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  4. Magellan Adaptive Optics First-light Observations of the Exoplanet β Pic B. I. Direct Imaging in the Far-red Optical with MagAO+VisAO and in the Near-ir with NICI

    NASA Astrophysics Data System (ADS)

    Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Wahhaj, Zahed; Liu, Michael C.; Skemer, Andrew J.; Kopon, Derek; Follette, Katherine B.; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Biller, Beth A.; Nielsen, Eric L.; Hinz, Philip M.; Rodigas, Timothy J.; Hayward, Thomas L.; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.; Wu, Ya-Lin

    2014-05-01

    We present the first ground-based CCD (λ < 1 μm) image of an extrasolar planet. Using the Magellan Adaptive Optics system's VisAO camera, we detected the extrasolar giant planet β Pictoris b in Y-short (YS , 0.985 μm), at a separation of 0.470 ± 0.''010 and a contrast of (1.63 ± 0.49) × 10-5. This detection has a signal-to-noise ratio of 4.1 with an empirically estimated upper limit on false alarm probability of 1.0%. We also present new photometry from the Gemini Near-Infrared Coronagraphic Imager instrument on the Gemini South telescope, in CH 4S,1% (1.58 μm), KS (2.18 μm), and K cont (2.27 μm). A thorough analysis of our photometry combined with previous measurements yields an estimated near-IR spectral type of L2.5 ± 1.5, consistent with previous estimates. We estimate log (L bol/L ⊙) = -3.86 ± 0.04, which is consistent with prior estimates for β Pic b and with field early-L brown dwarfs (BDs). This yields a hot-start mass estimate of 11.9 ± 0.7 M Jup for an age of 21 ± 4 Myr, with an upper limit below the deuterium burning mass. Our L bol-based hot-start estimate for temperature is T eff = 1643 ± 32 K (not including model-dependent uncertainty). Due to the large corresponding model-derived radius of R = 1.43 ± 0.02 R Jup, this T eff is ~250 K cooler than would be expected for a field L2.5 BD. Other young, low-gravity (large-radius), ultracool dwarfs and directly imaged EGPs also have lower effective temperatures than are implied by their spectral types. However, such objects tend to be anomalously red in the near-IR compared to field BDs. In contrast, β Pic b has near-IR colors more typical of an early-L dwarf despite its lower inferred temperature.

  5. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  6. VizieR Online Data Catalog: Arches cluster: IR phot., extinction and masses (Habibi+, 2013)

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hussmann, B.; Motohara, K.

    2013-05-01

    We observed the Arches cluster out to its tidal radius using Ks-band and H-band imaging obtained on June 6-10 2008 with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. The acquired Ks-band images cover four fields of 27.8*27.8(arcsec) each, provided by the medium resolution camera (S27) with a pixel scale of 0.027(arcsec). During the Ks-band observations, the natural visual seeing varied from 0.61" to 0.98". We achieved typical spatial resolutions of 0.081-0.135(arcsec) on individual frames using this AO setup. Seeing-limited J-band observations, on July 17, 2000, were performed with the CISCO spectrograph and camera which provided a pixel scale of 0.116(arcsec) and a field of view of 2*2(arcmin). An average seeing of 0.49(arcsec) resulted into a Full Width at Half Maximum (FWHM) of the point-spread function (PSF) of 0.39(arcsec) on the combined image. The catalogue includes derived infrared-photometry in J, H and Ks bands as well as derived individual extinction value and stellar masses. We used the NAOS-CONICA observations obtained in March 2002 in the central part of the Arches cluster to cover the whole cluster area. (1 data file).

  7. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  8. Comparison of MESSENGER Optical Images with Thermal and Radar Data for the Surface of MERCURY

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Coman, E. I.; Chabot, N. L.; Izenberg, N. R.; Harmon, J. K.; Neish, C.

    2010-12-01

    Images collected by the MESSENGER spacecraft during its three Mercury flybys cover nearly the entire surface of the planet that was not imaged by Mariner 10. The MESSENGER data now allow us to observe features at optical wavelengths that were previously known only through remote sensing in other portions of the electromagnetic spectrum. For example, the Mariner 10 infrared (IR) radiometer made measurements along a track on the night side of Mercury during the spacecraft's first encounter in 1974. Analysis of the IR radiometer data identified several thermal anomalies that we have correlated to craters with extensive rays or ejecta deposits, including Xiao Zhao and Eminescu. The thermal properties are consistent with a greater exposure of bare rock (exposed in steep walls or as boulders and cobbles) in and around these craters compared with the lower-thermal-inertia, finer-grained regolith of the surrounding older surface. The portion of Mercury not viewed by Mariner 10 has also been imaged by Earth-based radar. The radar backscatter gives information on the wavelength-scale surface roughness. Arecibo S-band (12.6-cm wavelength) radar observations have produced images of Eminescu and also revealed two spectacular rayed craters (Debussy and Hokusai) that have since been imaged by MESSENGER. We are examining radial profiles for these craters, extracted from both the radar images and MESSENGER narrow-angle camera mosaics, that extend from the crater center outwards to a distance of several crater diameters. Comparison of optical and radar profiles for the craters, as well as similar profiles for lunar craters, can provide insight into ejecta deposition, the effect of surface gravity on the cratering process, and space weathering.

