Science.gov

Sample records for ir thermography methods

  1. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  2. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  3. IR-thermography for Quality Prediction in Selective Laser Deburring

    NASA Astrophysics Data System (ADS)

    Möller, Mauritz; Conrad, Christian; Haimerl, Walter; Emmelmann, Claus

    Selective Laser Deburring (SLD) is an innovative edge-refinement process being developed at the Laser Zentrum Nord (LZN) in Hamburg. It offers a wear-free processing of defined radii and bevels at the edges as well as the possibility to deburr several materials with the same laser source. Sheet metal parts of various applications need to be post-processed to remove sharp edges and burrs remaining from the initial production process. Thus, SLD will provide an extended degree of automation for the next generation of manufacturing facilities. This paper investigates the dependence between the deburring result and the temperature field in- and post-process. In order to achieve this, the surface temperature near to the deburred edge is monitored with IR-thermography. Different strategies are discussed for the approach using the IR-information as a quality assurance. Additional experiments are performed to rate the accuracy of the quality prediction method in different deburring applications.

  4. Heat transfer investigation in pipe by IR thermography

    NASA Astrophysics Data System (ADS)

    Koppel, Tiit; Ainola, Leo; Ekholm, Ari; Lahdeniemi, Matti

    2000-03-01

    The IR-thermography has proved to be a useful contactless instrument in fluid flow research, especially for investigation of heat transfer processes. Series of experimental measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology in Pori, Finland, with this aim.

  5. IR Thermography of International Space Station Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia

    2010-01-01

    Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.

  6. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  7. Application of IR thermography for unsteady fluid-flow research

    NASA Astrophysics Data System (ADS)

    Koppel, Tiit; Lahdeniemi, Matti; Ekholm, Ari

    1998-03-01

    In the recent years the IR thermography technique has been sued successfully as a new contactless instrument for gas and fluid flow research in pipes and on the surface of a flat plate. It is well known that most energy changes in the flow take place in the boundary layer. This is in turn important for the intensity of convective heat transfer in pipe flows and enables to measure processes connected with energy changes in the flow from outside the pipe. Series of measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology Pori, Finland. The theoretical criterion describing the transition from laminar to turbulent regime is found depending on the critical thickness of the boundary layer of suddenly accelerated flow. At the moment of transition of the 'plug' type flow into turbulent flow, the velocities in the wall region diminish and this can be detected using the IR thermography from the wall temperature changes. the experimental results of the mean velocity development and transition criteria correspond to the theoretical calculations. The changes of the internal structure of the flow affect the convective heat transfer and this in turn influences the pipe wall temperature. IR thermography measures pipe wall temperature changes and consequently we can detect flow structure changes in the boundary layer in the accelerated and decelerated phase of the pulsating pipe flow.

  8. Inspecting thermal barrier coatings by IR thermography

    NASA Astrophysics Data System (ADS)

    Bison, Paolo G.; Marinetti, Sergio; Grinzato, Ermanno G.; Vavilov, Vladimir P.; Cernuschi, Federico; Robba, Daniele

    2003-04-01

    As far as power generation is concerned, coating technologies find the main and more advanced applications. Nowadays, superalloys available for manufacturing hot path components in gas turbine like combustion liners, blades and vanes can not sustain temperatures up to 1100°C. In order to guarantee a significative temperature drop ceramic thermal barrier coatings are deposited onto the metallic core. The thickness of thermal barrier coatings (TBC) ranges from a few hundreds microns up to 1 millimetre or more, depending on component and deposition technique (mainly Air Plasma Spray or Electron Beam Physical Vapour Deposition). The structural integrity of both the substrate and the coating and their mutual adhesion is a key point because any loss of the protective layer exposes the bulk material to an extremely aggressive environment in terms of oxidation and temperature. Therefore, TBC must be tested for detecting of defects during both quality control and periodic in-service inspections. Because of the key role played by thickness and low thermal diffusivity of TBC in the decreasing of the substrate material temperature, both delaminations and thickness variation must be detected and classified. Pulsed Thermography has been successfully applied to this application field. Nevertheless, the procedure gives ambiguous results when thickness or thermal properties change in a continuous way within the thermal barrier. In this paper, a specific study on the detection performances of NDE techniques is presented, even when a non-uniform TBC thickness is superimposed to the disbonding defect. Tests performed at workshop on real and specifically manufactured components are reported. Dedicated processing algorithms improving the test reliability and effectiveness are presented as well. Tests on real components on the field are also reported.

  9. IR thermography for dynamic detection of laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven

    2016-05-01

    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  10. Thermography.

    ERIC Educational Resources Information Center

    Cage, Bob N.

    1984-01-01

    Thermography, a diagnostic tool that combines photography and infrared sensing, permits direct measurement of apparent surface temperatures. Building energy losses can be detected and correction measures planned. Criteria for the use of thermography are provided. (MLF)

  11. High-resolution survey of buildings by lock-in IR thermography

    NASA Astrophysics Data System (ADS)

    Bortolin, A.; Cadelano, G.; Ferrarini, G.; Bison, P.; Peron, F.; Maldague, X.

    2013-05-01

    Applications of Infrared Thermography in buildings surveys are not limited to the identification of the temperature distribution and heat losses on building envelopes. As it is well known from NDT testing in industrial applications, active IR thermographic methods such as heating-up/cooling-down or lock-in thermography improve the results in many investigations. In civil engineering these techniques have not been used widely. Mostly, thermography is used in a quasistatic manner. This paper illustrates a new approach to achieve, by the lock-in technique, an in depth view of the structure of the wall evidencing the presence of buried elements, interfaces and cracks. The idea is to take advantage of the periodic heating and cooling of earth surface due to the alternating of day and night. The corresponding thermal wave has a period equal to 24 hours that can probe the walls of buildings with a penetration depth of the order of some centimeters. The periodic temperature signal is analysed to extract amplitude and phase. It is expected that the phase image gives the indication of inhomogeneity buried in the wall structure. As a case study, the exterior surface of Palazzo Ducale in Venice is analysed and illustrated. In addition to IR images, visible electromagnetic band is considered to evaluate the strength of the solar radiation and the geometrical distortion. Indeed, the periodicity due to the Earth rotation is only approximately of 24 hours. The passing clouds or the possibility of rainy days can superimpose other heating or cooling frequencies to the main one. The Fourier analysis of the impinging radiation on the wall is performed. The façade of Palazzo Ducale is tiled with stone of two different colours and types. A final attempt to automatically classify the stone tiles in the visible and infrared images is conducted.

  12. Method of thermography in diagnosing cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Lazyuk, D. G.; Sidorenko, I. V.; Krushevskaya, T. V.

    1996-05-01

    We investigated the possibility of using infrared thermography (IT) in diagnosing the commonest cardiovascular diseases: ischemic heart disease (IHD) and hypertensive disease (HD). We show that the IT method allows one to evaluate the condition of peripheral blood flow, but the results of examination depend greatly on the presence of accompanying diseases (osteochondrosis, varicosis). The IT method is not specific enough to evaluate the functional state of a myocardium.

  13. IR thermography for the assessment of the thermal conductivity of thermoelectric modules at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Boldrini, S.; Ferrario, A.; Bison, P.; Miozzo, A.; Montagner, F.; Fabrizio, M.

    2016-05-01

    The correct measurement of the performances of thermoelectric (TE) modules for energy conversion is a mandatory task both for laboratory research and for industries engaged in TE modules development or in their integration into thermoelectric generators. A testing device oriented to the maximum flexibility, based on the heat flow meter method at the cold side of the module has been developed. The system is conceived to test TE modules (single or in cascade) with a footprint up to 60x60 mm2, from room temperature up to intermediate temperature. Modules can be tested under vacuum or inert atmosphere. Specifically, the flow meter is made of a block of material, with known thermal conductivity, in contact with the cold side of the thermoelectric module. The heat flow is finally determined by measuring the temperature profile along the heat flow path and that is obtained by IR thermography. IR thermography is also utilized to evaluate the contact resistance between the active thermoelectric elements made of ceramic materials and the ceramic layer working as heat diffuser and mechanical support. Some finite element thermal analyses of the system performed for its design are presented.

  14. Robust, automated processing of IR thermography for quantitative boundary-layer transition measurements

    NASA Astrophysics Data System (ADS)

    Crawford, Brian K.; Duncan, Glen T.; West, David E.; Saric, William S.

    2015-07-01

    A technique for automated, quantitative, global boundary-layer transition detection using IR thermography is developed. Transition data are rigorously mapped onto model coordinates in an automated fashion on moving targets. Statistical analysis of transition data that is robust to environmental contamination is presented.

  15. Validation of quantitative IR thermography for estimating the U-value by a hot box apparatus

    NASA Astrophysics Data System (ADS)

    Nardi, I.; Paoletti, D.; Ambrosini, D.; de Rubeis, T.; Sfarra, S.

    2015-11-01

    Energy saving plays a key role in the reduction of energy consumption and carbon emission, and therefore it is essential for reaching the goal of the 20-20-2020 policy. In particular, buildings are responsible of about 30% of the total amount of Europe energy consumption; the increase of their energy efficiency with the reduction of the thermal transmittance of the envelope is a point of strength with the actions and strategies of the policy makers. Currently, the study of energy performance of buildings is based on international standards, in particular the Italian one allows to calculate the U-value according the ISO 6946 or by in-situ measurements, using a heat flow meter (HFM), following recommendations provided in ISO 9869. In the last few years, a new technique, based on Infrared Thermography (IRT) (also referred to as Infrared Thermovision Technique - ITT), has been proposed for in situ determination of the thermal transmittance of opaque building elements. Some case studies have been reported. This method has already been applied on existing buildings, providing reliable results, but also revealing some weaknesses. In order to overcome such weak points and to assess a systematic procedure for the application of IRT, a validation of the method has been performed in a monitored environment. Infrared camera, the heat flow meter sensors and a nearby meteorological station have been used for thermal transmittance measurement. Comparison between the U-values measured in a hot box with IRT as well as values calculated following international standards and HFM results has been effected. Results give a good description of the advantages, as well as of the open problems, of IR Thermography for estimating the U-value. Further studies will help to refine the technique, and to identify the best operative conditions.

  16. The Effects of Heating Methods on Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Mercer, A. Scott; Klinkhachorn, P.; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Infrared (IR) Thermography is a good way of detecting air filled defects in FRP decks. When heat is applied to the deck surface, the material over the air void heats up faster and becomes hotter than the surrounding area and an IR camera can distinguish this defective area from a sound area in the deck based on surface temperature measurements. Since this technique requires application of heat in order to produce results, it seems only logical that one should research the effects of different heating types on the defect analysis. For this study, various heat sources; such as the sun, a 5000 BTU quartz electric heater, a 9000 BTU propane convection heater, and a 35000 BTU forced air propane heater, were used to heat up an FRP deck specimen with built-in defects for IR analysis. Different heating times were used to determine the effects on the accuracy and the total elapsed time involved in seeing a defect in the resultant IR images. A few methods, such as CO2 cooling, for decreasing the time it takes to see the defect in the image were also explored.

  17. Non-Destructive Evaluation of Slot-Die-Coated Lithium Secondary Battery Electrodes by In-Line Laser Caliper and IR Thermography Methods-Journal Cover Page

    SciTech Connect

    Mohanty, Debasish; Li, Jianlin; Born, Rachael; Maxey, L Curt; Dinwiddie, Ralph Barton; Daniel, Claus; Wood III, David L

    2014-01-01

    Note: This is a cover page for the 'Analytical Methods' journal, which was requested by the journal editor for consideration. The article has already been published and the PTS publication ID is 44000. The acknowledgements are same as mentioned in the PTS publication ID 44000.

  18. Treated-skin temperature regularities revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2001-03-01

    Experimental results disclosing temperature change of human skin affected by various unnatural factors are presented in detail. Thermograms are obtained with the IR thermograph containing high performance InAs CID FPA-based photosensitive unit. Using logarithmic scale of time, evolution of skin temperature after moistening, spirit sponging, and olive oil lubrication is investigated. A comparative analysis of the resulting effects of treatments including alpha-hydroxy acid, cosmetic regenerating cream, spirit, and water, is made. Quantitative distinctions between skin regions characterized by ordinary, and depleted blood supply, including areas located directly above surface main vessels, are revealed. Strongly logarithmic time- dependence of a skin temperature is discovered when the skin is cooled down after its preliminary heating with a hot wax. Non-monotonic change of a local temperature during electrically active procedure is described. Low level light therapy equipment is also applied. A special role of the temperature of nose is discussed.

  19. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  20. Flame attenuation effects on surface temperature measurements using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap; Tabinowski, Robert

    2016-05-01

    Long-wave infrared (LWIR) cameras provide the unique ability to see through smoke and condensed water vapor. However, soot generated inside the flame does attenuate the LWIR signal. This work focuses on gas flame attenuation effects of LWIR signals originating from a blackbody. The experimental setup consists of time averaged, laboratory-scale turbulent diffusion flames with heat release rates set at 5 kW, 10 kW, and 15 kW. Propylene and ethylene were used as fuel, providing two different soot yields. A 30 cm by 30 cm blackbody was used with maximum surface temperatures set to 600°C. Both instantaneous and time-averaged blackbody temperature profiles through the flame were measured using a LWIR microbolometer camera (7.5-14 μm). Flame intermittency was quantified by color segmenting visible images. The experiments showed that low blackbody temperatures were significantly affected by the presence of the flame. At 600°C, the effect of flame absorption matches the emitted radiation from the flame itself. Using data obtained at various blackbody temperatures, the flame transmittance was obtained using a Generalized Reduced Gradient optimization method. The transmittance was lower for propylene flames compared to ethylene flames. Ethylene flames were shown to have higher temperatures. Using the values for flame radiance and transmissivity, the total averaged radiance of the flame plus the blackbody could be reproduced with 1% accuracy.

  1. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  2. Control of CFRP strengthening applied to civil structures by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Trentin, R.; Bison, P. G.; Marinetti, S.

    2007-04-01

    NdT methods are highly promoted by an increasing demand of checking the effectiveness of strengthening and repair intervention on structural components, both in buildings and bridges. IR thermography exhibits excellent performances, particularly when innovative materials as CFRP (Carbon Fiber Reinforced Polymer) are used. Non destructive control by the use of thermographic analysis is used to detect adhesion defects or imperfections, which can lead the component to become brittle and collapsing unexpectedly. This paper shows as the geometrical evaluation of delaminated areas is carried out. Laboratory tests both on reduced or full scale are illustrated in order to set up and validate the proposed procedure. An experimental study on samples bonded with FRP and containing defects appropriately applied at the interface, will be presented. A series of beams (10 m long) have been tested under bending loads and strengthened conditions, by placing a pre-impregnated thin carbon (CFRP) laminate at the intrados. Different reinforcement configurations have been adopted in the beams (ordinary steel reinforcement and with addition of pre-stressed strands), using mechanical devices for the anchorage of the supplementary pre-tension of the strips. At local level, the simulation of possible lack of bonding during loading or intrinsic defects and imperfections has been contextually analysed on specifically dimensioned specimens. Different algorithms have been applied at the evaluation stage in order to estimate the defect size and location. Particularly, the extension of the delamination is estimate with a simple and robust algorithm. In facts, standards set the limit for acceptable defects, both in terms of number and size.

  3. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  4. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  5. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include various graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Keviar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  6. Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session

    NASA Astrophysics Data System (ADS)

    Piquemal, M.

    2013-04-01

    Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.

  7. Early events in plant hypersensitive response leaves revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Boccara, Martine; Boue, Christine; De Paepe, Rosine; Boccara, Albert C.

    2001-10-01

    Infrared thermography is used to reveal the establishment of Erwinia amylovora harpin-induced hypersensitive response (HR) in Nicotiana sylvestris leaves. We observed a decrease in temperature (1-2 degree(s)C) in the harpin infiltrated zone, correlated with an increase in stomatal opening, strongly suggesting that the temperature decrease is due to higher transpiration rate. IRT experiments were conducted in a laboratory environment and could be widely applied for genotype screening and monitoring drug effects.

  8. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  9. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  10. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  11. Measurement limits in flash thermography

    NASA Astrophysics Data System (ADS)

    Shepard, Steven M.; Lhota, James R.; Ahmed, Tasdiq

    2009-05-01

    Although active thermography has traditionally been regarded as a qualitative NDT method, its potential for quantitative measurement of thermophysical properties including wall thickness, flaw size and depth, thermal diffusivity or effusivity has been the subject of numerous investigations. Enabled by improvements in IR camera technology and fast, abundant and inexpensive computing power for advanced signal processing, measurement results have been reported using a variety of excitation and signal processing schemes. Results are often presented as a correlation between thermography data and nominal properties or independent measurements by another "validated" method. However, given the diffusion mechanism that underlies thermography, and the quantization and sampling conditions implicit in using an IR camera as a temperature sensor, there are definite limits to what can be achieved in a thermography measurement. While many benefits can be achieved with improved instrumentation, efficient energy insertion or optimized signal processing, ultimately, the limits imposed by diffusion and instrumentation take precedence, and cannot be circumvented. In this paper, the effects of camera frame rate and sensitivity on measurement of the thickness of a slab are examined, using basic 1-dimensional diffusion approximations.

  12. Experimental Heat Transfer Study of Endwall in a Linear Cascade with IR Thermography

    NASA Astrophysics Data System (ADS)

    Rojo, Borja; Jimenez, Carlos; Chernoray, Valery

    2014-03-01

    This abstract presents an endwall heat transfer experimental data of air flow going through outlet guide vanes (OGVs) situated in a low speed linear cascade. The measurement technique for this experiment was infrared thermography. In order to calculate the heat transfer coefficient (HTC) on the endwall, it has been used an instrumented window with a controlled constant temperature in one side of a 5 millimeter Plexiglass in order to generate high temperature gradients and, therefore, by measuring the surface temperature one the other side of the Plexiglass, it is calculated the HTC. Due to the fact that Plexiglass material has not good optical properties at infrared spectrum, it has been used a thin layer of black paint (10-12 μm) which has high emissivity (0.973) in the range of temperature that we are working. The Reynolds number for this experiment is 300000 in on and off-design configuration of the OGVs (on-design 25° and off-design cases are 40° and -25° incident angle). Furthermore, the on-design case is run at two different Reynolds number, 300000 and 450000. During this experiments it can be seen how changing the inlet angle to the OGVs produces significant differences on the heat transfer along the endwall. The main objective for this investigation is to study the heat transfer along the endwall of a linear cascade so that it would be a well-defined test case for CFD validation.

  13. Temperature measurements on solid surfaces in rack-storage fires using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, J.; Ren, N.; Chaos, M.