  9. PHOTOEVAPORATING PROPLYD-LIKE OBJECTS IN CYGNUS OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Nicholas J.; Drake, Jeremy J.; Guarcello, Mario G.

    2012-02-20

    We report the discovery of 10 proplyd-like objects in the vicinity of the massive OB association Cygnus OB2. They were discovered in IPHAS H{alpha} images and are clearly resolved in broadband Hubble Space Telescope/Advanced Camera for Surveys, near-IR, and Spitzer mid-IR images. All exhibit the familiar tadpole shape seen in photoevaporating objects such as the Orion proplyds, with a bright ionization front at the head facing the central cluster of massive stars and a tail stretching in the opposite direction. Many also show secondary ionization fronts, complex tail morphologies, or multiple heads. We consider the evidence that these are eithermore » proplyds or 'evaporating gaseous globules' (EGGs) left over from a fragmenting molecular cloud, but find that neither scenario fully explains the observations. Typical sizes are 50,000-100,000 AU, larger than the Orion proplyds, but in agreement with the theoretical scaling of proplyd size with distance from the ionizing source. These objects are located at projected separations of {approx}6-14 pc from the OB association, compared to {approx}0.1 pc for the Orion proplyds, but are clearly being photoionized by the {approx}65 O-type stars in Cyg OB2. Central star candidates are identified in near- and mid-IR images, supporting the proplyd scenario, though their large sizes and notable asymmetries are more consistent with the EGG scenario. A third possibility is therefore considered that these are a unique class of photoevaporating partially embedded young stellar objects that have survived the destruction of their natal molecular cloud. This has implications for the properties of stars that form in the vicinity of massive stars.« less

  10. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    NASA Technical Reports Server (NTRS)

    Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  11. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  12. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  13. Upgrades and Modifications of the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.; Cornelison, Charles J.; Perez, Alfredo J.

    2017-01-01

    The NASA Ames Hypervelocity Free Flight Aerodynamics Facility ballistic range is described. The various configurations of the shadowgraph stations are presented. This includes the original stations with film and configurations with two different types of digital cameras. Resolution tests for the 3 shadowgraph station configurations are described. The advantages of the digital cameras are discussed, including the immediate availability of the shadowgraphs. The final shadowgraph station configuration is a mix of 26 Nikon cameras and 6 PI-MAX2 cameras. Two types of trigger light sheet stations are described visible and IR. The two gunpowders used for the NASA Ames 6.251.50 light gas guns are presented. These are the Hercules HC-33-FS powder (no longer available) and the St. Marks Powder WC 886 powder. The results from eight proof shots for the two powders are presented. Both muzzle velocities and piston velocities are 5 9 lower for the new St. Marks WC 886 powder than for the old Hercules HC-33-FS powder (no longer available). The experimental and CFD (computational) piston and muzzle velocities are in good agreement. Shadowgraph-reading software that employs template-matching pattern recognition to locate the ballistic-range model is described. Templates are generated from a 3D solid model of the ballistic-range model. The accuracy of the approach is assessed using a set of computer-generated test images.

  14. [A Quality Assurance (QA) System with a Web Camera for High-dose-rate Brachytherapy].

    PubMed

    Hirose, Asako; Ueda, Yoshihiro; Oohira, Shingo; Isono, Masaru; Tsujii, Katsutomo; Inui, Shouki; Masaoka, Akira; Taniguchi, Makoto; Miyazaki, Masayoshi; Teshima, Teruki

    2016-03-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an (192)Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.31±0.1 mm and that of dwell time errors 0.1±0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size.

  15. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  16. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0.8 mm thick) silicon substrate and the silicon nanofabrication techniques and include the effects of (1) precisely tuned reflective surfaces, (2) very smooth mirror surfaces leading to greater cavity efficiency, (3) reduced susceptibility to vibrations due the silicon support structures, (4) reduced susceptibility to defect finesse due to reduced mounting stress, and (5) greatly improved mechanical robustness that could result in space-qualified hardware. These improvements are enabled by the combination of silicon-based technologies and our sophisticated electromagnetic modeling. The finished products have many science applications. For example, the SSB mirrors within an MCSF would convert the FORCAST or HAWC+ cameras on SOFIA into imaging spectrometers capable of widescale mapping of the mid to far-IR fine structure lines from the Galactic Center, Galactic star formation regions and external galaxies. In fact, this new etalon technology could be used in any mid to far-IR camera, converting the camera into a moderate (100 to 4000) to high resolving power (~100,000) imaging spectrometer at modest cost. A particularly interesting application could be a large format (~10 cm diameter) FPI that could deliver resolving powers in excess of 5000 for a 10 m space telescope, which might be the incarnation of the next major far-IR space mission (see NASA Cosmic Origins Newsletter, V4, No. 1, March 2015). Our program addresses NASA's Strategic goal 1: "Expand the frontiers of knowledge, capability, and opportunity in space."; Objective 1.6: "Discover how the Universe works, explore how it began and evolved, and search for life on planets around other stars,"• specifically "Technology development and demonstration."• It also addresses Strategic Goal 2 via Objective 2.4: "Advance the Nation's STEM education and workforce pipeline by working collaborative with other agencies to engage students, teachers, and faculty in NASA's missions and unique assets."•

  17. WFC3: In-Flight Performance Highlights

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; MacKenty, J. W.; O'Connell, R. W.; Townsend, J. A.; WFC3 Team

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new imager for the Hubble Space Telescope (HST), was successfully installed in the telescope in May 2009 during the first dramatic spacewalk of space shuttle flight STS-125, also known as HST Servicing Mission 4. This new camera offers unique observing capabilities in two channels spanning a broad wavelength range from the near ultraviolet to the near infrared (200-1000nm in the UV/Visible [UVIS] channel; 850-1700nm in the IR channel). After an initial outgassing period, WFC3 was cooled to its observing configuration in June. In the following months, a highly successful Servicing Mission Observatory Verification (SMOV4) program was executed, which has confirmed the exciting scientific potential of the instrument. Detailed performance results from the SMOV4 program are presented in a number of papers in this session. In this paper, we highlight some top-level performance assessments (throughput, limiting magnitudes, survey speeds) for WFC3, which is now actively engaged in the execution of forefront astronomical observing programs.

  18. Non-destructive clinical assessment of occlusal caries lesions using near-IR imaging methods.

    PubMed

    Staninec, Michal; Douglas, Shane M; Darling, Cynthia L; Chan, Kenneth; Kang, Hobin; Lee, Robert C; Fried, Daniel

    2011-12-01

    Enamel is highly transparent in the near-IR (NIR) at wavelengths near 1,300 nm, and stains are not visible. The purpose of this study was to use NIR transillumination and optical coherence tomography (OCT) to estimate the severity of caries lesions on occlusal surfaces both in vivo and on extracted teeth. Extracted molars with suspected occlusal lesions were examined with OCT and polarization sensitive OCT (PS-OCT), and subsequently sectioned and examined with polarized light microscopy (PLM) and transverse microradiography (TMR). Teeth in test subjects with occlusal caries lesions that were not cavitated or visible on radiographs were examined using NIR transillumination at 1,310 nm using a custom built probe attached to an indium gallium arsenide (InGaAs) camera and a linear OCT scanner. After imaging, cavities were prepared using dye staining to guide caries removal and physical impressions of the cavities were taken. The lesion severity determined from OCT and PS-OCT scans in vitro correlated with the depth determined using PLM and TMR. Occlusal caries lesions appeared in NIR images with high contrast in vivo. OCT scans showed that most of the lesions penetrated to dentin and spread laterally below the sound enamel. This study demonstrates that both NIR transillumination and OCT are promising new methods for the clinical diagnosis of occlusal caries. Copyright © 2011 Wiley Periodicals, Inc.

  19. Nondestructive Clinical Assessment of Occlusal Caries Lesions using Near-IR Imaging Methods

    PubMed Central

    Staninec, Michal; Douglas, Shane M.; Darling, Cynthia L.; Chan, Kenneth; Kang, Hobin; Lee, Robert C.; Fried, Daniel

    2011-01-01

    Objective Enamel is highly transparent in the near-IR (NIR) at wavelengths near 1300-nm, and stains are not visible. The purpose of this study was to use NIR transillumination and optical coherence tomography (OCT) to estimate the severity of caries lesions on occlusal surfaces both in vivo and on extracted teeth. Methods Extracted molars with suspected occlusal lesions were examined with OCT and polarization sensitive OCT (PS-OCT), and subsequently sectioned and examined with polarized light microscopy (PLM) and transverse microradiography (TMR). Teeth in test subjects with occlusal caries lesions that were not cavitated or visible on radiographs were examined using NIR transillumination at 1310 nm using a custom built probe attached to an indium gallium arsenide (InGaAs) camera and a linear OCT scanner. After imaging, cavities were prepared using dye staining to guide caries removal and physical impressions of the cavities were taken. Results The lesion severity determined from OCT and PS-OCT scans in vitro correlated with the depth determined using polarized light microscopy (PLM) and transverse microradiography (TMR). Occlusal caries lesions appeared in NIR images with high contrast in vivo. OCT scans showed that most of the lesions penetrated to dentin and spread laterally below the sound enamel. Conclusion This study demonstrates that both NIR transillumination and OCT are promising new methods for the clinical diagnosis of occlusal caries. PMID:22109697

  20. Application of Sensor Fusion to Improve Uav Image Classification

    NASA Astrophysics Data System (ADS)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  1. LMT imaging of the Extended Groth Strip: a search for the high-redshift tail of the sub-mm galaxy population

    NASA Astrophysics Data System (ADS)

    Aretxaga, Itziar

    2015-08-01

    The combination of short and long-wavelength deep (sub-)mm surveys can effectively be used to identify high-redshift sub-millimeter galaxies (z>4). Having star formation rates in excess of 500 Msun/yr, these bright (sub-)mm sources have been identified with the progenitors of massive elliptical galaxies undergoing rapid growth. With this purpose in mind, we are surveying a 20 sq. arcmin field within the Extended Groth Strip with the 1.1mm AzTEC camera mounted at the Large Millimeter Telescope that overlaps with the deep 450/850um SCUBA-2 Cosmology Legacy Survey and the CANDELS deep NIR imaging. The improved beamsize of the LMT (8”) over previous surveys aids the identification of the most prominent optical/IR counterparts. We discuss the high-redshift candidates found.

  2. WFC3 Anomalies Flagged by the Quicklook Team

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.