    2015-05-01

    The development of fire modeling tools capable of predicting large-scale fire phenomena is of great value to the fire science community. To this end, FM Global has developed an open-source CFD fire simulation code, FireFOAM. The accuracy of this code relies fundamentally on high-quality experimental validation data. However, at larger scales, detailed measurements of local quantities (e.g., surface temperatures) needed for model validation are difficult to obtain. Often, the information obtained from large-scale fire tests is limited to the global heat release rates (HRR) or point temperature or heat flux measurements from embedded thermocouples or heat flux gauges, respectively. The present study addresses this limitation by introducing IR thermographic measurements in a three- and a five-tier-high rack storage scenario. IR temperatures are compared against modeled results. The tested and modeled cases represent realistic industrial warehouse fire scenarios. The rack-stored commodity consisted of corrugated paperboard boxes wrapped around a steel cubic liners, placed on top of a hardwood pallet. The global heat release rate was measured using a 20- MW fire products collector located inside FM Global's Fire Technology Laboratory. An in-house calibrated microbolometer IR camera was used to obtain two-dimensional temperature measurements on the fuel surfaces and on the surfaces inside the flue spaces. Maximum temperatures up to 1200 K were observed on the external surfaces of the test array. Inside the flue spaces between pallet loads, temperatures up to 1400 K were measured. The modeled fire spread results match well fire spread shown in the IR thermographic images. The peak modeled surface temperatures obtained inside some of the horizontal flue spaces were ~1400K, which agreed well with the peak temperatures seen by the IR camera. The effect of the flames present between the surfaces of interest and the IR camera only contribute to about 50 K increase in measured

  14. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    acquisition scenario the local storage management and the network management through SFTP or SOAP for the OGC frame. The data side only need an XML configuration file and if a configuration change occurs in time the system is automatically restarted with the new value. Cloud2IR has been deployed on field since several Monthat the SenseCity outdoor test bed in Marne La Vallée (France)[4]. The next step will be the full standardisation of the system and possibly the full separation between the sensor side and the data side which can be seen at term as an external framework. References: [1] A Crinière, J Dumoulin, L Mevel, G Andrade-Barosso, M Simonin. The Cloud2SM Project.European Geosciences Union General Assembly (EGU2015), Apr 2015, Vienne, Austria. 2015. [2] J Dumoulin, A Criniere, and R Averty. The detection and thermal characterization of the inner structure of the 'musmeci' bridge deck by infrared thermography monitoring. Journal Of Geophysics And Engineering doi:10.1088/1742-2132/10/6/064003, Vol 10, 2013. [3] J Dumoulin, R Averty. Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring, in Proc of 11 th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [4] F Derkx, B Lebental, T Bourouina, Frédéric B, C Cojocaru, and al..The Sense-City project.XVIIIth Symposium on Vibrations, Shocks and Noise, Jul 2012, France. 9p, 2012.

  15. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  16. Broadband Sub-terahertz Camera Based on Photothermal Conversion and IR Thermography

    NASA Astrophysics Data System (ADS)

    Romano, M.; Chulkov, A.; Sommier, A.; Balageas, D.; Vavilov, V.; Batsale, J. C.; Pradere, C.

    2016-05-01

    This paper describes a fast sub-terahertz (THz) camera that is based on the use of a quantum infrared camera coupled with a photothermal converter, called a THz-to-Thermal Converter (TTC), thus allowing fast image acquisition. The performance of the experimental setup is presented and discussed, with an emphasis on the advantages of the proposed method for decreasing noise in raw data and increasing the image acquisition rate. A detectivity of 160 pW Hz-0.5 per pixel has been achieved, and some examples of the practical implementation of sub-THz imaging are given.

  17. Clinical study on thermography, as modern investigation method for Candida-associated denture stomatitis.

    PubMed

    Iosif, Laura; Preoteasa, Cristina Teodora; Murariu-Măgureanu, Cătălina; Preoteasa, Elena

    2016-01-01

    Candida-associated denture stomatitis is an infectious inflammatory condition of the oral mucosa, with frequent recurrences. The aim of this study was to assess the use of infrared thermography as investigation method for Candida-associated denture stomatitis (as inflammatory disorder of the maxillary denture bearing area), by comparing disease and non-disease groups. An observational study was conducted on maxillary edentulous patients treated by acrylic dentures, with and without Candida-associated denture stomatitis. Diagnostic test methods used were clinical examination for denture stomatitis and conventional microbiological culture method for oral candidiasis. Thermography analysis of the maxillary denture bearing area was made using the ThermaCAM PM350 infrared camera (Inframetrics, Flir Systems) and ThermaGram Pro 95 software, data being acquired by usage of standard protocol of thermographic registrations. The sample included 52 patients, 21 with and 31 without Candida-associated denture stomatitis. The temperature of the maxillary mucosa corresponding to the denture bearing area was found to be statistically significantly higher in Candida-associated denture stomatitis (mean 36.20°C), compared to healthy oral mucosa (mean 34.85°C). The thermal threshold value of 35.44°C was identified as best differentiating a pathological from normal state of the maxillary mucosa corresponding to the denture bearing area. In conclusion, infrared thermography, a rapid non-invasive investigation method, has the premises to bring valuable data in inflammatory disorders of the maxillary denture bearing area, as Candida-associated denture stomatitis that may be used for screening, diagnostic or monitoring purposes.

  18. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the

  19. Buying Thermography

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.

    1981-01-01

    The cost of thermographic information obtained by contracting for a service is compared to that of buying equipment and doing the work in-house. A breakeven analysis method is used to find the number of days per year an instrument must be used to justify buying it. Life-cycle costing techniques are used to find the equivalent annual cost of various classes of thermographic instruments. Results indicate that a full-time person earning 20,000 annually must use a 30,000 instrument at least 73 days per year if thermography can otherwise be contracted for $675 per day. By devoting a person to thermography part-time, the number of inspection days for this case can be reduced to about 28. Further in-house advantage can be gained by considering investment tax credits, salvage value and, to some extent, accelerated depreciation. Techniques for finding the breakeven number of inspection days for other costs are developed. A nomogram is included for rapid comparisons.

  20. IrLaW an OGC compliant infrared thermography measurement system developed on mini PC with real time computing capabilities for long term monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Averty, R.

    2012-04-01

    One of the objectives of ISTIMES project is to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, uncooled infrared camera is a promising technique due to its dissemination potential according to its relative low cost on the market. Infrared thermography, when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey), requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The system studied and developed uses a fast Ethernet camera FLIR A320 [1] coupled with a VAISALA WXT520 [2] weather station and a light GPS unit [3] for positioning and dating. It can be used with other Ethernet infrared cameras (i.e. visible ones) but requires to be able to access measured data at raw level. In the present study, it has been made possible thanks to a specific agreement signed with FLIR Company. The prototype system studied and developed is implemented on low cost small computer that integrates a GPU card to allow real time parallel computing [4] of simplified radiometric [5] heat balance using information measured with the weather station. An HMI was developed under Linux using OpenSource and complementary pieces of software developed at IFSTTAR. This new HMI called "IrLaW" has various functionalities that let it compliant to be use in

  1. Use of infra-red thermography for automotive climate control analysis

    SciTech Connect

    Burch, S.D.; Hassani, V.; Penney, T.R.

    1994-03-01

    In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

  2. Material Evaluation by Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Reusser, Ricky S.

    2016-07-01

    Infrared thermography uses the temperature-imaging capability of modern thermal cameras to characterize materials and detect flaws. An energy source—whether a pulse of light from a laser or flash lamp, an induction coil, or some other source—induces heat flow in a material, and the resulting temperature patterns are imaged with the thermal camera. In flash thermography, the most widely used form of quantitative thermography, a pulse of light is used as the energy source, and then the surface cooldown is imaged with the thermal camera. Calculations based on an elementary theory of 1D heat conduction can determine thickness (or, equivalently, thermal diffusivity), and nonuniformity in the cooldown will identify defects. This article reviews the methods, approaches, and models of thermography. It focuses on illustrating and identifying the materials, thicknesses, and flaw conditions under which thermography is an effective material characterization technique.

  3. Airborne thermography for condition monitoring of a public baths building

    NASA Astrophysics Data System (ADS)

    Mattsson, Mats; Hellman, Erik; Ljungberg, Sven-Ake

    2001-03-01

    Airborne and ground-based thermography surveys have been performed in order to detect moisture and energy related problems in the construction of a public swimming bath building. This paper describes the information potential and the advantages and limitations using a standard IR-camera and traditional inspection methods to gather information for retrofit priorities. The damage conditions indicated in the thermal images are confirmed by field inspections and photographic documentation.

  4. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Tahiliani, Kumudni; Pandya, Santosh P.; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J.

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized.

  5. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages. PMID:25098130

  6. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria

    2010-05-01

    An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of

  7. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak.

    PubMed

    Kang, C S; Lee, H H; Oh, S; Lee, S G; Wi, H M; Kim, Y S; Kim, H S

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography. PMID:27587124

  8. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak.

    PubMed

    Kang, C S; Lee, H H; Oh, S; Lee, S G; Wi, H M; Kim, Y S; Kim, H S

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography.

  9. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kang, C. S.; Lee, H. H.; Oh, S.; Lee, S. G.; Wi, H. M.; Kim, Y. S.; Kim, H. S.

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography.

  10. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  11. Evaluation Method of Gas Turbine Blades Covering Integrity by IR Camera

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Jo; Choi, Choul-Jun; Kim, Jae-Yeol

    Key parts of the main equipment in a gas turbine may likely be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc, in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take a long time and also require high cost. In this study, defect diagnostics were tested on the coating layer of an industrial gas turbine blade, using an infrared thermography camera. Since the infrared thermography method can check a temperature distribution by means of non-contact on a wide range of areas, it can advantageously save expense and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this paper includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing to analyze defects on the coating layer of the gas turbine blade.

  12. Research on lock-in thermography for aerospace materials of nondestructive test based on image sequence processing

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Dai, Jingmin; Wang, Yang

    2008-11-01

    IR Lock in thermography is an active thermography technology based on thermal wave signal processing, especially, it has many advantages for nondestructive test of composite materials and compound structure application and has been applied on aerospace, automotive, mechanics and electric fields. In lock in thermography, given sufficient time for periodic heating, the surface temperature will evolve periodically in a sinusoidal pattern form the transient state to the steady state. In this paper, the principle of lock in thermography is introduced and the heat transferring process is analyzed by the sinusoidal variation heating flow transferred in materials by means of FEM method. In experiment, the modulating optical stimulation is applied to sample, and image sequences are collected by Jade MWIR 550 FPA IR camera. The digital filter algorithm which is Savitzky-Golay digital smoothness filters is used to remove the effects of high frequency noise. A phase image at the frequency of periodic heating can be calculated using a Fourier transform of the periodic heating frequency in transient state for defect detection. The IR lock in thermography processing software is developed by using of visual C++ programmed based image sequence collected. The experimental results show that the developed system reached up to high level of conventional steady state Lock in method.

  13. High speed heterodyne infrared thermography applied to thermal diffusivity identification.

    PubMed

    Pradere, C; Clerjaud, L; Batsale, J C; Dilhaire, S

    2011-05-01

    We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency f(acq) (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 μm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

  14. Thermography pattern analysis and separation

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Bai, Libing; Woo, W. L.; Tian, Guiyun

    2014-06-01

    Analysis of thermography spatial-transient patterns has considerable potential to enable automatic identification and quantification of defects in non-destructive testing and evaluation. This Letter proposes a non-negative pattern separation model for eddy current pulsed thermography to automatically extract important spatial and time patterns according to the transient thermal sequences without any pre-training or prior knowledge. In particular, the method is scale-invariant, such that large differences in surface emissivity, hot spots, and cool areas with dynamic range of thermal contrast can be extracted. Finally, an artificial slot in a steel sample with shining, black strip on the surface is tested to validate the proposed method.

  15. INFRARED THERMOGRAPHY OF CUTANEOUS MELANOMA METASTASES

    PubMed Central

    Shada, Amber L.; Dengel, Lynn T.; Petroni, Gina R.; Smolkin, Mark E.; Acton, Scott; Slingluff, Craig L.

    2014-01-01

    Background Differentiating melanoma metastasis from benign cutaneous lesions currently requires biopsy or costly imaging, such as positron emission tomography scans. Melanoma metastases have been observed to be subjectively warmer than similarly appearing benign lesions. We hypothesized that infrared (IR) thermography would be sensitive and specific in differentiating palpable melanoma metastases from benign lesions. Materials and methods Seventy-four patients (36 females and 38 males) had 251 palpable lesions imaged for this pilot study. Diagnosis was determined using pathologic confirmation or clinical diagnosis. Lesions were divided into size strata for analysis: 0–5, >5–15, >15–30, and >30 mm. Images were scored on a scale from −1 (colder than the surrounding tissue) to +3 (significantly hotter than the surrounding tissue). Sensitivity and specificity were calculated for each stratum. Logistical challenges were scored. Results IR imaging was able to determine the malignancy of small (0–5 mm) lesions with a sensitivity of 39% and specificity of 100%. For lesions >5–15 mm, sensitivity was 58% and specificity 98%. For lesions >15–30 mm, sensitivity was 95% and specificity 100%, and for lesions >30 mm, sensitivity was 78% and specificity 89%. The positive predictive value was 88%–100% across all strata, and the negative predictive value was 95% for >15–30 mm lesions and 80% for >30 mm lesions. Conclusions Malignant lesions >15 mm were differentiated from benign lesions with excellent sensitivity and specificity. IR imaging was well tolerated and feasible in a clinic setting. This pilot study shows promise in the use of thermography for the diagnosis of malignant melanoma with further potential as a noninvasive tool to follow tumor responses to systemic therapies. PMID:23043862

  16. IR Spot Weld Inspect

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, datamore » analysis, weld quality database generation and weld quality prediction, etc.« less

  17. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  18. Using infrared thermography for the creation of a window surface temperature database to validate computer heat transfer models

    SciTech Connect

    Beck, F.A.; Griffith, B.T.; Tuerler, D.; Arasteh, D.

    1995-04-01

    IR thermography is well suited for resolving small differences in the thermal performance of highly insulating window systems. Infrared thermographic measurements made in conjunction with reference emitter techniques in a controlled and characterized laboratory setting can have an absolute accuracy of {plus_minus}0.5{degree}C. Quantitative infrared thermography requires that a number of sources of error related to measurement accuracy and test environmental conditions be quantified and minimized to the extent possible. Laboratory-based infrared thermography can be used to generate window surface temperature profile databases which can be used to direct the development of 2-D and 3-D finite element and finite difference method fenestration heat transfer simulation codes, identify their strengths and weaknesses, set research priorities, and validate finished modeling tools. Development of such a database is under way at Lawrence Berkeley Laboratory, and will be made available for public use.

  19. Thermal detectivity enhancement of visible and near infrared thermography by using super-resolution algorithm: Possibility to generalize the method to other domains

    NASA Astrophysics Data System (ADS)

    Teyssieux, Damien; Euphrasie, Sebastien; Cretin, Bernard

    2009-03-01

    This paper reports on a method which allows a decrease in the minimal detectable temperature in visible and near infrared thermography. This original method permits an increase in the thermal sensitivity without loss of good spatial resolution. It is based on a binning operation and a super-resolution algorithm. The radiometric model and super-resolution method are presented. Measurements on two different samples show the enhancement of the thermal sensitivity and the capability of the method. Finally, the authors propose different ways in which the method can be applied.

  20. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  1. Benefits of using infrared thermography in utility substations

    NASA Astrophysics Data System (ADS)

    Kregg, Michael A.

    2004-04-01

    One-way for a utility to deliver a superior product is for it to use infrared thermography (IR) as a preventative maintenance (PM) tool in its generating stations and on its transmission / distribution (T&D) system. Thermography"s use in a PM program can help avoid emergency restorations, identify additional issues to be addressed during routine maintenance, minimize component deterioration which extends component life cycle, and verify work performed as well as identify bad work practices. All these benefits lead to reduced utility maintenance costs and parts stock, and increased system reliability, utility and customer revenues, and utility customer retention.

  2. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP

    PubMed Central

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-01-01

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given. PMID:27213403

  3. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP.

    PubMed

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-05-21

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given.

  4. High-frequency heterodyne lock-in thermography (HeLIT): A highly sensitive method to detect early caries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang

    2016-10-01

    In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.

  5. Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M. (Inventor)

    2015-01-01

    Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.

  6. Effects of moisture in infrared thermography of resin matrix composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Kantsios, A. G.; Mcerlean, E. A.; Babcock, R. A.; Buckingham, R. D.

    1978-01-01

    Several multiply graphite polyimide composite specimens were examined by real-time infrared thermography in order to study the effects of moisture on their thermograms. Heat was injected from one side and IR emission detected on the opposite side using AGA Thermovision System-680. No differences between the thermograms of dry and water containing specimens were detected for defect-free specimens. However, the presence of trapped water in defective specimens modified the thermographic contrast significantly. It is concluded that: (1) IR thermography can be used to detect moisture in defective composites, and (2) because of the possibility of moisture camouflaging defects, IR thermography for subsurface defect detection should be supplemented by other techniques - such as acoustical imaging and X-radiography.

  7. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  8. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  9. A new method of dynamic and static stall detection using infrared thermography

    NASA Astrophysics Data System (ADS)

    Gardner, A. D.; Wolf, C. C.; Raffel, M.

    2016-09-01

    A new method of detecting flow separation for static and pitching airfoils is described, with application to the generation of stall maps for helicopter rotors. An airfoil is heated using a lamp, and a high-speed infrared camera monitors the surface temperature. Subtracting consecutive images and performing a spatial standard deviation over a region of interest yields a single σ {DIT} value which is used to detect boundary layer separation on the airfoil. The data can be analysed to identify attached flow (low values of σ {DIT}) and separated flow (high values of σ {DIT}). Although appropriate filtering can significantly improve the signal-to-noise ratio, the method is robust regarding the exact method of analysis and the unfiltered data are sufficiently clear to be analysed without additional processing. For the test airfoil used, stall was measured up to a pitching frequency of 5 Hz, and signal-to-noise ratios indicate that it should be possible to measure stall for a pitching frequency of 20 Hz for a carbon-fibre surface with the thermal properties used.

  10. Methods and Systems for Characterization of an Anomaly Using Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M. (Inventor)

    2013-01-01

    A method for characterizing an anomaly in a material comprises (a) extracting contrast data; (b) measuring a contrast evolution; (c) filtering the contrast evolution; (d) measuring a peak amplitude of the contrast evolution; (d) determining a diameter and a depth of the anomaly, and (e) repeating the step of determining the diameter and the depth of the anomaly until a change in the estimate of the depth is less than a set value. The step of determining the diameter and the depth of the anomaly comprises estimating the depth using a diameter constant C.sub.D equal to one for the first iteration of determining the diameter and the depth; estimating the diameter; and comparing the estimate of the depth of the anomaly after each iteration of estimating to the prior estimate of the depth to calculate the change in the estimate of the depth of the anomaly.

  11. A method of selecting acupoints for acupuncture treatment of peripheral facial paralysis by thermography.

    PubMed

    Zhang, Dong

    2007-01-01

    The purpose of this study is to select acupoints for acupuncture treatment of peripheral facial paralysis according to the temperature on the face of the patient detected by thermogram, to determine an objective acupoint selection method for acupuncture treatment. In the test group of 60 cases of facial paralysis, the infrared thermogram on the face was detected at the first visit, and then acupuncture was given at the acupoints on the affected side with a temperature difference of over 0.5 degrees C from the healthy side for one therapeutic course, and in each successive course the acupoints were re-determined according to the results of thermogram examination and were administrated till the end of the total therapeutic course, and 120 cases of the control group were treated with acupuncture at conventionally selected acupoints. The results showed that the cured and basically cured rate was 90.0% (54 cases) in the test group and 77.5% (93 cases) in the control group with a significant difference between the two groups (p < 0.05); and the total sessions of acupuncture were less and the course of treatment was shorter in the test group than those in the control group (both p < 0.001). The utilization rate of the acupoints selected by facial thermogram in the test group was in order of Dicang (ST 4, 92.3%), Yingxiang (LI 20, 90.6%), Taiyang (EX-HN 5, 85.5%), Yangbai (GB 14, 76.6%), Quanliao (SI 18, 72.3%), and so on. In conclusion, acupuncture at the acupoints selected by thermogram for treatment of facial paralysis in the cured rate, the therapeutic course and sessions of acupuncture is significantly superior to acupuncture at the conventionally selected acupoints, and the thermogram-aided acupoint selection method is beneficial to objectivity and modernization of acupoint selection for acupuncture and moxibustion treatments.