    2017-09-01

    Like all detectors, the UVIS and IR detectors of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope are subject to detector and optical anomalies. Many of them can be corrected for or avoided with careful planning. We summarize, with examples, the various WFC3 anomalies, which when found are flagged by the WFC3 "Quicklook" team of daily image inspectors and stored in an internal database. We also give examples of known detector features and defects, and some non-standard observing modes. The aim of this report is (1) to educate users of WFC3 to more easily assess the quality of science images and (2) to serve as a reference for the WFC3 Quicklook team members in their daily visual inspections. This report was produced by C.M. Gosmeyer and The Quicklook Team.

  3. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    NASA Technical Reports Server (NTRS)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  4. Investigation of thermomechanical effects of lighting conditions on canvas paintings by laser shearography

    NASA Astrophysics Data System (ADS)

    Meybodi, M. K.; Dobrev, I.; Klausmeyer, P.; Harrington, E. J.; Furlong, C.

    Quantitative techniques to characterize thermomechanical effects of light on canvas paintings are necessary in order to better understand the deleterious effects that light has on precious art collections in museum exhibitions. In this paper, we present advances in the development of a customized laser shearography system for temporal characterization of inplane displacements of canvas paintings when subjected to specific lighting conditions. The shearography system is synchronized with a thermal IR camera and concomitant measurements of derivatives of displacements along two orthogonal shearing directions as well as thermal fields are performed. Due to the nature of the measurements, we have developed real-time temporal phase unwrapping algorithms and high-resolution Fast Fourier Transform (FFT) methods to calibrate applied shearing levels. In addition, we are developing methods to isolate thermally-induced components from randomly-induced mechanical vibrations that occur in museum environments by application of IR imaging data. Representative examples are shown, which illustrate capabilities to measure, detect, and map crack propagation as a function of lighting conditions and time.

  5. Long-wave infrared profile feature extractor (PFx) sensor

    NASA Astrophysics Data System (ADS)

    Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David

    2009-05-01

    The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.

  6. Measurements of IR and visual propagation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Heen, Lars T.; Madsen, Eirik B.; Selnes, Oddvar

    2004-11-01

    Two field trials have been performed on the west coast of Norway to study propagation effects (in particular refraction and turbulence effects) close to the sea surface. A complete meteorological station and a temperature profile buoy were used to characterize the propagation environment, while sensor height was logged continuously. Land and ship mounted sources were studied using infrared (midwave IR and longwave IR FPAs) and visual cameras at about 4 m above mean sea level (MSL). The land-based sources were mounted about 2-13 m above MSL, while the ship mounted sources were 10 m above sea level. Both sub- and superrefractive conditions were studied during the trials. The sensors were mounted on a programmable motion controller, which allowed extraction of absolute apparent pitch angles of the imaged sources. Apparent horizon distances have been determined for the ship sources, while mirror plane positions and apparent elevation (pitch) angles have been determined for the land sources. In addition, normalized variance of intensity (scintillation index) has been calculated for a number of cases. The scintillation index can easily be converted to refractive index structure parameters (Cn2), one of the key parameters characterizing optical turbulence. Measurement results are compared to results from the IR Boundary Layer Effects Model (IRBLEM *). *) IRBLEM is proprietory to the Department for National Defence of Canada as represented by DRDC-Valcartier

  7. Model Development and Testing for THEMIS Controlled Mars Mosaics

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Sides, S.; Weller, L.; Cushing, G.; Titus, T.; Kirk, R. L.; Soderblom, L. A.; Duxbury, T. C.

    2005-01-01

    As part of our work [1] to develop techniques and procedures to create regional and eventually global THEMIS mosaics of Mars, we are developing algorithms and software to photogrammetrically control THEMIS IR line scanner camera images. We have found from comparison of a limited number of images to MOLA digital image models (DIMs) [2] that the a priori geometry information (i.e. SPICE [3]) for THEMIS images generally allows their relative positions to be specified at the several pixel level (e.g. approx.5 to 13 pixels). However a need for controlled solutions to improve this geometry to the sub-pixel level still exists. Only with such solutions can seamless mosaics be obtained and likely distortion from spacecraft motion during image collection removed at such levels. Past experience has shown clearly that such mosaics are in heavy demand by users for operational and scientific use, and that they are needed over large areas or globally (as opposed to being available only on a limited basis via labor intensive custom mapping projects). Uses include spacecraft navigation, landing site planning and mapping, registration of multiple data types and image sets, registration of multispectral images, registration of images with topographic information, recovery of thermal properties, change detection searches, etc.

  8. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-08-04

    This image shows the western part of the dune field on the floor of Russell Crater. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 33970 Latitude: -54.3831 Longitude: 12.3712 Instrument: VIS Captured: 2009-08-11 09:20 https://photojournal.jpl.nasa.gov/catalog/PIA21802

  9. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-08-09

    This image shows the central part of the dune field on the floor of Russell Crater. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34856 Latitude: -54.5757 Longitude: 12.8629 Instrument: VIS Captured: 2009-10-23 08:04 https://photojournal.jpl.nasa.gov/catalog/PIA21806

  10. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-07-31

    This image shows a slice of the floor of Russell Crater. Russell Crater is located in Noachis Terra. The spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 6354 Latitude: -54.6188 Longitude: 12.9816 Instrument: VIS Captured: 2003-05-21 14:24 https://photojournal.jpl.nasa.gov/catalog/PIA21798

  11. Investigating Mars: Arabia Terra Dunes

    NASA Image and Video Library

    2018-03-23

    This is a false color image of the dune field in the Arabia Terra crater. In this combination of bands, sand appears as a blue to dark blue color. In this image, the smaller areas of sand are easily visible and indicate the large amount of available material for creating dunes. Located in eastern Arabia is an unnamed crater, 120 kilometers (75 miles) across. The floor of this crater contains a large exposure of rocky material, a field of dark sand dunes, and numerous patches of what is probably fine-grain sand. The shape of the dunes indicate that prevailing winds have come from different directions over the years. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 45125 Latitude: 26.6761 Longitude: 62.9345 Instrument: VIS Captured: 2012-02-15 20:32 https://photojournal.jpl.nasa.gov/catalog/PIA22302

  12. Investigating Mars: Kaiser Crater Dunes

    NASA Image and Video Library

    2018-02-02

    This is a false color image of Kaiser Crater. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses 3/4 of the crater and demonstrates how extensive the dunes are on the floor of Kaiser Crater. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 66602 Latitude: -47.0551 Longitude: 19.446 Instrument: VIS Captured: 2016-12-18 21:42 https://photojournal.jpl.nasa.gov/catalog/PIA22265

  13. IR-Sensography™—expanding the scope of contact-free sensing methods

    NASA Astrophysics Data System (ADS)

    Klein, Jens; Schunk, Stephan A.

    2005-01-01

    Capturing the response of one or more sensor materials is conventionally performed by the direct transformation of a chemical or physico-chemical signal into an electrical one. With an increasing number of sensor materials within an arrangement of sensor elements or a sensor array, problems such as contacting each single sensor, signal processing and resistance against cross-talk, harsh conditions such as corrosive atmospheres, etc are limiting factors for the further development of so-called 'chemical noses'. State-of-the-art and commercially available are arrays of eight different sensor materials, literature known in another context are sensor arrays with 256 materials on a silicon wafer, which are contacted via electrical conduits. We present here the concept of the IR-Sensography™, the use of an IR-camera as an external detector system for sensor libraries. Acting like an optical detection method, the IR-camera detects small temperature changes due to physisorption, chemisorption or other forms of interaction or reaction as an output signal in the form of radiation emitted by the multiplicity of sensor materials simultaneously. The temperature resolution of commercially available IR-camera systems can be tuned to the range below 0.1 K. Due to the separation of sensors and the detector device, reaction conditions at the sensor locus can be adapted to the analytical problem and do not need to take care of other boundary conditions which come into play with the analytical device, e.g. the IR-camera. Calibration or regeneration steps can as well be performed over the multiplicity of all sensor materials. Any given chemical compound that comes into contact with the sensor through the passing fluids will result in a specific activity pattern on a spatially fixed library of sensor materials that is unique for the given compound. While the pattern therefore serves as an identifier, the intensity of the pattern represents the quantitative amount of this compound in the mixture. For proof-of-concept experiments we used a 96-fold-sensing device. The sensor library consists of seven different material classes, all synthesized via classical impregnation techniques in different compositions on multihole monolithic ceramic supports (93 different materials based on different concentrations of binary/ternary mixtures of transition metals, three inert materials). We demonstrate with these results the wide range of capabilities for the IR-Sensography™. Both the qualitative and the quantitative determinations of molecules in the gas phase can be performed with this new methodology.

  14. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.

    PubMed

    Myers, Matthew R; Giridhar, Dushyanth

    2011-06-01

    In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America

  15. Acousto-Optic Imaging Spectrometers for Mars Surface Science

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Blaney, D. L.

    2000-01-01

    NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP). AIMS is capable of tunable spectroscopic imaging of surface mineralogy, ices and dust between 0.5 and 2.4 microns, at a resolving power (lambda/delta lambda) which is typically several hundred. The design spatial resolution, similar to IMP and SSI, will allow mapping at scales down to about 1 cm.

  16. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  17. A comparison of select image-compression algorithms for an electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.

  18. The design and application of a multi-band IR imager

    NASA Astrophysics Data System (ADS)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  19. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    NASA Astrophysics Data System (ADS)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  20. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  1. Megapixel mythology and photospace: estimating photospace for camera phones from large image sets

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror O.; Hertel, Dirk W.

    2008-01-01

    It is a myth that more pixels alone result in better images. The marketing of camera phones in particular has focused on their pixel numbers. However, their performance varies considerably according to the conditions of image capture. Camera phones are often used in low-light situations where the lack of a flash and limited exposure time will produce underexposed, noisy and blurred images. Camera utilization can be quantitatively described by photospace distributions, a statistical description of the frequency of pictures taken at varying light levels and camera-subject distances. If the photospace distribution is known, the user-experienced distribution of quality can be determined either directly by direct measurement of subjective quality, or by photospace-weighting of objective attributes. The population of a photospace distribution requires examining large numbers of images taken under typical camera phone usage conditions. ImagePhi was developed as a user-friendly software tool to interactively estimate the primary photospace variables, subject illumination and subject distance, from individual images. Additionally, subjective evaluations of image quality and failure modes for low quality images can be entered into ImagePhi. ImagePhi has been applied to sets of images taken by typical users with a selection of popular camera phones varying in resolution. The estimated photospace distribution of camera phone usage has been correlated with the distributions of failure modes. The subjective and objective data show that photospace conditions have a much bigger impact on image quality of a camera phone than the pixel count of its imager. The 'megapixel myth' is thus seen to be less a myth than an ill framed conditional assertion, whose conditions are to a large extent specified by the camera's operational state in photospace.