  12. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves.

    PubMed

    Hoffmann, G; Schmidt, M; Ammon, C

    2016-09-01

    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.

  13. Infrared thermography on ocular surface temperature: A review

    NASA Astrophysics Data System (ADS)

    Tan, Jen-Hong; Ng, E. Y. K.; Rajendra Acharya, U.; Chee, C.

    2009-07-01

    Body temperature is a good indicator of human health. Thermal imaging system (thermography) is a non-invasive imaging procedure used to record the thermal patterns using Infrared (IR) camera. It provides visual and qualitative documentation of temperature changes in the vascular tissues, and is beginning to play an important role in the field of ophthalmology. This paper deals with the working principle, use and advantages of IR thermography in the field of ophthalmology. Different algorithms to acquire the ocular surface temperature (OST), that can be used for the diagnosis of ocular diseases are discussed.

  14. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  15. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  16. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect

    Chen, Jian; Zhang, Wei; Yu, Zhenzhen; Feng, Zhili

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  17. Thermography and k-means clustering methods for anti-reflective coating film inspection: scratch and bubble defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Wang, Hongjin; Hsieh, Sheng-Jen (Tony)

    2016-05-01

    Anti-reflective coating is widely used on telescopes, eyeglasses and screens to effectively enhance the transmission of light. However, the presence of defects such as bubbles or scratches lowers the usability and functionality of optical film. Optical cameras are often used for coating inspection, but their accuracy relies heavily on the illumination source, camera viewing angles and defect location. This paper describes an active thermography approach that can potentially overcome this issue. Eighteen scratch and bubble defects were located on AR film with dimensions ranging from 0.03mm to 4.4 mm. An infrared camera was used to capture thermal images of those defects over 65 seconds of heating. After the thermal images were acquired, time-domain analysis and space-domain analysis were conducted and k-means clustering methodology was used to highlight the defective area. Results suggest active thermography can be used to detect scratch defects with widths of 0.03mm to 4.40 mm and bubble defects with diameters ranging from 0.08 to 4 mm. For defects with dimensions larger than 0.4 mm, our algorithm can estimate the dimension with less than 15% bias. However, for defects with dimensions less than 0.4mm, the algorithm estimation error ranged from 68% to 900% due to camera resolution limitations. It should be noted that our algorithm can still distinguish a scratch defect with a width of less than one pixel. This study also suggests active thermography can detect scratch and bubble defects regardless of the location of the illumination source.

  18. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  19. Different imaging methods in the comparative assessment of vascular lesions: color-coded duplex sonography, laser Doppler perfusion imaging, and infrared thermography

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Philipp, Carsten M.; Weinberg, Lutz; Berlien, Hans-Peter

    1997-12-01

    Aim of the study was the comparative investigation of cutaneous and subcutaneous vascular lesions. By means of color coded duplex sonography (CCDS), laser doppler perfusion imaging (LDPI) and infrared thermography (IT) we examined hemangiomas, vascular malformations and portwine stains to get some evidence about depth, perfusion and vascularity. LDI is a helpful method to get an impression of the capillary part of vascular lesions and the course of superficial vessels. CCDS has disadvantages in the superficial perfusion's detection but connections to deeper vascularizations can be examined precisely, in some cases it is the only method for visualizing vascular malformations. IT gives additive hints on low blood flow areas or indicates arterial-venous-shunts. Only the combination of all imaging methods allows a complete assessment, not only for planning but also for controlling the laser treatment of vascular lesions.

  20. Observations of Ice Nucleation and Propagation in Plants Using Infrared Video Thermography.

    PubMed

    Wisniewski, M.; Lindow, S. E.; Ashworth, E. N.

    1997-02-01

    We evaluated the use of infrared (IR) video thermography to observe directly ice nucleation and propagation in plants. An imaging radiometer with an HgCdTe long-wave (8-12 [mu]m) detector was utilized to image the thermal response of plants during freezing. IR images were analyzed in real time and recorded on videotape. Information on the videotape was subsequently accessed and analyzed utilizing IR image analysis software. Freezing of water droplets as small as 0.5 [mu]L was clearly detectable with the radiometer. Additionally, a comparison of temperature tracking data collected by the radiometer with data collected with thermocouples showed close correspondence. Monitoring of an array of plant species under different freezing conditions revealed that ice nucleation and propagation are readily observable by thermal imaging. In many instances, the ice nucleation-active bacterium Pseudomonas syringae placed on test plants could be seen to initiate freezing of the whole plant. Apparent ice nucleation by intrinsic nucleators, despite the presence of ice nucleation-active bacteria, was also evident in some species. Floral bud tissues of peach (Prunus persica) could be seen to supercool below the temperature of stem tissues, and ice nucleation at the site of insertion of the thermocouple was frequently observed. Rates of propagation of ice in different tissues were also easily measured by thermal imaging. This study demonstrates that IR thermography is an excellent method for studying ice nucleation and propagation in plants.

  1. Observations of Ice Nucleation and Propagation in Plants Using Infrared Video Thermography.

    PubMed

    Wisniewski, M.; Lindow, S. E.; Ashworth, E. N.

    1997-02-01

    We evaluated the use of infrared (IR) video thermography to observe directly ice nucleation and propagation in plants. An imaging radiometer with an HgCdTe long-wave (8-12 [mu]m) detector was utilized to image the thermal response of plants during freezing. IR images were analyzed in real time and recorded on videotape. Information on the videotape was subsequently accessed and analyzed utilizing IR image analysis software. Freezing of water droplets as small as 0.5 [mu]L was clearly detectable with the radiometer. Additionally, a comparison of temperature tracking data collected by the radiometer with data collected with thermocouples showed close correspondence. Monitoring of an array of plant species under different freezing conditions revealed that ice nucleation and propagation are readily observable by thermal imaging. In many instances, the ice nucleation-active bacterium Pseudomonas syringae placed on test plants could be seen to initiate freezing of the whole plant. Apparent ice nucleation by intrinsic nucleators, despite the presence of ice nucleation-active bacteria, was also evident in some species. Floral bud tissues of peach (Prunus persica) could be seen to supercool below the temperature of stem tissues, and ice nucleation at the site of insertion of the thermocouple was frequently observed. Rates of propagation of ice in different tissues were also easily measured by thermal imaging. This study demonstrates that IR thermography is an excellent method for studying ice nucleation and propagation in plants. PMID:12223611

  2. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  3. Clinical applications of computerized thermography

    NASA Technical Reports Server (NTRS)

    Anbar, Michael

    1988-01-01

    Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.

  4. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  5. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  6. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  7. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  8. Using infrared thermography in order to compare laser and hybrid (laser+MIG) welding processes

    NASA Astrophysics Data System (ADS)

    Matteï, Simone; Grevey, Dominique; Mathieu, Alexandre; Kirchner, Laetitia

    2009-09-01

    In order to deepen the understanding of the differences between laser and laser-arc hybrid welding, comparisons were undertaken using thermography. The experiments were carried out for a T assembly of aluminium alloy plates. Modelling, based on the finite element method approach, was realized using IR temperature measurements and seam geometry. For a value of the power supply, depicted as a surface source in the hybrid case, agreement was found between simulated and measured temperatures. The arc power supply efficiency value is similar to the usually used value.

  9. Active thermography in qualitative evaluation of protective materials.

    PubMed

    Gralewicz, Grzegorz; Wiecek, Bogusław

    2009-01-01

    This is a study of the possibilities of a qualitative evaluation of protective materials with active thermography. It presents a simulation of a periodic excitation of a multilayer composite material. Tests were conducted with lock-in thermography on Kevlar composite consisting of 16 layers of Kevlar fabric reinforced with formaldehyde resin with implanted delamination defects. Lock-in thermography is a versatile tool for nondestructive evaluation. It is a fast, remote and nondestructive procedure. Hence, it was used to detect delaminations in the composite structure of materials used in the production of components designed for personal protection. This method directly contributes to an improvement in safety.

  10. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    SciTech Connect

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-21

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  11. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  12. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method

    NASA Astrophysics Data System (ADS)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk

    2016-04-01

    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  13. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  14. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10‑7 m2 s‑1 and k  =  2.2 W m‑1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  ‑554 μV K‑1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  ‑570 μV K‑1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  15. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    NASA Technical Reports Server (NTRS)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  16. Method for increased detection range in IR warning systems

    NASA Astrophysics Data System (ADS)

    Arad, Eyal; Roit, Paula

    2014-10-01

    Target range of Infra-Red (IR) point target warning systems, is determined by the effective entrance pupil diameter of the system's optics. In addition, the system's F/# is usually set by the detector (as in cryogenically cooled detectors). Moreover, the detector's aspect-ratio usually set the field proportions (5:4, 4:3, etc.).Thus for example, for wide angle systems, the horizontal coverage angle is usually determining the vertical one. We propose a system including anamorphic optics that changes the effective focal length of each axis independently, keeping the detector's given F/#, thus changing the effective aperture. Since the range is approximately proportional to the effective aperture, we achieve a range improvement of the square-root of the vertical and horizontal focal length ratio, reducing the vertical coverage accordingly. In this way, we make the field proportions less dependent of the detector's proportions. Using this method, it is made possible for wide angle systems to improve target detection range on the expense of the vertical coverage, without changing the horizontal coverage or increasing the amount of detection units (e.g. FLIRs).

  17. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  18. IR imaging simulation and analysis for aeroengine exhaust system based on reverse Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Chen, Shiguo; Chen, Lihai; Mo, Dongla; Shi, Jingcheng

    2014-11-01

    The IR radiation characteristics of aeroengine are the important basis for IR stealth design and anti-stealth detection of aircraft. With the development of IR imaging sensor technology, the importance of aircraft IR stealth increases. An effort is presented to explore target IR radiation imaging simulation based on Reverse Monte Carlo Method (RMCM), which combined with the commercial CFD software. Flow and IR radiation characteristics of an aeroengine exhaust system are investigated, which developing a full size geometry model based on the actual parameters, using a flow-IR integration structured mesh, obtaining the engine performance parameters as the inlet boundary conditions of mixer section, and constructing a numerical simulation model of engine exhaust system of IR radiation characteristics based on RMCM. With the above models, IR radiation characteristics of aeroengine exhaust system is given, and focuses on the typical detecting band of IR spectral radiance imaging at azimuth 20°. The result shows that: (1) in small azimuth angle, the IR radiation is mainly from the center cone of all hot parts; near the azimuth 15°, mixer has the biggest radiation contribution, while center cone, turbine and flame stabilizer equivalent; (2) the main radiation components and space distribution in different spectrum is different, CO2 at 4.18, 4.33 and 4.45 micron absorption and emission obviously, H2O at 3.0 and 5.0 micron absorption and emission obviously.

  19. Recognition of wall materials through active thermography coupled with numerical simulations.

    PubMed

    Pietrarca, Francesca; Mameli, Mauro; Filippeschi, Sauro; Fantozzi, Fabio

    2016-09-01

    In the framework of historical buildings, wall thickness as well as wall constituents are not often known a priori, and active IR thermography can be exploited as a nonintrusive method for detecting what kind of material lies beneath the external plaster layer. In the present work, the wall of a historical building is subjected to a heating stimulus, and the surface temperature temporal trend is recorded by an IR camera. A hybrid numerical model is developed in order to simulate the transient thermal response of a wall made of different known materials underneath the plaster layer. When the numerical thermal contrast and the appearance time match with the experimental thermal images, the material underneath the plaster can be qualitatively identified. PMID:27607254

  20. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  1. Automatized segmentation of photovoltaic modules in IR-images with extreme noise

    NASA Astrophysics Data System (ADS)

    Vetter, Andreas; Hepp, Johannes; Brabec, Christoph J.

    2016-05-01

    Local electric defects may result in considerable performance losses in solar cells. Infrared thermography is an essential tool to detect these defects on photovoltaic modules. Accordingly, IR-thermography is frequently used in R&D labs of PV manufactures and, furthermore, outdoors in order to identify faulty modules in PV-power plants. Massive amount of data is acquired which needs to be analyzed. An automatized method for detecting solar modules in IR-images would enable a faster and automatized analysis of the data. However, IR-images tend to suffer from rather large noise, which makes an automatized segmentation challenging. The aim of this study was to establish a reliable segmentation algorithm for R&D labs. We propose an algorithm, which detects a solar cell or module within an IR-image with large noise. We tested the algorithm on images of 10 PV-samples characterized by highly sensitive dark lock-in thermography (DLIT). The algorithm proved to be very reliable in detecting correctly the solar module. In our study, we focused on thin film solar cells, however, a transfer of the algorithm to other cell types is straight forward.

  2. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  3. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  4. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  5. Defect characterisation based on heat diffusion using induction thermography testing.

    PubMed

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  6. Defect characterisation based on heat diffusion using induction thermography testing

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  7. Detection of cold cracks in the cast-steels by the methods of ultrasonic and eddy-current infrared thermography

    NASA Astrophysics Data System (ADS)

    Cheprasov, A. I.; Knyazev, S. V.; Usoltsev, A. A.; Dolgopolov, A. E.; Mamedov, R. O.

    2016-09-01

    The aim of this study was to investigate the possibility of detection of cold cracks in the massive steel products using ultrasonic and eddy-current excitation, as well as the thermal imaging method of temperature recording, that in the perspective should be completed by the development of requirements for the monitoring equipment.

  8. Mapping Surface Temperature on Biological Tissues by Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Gnyawali, Surya; Chen, Yichao; Bartels, Kenneth; Wicksted, James; Chen, Wei

    2007-03-01

    In this paper, non-contact and noninvasive infrared thermography in the measurement of skin temperature on a mice model during dye-enhanced laser-tumor treatment coupled with the immunological response is explored. Mice with mammary tumors are injected with light absorption enhancing dye (indocyanine green, ICG) and immunoadjuvant (glycated chitosan, GC) prior to laser light (805 nm) irradiation through optical fiber. Using an infrared temperature probe, images are acquired and analyzed to determine surface temperature measurements. Simulations of the surface temperature measurements are conducted using a Monte Carlo finite difference method. The simulation results are in good agreement with the thermography measurements.

  9. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  10. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  11. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  12. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  13. Study of heating capacity of focused IR light soldering systems.

    PubMed

    Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H

    2013-10-01

    An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices. PMID:24104296

  14. The effect of instrument attachment on the surface temperature of juvenile grey seals ( Halichoerus grypus) as measured by infrared thermography

    NASA Astrophysics Data System (ADS)

    McCafferty, Dominic J.; Currie, John; Sparling, Carol E.

    2007-02-01

    Previous research has highlighted the importance of minimising hydrodynamic drag from biologging instruments fitted to marine mammals. However, there is a need to investigate other possible impacts of instruments on animals. The aim of this study was to examine the effect of deploying instruments on the surface temperature distribution of grey seals ( Halichoerus grypus). Infrared (IR) thermography was used to record the surface temperature of two juveniles that had been fitted with heart rate recorders and mounting straps for the attachment of a time depth recorder. When animals were fully wet and inactive, the surface temperature pattern was unaffected by instruments. However, as animals dried out regions of high temperature were recorded around the edges of attachment sites compared to surrounding fur. This appeared to be due to heat leakage around the sides of instruments and mounting straps that provided an additional layer of insulation. There were no obvious changes in the surface temperature distribution around instruments associated with duration of deployment. This work shows that attachment of relatively small biologging instruments will produce localised effects on heat transfer in air but will not significantly change the total heat exchange of grey seals on land or at sea. IR thermography was also shown to be a useful method of detecting surface temperature patterns associated with epidural anaesthesia and blubber biopsy.

  15. Veterinary applications of infrared thermography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abnormal temperature is a major indicator of disease; infrared thermography (IRT) can assess changes in surface temperature quickly and remotely. This technology can be applied to myriad diseases in veterinary medicine, ranging across host species and disease etiologies. It can also be used to deter...

  16. Concept And Development Of Instruments For ITER Thermography

    SciTech Connect

    Reichle, R.; Balorin, C.; Carpentier, S.; Corre, Y.; Davi, M.; Delchambre, E.; Desgrange, C.; Escourbiac, F.; Fougerolle, S.; Gardarein, J. L.; Gauthier, E.; Guilhem, D.; Jouve, M.; Loarer, Th.; Martins, J. P.; Patterlini, J. C.; Pocheau, C.; Roche, H.; Salasca, S.; Travere, J. M.

    2008-03-12

    We give here a short overview of the status of the development for ITER thermography as performed by the CEA-Cadarache and some of its collaboration partners. The topics that have been included in this synthesis are the status of the optical design, the role of multi-wavelength mesurements, multicolour pyroreflectometry, photothermal methods, and reflection simulations and measurements.

  17. A self-method for resolving the problem of apparent LWIR emissivity for quantitative thermography up to 130 °C

    NASA Astrophysics Data System (ADS)

    Riou, Olivier; Logerais, Pierre-Olivier; Delaleux, Fabien; Durastanti, Jean-Félix

    2014-11-01

    In a previous work, we succeeded in connecting normal LWIR apparent emissivity to the spectral one of an aluminum nitride ceramic plate. The key problem was the knowledge of the effective spectral bandwidth in use in the system. Hence we have developed an analyzer which permits to identify the spectral bandwidth of IR system using only its raw data. It proceeds by minimizing the dispersion from linearity of the characteristic thermosignals/integrated radiance over a temperature range of the IR system. The capacities of the analyzer are tested for five commercial cameras. Each of these systems exhibits a similar formatting process implemented during the thermogram recording. The effective spectral bandwidth shows plausible values. It varies significantly from one model to the other and the residual non-linearity is connected to the NETD of the IR system. The robustness of the apparent emissivity measurements is also tested with the aid of emissivity reference of 0.5. The overall accuracy of the method is less than 1%, depending on the specular or diffuse part of the reflected irradiation. Applied in field situation, the method is suitable to detect absolute variation of emissivity of less than 6 ṡ 10-3. We use the analyzer to determine the spectral bandwidth of a commercial 320 × 240 microbolometer uncooled IRFPA camera which had already served to characterize the normal LWIR apparent emissivity of the aluminum nitride ceramic plate. By using the spectral response of the two major microbolometer sensor technologies, the general formulation of apparent emissivity matches our apparent emissivity measurements. An agreement better than 0.6% in absolute value and a less than 6 ṡ 10-3%/°C dispersion are found over the entire temperature range [40-130 °C].

  18. Time-resolved tribo-thermography

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Blau, Peter J.

    1999-03-01

    Wear of coated surfaces tends to progress through a series of stages in which damage accumulates until the coating fails to protect its substrate. Depending on the coating system and the contact conditions, these stages can sometimes be detected as a series of discrete periods of changing frictional behavior, or they can occur quite rapidly, leading to rapid removal of the coating. A new technique has been developed to capture magnified infrared (IR) images of a selected location on a moving wear surface and to synchronize these cycle-by-cycle images with the instantaneous friction force that occurs at the same location. A pin-on-disk tribometer has been used to demonstrate the principle, but other kinds of test geometries can also be used. Contrast in the IR images derives not only from the surface temperatures but also from the emissivity of surface features. A spatial calibration of the system allows the measurement of the width of the wear path as a function of time. By studying a series of captured and friction- synchronized images, it is possible to observe the detailed progression of wear and the corresponding frictional transitions in a limitless variety of materials. Examples of several different materials, including, steel, aluminum, brass, and paint, will be used to illustrate the application of time-resolved microscopic tribo-thermography to coatings research.

  19. Investigation on choosing technical parameters for pulse thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan

    2015-04-01

    Composite material connected by glue has gained popularity as a replacement for conventional materials and structures to reduce weight and improve strength in the aerospace industry, with the development of material science and structural mechanics. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. The integrality, strength and rigidity of product would be broken by disbonding. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer noncontact, quickly and visual examinations of disbonding defects. However the parameter choosing method is difficult to decide. Investigate the choosing technical parameters for pulse thermograpghy is more important to ensure the product quality and testing efficiency. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography. This paper presents a study of single factor experimental research on damage sample in simulation was carried out. The impact of the power of light source, detection distance, and the wave band of thermography camera on detecting effect is studied. The select principle of technique is made, the principle supplied basis for selection of detecting parameters in real part testing.

  20. A preliminary biomechanical assessment of a polymer composite hip implant using an infrared thermography technique validated by strain gage measurements.

    PubMed

    Bougherara, Habiba; Rahim, Ehsan; Shah, Suraj; Dubov, Anton; Schemitsch, Emil H; Zdero, Rad

    2011-07-01

    With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R(2) = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R(2) = 0.99) and lateral (R(2) = 0.83 to 0.99) surface, as well as at the peak stress point (R(2) = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.

  1. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  2. Transmission of IR light by light guides made of silver halide solid solutions

    NASA Astrophysics Data System (ADS)

    Shmygalev, A. S.; Zhilkin, B. P.; Korsakov, A. S.; Nizovtsev, M. I.; Sterlyagov, A. N.; Terekhov, V. I.

    2016-09-01

    The possibility of transferring IR emission by light guides made of silver halide solid solutions has been experimentally studied. The energy loss in transmission of the heat radiation through a light guide in various wavelength ranges of IR light was determined. The possibility of using IR light guides for transport of thermal energy and temperature measurements by IR thermography was considered.

  3. Prospects and limitations of digital Shearography and Active Thermography in finding and rating flaws in CFRP sandwich parts with honeycomb core

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Mayr, G.; Hendorfer, G.

    2012-05-01

    This work shows the prospects and limitations of the non-destructive testing methods Digital Shearography and Active Thermography when applied to CFRP sandwich parts with honeycomb cores. Two specimens with different core materials (aluminum, NOMEX) and artificial flaws such as delaminations, disbonds and inclusions of foreign material, are tested with Digital Shearography and Pulse Thermography including Pulse Phase Thermography. Both methods provide a good ability for finding and rating the flaws.

  4. Modeling of the ITER-like wide-angle infrared thermography view of JET.

    PubMed

    Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  5. Unified field analysis method for IR/MW micro-mirror array beam combiner.

    PubMed

    Tian, Yi; Sun, Gang; Yan, Hui; Zhang, Li; Li, Zhuo

    2014-07-01

    The aperture field integration method (AFIM) is proposed and utilized to efficiently compute the field distributions of infrared/microwave (IR/MW) micro-mirror array beam combiners, including the MW near-field distribution and the IR far-field distribution. The MW near-field distributions of single-dielectric-layer beam combiners with 1, 11, and 101 micromirrors are analyzed by AFIM. Compared to the commonly used multilevel fast multipole method (MLFMM) in the computation of MW near-field distribution, the memory requirement and CPU time consumption are reduced drastically from 16.92 GB and 3.26 h to 0.66 MB and 0.55 s, respectively. The calculation accuracy is better than 96%, when the MW near-field distribution is computed. The IR far-field computational capability is validated by comparing the results obtained through AFIM and experiment. The MW near field and IR far field of a circular and a square shape of three-layer micro-mirror array beam combiners are also analyzed. Four indicators E pv , E rms , φ pv , and φ rms representing the amplitude and phase variations are proposed to evaluate the MW near-field uniformity. The simulation results show that the increase of beam combiner size can improve the uniformity of the MW near field, and that the square shape has less influence on the uniformity of the MW near field than the circular one. The zeroth-order diffraction primary maximum intensity of the IR far field is decreased by 1/cos 2  α 0 times compared to that of the equivalent mirror, where α 0 is the oblique angle of each micromirror. When the periodic length of the micro-mirror array is less than 0.1 mm, the position of the secondary maximum will exceed the size of the focal plane array. Simultaneously, the half-width of the zeroth-order diffraction primary maximum is less than the size of a single pixel. Thus, IR images with high quality will be obtained. The simulation results show that the AFIM as a unified method can be applied to design

  6. Identification of age degradation in EPROM chips using infrared thermography

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.

    1998-03-01

    In a recent upgrade of the digital flight control computer for the F-16, there was serious consternation expressed about the quality of the soldering repair process. Dozens of circuit cards failed to function after the upgrade, even though all of these cards operated correctly before the modifications. The shop called for the use of the IR camera to assist in diagnosing and repairing these cards. What the Neural Radiant Energy Detection found was faulty and marginal chips.Of particular interest was the presence of degraded EPROM chips on the Program Memory cards. While it is known that EPROMs have a limited life cycle, the failure has been further characterized. Thermography provides a quantification of the degradation in thermal performance as the EPROMs are reused. Pristine EPROM chips have a rise rate of about 0.008 degrees C/sec. When the heat rates exceed 0.021 degrees C/sec, the EPROM chips will not accept a program. Some of the chips exhibited heat rates exceeding 0.1 degrees C/sec. Some chips with degradation of 0.018 degrees C/sec would accept a program, but fail other functional tests. What is clear from these results is that IR thermography can be used to identify degrading EPROM chips for replacement before failures become immanent.

  7. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period.

  8. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. PMID:26522612

  9. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  10. Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Landman, Mattijs; de Roode, Rowland; Noordmans, Herke J.; Verdaasdonk, Rudolf M.

    2011-03-01

    An objective method to measure the effectiveness of regional anesthesia can reduce time and unintended pain inflicted to the patient. A prospective observational study was performed on 22 patients during a local anesthesia before undergoing hand surgery. Two non-invasive techniques thermal and oxygenation imaging were applied to observe the region affected by the peripheral block and the results were compared to the standard cold sensation test. The supraclavicular block was placed under ultrasound guidance around the brachial plexus by injecting 20 cc Ropivacaine. The sedation causes a relaxation of the muscles around the blood vessels resulting in dilatation and hence an increase of blood perfusion, skin temperature and skin oxygenation in the lower arm and hand. Temperatures were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTMResearcher and Matlab software. Narrow band spectral images were acquired at selected wavelengths with a CCD camera either combined with a Liquid Crystal Tunable Filter (420-730 nm) or a tunable hyper-wavelength LED light source (450-880nm). Concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation to the anesthetized areas. A temperature response was visible within 5 minutes compared to the standard of 30 minutes. Both non-contact methods show to be more objective and can have an earlier prediction for the effectiveness of the anesthetic block.

  11. Eddy current pulsed phase thermography and feature extraction

    NASA Astrophysics Data System (ADS)

    He, Yunze; Tian, GuiYun; Pan, Mengchun; Chen, Dixiang

    2013-08-01

    This letter proposed an eddy current pulsed phase thermography technique combing eddy current excitation, infrared imaging, and phase analysis. One steel sample is selected as the material under test to avoid the influence of skin depth, which provides subsurface defects with different depths. The experimental results show that this proposed method can eliminate non-uniform heating and improve defect detectability. Several features are extracted from differential phase spectra and the preliminary linear relationships are built to measure these subsurface defects' depth.

  12. IR-Sensography™—expanding the scope of contact-free sensing methods

    NASA Astrophysics Data System (ADS)

    Klein, Jens; Schunk, Stephan A.

    2005-01-01

    Capturing the response of one or more sensor materials is conventionally performed by the direct transformation of a chemical or physico-chemical signal into an electrical one. With an increasing number of sensor materials within an arrangement of sensor elements or a sensor array, problems such as contacting each single sensor, signal processing and resistance against cross-talk, harsh conditions such as corrosive atmospheres, etc are limiting factors for the further development of so-called 'chemical noses'. State-of-the-art and commercially available are arrays of eight different sensor materials, literature known in another context are sensor arrays with 256 materials on a silicon wafer, which are contacted via electrical conduits. We present here the concept of the IR-Sensography™, the use of an IR-camera as an external detector system for sensor libraries. Acting like an optical detection method, the IR-camera detects small temperature changes due to physisorption, chemisorption or other forms of interaction or reaction as an output signal in the form of radiation emitted by the multiplicity of sensor materials simultaneously. The temperature resolution of commercially available IR-camera systems can be tuned to the range below 0.1 K. Due to the separation of sensors and the detector device, reaction conditions at the sensor locus can be adapted to the analytical problem and do not need to take care of other boundary conditions which come into play with the analytical device, e.g. the IR-camera. Calibration or regeneration steps can as well be performed over the multiplicity of all sensor materials. Any given chemical compound that comes into contact with the sensor through the passing fluids will result in a specific activity pattern on a spatially fixed library of sensor materials that is unique for the given compound. While the pattern therefore serves as an identifier, the intensity of the pattern represents the quantitative amount of this compound in

  13. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  14. Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination.

    PubMed

    Feng, Guo-Dong; Zhang, Fang; Cheng, Li-Hua; Xu, Xin-Hua; Zhang, Lin; Chen, Huan-Lin

    2013-01-01

    To characterize lipid content of microalgal cells rapidly and accurately, the gravimetric determination, FT-IR and Nile Red (NR) staining were investigated on six typical eukaryotic and prokaryotic algae species. FT-IR and Nile Red were relative quantification methods and a standard curve was required in contrast to the gravimetric method. The FT-IR method determined the lipid, carbohydrate and protein contents simultaneously assuming that the algal cells only consisted of those three components. The Nile Red method was a relatively rapid method for neutral lipid content characterization by spectrofluorometry and could locate lipid body of the algal cell by fluorescence microscopy. According to sample sources and processing purposes, the gravimetric determination was preferable for large-scale cultivation with low-frequency monitoring, while FT-IR and Nile Red were suitable for general laboratory cultivation with medium-frequency monitoring, in particularly Nile Red was appropriate for small samples when high-frequency screening was required. PMID:23196229

  15. State of the art of aerial thermography in Iceland: thermography of geothermal areas during the past 20 years

    NASA Astrophysics Data System (ADS)

    Bjornsson, Sigfus; Arnason, Kolbeinn

    1995-03-01

    Aerial thermography was first applied in Iceland in the early sixties in conjunction with the suboceanic eruption of Surtsey. The same technique was subsequently applied (in the late sixties, early seventies) to some major geothermal areas in Iceland. Although it gave a global view of heat on the surface, local geologists/geophysicists were not impressed by the inroad of this space technology. According to this view, the technique lacked sensitivity, resolution, means of calibration, and gave very distorted images. Although microwave remote sensing (applied in glaciology) and processing of Landsat data (including IR) was practiced, aerial thermography lay at rest in Iceland until the mid eighties, when it was taken up again first for demonstration purposes using an instrument we rented jointly with the Geodetic Institute, but later it would be based on our own developments. Our work being application driven, due to the way this development is financed, the emphasis in the late eighties/early nineties was mainly on the near infrared range. For the last three years it has shifted however towards the far infrared range again and focused on geothermal areas, both for scientific purposes as well as for natural heat reservoirs for distance heating networks. Aerial thermography of wide area natural heat and energy distribution networks sets stringent requirements, e.g. to sensitivity and temporal, spatial as well as spectral resolutions. Efforts to meet that goal in Iceland have led to new developments based on wide aperture line scanners covering swaths in the flight direction, frame based focal plane cameras and on improved signal processing and data processing procedures. A particular emphasis has been on error corrections due to unpredictable aircraft movements.

  16. The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography.

    PubMed

    Zaïdi, H; Taïar, R; Fohanno, S; Polidori, G

    2007-01-01

    This work aims to study the usability of infrared thermography in swimming for the purpose of quantifying the influence of the swimming style on the cartographies of cutaneous temperatures of a swimmer. Only one subject took part in the experimental protocol, who was to accomplish a 4 x 100 m 4 medley. Thermal acquisitions followed by one period of recovery with return to thermal balance were carried out between particular strokes. IR thermography made it possible to discuss the influence of the swimming style on the distributions of cutaneous temperatures in various body zones. This process seems to be completely adaptable to the development of future statistical studies. PMID:17933104

  17. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  18. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  19. Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

    PubMed

    Sadeghi-Goughari, Moslem; Mojra, Afsaneh

    2015-10-01

    Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors. PMID:26590456

  20. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  1. Joint estimation of TOA and DOA in IR-UWB system using a successive propagator method

    NASA Astrophysics Data System (ADS)

    Wang, Fangqiu; Zhang, Xiaofei; Wang, Chenghua; Zhou, Shengkui

    2015-10-01

    Impulse radio ultra-wideband (IR-UWB) ranging and positioning require accurate estimation of time-of-arrival (TOA) and direction-of-arrival (DOA). With receiver of two antennas, both of the TOA and DOA parameters can be estimated via two-dimensional (2D) propagator method (PM), in which the 2D spectral peak searching, however, renders much higher computational complexity. This paper proposes a successive PM algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak searching. The proposed algorithm firstly gets the initial TOA estimates in the two antennas from the propagation matrix, then utilises successively one-dimensional (1D) local searches to achieve the estimation of TOAs in the two antennas, and finally obtains the DOA estimates via the difference in the TOAs between the two antennas. The proposed algorithm, which only requires 1D local searches, can avoid the high computational cost in 2D-PM algorithm. Furthermore, the proposed algorithm can obtain automatically paired parameters and has better joint TOA and DOA estimation performance than conventional PM algorithm, estimation of signal parameters via rotational invariance techniques algorithm and matrix pencil algorithm. Meanwhile, it has very close parameter estimation to that of 2D-PM algorithm. We have also derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer-Rao bound of TOA and DOA estimation in this paper. The simulation results verify the usefulness of the proposed algorithm.

  2. Differential identification of mushrooms sclerotia by IR macro-fingerprint method.

    PubMed

    Choong, Yew Keong; Lan, Jin; Lee, Han Lim; Chen, Xiang-Dong; Wang, Xiao-Guang; Yang, Yu-Ping

    2016-01-01

    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.

  3. Differential identification of mushrooms sclerotia by IR macro-fingerprint method.

    PubMed

    Choong, Yew Keong; Lan, Jin; Lee, Han Lim; Chen, Xiang-Dong; Wang, Xiao-Guang; Yang, Yu-Ping

    2016-01-01

    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail. PMID:26186395

  4. Differential identification of mushrooms sclerotia by IR macro-fingerprint method

    NASA Astrophysics Data System (ADS)

    Choong, Yew Keong; Lan, Jin; Lee, Han Lim; Chen, Xiang-dong; Wang, Xiao-guang; Yang, Yu-ping

    2016-01-01

    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543 cm-1 of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500 cm-1. O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.

  5. Thermography to Inspect Insulation of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  6. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  7. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot,

  8. The study of synthetic carbonate-hydroxyapatites and dental enamels by IR and derivatographic methods

    NASA Astrophysics Data System (ADS)

    Jónás, K.; Vassányi, I.; Ungvári, I.

    1980-06-01

    It is stated that all the synthetic carbonate-hydroxyapatites, produced with the reaction of H3PO4 and Ca(OH)2 solutions, are B type carbonate-apatites. The carbonate content of these is completely eliminated up to 900° C. In dental enamels taken from the healthy teeth of females, the carbonate ions occupy different positions ( A B type carbonate-apatite). Those which are parallel to axis c are decomposed only above 900° C. It was found that the natural ageing of dental enamels is in correlation with the different CO{3/2-}/H2O ratio measured in these samples. Similar differences were observed between enamels taken from different parts of the tooth and the dentin. The change of the apatite composition after fluoride painting has been established by infrared (IR), derivatographic and X-ray methods.

  9. Method of fabricating a PbS-PbSe IR detector array

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1987-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chiping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  10. Application of Infrared Thermography as a Diagnostic Tool of Knee Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Arfaoui, Ahlem; Bouzid, Mohamed Amine; Pron, Hervé; Taiar, Redha; Polidori, Guillaume

    This paper aimed to study the feasibility of application of infrared thermography to detect osteoarthritis of the knee and to compare the distribution of skin temperature between participants with osteoarthritis and those without pathology. All tests were conducted at LACM (Laboratory of Mechanical Stresses Analysis) and the gymnasium of the University of Reims Champagne Ardennes. IR thermography was performed using an IR camera. Ten participants with knee osteoarthritis and 12 reference healthy participants without OA participated in this study. Questionnaires were also used. The participants with osteoarthritis of the knee were selected on clinical examination and a series of radiographs. The level of pain was recorded by using a simple verbal scale (0-4). Infrared thermography reveals relevant disease by highlighting asymmetrical behavior in thermal color maps of both knees. Moreover, a linear evolution of skin temperature in the knee area versus time has been found whatever the participant group is in the first stage following a given effort. Results clearly show that the temperature can be regarded as a key parameter for evaluating pain. Thermal images of the knee were taken with an infrared camera. The study shows that with the advantage of being noninvasive and easily repeatable, IRT appears to be a useful tool to detect quantifiable patterns of surface temperatures and predict the singular thermal behavior of this pathology. It also seems that this non-intrusive technique enables to detect the early clinical manifestations of knee OA.

  11. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  12. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  13. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  14. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods.

  15. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  16. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  17. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  18. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  19. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  20. Nondestructive Clinical Assessment of Occlusal Caries Lesions using Near-IR Imaging Methods

    PubMed Central

    Staninec, Michal; Douglas, Shane M.; Darling, Cynthia L.; Chan, Kenneth; Kang, Hobin; Lee, Robert C.; Fried, Daniel

    2011-01-01

    Objective Enamel is highly transparent in the near-IR (NIR) at wavelengths near 1300-nm, and stains are not visible. The purpose of this study was to use NIR transillumination and optical coherence tomography (OCT) to estimate the severity of caries lesions on occlusal surfaces both in vivo and on extracted teeth. Methods Extracted molars with suspected occlusal lesions were examined with OCT and polarization sensitive OCT (PS-OCT), and subsequently sectioned and examined with polarized light microscopy (PLM) and transverse microradiography (TMR). Teeth in test subjects with occlusal caries lesions that were not cavitated or visible on radiographs were examined using NIR transillumination at 1310 nm using a custom built probe attached to an indium gallium arsenide (InGaAs) camera and a linear OCT scanner. After imaging, cavities were prepared using dye staining to guide caries removal and physical impressions of the cavities were taken. Results The lesion severity determined from OCT and PS-OCT scans in vitro correlated with the depth determined using polarized light microscopy (PLM) and transverse microradiography (TMR). Occlusal caries lesions appeared in NIR images with high contrast in vivo. OCT scans showed that most of the lesions penetrated to dentin and spread laterally below the sound enamel. Conclusion This study demonstrates that both NIR transillumination and OCT are promising new methods for the clinical diagnosis of occlusal caries. PMID:22109697

  1. IR-imaging and non-destructive loss analysis on thin film solar modules and cells

    NASA Astrophysics Data System (ADS)

    Adams, Jens; Fecher, Frank W.; Hoga, Felix; Vetter, Andreas; Buerhop, Claudia; Brabec, Christoph J.