  2. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  3. Students' framing of laboratory exercises using infrared cameras

    NASA Astrophysics Data System (ADS)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-12-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N =30 ) partook in four IR-camera laboratory activities, designed around the predict-observe-explain approach of White and Gunstone. The activities involved central thermal concepts that focused on heat conduction and dissipative processes such as friction and collisions. Students' interactions within each activity were videotaped and the analysis focuses on how a purposefully selected group of three students engaged with the exercises. As the basis for an interpretative study, a "thick" narrative description of the students' epistemological and conceptual framing of the exercises and how they took advantage of the disciplinary affordance of IR cameras in the thermal domain is provided. Findings include that the students largely shared their conceptual framing of the four activities, but differed among themselves in their epistemological framing, for instance, in how far they found it relevant to digress from the laboratory instructions when inquiring into thermal phenomena. In conclusion, the study unveils the disciplinary affordances of infrared cameras, in the sense of their use in providing access to knowledge about macroscopic thermal science.

  4. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-20

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146

  5. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-22

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148

  6. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-19

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145

  7. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    ERIC Educational Resources Information Center

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  8. First Solar System Results Of The Spitzer Space Telescope, Including Imaging And Spectroscopy Of The Principal Uranian Satellites, Phoebe, And Rhea

    NASA Astrophysics Data System (ADS)

    van Cleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.; Houck, J. R.; Meadows, V. S.; Morris, P.; Reach, W. T.; Reitsema, H.; Rieke, G. H.; Werner, M. W.

    2004-05-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 μ m. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 μ m, high-resolution (R=600) spectra from 10 to 37 μ m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 μ m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 μ m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 μ m. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets. For example, the "IRS Moons and Planets" program is now examining the principal satellites of outer Solar System planets, as well as Uranus and Neptune, using all SIRTF instruments. IRAC photometry will establish the hitherto unknown albedo of these cold objects at wavelengths between 3.5 and 8 μ m, IRS will do reflectance spectrosopy at wavelengths between 5.3 and 15 μ m, and thermal emission spectroscopy between 10 and 40 μ m. Combined with MIPS photometry and SED measurements, these data will provide compositional information, albedo, and thermal properties of these objects. The observations of Uranus and Neptune will be used to monitor changes in Uranus and Neptune atmospheres with season [1,2], for trace composition data, and for precise straylight subtraction for observations of their innermost principal satellites. We will observe Titan to compare spectra of the hemisphere centered on the "continent" seen in near-IR Hubble images [3] to spectra of other Titan longitudes, and interpret these differences in terms of surface composition and temperature. The poster will represent the first Solar System results of SIRTF, including but not limited to: 1. Photometry of the principal Uranian satellites between 3.6 and 15 μ m and interpretation in terms of surface composition, temperature, and thermal inertia. 2. Images and spectra of Phoebe and Rhea, and such other moons of Saturn as are scheduled for observation between March 1 and the beginning of this conference. 3. Images and spectra of Neptune and Triton, if those observations are scheduled between April 29 and the beginning of this conference. References: [1] Hammel H. B., Young, L. A, Hackwell J., Lynch D. K., Russell R., and Orton G. S. (1992) Icarus, 99, 347. [2] Hammel, H. B., Rages K., Lockwood G. W., Karkoschka E., and de Pater I. (2001) Icarus, 153, 229. [3] Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., Caldwell, J. J., and Allison, M. D. (1996) Icarus, 119, 336.

  9. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  10. Methods for identification of images acquired with digital cameras

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Bijhold, Jurrien; Kieft, Martijn; Kurosawa, Kenji; Kuroki, Kenro; Saitoh, Naoki

    2001-02-01

    From the court we were asked whether it is possible to determine if an image has been made with a specific digital camera. This question has to be answered in child pornography cases, where evidence is needed that a certain picture has been made with a specific camera. We have looked into different methods of examining the cameras to determine if a specific image has been made with a camera: defects in CCDs, file formats that are used, noise introduced by the pixel arrays and watermarking in images used by the camera manufacturer.

  11. In vivo imaging of small animals with optical tomography and near-infrared fluorescent probes

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew R.; Shibata, Yasushi; Kruskal, Jonathan B.; Lenkinski, Robert E.

    2002-06-01

    A developmental optical tomography has been designed for imaging small animals in vivo using near IR fluorophores. The system employs epi-illumination via a 450 W Xe arc lamp, filtered and collimated to illuminate a 10 cm square movable stage. Emission light is filtered then collected by a high- resolution, high quantum efficiency, cooled CCD camera. Stage movement and image acquisition are under the control of a personal computer running system integration and automation software. During an experiment, the anesthetized animal is secured to the stage and up to 200 projections can be acquired over 180 degrees rotation. Angular sampling of the light distribution at a point on the surface is used to determine relative contributions form ballistic and diffuse photons. We have employed the system to investigate a number of applications of in-vivo fluorescent imaging. In dynamic studies, hepatic function has been visualized in nude mice following intravenous injection of indocyanine green (ICG) and cerebrospinal fluid flow as been measured by injection of ICG-lipoprotein conjugate in the subarachnoid space of the lumbar spine followed by dynamic imaging of the brain. Further applications in physiological imaging, cancer detection, and molecular imaging are under investigation in our laboratory.