    2014-10-01

    CIGS thin film solar modules, despite their high efficiency, may contain three different kinds of macroscopic defects referred to as bulk defects, interface defects and interconnect defects. These occur due to the film's sensitivity to inhomogeneities during the manufacturing process and decreasing the electrical power output from a cell or module. In this study, we present infrared (IR) imaging and contactless loss analyses of defects contained in commercially manufactured thin film solar modules. We investigated different relations between the emitted IR-signal (using illuminated lock-in thermography ILIT) and the respective open circuit cell voltage (Voc) as well as the maximum power point (Pmpp). A simulation study, using the 2D finite element method (FEM), provides a deeper understanding as to the impact on electrical performance when defects are present on the cell or module.

  2. Application of infrared thermography in computer aided diagnosis

    NASA Astrophysics Data System (ADS)

    Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei

    2014-09-01

    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.

  3. Fabrication of 0.0075-Scale Orbiter Phosphor Thermography Test Models for Shuttle RTF Aeroheating Studies

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Griffith, Mark S.; Hopins, John W.; Veneris, Pete H.; Kuykendoll, Kathryn

    2006-01-01

    This report details the techniques and fidelity associated with aeroheating models constructed in support of the return-to-flight boundary layer transition (BLT) activity for STS-114. This report provides technical descriptions of the methods, materials, and equipment used, as well as the surface quality results obtained with the cast ceramic phosphor thermography models.

  4. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans.

    PubMed

    Vainer, Boris G

    2005-12-01

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable

  5. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Alternative method of compliance for model simplified... compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110 of... Internal Revenue Code of 1954 as amended (the Code) that is created by use without modification of...

  6. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  7. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  8. The Use of Infrared Thermography as a Rapid, Quantitative, and Noninvasive Method for Evaluation of Inflammation Response in Different Anatomical Regions of Rats

    PubMed Central

    Całkosiński, Ireneusz; Dobrzyński, Maciej; Rosińczuk, Joanna; Dudek, Krzysztof; Chrószcz, Aleksander; Fita, Katarzyna

    2015-01-01

    Purpose. Thermographic assessment of temperature distribution within the examined tissues allows a quick, noncontact, noninvasive measurement of their temperature. The aim of the study was to evaluate the usefulness of digital infrared imaging in monitoring experimental inflammation of pleura (PL), lower lip (LL), and left paw (LP) and right paw (RP) of lower limbs in rats. Materials and Methods. The inflammatory reaction was induced by injection of 1% carrageenin solution into pleural cavity, lip, or paws. With the use of digital infrared imaging temperature measurement was conducted at 0 to 72 hours of the inflammatory reaction. Results. The temperature decrease was observed at the site of injection directly afterwards. Next, it was gradually increasing and it reached the maximum on the third day of the inflammatory reaction. Statistically significant changes were observed after 48-hour period in PL and LL regions, as well as after 72-hour period in LP and RP regions (P < 0.005). Conclusion. It was found that thermographic examination allows for indicating the presence of inflammatory reaction within examined tissues and determining the dynamics of this process. This method could be used as alternative procedure that allows using fewer animals for experiments. PMID:25834830

  9. Effective method to improve the lens F# of un-cooled IR detector systems

    NASA Astrophysics Data System (ADS)

    Dong, Li-quan; Jin, Wei-qi; Sui, Jing; Zhou, Xiao-xiao

    2008-02-01

    The Infrared thermal imaging systems has developments advance rapidly during the development of the research and the manufacture technical. And its applied field has going deep into the astronautics, industry, agriculture, medical, traffic and other fields from the national defense and military appliance. Especially in the application of the military, it has come into being a specialty IR System Engineering field. But in many important applications, the lens calibre of the IR thermal imaging systems often be made very large to advance the SNR of the systems. This increased the weight and the research cost of the whole system very much. Many research indicated that the main factor to affect the image quality of the IR systems is the fixed pattern noise (FPN) or spatial non-uniformity under the actual technical and manufacture level. If we using the effective dynamic self-adaptive non-uniformity correction algorithms for the IR system, and use the image enhancement technology simultaneity. We can advance the imaging quality greatly. With this plan, the correction image we got with large F number can receive the level that uncorrected image with 1 or 2 smaller F number. It means the lens calibre of the system will be reduced effectively. And the weight, the cubage and the research cost of the system will be reduced greatly. It will have most important value in the applied of the actual engineering.

  10. FT-IR Method for the Quantification of Isoflavonol Glycosides in Nutritional Supplements of Soy (Glycine max (L.) MERR.).

    PubMed

    Mulsow, Katharina; Eidenschink, Juliane; Melzig, Matthias F

    2015-01-01

    Due to increasing health consciousness, a lot of food supplements are sold and used. Dietary supplements of Glycine max (L.) MERR. are used as an alternative treatment for menopausal complaints such as hot flashes. Thereby, the effective soy compounds are the isoflavones daidzin, genistin, and glycitin. However, only the total soy extract content of the nutritional supplements is indicated. The aim of this study is to introduce a fast, efficient, and economic Fourier transformation infrared (FT-IR) spectroscopy method to quantify the active ingredients in the complex matrix of soy-based supplements. Five different nutritional supplements of Glycine max (L.) MERR. were purchased from a German pharmacy and were extracted with 80% aqueous methanol. A high-performance liquid chromatography (HPLC) method was used for the separation. The samples were concentrated and measured with infrared spectroscopy. An FT-IR method was established to quantify the active ingredients in the complex matrix of soy-based nutritional supplements. The partial least-squares algorithm was used to develop the method, which enabled the estimation of the content of particular isoflavones (daidzin R(2) = 0.86, glycitin R(2) = 0.94, genistin R(2) = 0.96) and the quantification of the total isoflavone content (R(2) = 0.92) despite peak overlap in the infrared (IR) spectra. The method for the quantification of the isoflavonol glycosides is precise with the standard error of prediction being 13.54%.

  11. Infrared thermography in the architectural field.

    PubMed

    Meola, Carosena

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites.

  12. Infrared Thermography in the Architectural Field

    PubMed Central

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites. PMID:24319358

  13. Liquid crystal thermography in boiling heat transfer

    SciTech Connect

    Klausner, J.F.; Mei, R.; Chen, W.C.

    1995-12-31

    The utilization of liquid crystal thermography to study heterogeneous boiling phenomena has gained popularity in recent years. In order not to disturb the nucleation process, which occurs in the microstructure of the heating surface, the crystals are applied to the backside of a thin heater. This work critically examines the ability of liquid crystal thermography to quantitatively capture the thermal field on the boiling surface. The thermal field identified experimentally through liquid crystal thermography is compared against that computed in the vicinity of a growing vapor bubble using a simulation which considers the simultaneous heat transfer between three phases: the solid heater, the liquid microlayer, and the growing vapor bubble. The temperature history beneath a growing vapor bubble elucidates the high frequency response required to capture the transient thermal fields commonly encountered in boiling experiments. Examination of the governing equations and numerical results reveal that due to the heater thermal inertia, the temperature variation on the bottom of the heater is significantly different than that on the boiling surface. In addition, the crystals themselves have a finite spatial resolution and frequency response which filter out much of the microscale phenomenon associated with boiling heat transfer. Analysis of existing pool and flow boiling liquid crystal thermographs indicate that the typical spacial resolution is on the order of 0.25 mm and the response time is on the order of 5 ms which are insufficient to resolve the fine spacial and temporal details of the heating surface thermal field. Thus the data obtained from liquid crystal thermography applied to boiling heat transfer must be cautiously interpreted.

  14. NDT of railway components using induction thermography

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.

    2016-02-01

    Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.

  15. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-11-14

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  16. IR-based spot weld NDT in automotive applications

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  17. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  18. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard

    This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.

  19. Self-gravitation interaction of IR deformed Hořava-Lifshitz gravity via new Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Xu, Yin; Lu, Junwang; Yang, Yuling; Lu, Jianbo; Wu, Yabo

    2014-06-01

    The apparent discovery of logarithmic entropies has a significant impact on IR deformed Hořava-Lifshitz (IRDHL) gravity in which the original infrared (IR) property is improved by introducing three-geometry's Ricci scalar term "μ4 R" in action. Here, we reevaluate the Hawking radiation in IRDHL by using recent new Hamilton-Jacobi method (NHJM). In particular, a thorough analysis is considered both in asymptotically flat Kehagias-Sfetsos and asymptotically non-flat Park models in IRDHL. We find the NHJM offers simplifications on the technical side. The modification in the entropy expression is given by the physical interpretation of self-gravitation of the Hawking radiation in this new Hamilton-Jacobi (HJ) perspectives.

  20. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  1. Using infrared thermography to evaluate the injuries of cold-stored guava.

    PubMed

    Gonçalves, Bárbara Jordana; Giarola, Tales Márcio de Oliveira; Pereira, Daniele Fernanda; Vilas Boas, Eduardo Valério de Barros; de Resende, Jaime Vilela

    2016-02-01

    This study aimed to identify using the infrared (IR) thermography data the injuries of guavas during cooling and storage at different temperatures. Three experiments were performed at three different temperatures with one storage time. The first experiment was done with static air in a refrigerator at 5 °C, the second experiment was conducted in a tunnel with forced air at 10 °C, and the third experiment was conducted in an air conditioned environment at 20 °C. Mechanical injuries caused by the impact of a pendulum were induced on guava surfaces. The surface temperatures were obtained for bruised and sound tissues during cooling and storage using an Infrared (IR) camera. With thermography, it was possible to distinguish the injured tissues of the fruits that were unaffected at temperatures of 5, 10 and 20 °C in first hours of cooling. The results suggest that the storage of guava fruits at 5 °C in static air resulted in cold-induced injury, while storage at 20 °C resulted in an altered activity pattern. The stored guava fruits were analyzed for mass loss, firmness, color, total sugars, total pectin and solubility. The parameters values were lower during the forced-air cooling and storage at 5 and 10 °C. When stored at 20 °C, there was fruit maturation that caused tissue softening, which makes the fruits more susceptible to deterioration and thermographic readings showed opposite trends.

  2. A combined approach for using thermography for the detection of diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Berry, Bob

    2014-05-01

    This paper presents work done to develop an early diagnosis and monitoring method-encompassing thermography for the detection of Diabetes Mellitus. The early detection method involves fusion of images from infrared cameras, ultrasound devices, a 3D camera and a dermatascope. The project is to develop a novel system that could be easily used by physicians to allow for early intervention, and the paper highlights the approach taken by the Skindetector project.

  3. Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2015-06-01

    Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.

  4. Eddy current pulsed thermography for fatigue evaluation of gear

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Yin, Aijun; Gao, Bin; Zhang, Jishan; Shaw, Brian

    2014-02-01

    The pulsed eddy current (PEC) technique generates responses over a wide range of frequencies, containing more spectral coverage than traditional eddy current inspection. Eddy current pulsed thermography (ECPT), a newly developed non-destructive testing (NDT) technique, has advantages such as rapid inspection of a large area within a short time, high spatial resolution, high sensitivity and stand-off measurement distance. This paper investigates ECPT for the evaluation of gear fatigue tests. The paper proposes a statistical method based on single channel blind source separation to extract details of gear fatigue. The discussion of transient thermal distribution and patterns of fatigue contact surfaces as well as the non-contact surfaces have been reported. In addition, the measurement for gears with different cycles of fatigue tests by ECPTand the comparison results between ECPT with magnetic Barkhausen noise (MBN) have been evaluated. The comparison shows the competitive capability of ECPT in fatigue evaluation.

  5. Technical design note: differential infrared thermography of methane jets

    NASA Astrophysics Data System (ADS)

    Golzke, Hendrik; Leick, Philippe; Dreizler, Andreas

    2016-10-01

    In this note a novel approach for temperature measurements of methane jets is presented. Differential infrared thermography (DIT) is a contactless, tracer-free temperature determination method for semi-transparent objects, based on an infrared camera. DIT does not rely on a specific a priori value for the emissivity, but typically assumes constant emissivity within the relevant wavelength band. This is reasonable for complex hydrocarbons (i.e. as in liquid fuel sprays) but no longer justified for the discrete absorption spectrum of simple molecules such as methane. An alternative approximation is suggested and discussed, and the feasibility of DIT for the study of supercritical methane jets in a pressure chamber at conditions relevant for internal combustion engines is demonstrated. As DIT also determines the gas emissivity, a combined two-dimensional temperature and projected density visualisation becomes possible and is shown to highlight supersonic structurues such as Mach disks.

  6. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  7. Thermal runaway in polyimide at high electric field probed by infrared thermography

    NASA Astrophysics Data System (ADS)

    Diaham, Sombel; Belijar, Guillaume; Locatelli, Marie-Laure; Lebey, Thierry

    2015-03-01

    An original way for characterizing dielectrics under high electric field and high temperature based on the coupling between electric current measurements and real-time fast infrared (IR) thermography is demonstrated. Particularly, the Joule heating phenomenon at high field is quantified by 2D-temperature cartography in a polyimide (PI) film set at an initial temperature of 300 °C through IR observations of the polarized electrode. 2D-temperature cartography highlights the temperature increase with increasing the electric field. The thermal runway occurs prior to the dielectric breakdown from an electric field threshold of 140-150 V/μm. This corresponds to a dissipated volume power density between 2 and 5 mW/μm3. Such values report the limit of the electro-thermal equilibrium in PI film.

  8. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  9. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  10. Evaluation of Scatter Contribution and Distance Error by Iterative Methods for Strength Determination of HDR {sup 192}Ir Brachytherapy Source

    SciTech Connect

    Kumar, Sudhir; Srinivasan, Panchapakesan; Sharma, Sunil D.; Subbaiah, Kamatam V.; Mayya, Yelia S.

    2010-10-01

    High-dose rate (HDR) {sup 192}Ir brachytherapy sources are commonly used for management of malignancies by brachytherapy applications. Measurement of source strength at the hospital is an important dosimetry requirement. The use of 0.6-cm{sup 3} cylindrical ionization chamber is one of the methods of measuring the source strength at the hospitals because this chamber is readily available for beam calibration and dosimetry. While using the cylindrical chamber for this purpose, it is also required to determine the positioning error of the ionization chamber, with respect to the source, commonly called a distance error (c). The contribution of scatter radiation (M{sub s}) from floor, walls, ceiling, and other materials available in the treatment room also need to be determined accurately so that appropriate correction can be applied while calculating the source strength from the meter reading. Iterative methods of Newton-Raphson and least-squares were used in this work to determine scatter contribution in the experimentally observed meter reading (pC/s) of a cylindrical ionization chamber. Monte Carlo simulation was also used to cross verify the results of the least-squares method. The experimentally observed, least-squares calculated and Monte Carlo estimated values of meter readings from HDR {sup 192}Ir brachytherapy source were in good agreement. Considering procedural simplicity, the method of least-squares is recommended for use at the hospitals to estimate values of f (constant of proportionality), c, and M{sub s} required to determine the strength of HDR {sup 192}Ir brachytherapy sources.

  11. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    NASA Astrophysics Data System (ADS)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  12. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  13. IR Hiding: A Method to Prevent Video Re-shooting by Exploiting Differences between Human Perceptions and Recording Device Characteristics

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Gohshi, Seiichi; Echizen, Isao

    A method is described to prevent video images and videos displayed on screens from being re-shot by digital cameras and camcorders. Conventional methods using digital watermarking for re-shooting prevention embed content IDs into images and videos, and they help to identify the place and time where the actual content was shot. However, these methods do not actually prevent digital content from being re-shot by camcorders. We developed countermeasures to stop re-shooting by exploiting the differences between the sensory characteristics of humans and devices. The countermeasures require no additional functions to use-side devices. It uses infrared light (IR) to corrupt the content recorded by CCD or CMOS devices. In this way, re-shot content will be unusable. To validate the method, we developed a prototype system and implemented it on a 100-inch cinema screen. Experimental evaluations showed that the method effectively prevents re-shooting.

  14. Gain determination of non-linear IR detectors with the differential photon transfer curve (dPTC) method

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Hilbert, Bryan; Leisenring, Jarron M.; Misselt, Karl; Rieke, Marcia; Robberto, Massimo

    2016-07-01

    Conversion gain is a basic detector property which relates the raw counts in a pixel in data numbers (DN) to the number of electrons detected. The standard method for determining the gain is called the Photon Transfer Curve (PTC) method and involves the measurement the change in variance as a function of signal level. For non-linear IR detectors, this method depends strongly on the non-linearity correction and is therefore susceptible to systematic biases due to calibration issues. We have developed a new, robust, and fast method, the differential Photon Transfer Curve (dPTC) method, which is independent of non-linearity corrections, but still delivers gain values similar in precision but higher in accuracy.

  15. Reconstruction of a nonlinear heat transfer law from uncomplete boundary data by means of infrared thermography

    NASA Astrophysics Data System (ADS)

    Clarelli, Fabrizio; Inglese, Gabriele

    2016-11-01

    Heat exchange between a conducting plate and the environment is described here by means of an unknown nonlinear function F of the temperature u. In this paper we construct a method for recovering F by means of polynomial expansion, perturbation theory and the toolbox of thermal inverse problems. We test our method on two examples: In the first one, we heat the plate (initially at 20 ^\\circ {{C}}) from one side, read the temperature on the same side and identify the heat exchange law on the opposite side (active thermography); in the second example we measure the temperature of one side of the plate (initially at 1500 ^\\circ {{C}}) and study the heat exchange while cooling (passive thermography).

  16. Assessment of techniques of massage and pumping in the treatment of breast engorgement by thermography

    PubMed Central

    Heberle, Anita Batista dos Santos; de Moura, Marcos Antônio Muniz; de Souza, Mauren Abreu; Nohama, Percy

    2014-01-01

    Objective to evaluate techniques of massage and pumping in the treatment of postpartum breast engorgement through thermography. Method the study was conducted in the Human Milk Bank of a hospital in Curitiba, Brazil. We randomly selected 16 lactating women with engorgement with the classification lobar, ampullary and glandular, moderate and intense. We compared the differential patterns of temperature, before and after the treatment by means of massage and pumping. Results we found a negative gradient of 0.3°C of temperature between the pre- and post-treatment in the experimental group. Breasts with intense engorgement were 0.7°C warmer when compared with moderate engorgement. Conclusion massage and electromechanical pumping were superior to manual methods when evaluated by thermography. REBEC: U1111-1136-9027. PMID:26107836

  17. Depth estimation of surface cracks on metallic components by means of lock-in thermography

    NASA Astrophysics Data System (ADS)

    Streza, M.; Dadarlat, D.; Fedala, Y.; Longuemart, S.

    2013-07-01

    In this work, a new method to characterize vertical cracks by lock-in thermography is presented. The heat transfer process induced by a modulated thermal excitation located in the vicinity of the crack is simulated using a finite element method computer package. The propagation of heat flow along the solid surface is disturbed when crossing an inhomogeneity. The disturbance of the thermal-wave allows a quantitative analysis of the crack. The main idea consists of exploiting the second derivative of the amplitude image in order to highlight the useful signal. In addition, an image analysis procedure based on the use of Laplacian calculations is proposed. To support this approach, experimental tests were performed and compared with mathematical simulations. The results demonstrate the potential of active lock-in thermography as a contactless tool for crack-depth estimation.

  18. A dosimetry method in the transverse plane of HDR Ir-192 brachytherapy source using gafchromic EBT2 film.

    PubMed

    Uniyal, S C; Sharma, S D; Naithani, U C

    2012-04-01

    Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR (192)Ir source. A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature. The dose rate constant and radial dose function for microselectron HDR (192)Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature. This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.

  19. Infrared thermography in the restoration of cultural properties

    NASA Astrophysics Data System (ADS)

    Carlomagno, Giovanni M.; Carosena, Meola

    2001-03-01

    Some of the work carried out at DETEC on the use of infrared thermography in the architectural restoration field is examined. Three different techniques, pulse thermography (PT), modulated thermography (MT) and pulse phase thermography (PPT) are analyzed through the control of some art treasures such as mosaics and frescoes. In particular, the following artifacts are considered: mosaics covering some external walls of the building of the Faculty of Engineering of Naples, frescoes in the Duomo of Sarno, frescoes in the Cripta SS. Stefani in Vaste (Le), mosaics and frescoes in the Archeological Museum of Naples coming from Pompeii and Ruvo. It is found that the choice of the technique depends on the specific surface to be tested: if only qualitative information about detachments and cracks are needed the pulse thermography is sufficient; if the surface is not very sensitive to temperature rising, the pulse phase thermography can be applied which gives information about the location of the defected zone. If instead, the analysis regards rare art treasures, lockin thermography is the only response.

  20. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  1. Switching to Infrared! A New Method for Non-professional Imaging in the mid-IR

    NASA Astrophysics Data System (ADS)

    Kaye, T. G.

    2006-05-01

    With the continuing expansion of amateur astronomy, some work has been done in the near infrared where CCD's are still sensitive in the 1 micron range. In order to advance into the mid-infrared out to 12 microns, expensive CCD arrays are required that use exotic sensor materials such as Mercury-Cadmium- Telluride (MCT). With the advent of eBay, used MCT detectors cooled by liquid nitrogen are now obtainable at reasonable cost. They are functionally limited to a single pixel, which would generally make them unsuitable for imaging. Raster scanning of the image field in conjunction with a single pixel sensor to rapidly assemble an infrared image is described as a solution to this problem. The image presented here is believed to be the first mid-IR telescopic image of Mars taken by a non-professional. The use of MCT sensors in conjunction with products such as the AO-7 and advanced scripting will be discussed as further roads for development.

  2. Detection of seal contamination in heat-sealed food packaging based on active infrared thermography

    NASA Astrophysics Data System (ADS)

    D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart

    2015-05-01

    In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.

  3. Application of infrared lock-in thermography for the quantitative evaluation of bruises on pears

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Park, Jongmin; Kim, Dae-Yong; Cho, Byoung-Kwan

    2014-03-01

    An infrared lock-in thermography technique was adjusted for the detection of early bruises on pears. This mechanical damage is usually difficult to detect in the early stage after harvested using conventional visual sorting or CCD sensor-based imaging processing methods. We measured the thermal emission signals from pears using a highly sensitive mid-infrared thermal camera. These images were post-processed using a lock-in method that utilized the periodic thermal energy input to the pear. By applying the lock-in method to infrared thermography, the detection sensitivity and signal to noise ratio were enhanced because of the phase-sensitive narrow-band filtering effect. It was also found that the phase information of thermal emission from pears provides good metrics with which to identify quantitative information about both damage size and damage depth for pears. Additionally, a photothermal model was implemented to investigate the behavior of thermal waves on pears under convective conditions. Theoretical results were compared to experimental results. These results suggested that the proposed lock-in thermography technique and resultant phase information can be used to detect mechanical damage to fruit, especially in the early stage of bruising.

  4. Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen

    2012-11-01

    IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be

  5. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  6. Field test of infrared thermography applied to biogas controlling in landfill sites

    NASA Astrophysics Data System (ADS)

    Madruga, Francisco J.; Muñoz, Jaime M.; González, Daniel A.; Tejero, Juan I.; Cobo, Adolfo; Gil, José L.; Conde, Olga M.; López-Higuera, Jose M.

    2007-04-01

    The gases accumulated inside the landfill as result of the fermentation of Municipal Solid Waste (MSW) known as biogas, are taking into consideration all possible uses as direct transformation into electricity. The system for collecting, regulating and controlling the biogas must include all the necessary safety features where the biogas leakage presents a high impact. Infrared thermography can be use to detect gas leakages due to the differences in temperature between the gas and the immediate surroundings. This method is able to monitor a wide area of landfill sites, quickly. This technology will not be effective if the differences in temperature are not better than five degrees. This paper describes a field test conducted to study the limitations of the infrared thermography caused by weather conditions and the moment of day or/and season when the thermal images was captured. Pipelines, borders, cells, covers, slopes and leakage (hot spots) are studied and optimum conditions are defined.

  7. Quantitative analysis of pulse thermography data for degradation assessment of historical buildings

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Chiapparino, Antonella

    2015-06-01

    In the last decades, infrared thermography has been successfully applied to various materials and structures for the assessment of their state of conservation and planning suitable restoration works. To this aim, mathematical models are required to characterize thermal anomaly sources, such as detachments, water infiltration and material decomposition processes. In this paper, an algorithm based on the conservative finite difference method is used to analyse pulse thermography data acquired on an ancient building in the Pompeii archaeological site (Naples, Italy). The numerical study is applied to both broad and narrow elongated thermal anomalies. In particular, from the comparison between simulated and experimental thermal decays, the plaster thickness was characterized in terms of thermal properties and areas of possible future detachments, and moisture infiltration depths were identified.

  8. Evaluation of the diagnostic power of thermography in breast cancer using Bayesian network classifiers.

    PubMed

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.

  9. Evaluation of the diagnostic power of thermography in breast cancer using Bayesian network classifiers.

    PubMed

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182

  10. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers

    PubMed Central

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182

  11. Heat transfer measurements in ONERA supersonic and hypersonic wind tunnels using passive and active infrared thermography

    NASA Astrophysics Data System (ADS)

    Balageas, D.; Boscher, D.; Deom, A.; Gardette, G.

    Over the past few years, a major intellectual and technical investment has been made at ONERA to use data acquisition systems and data reduction procedures using an infrared camera as a detector under routine wind tunnel conditions. This allows a really quantitative mapping of heat transfer rate distributions on models in supersonic and hypersonic flows. Sufficient experience has now been acquired to allow us to give an overview of: (1) the systems and data reduction procedures developed for both passive and active methods; (2) typical results obtained on various configurations such as supersonic axisymmetrical flow around an ogival body (passive and active thermography), heat flux modulation in the reattachment zone of a flap in hypersonic regime, transitional heating on very slightly blunted spheroconical bodies in hypersonic flows, and materials testing in high-enthalpy hypersonic flow (passive thermography).

  12. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Tang, Qingju; Dai, Jingmin; Liu, Junyan; Liu, Chunsheng; Liu, Yuanlin; Ren, Chunping

    2016-07-01

    Quantitative detection of debonding defects' diameter and depth in TBCs has been carried out using pulsed infrared thermography technology. By combining principal component analysis with neural network theory, the Markov-PCA-BP algorithm was proposed. The principle and realization process of the proposed algorithm was described. In the prediction model, the principal components which can reflect most characteristics of the thermal wave signal were set as the input, and the defect depth and diameter was set as the output. The experimental data from pulsed infrared thermography tests of TBCs with flat bottom hole defects was selected as the training and testing sample. Markov-PCA-BP predictive system was arrived, based on which both the defect depth and diameter were identified accurately, which proved the effectiveness of the proposed method for quantitative detection of debonding defects in TBCs.

  13. Method of spectral subtraction of gas-phase Fourier transform infrared (FT-IR) spectra by minimizing the spectrum length.

    PubMed

    Kozlov, Denis; Besov, Alexey

    2011-08-01

    A new method of spectral subtraction for gas-phase Fourier transform infrared (FT-IR) spectra was developed for long-path gas measurements. The method is based on minimization of the length of the spectrum that results from subtracting the spectrum of an individual component of a gas mixture (water, CO(2), etc.) from the experimental spectrum of the mixture. For this purpose a subtraction coefficient (k(min)) is found for which the length of the resulting spectrum is minimized. A mathematical simulation with two Lorentzian absorption bands was conducted and the limits of application for the proposed method were determined. Two experimental examples demonstrate that a successful result could be achieved in the case when the subtrahend spectrum contains a number of narrow absorption bands (such as the spectrum of water vapor). PMID:21819781

  14. TOPICAL REVIEW: FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2005-12-01

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 °C) fast 128 × 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 µm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate

  15. Transmission thermography for inspecting the busbar insulation layer in thermonuclear experimental reactor

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zhang, Guang; Zhang, Xiaolong; Zeng, Zhi

    2014-11-01

    In Thermonuclear Experimental Reactor, Superconducting Busbar is used for current transmission between magnet coils and current leads. The work temperature of the Busbar is about 4K because of liquid helium via inside. The large temperature grad from 300K to 4K could lead to the defects and damages occur on the insulation layer, which is made of glass fiber and polyimide and has a big different thermal expansion coefficient compared with the metal inner cylinder. This paper aims at developing an infrared transmission non-destructive evaluation (NDE) method for inspecting the insulation layer of Superconducting Busbar; theoretical model of transient heat conduction under a continuous inner heat source for cylindrical structure is described in the paper; a Busbar specimen which is designed with three delamination defects of different depths is heated inside by pouring hot water and monitored by an infrared detector located outside. Results demonstrate excellent detection performance for delamination defects in the insulation layer by using transmission thermography, all of the three defects of different depths can be visualized clearly in the thermal images, and the deeper defect has a better signal contrast, which is also shown in the temperature difference between defects and sound area vs. time curves. The results of light pulse thermography is also shown as a comparison, and it is found that the thermal images obtained by the transmission thermography has a much better signal contrast than that of the pulse thermography. In order to verify the experiments, finite element method is applied to simulate the heat conduction in the Busbar under the continuous inside heating, and it is found that the simulated temperature vs. time and simulated temperature difference vs. time curves are basically coincident with the experimental results. In addition, the possibility of in-service inspection for Busbar insulation layer in ITER item is discussed.

  16. Line scanning thermography for rapid nondestructive inspection of large scale composites

    SciTech Connect

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-23

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in{sup 2} per 1 second, and has a resolution of 0.05x0.03 in{sup 2}. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  17. Active thermography for potato characterization

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen; Sun, Chih-Chen

    2008-03-01

    This paper describes the design of a semi-automated heating and scanning system and analytic method for potato characterization. Potatoes are heated using lamps in a heating chamber and then transferred on a movable fixture to an imaging chamber. A non-linear model was designed to predict which potatoes have excessive sugar defects and the model was evaluated with good results. Results from this research will benefit potato growers and manufacturers/producers of potato-based products such as chips and fries.

  18. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  19. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  20. Different Methods for Measuring Plasma Displacement in Tokamaks, Construction and Compensation of Continuous Coils in IR-T1 Tokamak

    SciTech Connect

    Tarkeshian, R.; Atyabi, S. M.; Ghoranneviss, M.; Salem, K.; Talebi Taher, A.; Khorshid, P.

    2008-03-19

    The measurement of current-carrying plasma column displacement is very important for plasma position control. Two methods for this purpose are introduced. In this paper, calculation and construction of these coils is explained. Multiple moment method has been used and derived for construction of sensing coils Also Fourier Transform has been used and derived for continuous coils. The comparison of their advantages are investigated. For IR-T1 Tokamak, Two Cosine coils and two Saddle Sine coils were designed and constructed, which have been placed diametrically around minor radius of torus. Then an electronic circuit was designed for adding and integrating the Cosine and Saddle Sine coils output with proper gain. The contribution of each coils in final output is calculated. For compensation of unwanted pickups voltage from the time varying fields each signal with adjustable gain is added to main signal, until removing the additional field effects. The final output holds good proportionality to H.D.

  1. Thermography in mass screening investigations of industrial workers

    NASA Astrophysics Data System (ADS)

    Chehter, A. I.; Ginsburg, L. I.; Traktinsky, A. G.

    1993-11-01

    The role of thermography in screening, directed to diagnose breast diseases, chronic tonsillitis, neurocirculatory dystonia, gall bladder dyskinesia, sinusitis, and to detect the character of influence of harmful factors on workers organisms is studied. The investigations demonstrate a possibility of a successful utilization of thermography in mass prophylactive examinations in order to diagnose these diseases, but the problem of breast tumors diagnostics demands the following investigations.

  2. Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets.

    PubMed

    Schmitz, A; Kiewnick, S; Schlang, J; Sikora, R A

    2004-01-01

    Thermography is a non-destructive method used to monitor pest and disease infestations, as it is related to changes in plant water status. Surface temperature differences of the crop canopy may be an indicator of nematode infestation as the parasitation of the root system reduces evaporation of leaves. To test the potential of high resolution digital thermography to detect Heterodera schachtii infestation, experiments using increasing nematode densities and different sugar beet varieties were conducted. From June to August 2003 the crop canopy temperature was measured with a thermal infrared camera from a helicopter. A significant correlation between canopy temperature and nematode density was observed with the susceptible cultivar Monza whereas the resistant cultivar Paulina did not show any correlation. Mean temperature comparison showed significant differences between the lowest infestation level (500 eggs and larvae/100 ml soil) and the highest infestation level (>1500 eggs and larvae/100 ml soil). At the beginning of the season canopy temperature differences between healthy and nematode infested sugar beets were higher (approximately 1 degree C) compared to later assessment dates when the water supply in the soil was limited. Since low and high nematode infestation could be clearly distinguished with the susceptible cultivar by airborne thermal images, thermography might be a useful tool for monitoring sugar beet fields. PMID:15759435

  3. Principal Components of Thermography analyses of the Silk Tomb, Petra (Jordan)

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Fort, Rafael

    2015-04-01

    This communication presents the results of an active thermography survey of the Silk Tomb, which belongs to the Royal Tombs compound in the archaeological city of Petra in Jordan. The Silk Tomb is carved in the variegated Palaeozoic Umm Ishrin sandstone and it is heavily backweathered due to surface runoff from the top of the cliff where it is carved. Moreover, the name "Silk Tomb" was given because of the colourful display of the variegated sandstone due to backweathering. A series of infrared images were taken as the façade was heated by sunlight to perform a Principal Component of Thermography analyses with IR view 1.7.5 software. This was related to indirect moisture measurements (percentage of Wood Moisture Equivalent) taken across the façade, by means of a Protimeter portable moisture meter. Results show how moisture retention is deeply controlled by lithological differences across the façade. Research funded by Geomateriales 2 S2013/MIT-2914 and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network

  4. An evaluation of the validity of thermography as a physiological measure of sexual arousal in a non-university adult sample.

    PubMed

    Kukkonen, Tuuli M; Binik, Yitzchak M; Amsel, Rhonda; Carrier, Serge

    2010-08-01

    Thermography is a promising technology for the physiological measurement of sexual arousal in both men and women. This study was designed to extend our previous college student thermography study findings to an older sample (M age = 37.05 years), add an anxiety control group to further examine the specificity of temperature change, and examine the relationship between genital temperature and a continuous measure of subjective sexual arousal. Healthy men (n = 40) and women (n = 39) viewed a neutral film clip after which they were randomly assigned to view one of four other videos: neutral (n = 20), humor (n = 19), anxiety provoking (n = 20) or sexually explicit (n = 20). Genital and thigh temperature were continuously recorded using a TSA ImagIR thermographic camera. Continuous and discrete reports of subjective sexual arousal were also obtained. Results supported the validity of thermography as a measure of sexual arousal: temperature change was specific to the genitals during the sexual arousal condition and was significantly correlated with subjective continuous and discrete reports of sexual arousal. Further development should assess the potential of thermography as a tool for the diagnosis and treatment evaluation of sexual arousal difficulties and for studying sex differences.

  5. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  6. Optically and non-optically excited thermography for composites: A review

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2016-03-01

    Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.

  7. Sulfur species in Asphaltene, Resin, and Oil Fractions of Crude Oils by XANES and IR Spectroscopy Methods

    NASA Astrophysics Data System (ADS)

    Kirtley, Sudipa

    2002-03-01

    XANES (X-ray Absorption Near-Edge Spectroscopy) method has been employed to elucidate the sulfoxide percentages in the resin and oil fraction of a particular crude oil, which is known to have a high sulfoxide content in the asphaltene fraction. This investigation is performed to determine whether the sulfoxide polar group is also a dominant sulfur form in the resin and the oil fractions of the same crude oil; typically, the oil fractions are non-polar. The asphaltene fraction, as well as the resin and oil fraction of another crude oil are systematically low in sulfoxide content. The IR results confirm the sulfoxide finding. This supports the view that the oxidation process probably took place within the earth formation. These sulfoxide results should be considered when comparing asphaltenes from different studies and samples, as the polar sulfoxides often determine the asphaltene fraction.

  8. Detection Method of Skin Region by Near-IR Spectrum Multi-Band

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro; Yamamoto, Kazuhiko; Kato, Kunihito; Andoh, Michinori; Kojima, Shinichi

    Many active safety technologies for the driver support system are developing. Most of the traffic accidents are caused by driver's inattentive or drowsy. We are developing a driver support system that protects from traffic accidents by these causes. Our purpose is to detect the driver's face region by using a camera. A lot of face detection methods are proposed, but there is not a technique addressing every environment inside the car. For example, skin color segmentation can not detect the skin region in the night, because it has to light up the driver by bright light. In this paper, we propose a skin detection method by the unique reflection characteristics of the materials. Our method is very simple algorithm. We developed a skin detection system, and confirmed effectiveness by the evaluation experiment in indoor environment, and showed the effectiveness by a driving experiment in the night.

  9. Modeling the IR Spectra of Acetaldehyde from a New Vibrational Configuration Interaction Method

    SciTech Connect

    Begue, Didier; Pouchan, Claude

    2007-12-26

    In this paper we present a new vibrational configuration interaction method known as a parallel vibrational multiple window configuration interaction P lowbar VMWCI which generates several VCI matrices and enables the variational treatment of medium size molecular systems. Application to acetaldehyde gives a new interpretation of the MIR experimental data.