  12. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  13. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  14. Application of Infrared Thermography as a Diagnostic Tool of Knee Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Arfaoui, Ahlem; Bouzid, Mohamed Amine; Pron, Hervé; Taiar, Redha; Polidori, Guillaume

    This paper aimed to study the feasibility of application of infrared thermography to detect osteoarthritis of the knee and to compare the distribution of skin temperature between participants with osteoarthritis and those without pathology. All tests were conducted at LACM (Laboratory of Mechanical Stresses Analysis) and the gymnasium of the University of Reims Champagne Ardennes. IR thermography was performed using an IR camera. Ten participants with knee osteoarthritis and 12 reference healthy participants without OA participated in this study. Questionnaires were also used. The participants with osteoarthritis of the knee were selected on clinical examination and a series of radiographs. The level of pain was recorded by using a simple verbal scale (0-4). Infrared thermography reveals relevant disease by highlighting asymmetrical behavior in thermal color maps of both knees. Moreover, a linear evolution of skin temperature in the knee area versus time has been found whatever the participant group is in the first stage following a given effort. Results clearly show that the temperature can be regarded as a key parameter for evaluating pain. Thermal images of the knee were taken with an infrared camera. The study shows that with the advantage of being noninvasive and easily repeatable, IRT appears to be a useful tool to detect quantifiable patterns of surface temperatures and predict the singular thermal behavior of this pathology. It also seems that this non-intrusive technique enables to detect the early clinical manifestations of knee OA.

  15. Electrical localization of weakly electric fish using neural networks

    NASA Astrophysics Data System (ADS)

    Kiar, Greg; Mamatjan, Yasin; Jun, James; Maler, Len; Adler, Andy

    2013-04-01

    Weakly Electric Fish (WEF) emit an Electric Organ Discharge (EOD), which travels through the surrounding water and enables WEF to locate nearby objects or to communicate between individuals. Previous tracking of WEF has been conducted using infrared (IR) cameras and subsequent image processing. The limitation of visual tracking is its relatively low frame-rate and lack of reliability when visually obstructed. Thus, there is a need for reliable monitoring of WEF location and behaviour. The objective of this study is to provide an alternative and non-invasive means of tracking WEF in real-time using neural networks (NN). This study was carried out in three stages. First stage was to recreate voltage distributions by simulating the WEF using EIDORS and finite element method (FEM) modelling. Second stage was to validate the model using phantom data acquired from an Electrical Impedance Tomography (EIT) based system, including a phantom fish and tank. In the third stage, the measurement data was acquired using a restrained WEF within a tank. We trained the NN based on the voltage distributions for different locations of the WEF. With networks trained on the acquired data, we tracked new locations of the WEF and observed the movement patterns. The results showed a strong correlation between expected and calculated values of WEF position in one dimension, yielding a high spatial resolution within 1 cm and 10 times higher temporal resolution than IR cameras. Thus, the developed approach could be used as a practical method to non-invasively monitor the WEF in real-time.

  16. Augmented reality system for CT-guided interventions: system description and initial phantom trials

    NASA Astrophysics Data System (ADS)

    Sauer, Frank; Schoepf, Uwe J.; Khamene, Ali; Vogt, Sebastian; Das, Marco; Silverman, Stuart G.

    2003-05-01

    We are developing an augmented reality (AR) image guidance system, in which information derived from medical images is overlaid onto a video view of the patient. The interventionalist wears a head-mounted display (HMD) that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture the stereo view of the scene. A third video camera, operating in the near IR, is also attached to the HMD and is used for head tracking. The system achieves real-time performance of 30 frames per second. The graphics appears firmly anchored in the scne, without any noticeable swimming or jitter or time lag. For the application of CT-guided interventions, we extended our original prototype system to include tracking of a biopsy needle to which we attached a set of optical markers. The AR visualization provides very intuitive guidance for planning and placement of the needle and reduces radiation to patient and radiologist. We used an interventional abdominal phantom with simulated liver lesions to perform an inital set of experiments. The users were consistently able to locate the target lesion with the first needle pass. These results provide encouragement to move the system towards clinical trials.

  17. Quantifying photometric observing conditions on Paranal using an IR camera

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Hanuschik, Reinhard

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. Due to its extended operating range down to -100 °C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Hence it can be used to determine photometric conditions for science operations. About 60 % of nights are free of clouds on Paranal. More work will be required to classify the clouds using this technique. For the future this approach might become part of VLT science operations for evaluating nightly sky conditions.

  18. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  19. Improvement of web-based data acquisition and management system for GOSAT validation lidar data analysis

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra Nugraha; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei

    2013-01-01

    A web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data-analysis has been developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS (Automated Meteorological Data Acquisition System) ground-level local meteorological data, GPS Radiosonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data. In this article, we briefly describe some improvement for higher performance and higher data usability. GPS Radiosonde upper-air meteorological data and U.S. standard atmospheric model in DAS automatically calculate molecule number density profiles. Predicted ozone density prole images above Saga city are also calculated by using Meteorological Research Institute (MRI) chemistry-climate model version 2 for comparison to actual ozone DIAL data.