  10. Identification of thermal properties distribution in building wall using infrared thermography

    NASA Astrophysics Data System (ADS)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    In the construction sector, most of the measurements carried out from IR camera devices are exploited in a qualitative way (e.g. observation of thermal bridges). However, unless a quantitative analysis is realized, it is not possible to assess the impact of the observed phenomena. Most of research efforts and proposed solutions to identify quantified thermal properties (e.g. U-values) have to be completed, adapted to the built environment and validated in experimental and real conditions to allow quantified assessment of materials thermal properties thanks to IR camera devices [1]. We still need several steps in terms of scientific and technical developments for such technological progress. The H2020 European Built2Spec research project (http://built2spec-project.eu/) aims at giving highlights on that. Heat transfer through the walls are generally model by 1D heat equation in the wall depth. The built is composed by a multilayer domain representing the construction process. In this context, the thermal parameters of the wall are piecewise constant space functions. We propose a methodology to recover the vector of the wall thermal properties (conductivity and capacity) from boundary measurements obtained from an IR camera. It formulates as an inverse problem where the unknown are sought as minimizers of a cost function evaluating the gap between the measures and the model response. This optimization problem is non linear, and we solve it with the Levenberg-Marquardt algorithm coupled with the conjugate gradient method [2-3]. To shorten the time of the identification process, we use the adjoint method coming from the control theory [4]. This method fasten the gradient computation by solving an associated model, named the adjoint model. We study the ability of the procedure to reconstruct internal wall constitution from different environmental conditions. Furthermore, we propose a controlled experimental test to evaluate the method in laboratory conditions. References

  11. New developments in IR photoelastic stress measurement methods for characterization of semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Xianghua

    Stress and strain play an essential role in determining the structural, electrical, and optical properties of semiconductor materials, and, ultimately, the semiconductor device performance. Many methods have been utilized to measure the stress in semiconductors. Among them infrared photoelasticity method is a promising one, which can be used both in the industrial characterization and scientific research. This thesis is an endeavor in this subject matter and will present our research results of studying the stress problems in semiconductor structures by using infrared photoelasticity method. In this thesis work, a novel low level birefringence detection (LLBD) system operating at 1150 nm was set up based on the photoelastic modulation techniques. The noise level of current LLBD system is about 0.03° and the maximum fluctuation of data in ten measurements is 0.05° and close to the noise level of system. With a slit confining the light, the spatial resolution of the system is 10 mum. Optical orientation and retardation can be simultaneously measured by this system, making the stress measurement more convenience than the traditional PE methods. These peculiar features make this system capable of investigating the details of stress distribution in semiconductor structures. The LLBD system was applied to measure the stress distributions in the substrates of SiO2/Si structure. Some deviations from the classical film theory were observed in our experiments. For example non-linear stress fields were observed in all samples whatever their process conditions are. Besides the locations of neutral axis (zero stress point) was not located at the depth of 2/3 thickness of the substrate from the interface as expected by the bi-metallic theory. To interpret these deviations, a theoretical analysis was given to investigate the problem of stress distribution in film/substrate structure. A series of solutions were deduced to modify the Stoney formula and bi-metallic strip theory

  12. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  13. IR spectrum of FHF- and FDF- revisited using a spectral method in four dimensions.

    PubMed

    Pérez-Hernández, Guillermo; González-Vázquez, Jesús; González, Leticia

    2012-11-26

    A four dimensional (4D) time-dependent calculation to obtain the first vibrational states of the hydrogen bifluoride ion, FHF(-), and its deuterated counterpart, FDF(-), has been performed using a spectral method in Cartesian coordinates. The corresponding potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The obtained values for the fundamental vibrational bands ν(1) = 589 cm(-1), ν(2) = 1305 cm(-1), and ν(3) = 1372 cm(-1) assigned to the symmetric stretch, bend, and asymmetric stretch modes, respectively (598, 943, and 972 cm(-1) for FDF(-), respectively) are in good agreement with available experimental and theoretical values. Selected overtones and mixed modes are also calculated. Infrared spectra have been simulated using the dipole approximation for two different polarization directions of the incident light.

  14. Evaluation of allergic response using dynamic thermography

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Rok, T.; Tatoń, G.

    2015-03-01

    Skin dynamic termography supplemented by a mathematical model is presented as an objective and sensitive indicator of the skin prick test result. Termographic measurements were performed simultaneously with routine skin prick tests. The IR images were acquired every 70 s up to 910 s after skin prick. In the model histamine is treated as the principal mediator of the allergic reaction. Histamine produces vasolidation and the engorged vessels are responsible for an increase in skin temperature. The model parameters were determined by fitting the analytical solutions to the spatio-temporal distributions of the differences between measured and baseline temperatures. The model reproduces experimental data very well (coefficient of determination = 0.805÷0.995). The method offers a set of parameters to describe separately skin allergic reaction and skin reactivity. The release of histamine after allergen injection is the best indicator of allergic response. The diagnostic parameter better correlates with the standard evaluation of a skin prick test (correlation coefficient = 0.98) than the result of the thermographic planimetric method based on temperature and heated area determination (0.81). The high sensitivity of the method allows for determination of the allergic response in patients with the reduced skin reactivity.

  15. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  16. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  17. Photothermal Thermography Applied to the Non-destructive Testing of Different Types of Works of Art

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Mouhoubi, K.; Szatanik-Perrier, G.; Vallet, J. M.; Detalle, V.

    2012-11-01

    In this article, various cases in helping to restore works of art by stimulated infrared thermography are presented. First, the method allows detecting old restorations found on a mural painting in the French senate. Then, it is demonstrated how the photothermal method enables determination of the underlying structure of the mural painting "The Apotheosis of Saint Bruno" in the Charterhouse of Villeneuve-lez-Avignon. Finally, the method allows locating separate canvas paintings on "Avenant de l'aurore" in the "Luxembourg" French Senate building.

  18. Stimulated infrared thermography applied to thermophysical characterization of cultural heritage mural paintings

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Nicolas, Jean-Louis; Mouhoubi, Kamel; Detalle, Vincent

    2012-11-01

    The purpose of this paper is to approach stimulated infrared thermography possibilities in terms of measuring longitudinal thermal diffusivity of mural paintings in situ. The measuring method principle is first submitted. It is based on temporal analysis of changes in the characteristic radius beams of spatial profiles of the photothermal signal, measured on the spot of the laser excitation. The feasibility of the method is demonstrated, thanks to a series of simulations. Lastly, the method enables to correctly estimate longitudinal thermal diffusivity in a test sample, and further in a fragment copy of "Saint Christophe" belonging to the Campana collection in the Louvre.

  19. Using infrared thermography to evaluate the injuries of cold-stored guava.

    PubMed

    Gonçalves, Bárbara Jordana; Giarola, Tales Márcio de Oliveira; Pereira, Daniele Fernanda; Vilas Boas, Eduardo Valério de Barros; de Resende, Jaime Vilela

    2016-02-01

    This study aimed to identify using the infrared (IR) thermography data the injuries of guavas during cooling and storage at different temperatures. Three experiments were performed at three different temperatures with one storage time. The first experiment was done with static air in a refrigerator at 5 °C, the second experiment was conducted in a tunnel with forced air at 10 °C, and the third experiment was conducted in an air conditioned environment at 20 °C. Mechanical injuries caused by the impact of a pendulum were induced on guava surfaces. The surface temperatures were obtained for bruised and sound tissues during cooling and storage using an Infrared (IR) camera. With thermography, it was possible to distinguish the injured tissues of the fruits that were unaffected at temperatures of 5, 10 and 20 °C in first hours of cooling. The results suggest that the storage of guava fruits at 5 °C in static air resulted in cold-induced injury, while storage at 20 °C resulted in an altered activity pattern. The stored guava fruits were analyzed for mass loss, firmness, color, total sugars, total pectin and solubility. The parameters values were lower during the forced-air cooling and storage at 5 and 10 °C. When stored at 20 °C, there was fruit maturation that caused tissue softening, which makes the fruits more susceptible to deterioration and thermographic readings showed opposite trends. PMID:27162386

  20. Use of modern infrared thermography for wildlife population surveys

    NASA Astrophysics Data System (ADS)

    Garner, Dale L.; Underwood, H. Brian; Porter, William F.

    1995-03-01

    A commercially available thermal-infrared scanning system was used to survey populations of several wildlife species. The system's ability to detect species of different sizes in varying habitats relative to conventional survey methods, to differentiate between species in the same habitat, and the influence of environtmental factors on operational aspects of employing this technology in the field were evaluated. Total costs for the surveys were approximately 0.36/ha. There were marked discrepancies in the counts of untrained observers and those from trained analysis. Computer-assisted analysis of infrared imagery recorded 52% fewer deer than were estimated from drive counts, and densities of moose were five times those estimated from conventional aerial methods. By flying concentric circles and using telephoto, detailed counts of turkeys and deer were possible. With the aid of computer-assisted analysis, infrared thermography may become a useful wildlife population survey tool. More research is needed to verify the actual efficiency of detection by combining aerial scans with ground truthing for a variely of species and habitals.

  1. Nondestructive evaluation of weld defects by infrared thermography

    SciTech Connect

    Satonaka, Shinobu; Ohba, Hiroyasu; Shinozaki, Kenya

    1995-12-31

    In order to clarify the applicability of infrared thermography to the nondestructive evaluation of weld defects, an infrared measurement was conducted on the welds with various artificial defects. Two heating methods, a moving gas flame and a Joule effect by electric current flow, were used for the fast and large area inspection with readily interpretable images of defects. Finite element analysis was also used for the theoretical analyses of beat conduction and electric current flow, together with the development of imaging technique for the evaluation of the shape and size of defects. As the results of infrared measurements and theoretical analyses, the selection of heating method and the acquisition of infrared images were important for the clear image and precise measurement of weld defects. As for the clear images, the Joule effect heating was useful for the detection of open-to-the-surface defects, while the moving gas flame heating was available to the inner defect parallel to the surface. It was also clarified that the types of defects were identified by the distribution of high and low temperature regions. In the measurement of defect size, defect edges were evaluated by the positions with maximum temperature gradient in the moving gas flame heating, and with minimum second derivative of temperature in the Joule effect heating. The effective images for the precise measurement of defect size were obtained from the ones immediately after current flow in the Joule effect heating, and just before the arrival of gas flame beneath the defect.

  2. Automated diagnosis of dry eye using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  3. Detection of localized fatigue damage in steel by thermography

    NASA Astrophysics Data System (ADS)

    Medgenberg, Justus; Ummenhofer, Thomas

    2007-04-01

    Fatigue damage of unalloyed steels in the high cycle regime is governed by localized cyclic plastic deformations and subsequent crack initiation. The extent of early microplastic deformations depends on the applied stress level, stress concentration at macroscopic notches, surface treatment, residual stresses etc. The onset of a nonlinear material response can be regarded as an early indicator of fatigue damage. During fatigue loading thermoelastic coupling and thermoplastic dissipation cause characteristic temperature variations in tested specimens which have been assessed by a highly sensitive infrared camera. A specialized data processing method in the time domain has been developed which allows to separate the different contributions to the measured temperature signal. In contrast to other methods - as e.g. measuring the rise of mean temperature during fatigue loading - the proposed methodology is based on measurements during the stabilized temperature regimen and offers very high spatial resolution of localized phenomena. Investigations have been made on mildly notched cylindrical and also on welded specimens. The results confirm the close relation between the local temperature signal and typical fatigue phenomena. The new methodology allows for a much better localization and quantification of effects as cyclic plasticity, crack initiation, crack growth etc. The following paper presents considerations and experimental results of an application of thermography to the local assessment of fatigue damage.

  4. On Field Inspection of Composite Pipes Using Pulsed Phase Thermography

    NASA Astrophysics Data System (ADS)

    Souza, M. P. V.; Almeida, R. M.; Rebello, J. M. A.; Soares, S. D.

    2010-02-01

    The pulsed phase thermography (PPT) is becoming a valuable tool on the detection and dimensioning of defects on composite materials. However, the most of the works that adopt the PPT needs very sophisticated equipment to thermal excitation of the specimen and data acquisition. This work uses the concepts of the PPT to inspect sections of fiberglass reinforced epoxy pipes used on adhesively bonded joints applied on the oil industry on extraction and transportation of fluids, using low cost and simple equipment to thermal excitation. A MatLab routine to data processing was used intending to achieve a fast and reliable non-destructive method to be performed on field. Amplitude and phase images are generated from the infrared images without any pre-processing technique revealing simulated defects that were impossible to be detected on the original data. A study of how deep the thermal wave can reach along the thickness of this kind of material is also performed trying to estipulate the limits of the technique aiming on the detection of problems on adhesive layers using two heat sources: halogen lamp and industrial air blower. Results support the possibility of implementing a reliable and low cost method of inspection on field to various values of pipe thicknesses found on plants of the oil industry.

  5. Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody.

    PubMed

    Schreiber, J; Blumenstock, T; Hase, F

    1997-11-01

    Since winter 1994/1995 the Moon has been used in addition to the Sun as an IR source of radiation to measure atmospheric absorption spectra with a Bruker IR Fourier transform spectrometer IFS 120M located near Kiruna, Sweden. A two-point radiometric calibration method with blackbody references was applied to lunar spectra in the long-wave detector channel to improve the accuracy of evaluation of the column amounts of different atmospheric trace gases. A new liquid-nitrogen-cooled high-emissivity blackbody without an entrance window is described that is used for this calibration method.

  6. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  7. Thermography applied acupuncture and qi-gong

    NASA Astrophysics Data System (ADS)

    Qin, Yuwen; Ji, Hong-Wei; Chen, Jin-Long; Li, Hong-Qi

    1997-04-01

    Thermographic technique can be used to measure temperature distribution of body surface in real-time, non-contact and full-field, which has been successfully used in medical diagnosis, remote sensing, and NDT, etc. The authors have developed a thermographic experiment that can be applied to inspect the effect of action of acupuncture and qi-gong (a system of deep breathing exercises) by measuring the temperature of hand and arm. The observation is performed respectively by thermography for the dynamic changes of temperature of the arm and hand after acupuncture therapy and qi-gong therapy. Thermographic results show that the temperature on the collateral channels increases markedly. In the meantime, it can be seen that the above therapies of Chinese medicine can stimulate the channel collateral system. This also contributes a new basis to the effect of action of the therapies of Chinese medicine. The work shows that thermographic technique is a powerful tool for research in Chinese medicine. In this paper, some thermal images are obtained from the persons treated with acupuncture and qi- gong.

  8. Imaging Cracks by Laser Excited Thermography

    NASA Astrophysics Data System (ADS)

    Schlichting, J.; Kervalishvili, G. N.; Maierhofer, Ch.; Kreutzbruck, M.

    2010-02-01

    During the last years active thermography is increasingly used in a number of NDT problems in production and maintenance. In this work we focus on the detection of vertical cracks starting at the surface, which is an important indication of structural failure. By using local thermal excitation it is possible to image anisotropies in the lateral diffusivity by recording the temporal temperature data with an infrared camera. The regional transient behaviour of temperature distribution then can provide quantitative information of the crack parameter. In doing so, we present an advanced technique for the determination of the crack depth. The experimental set-up is based on an Nd:YAG laser. The beam is focused on the test sample by using an optical scanner to create the required lateral heat flow. The time resolved temperature distribution is recorded with an infrared camera (InSb FPA, 3 to 5 μm) providing a frame rate of up to 500 Hz. In addition we report on numerical simulation to investigate the concept of local heat excitation for a quantitative estimation of crack parameters. The modeling also includes the influence of surface to surface radiation inside the crack. We obtained a good consistency between experimental and theoretical data.

  9. Medical applications of infrared thermography: A review

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Jayakumar, T.; Philip, John

    2012-07-01

    Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject.

  10. Physical interpretation and separation of eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Yin, Aijun; Gao, Bin; Yun Tian, Gui; Woo, W. L.; Li, Kongjing

    2013-02-01

    Eddy current pulsed thermography (ECPT) applies induction heating and a thermal camera for non-destructive testing and evaluation (NDT&E). Because of the variation in resultant surface heat distribution, the physical mechanism that corresponds to the general behavior of ECPT can be divided into an accumulation of Joule heating via eddy current and heat diffusion. However, throughout the literature, the heating mechanisms of ECPT are not given in detail in the above two thermal phenomena and they are difficult to be separated. Nevertheless, once these two physical parameters are separated, they can be directly used to detect anomalies and predict the variation in material properties such as electrical conductivity, magnetic permeability and microstructure. This paper reports physical interpretation of these two physical phenomena that can be found in different time responses given the ECPT image sequences. Based on the phenomenon and their behaviors, the paper proposes a statistical method based on single channel blind source separation to decompose the two physical phenomena using different stages of eddy current and thermal propagation from the ECPT images. Links between mathematical models and physical models have been discussed and verified. This fundamental understanding of transient eddy current distribution and heating propagation can be applied to the development of feature extraction and pattern recognition for the quantitative analysis of ECPT measurement images and defect characterization.

  11. FT-IR and FT-Raman spectra of 5-fluoroorotic acid with solid state simulation by DFT methods

    NASA Astrophysics Data System (ADS)

    Cuellar, A.; Alcolea Palafox, M.; Rastogi, V. K.; Kiefer, W.; Schlücker, S.; Rathor, S. K.

    2014-11-01

    FT-Raman and FT-IR studies of the biomolecule 5-fluoroorotic acid in the solid state were carried out. The unit cell found in the crystal was simulated as a tetramer form by density functional calculations. They were performed to clarify wavenumber assignments of the experimental observed bands in the spectra. Correlations with the molecule of uracil were made, and specific scale equations were employed to scale the wavenumbers of 5-fluoroorotic acid. Good reproduction of the experimental wavenumbers is obtained and the % error is very small in the majority of the bands. This fact confirms our simplified solid state model. The molecular structure was fully optimized using DFT and MP2 methods. The relative stability of both the syn and anti conformations was investigated, and the anti-form was found to be slightly more stable, by 7.49 kJ/mol at the MP2 level. The structures of all possible tautomeric forms were determined. The keto-form appeared as the most stable one. The NBO atomic charges and several thermodynamic parameters were also calculated.

  12. A technique for ghosting artifacts removal in scene-based methods for non-uniformity correction in IR systems

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Diani, Marco; Corsini, Giovanni

    2009-09-01

    In this work we analyze the problem of the ghosting artifacts coming out from non-uniformity correction (NUC) in infrared focal-plane array (IRFPA) imaging systems. We have employed a well-established least mean square (LMS) - based NUC technique which was first introduced by D.A. Scribner. Slow global motion and edges in the scene are the main responsible of the generated ghosting artifacts that can be very damaging especially in target detection and tracking applications. To mitigate the effects of ghosting we propose to replace the linear spatial filter of the analyzed NUC scheme with a non-linear one, known in the literature as bilateral filter, which is able to preserve edges. The proposed technique has been evaluated over an infrared (IR) image sequence with simulated fixed-pattern noise (FPN). A detailed analysis of the results has shown the advantages of the novel deghosting method in terms of accuracy of the calibration and quality of the corrected frames.

  13. Computer Assisted Thermography And Its Application In Ovulation Detection

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Shah, A. V.

    1984-08-01

    Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.

  14. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  15. Reconstruction of size and depth of simulated defects in austenitic steel plate using pulsed infrared thermography

    NASA Astrophysics Data System (ADS)

    Wysocka-Fotek, Olga; Oliferuk, Wiera; Maj, Michał

    2012-07-01

    In this paper the size and depth (distance from the tested surface) of defects in austenitic steel were estimated using pulse infrared thermography. The thermal contrast calculated from the surface distribution of the temperature is dependent on both these parameters. Thus, two independent experimental methods of defect size and depth determination were proposed. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature, whereas the defect depth was assessed from the dependence of surface thermal contrast vs. cooling time.

  16. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: a comparative study between different modeling methods.

    PubMed

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm(-1). Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.

  17. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods

    NASA Astrophysics Data System (ADS)

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.

  18. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing.

    PubMed

    Bai, Libing; Gao, Bin; Tian, Shulin; Cheng, Yuhua; Chen, Yifan; Tian, Gui Yun; Woo, W L

    2013-10-01

    Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.