  20. Second Announcement - ESO/ST-ECF Workshop on NICMOS and the VLT: A New Era of High-Resolution Near-Infrared Imaging and Spectroscopy - May 26-27, 1998 - Hotel Baia di Nora, Pula, Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    1998-03-01

    ST-ECF and ESO are organising in collaboration with the NICMOS IDT and STScI a workshop on near infrared imaging from space and ground. The purpose of the workshop is to review what has been achieved with the Near Infrared and Multi Object Spectrograph (NICMOS) on board of HST, what can be achieved in the remaining lifetime of the instrument, and how NICMOS observations can be optimised taking into account the availability of IR imaging and spectroscopy on ESO's Very large Telescope (VLT) in the near future. The meeting will be held in May 1998, about one year after science observations started with NICMOS, and about half a year before the Infrared Spectrometer and Array Camera (ISAAC) starts to operate on the VLT. Currently, it is expected that NICMOS will operate until the end of 1998.

  1. Intelligent screening of electrofusion-polyethylene joints based on a thermal NDT method

    NASA Astrophysics Data System (ADS)

    Doaei, Marjan; Tavallali, M. Sadegh

    2018-05-01

    The combinations of infrared thermal images and artificial intelligence methods have opened new avenues for pushing the boundaries of available testing methods. Hence, in the current study, a novel thermal non-destructive testing method for polyethylene electrofusion joints was combined with k-means clustering algorithms as an intelligent screening tool. The experiments focused on ovality of pipes in the coupler, as well as misalignment of pipes-couplers in 25 mm diameter joints. The temperature responses of each joint to an internal heat pulse were recorded by an IR thermal camera, and further processed to identify the faulty joints. The results represented clustering accuracy of 92%, as well as more than 90% abnormality detection capabilities.

  2. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  3. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    PubMed

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  4. Digital camera with apparatus for authentication of images produced from an image file

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1993-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.

  5. Plenoptic camera image simulation for reconstruction algorithm verification

    NASA Astrophysics Data System (ADS)

    Schwiegerling, Jim

    2014-09-01

    Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. Two distinct camera forms have been proposed in the literature. The first has the camera image focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The second plenoptic form has the lenslet array relaying the image formed by the camera lens to the sensor. We have developed a raytracing package that can simulate images formed by a generalized version of the plenoptic camera. Several rays from each sensor pixel are traced backwards through the system to define a cone of rays emanating from the entrance pupil of the camera lens. Objects that lie within this cone are integrated to lead to a color and exposure level for that pixel. To speed processing three-dimensional objects are approximated as a series of planes at different depths. Repeating this process for each pixel in the sensor leads to a simulated plenoptic image on which different reconstruction algorithms can be tested.

  6. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    PubMed Central

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  7. Direct fusion of geostationary meteorological satellite visible and infrared images based on thermal physical properties.

    PubMed

    Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing

    2015-01-05

    This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.

  8. Direct Fusion of Geostationary Meteorological Satellite Visible and Infrared Images Based on Thermal Physical Properties

    PubMed Central

    Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing

    2015-01-01

    This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749

  9. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    PubMed

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  10. An evolution of image source camera attribution approaches.

    PubMed

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics researchers, are also critically analysed and further categorised into four different classes, namely, optical aberrations based, sensor camera fingerprints based, processing statistics based and processing regularities based, to present a classification. Furthermore, this paper aims to investigate the challenging problems, and the proposed strategies of such schemes based on the suggested taxonomy to plot an evolution of the source camera attribution approaches with respect to the subjective optimisation criteria over the last decade. The optimisation criteria were determined based on the strategies proposed to increase the detection accuracy, robustness and computational efficiency of source camera brand, model or device attribution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Composite video and graphics display for multiple camera viewing system in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1991-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  12. Composite video and graphics display for camera viewing systems in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1993-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  13. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  14. VizieR Online Data Catalog: Infrared morphology of HII regions (Topchieva+, 2017)

    NASA Astrophysics Data System (ADS)

    Topchieva, A. P.; Wiebe, D. S.; Kirsanova, M. S.; Krushinskii, V. V.

    2018-03-01

    The 20-cm New GPS survey (http://third.ucllnl.org/gps), created using the MAGPIS database of radio images of regions with Galactic coordinates |bGal|<0.8° and 5°

  15. Optical changes of dentin in the near-IR as a function of mineral content

    NASA Astrophysics Data System (ADS)

    Berg, Rhett A.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2017-02-01

    The optical properties of human dentin can change markedly due to aging, friction from opposing teeth, and acute trauma, resulting in the formation of transparent or sclerotic dentin with increased mineral density. The objective of this study was to determine the optical attenuation coefficient of human dentin tissues with different mineral densities in the near-infrared (NIR) spectral regions from 1300-2200 nm using NIR transillumination and optical coherence tomography (OCT). N=50 dentin samples of varying opacities were obtained by sectioning whole extracted teeth into 150 μm transverse sections at the cemento-enamel junction or the apical root. Transillumination images were acquired with a NIR camera and attenuation measurements were acquired at various NIR wavelengths using a NIR sensitive photodiode. Samples were imaged with transverse microradiography (gold standard) in order to determine the mineral density of each sample.

  16. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.

  17. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  18. Viking Lander 2 Anniversary

    NASA Image and Video Library

    2002-12-13

    This portion of NASA Mars Odyssey image covers NASA Viking 2 landing site shown with the X. The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. http://photojournal.jpl.nasa.gov/catalog/PIA04023

  19. Digital Camera with Apparatus for Authentication of Images Produced from an Image File

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1996-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.

  20. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

Top