  19. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing

    NASA Astrophysics Data System (ADS)

    Bai, Libing; Gao, Bin; Tian, Shulin; Cheng, Yuhua; Chen, Yifan; Tian, Gui Yun; Woo, W. L.

    2013-10-01

    Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.

  20. Dosimetric modeling of the microselectron high-dose rate 192Ir source by the multigroup discrete ordinates method.

    PubMed

    Daskalov, G M; Baker, R S; Rogers, D W; Williamson, J F

    2000-10-01

    The DANTSYS multigroup discrete ordinates computer code is applied to quantitatively estimate the absorbed dose rate distributions in the vicinity of a microSelectron 192Ir high-dose-rate (HDR) source in two-dimensional cylindrical R-Z geometry. The source is modeled in a cylindrical water phantom of diameter 20 cm and height 20 cm. The results are also used for evaluation of the Task Group 43 (TG-43) dosimetric quantities. The DANTSYS accuracy is estimated by direct comparisons with corresponding Monte Carlo results. Our 210-group photon cross section library developed previously, together with angular quadratures consisting of 36 (S16) to 210 (S40) directions and associated weights per octant, are used in the DANTSYS simulations. Strong ray effects are observed but are significantly mitigated through the use of DANTSYS's stochastic ray-tracing first collision source algorithm. The DANTSYS simulations closely approximate Monte Carlo estimates of both direct dose calculations and TG-43 dosimetric quantities. The discrepancies with S20 angular quadrature (55 directions and weights per octant) or higher are shown to be less than +/- 5% (about 2.5 standard deviations of Monte Carlo calculations) everywhere except for limited regions along the Z axis of rotational symmetry, where technical limitations in the DANTSYS first collision source implementation makes adequate suppression of ray effects difficult to achieve. The efficiency of DANTSYS simulations is compared with that of the EGS4 Monte Carlo code. It is demonstrated that even with the 210-group cross section library, DANTSYS achieves two-fold efficiency gains using the the S20 quadrature set. The potential of discrete ordinates method for further efficiency improvements is also discussed. PMID:11099199

  1. IR Asterisms

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2010-09-01

    Observing asterisms for photometric calibration provides a "happy medium" between observing single stars which areobservable from the ground but lack statistics, and star clusters which have excellent statistics but are too crowded to observe from the ground.Asterisms in the IR for calibration have been less available than in the optical, e.g., Landolt's standard fields.While ad-hoc asterisms for calibration could be formed from 2MASS calibration, the photometric precision of 2MASSis relatively low, 0.02-0.05, for the fainter stars, m=9-13, that can still be observed without saturation in WFC3-IR.However, IR monitoring of variable phenomena {e.g., AGN SNe, stellar variables} from the ground has produced calibration of stars in asterisms with m=9-13 with a relative uncertainty of 0.001 to 0.01 mag due to the high frequency of monitoring. We have selected 4 such asterisms to observe. Because the stars are bright we need to use subarrays of 64x64 or 128x128 to get read out short enough to avoid saturation. The observations are obtained in pairs of 3 close stars, i.e., 2x3=6 stars per orbit in F125W and F160W as well as a F555W full frame to verify astrometry. In all we expect to measure 24 stars with m=9 to 14. The goal is to provide 2 calibrations, an independent zeropoint and its uncertainty as well as a measure of count rate non linearity. For the latter, an expected CRNL over 2 dex {5 mag} is expected tobe 0.02 mag.

  2. Infrared thermography as a diagnostic tool to indicate sick-house-syndrome: a case-study

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1996-03-01

    Every third child and many adults in Sweden have allergic reactions caused by indoor environmental problems. A lot of buildings constructed during the building-boom period of 1950 - 1990 expose the sick-house-syndrome, due to built-in moisture problems and poor ventilation performance of the building. Leaky building construction, transport of humid air condensing on thermal bridges within the construction gives rise to a humid environment, and forms a base for a microbial deterioration process of organic materials, with emissions hazardous for human health. So far there are no universal and cost efficient techniques or methods developed which could be used to reveal the sick-house-syndrome. In this paper we present the results of a case-study of the sick-house-syndrome, and an investigation concept with a combination of different techniques and methods to detect and to map underlying factors that form the base for microbial activities. The concept includes mobile and indoor thermography, functional control of ventilation systems, tracer gas techniques for measurement of air flow exchange rate in different rooms, microbial investigation of emissions, field inspections within the building construction and the building envelope, and medical investigation of the health status of the people working in the building. Mobile thermography of the exterior facades has been performed with a longwave AGEMA THV 900, respectively THV 1000 infrared system, during the period December 1994 - June 1995, at different and similar weather and radiation conditions, and with the building pressurized at one accession. Indoor thermography has been performed with a shortwave AGEMA THV 470 system, for a selection of objects/surfaces with thermal deviations, indicated in thermograms from the different mobile thermographic surveys. Functional control was performed for the ventilation systems, and air flow rates were measured using tracer gas technique for a selection of rooms with different

  3. Identification of Impact Damage in Composite Laminates through Integrated Pulsed Phase Thermography and Embedded Thermal Sensors

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin Sampatrao

    This dissertation develops a methodology to identify impact damage in aerospace composite laminates using integrated pulsed phase thermography and fiber Bragg grating (FBG) sensors. Initially, a two-dimensional woven, carbon fiber epoxy laminate is used to calibrate the defect depth with blind frequency for the particular material system using pulsed phase thermography (PPT). The calibration specimen contains simulated defects in the form of polymer foam inclusions. The calibrated depth vs. blind frequency relation is then applied to specimens with barely visible impact damage due to low velocity impacts. The results demonstrate that the use of the polymer insert simulated defects, in contrast to drilled holes or inserts with higher thermal contrast, provides thermal phase shifts similar to that observed in the impacted specimens. Despite the differences between the simulated and impact damage (e.g. the irregular boundaries and thin nature of the delaminations), the minimum depth of delamination from the impacted surface and the extent of damage on the rear surface of the specimen calculated from the PPT images are shown to correspond well with those of visual observations. The next group of laminated composite specimens are fabricated with embedded FBG sensors to test the ability of the combined inspection method using pulsed phase thermography and FBG sensors to identify impact damage severity. Initially three sets of specimens containing a single FBG sensor at the mid-plane, along with data from previous studies, are used to optimize the distance of low velocity impact damage from the FBG sensor and also to optimize the FBG interrogator data acquisition rate. The results from these specimens show a wide scatter in the FBG sensor temperature measurements during cooling. Also, due to its low conductivity, specimen took long time to cool, increasing the inspection time. Therefore for the final specimen the FBG sensor data acquisition is performed in the heating

  4. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  5. Use of aerial thermography in Canadian energy conservation programs

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Brown, R. J.; Lawrence, G.; Barry, J. N.; James, R. B.

    1977-01-01

    Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined.

  6. Infrared thermography for CFRP inspection: computational model and experimental results

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique C.; Zhang, Hai; Morioka, Karen; Ibarra-Castanedo, Clemente; López, Fernando; Maldague, Xavier P. V.; Tarpani, José R.

    2016-05-01

    Infrared Thermography (IRT) is a well-known Non-destructive Testing (NDT) technique. In the last decades, it has been widely applied in several fields including inspection of composite materials (CM), specially the fiber-reinforced polymer matrix ones. Consequently, it is important to develop and improve efficient NDT techniques to inspect and assess the quality of CM parts in order to warranty airworthiness and, at the same time, reduce costs of airline companies. In this paper, active IRT is used to inspect carbon fiber-reinforced polymer (CFRP) at laminate with artificial inserts (built-in sample) placed on different layers prior to the manufacture. Two optical active IRT are used. The first is pulsed thermography (PT) which is the most widely utilized IRT technique. The second is a line-scan thermography (LST) technique: a dynamic technique, which can be employed for the inspection of materials by heating a component, line-by-line, while acquiring a series of thermograms with an infrared camera. It is especially suitable for inspection of large parts as well as complex shaped parts. A computational model developed using COMSOL Multiphysics® was used in order to simulate the inspections. Sequences obtained from PT and LST were processed using principal component thermography (PCT) for comparison. Results showed that it is possible to detect insertions of different sizes at different depths using both PT and LST IRT techniques.

  7. Defect Detection in Composite Coatings by Computational Simulation Aided Thermography

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Souza, M. P. V.; Rebello, J. M. A.

    2010-02-01

    Thermography is based on the measurement of superficial temperature distribution of an object inspected subjected to tension, normally thermal heat. This measurement is performed with a thermographic camera that detects the infrared radiation emitted by every object. In this work thermograph was simulated by COMSOL software for optimize experimental parameters in composite material coatings inspection.

  8. A protocol for analysing thermal stress in insects using infrared thermography.

    PubMed

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. PMID:26857985

  9. Study on the effective method to reduce the lens calibre of the un-cooled IR thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Dong, Li-quan; Jin, Wei-qi; Gao, Bo; Zhou, Xiao-xiao

    2007-09-01

    During the development of the research and the manufacture technical, the Infrared thermal imaging systems has developments advance rapidly. And its applied field has going deep into the space technology, industry, agriculture, medical, traffic and other fields from the national defense and military appliance. Especially in the application of the military, it has come into being a specialty IR System Engineering field. But in many important applications, the lens calibre of the IR thermal imaging systems often be made very large to advance the SNR of the systems. This increased the weight and the research cost of the whole system very much. Many research indicated that the main factor to affect the image quality of the IR systems is the fixed pattern noise (FPN) or spatial non-uniformity under the actual technical and manufacture level. If we using the effective dynamic self-adaptive non-uniformity correction algorithms for the IR system, and use the image enhancement technology simultaneity. We can advance the imaging quality greatly. With this plan, the correction image we got with large F number can receive the level that uncorrected image with 1 or 2 smaller F number. It means the lens calibre of the system will be reduced effectively. And the weight, the cubage and the research cost of the system will be reduced greatly. It will have most important value in the applied of the actual engineering.

  10. Investigation of defect characteristics and heat transfer in step heating thermography of metal plates repaired with composite patches

    NASA Astrophysics Data System (ADS)

    Daryabor, P.; Safizadeh, M. S.

    2016-05-01

    Nowadays, composite patches are widely used in different industries to repair damaged metal structures. Inspection of such repaired structures is always considered as a challenging task. Different thermography methods such as step heating are commonly used to inspect repaired structures. Some parameters such as defect features or heating procedure play major roles in defect detection. In this work, in order to investigate such effects, step heating thermography of an aluminum plate repaired with a composite patch is modeled and tested. The main goal of this study is to evaluate the effects of defect type (delamination and disbond), size and depth on the detection ability of the test. Moreover, regarding the heat transfer process obtained from the simulation, the appropriate heating procedure for inspecting the repaired metal structures is determined. To validate the simulation outputs, experimental results corresponding to the temperature variations are compared with those predicted from the simulation.

  11. IR temperature measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Berardi, P. G.; Carfagna, R.; Pierro, V.

    2002-06-01

    In this paper a technique for the evaluation of the dielectric constant of a sample placed inside a microwave oven and confined in a cylindrical box is proposed. The box acts as a waveguide so that a simple model for the propagating wave can be assumed. Since traditional techniques for temperature measurements cannot be applied in microwave heating, the IR thermography shows to be an useful tool for measuring the sample surface temperature. The measure of the surface temperature evolution in the sample along with application of a simple analytical model allows to obtain the dielectric constant of the sample as a function of chemical composition, temperature and frequency. Preliminary results are presented and discussed with reference to pure water.

  12. [Objective assessment of facial paralysis using local binary pattern in infrared thermography].

    PubMed

    Liu, Xulong; Hong, Wenxue; Zhang, Tao; Wu, Zhenying

    2013-02-01

    Facial paralysis is a frequently-occurring disease, which causes the loss of the voluntary muscles on one side of the face due to the damages the facial nerve and results in an inability to close the eye and leads to dropping of the angle of the mouth. There have been few objective methods to quantitatively diagnose it and assess this disease for clinically treating the patients so far. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Facial paralysis usually causes an alteration of the temperature distribution of body with the disease. This paper presents the use of the histogram distance of bilateral local binary pattern (LBP) in the facial infrared thermography to measure the asymmetry degree of facial temperature distribution for objective assessing the severity of facial paralysis. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results showed that the mean sensitivity and specificity of this method are 0.86 and 0.89 respectively. The correlation coefficient between the asymmetry degree of facial temperature distribution and the severity of facial paralysis is an average of 0.657. Therefore, the histogram distance of local binary pattern in the facial infrared thermography is an efficient clinical indicator with respect to the diagnosis and assessment of facial paralysis.

  13. Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Yang, Jinyeol; Hwang, Soonkyu; Sohn, Hoon

    2015-10-01

    This study proposes a new line laser lock-in thermography (LLT) technique for instantaneous inspection of surface cracks in semiconductor chips. First, a new line LLT system is developed by integrating a line scanning laser source, a high-speed infrared (IR) camera with a close-up lens, and a control computer. The proposed line LLT system scans a line laser beam onto a target semiconductor chip surface and measures the corresponding thermal wave propagation using an IR camera. A novel baseline-free crack visualization algorithm is then proposed so that heat blocking phenomena caused by crack formation can be automatically visualized and diagnosed without relying on the baseline data obtained from the pristine condition of a target semiconductor chip. The proposed inspection technique offers the following advantages over the existing semiconductor chip inspection techniques: (1) inspection is performed in a noncontact, nondestructive and nonintrusive manner; (2) the crack diagnosis can be accomplished using only current-state thermal images and thus past thermal images are unnecessary; and (3) crack detectability is significantly enhanced by achieving high spatial resolution for thermal images and removing undesired noise components from the measured thermal images. Validation tests are performed on two different types of semiconductor die chips with real micro-cracks produced during actual fabrication processes. The experiments demonstrate that the proposed line LLT technique can successfully visualize and detect semiconductor chip cracks with width of 28-54 μm.

  14. Using aerial infrared thermography to detect utility theft of service

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.; Lucas, R. Gillem

    2012-06-01

    Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.

  15. Multicolor IR emissive pixels

    NASA Astrophysics Data System (ADS)

    Lannon, J.; Grego, S.; Solomon, S.

    2007-04-01

    We have evaluated several methods for generating multi-color emission for IR scene projector applications. The baseline requirements we employed were the ability to simulate color temperatures in the range 300-3000 K, minimum radiance levels consistent with existing IR sensor requirements, 1000 Hz frame rates and manufacturability. The analysis led us to down select two independent approaches that are capable of meeting HWIL multicolor requirements. We describe and discuss each of the approaches, their expected performance as well as their limitations.

  16. Pulse thermography for quantitative nondestructive evaluation of sound, de-mineralized and re-mineralized enamel

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Sharp, Nathan; Adams, Douglas

    2012-04-01

    Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.

  17. Investigation of the use of thermography for research and clinical applications in pregnant women

    NASA Astrophysics Data System (ADS)

    Topalidou, Anastasia; Downe, Soo

    2016-03-01

    Background: The possibility of using thermal imaging, as a non-invasive method, in medicine may provide potential ability of advanced imaging. Objective: The conduction of a preliminary study in healthy non-pregnant females in order to investigate the imaging ability of thermography and its implementation; and to determine hot and cold areas in order to create a "map" of temperature distribution of the abdomen and the torso. Methods: Participants were 18-45 years old non-pregnant women (n = 10), who were measured at 4 different distances. Two thermal imaging cameras and their corresponding software were used to measure abdomen, low back, left and right side of the torso. Results: There were no statistically significant differences in the mean values of the exported temperatures according the distance and the angle between the camera and the subject. The inferior part of the rectus abdominis muscle recorded the coldest zone and the umbilicus appeared as the most prominent hot spot. Conclusions: Thermography shows to be a potential non-invasive technique offering new options in the evaluation of pregnant and laboring women.

  18. Detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Sastry, O. S.; Gupta, R.

    2016-01-01

    The paper presents a fast and efficient method for the detection and characterisation of delamination in photovoltaic (PV) modules by using active infrared thermography approach. A discrete part of PV module was irradiated by step heating and its thermal image sequence was used to detect and analyse delamination. Different types of heating source for thermal excitation for this application have been studied. An electro-thermal model was developed to simulate the active thermography approach for the characterisation of delamination in PV module by equivalent resistance-capacitance (RC) network using a circuit simulator. This simulation approach was used to estimate the extent of delamination in the module and to determine the optimum parameters for the characterisation of delamination. Different applications based on front and backsides of heating the module were also proposed in this paper. The proposed method has the potential to be employed for the quality check of PV modules during inline production as well as for the predictive maintenance of outdoor PV plants.

  19. Numerical analysis of angular defects in bent plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDT) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding angular cracks, fundamental knowledge about the induced current density distribution in the component under test is required. Further, this information enables us to find the amount of heat produced at those locations and how it diffuses to the surface. This paper describes simulation work done for cracks set at an angle to the surface in flat and bent aluminum plates. The investigation is implemented by the simulating transient thermal distribution for 2D angular cracks via finite element package COMSOL multi-physics with AC/DC module and general heat transfer. At crack edges, induced current is seen concentrated thus indicating a localized high heating in those areas relative to other regions. A numerical study was also carried out by varying parameters like crack angle (0°, 22.5°, 45°, 67.5°) and crack length (0.6mm, 1.2mm, 1.8mm) the transient thermal distributions were compared for different plate bend angles (180°, 120°, 90°, 60°, 30°). TBET method was found well suited for the detection of service induced cracks, usually caused by either rolling contact fatigue or stress corrosion, with a high degree of sensitivity.

  20. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  1. Measurement of Three-Dimensional Anisotropic Thermal Diffusivities for Carbon Fiber-Reinforced Plastics Using Lock-In Thermography

    NASA Astrophysics Data System (ADS)

    Ishizaki, Takuya; Nagano, Hosei

    2015-11-01

    A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.

  2. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  3. Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review

    PubMed Central

    John, Hannah Eliza; Niumsawatt, Vachara; Whitaker, Iain S.

    2016-01-01

    Background Infrared thermography (IRT) has become an increasingly utilized adjunct to more expensive and/or invasive investigations in a range of surgical fields, no more so than in plastic surgery. The combination of functional assessment, flow characteristics and anatomical localization has led to increasing applications of this technology. This article aims to perform a systematic review of the clinical applications of IRT in plastic surgery. Methods A systematic literature search using the keywords ‘IRT’ and ‘dynamic infrared thermography (DIRT)’ has been accomplished. A total of 147 papers were extracted from various medical databases, of which 34 articles were subjected to a full read by two independent reviewers, to ensure the papers satisfied the inclusion and exclusion criteria. Studies focusing on the use of IRT in breast cancer diagnosis were excluded. Results A systematic review of 29 publications demonstrated the clinical applications of IRT in plastic surgery today. They include preoperative planning of perforators for free flaps, post operative monitoring of free flaps, use of IRT as an adjunct in burns depth analysis, in assessment of response to treatment in hemangioma and as a diagnostic test for cutaneous melanoma and carpal tunnel syndrome (CTS). Conclusions Modern infrared imaging technology with improved standardization protocols is now a credible, useful non-invasive tool in clinical practice. PMID:27047781

  4. Inspection of disbonds in multilayer dissimilar metal structure using lock-in thermography.

    PubMed

    Zhou, Zhenggan; Zhao, Hanxue; Sun, Guangkai; He, Pengfei; Fan, Jin; Li, Gen

    2016-06-01

    This paper reports the characterization of disbonds between a steel plate and a lead plate on the surface of the lead using lock-in thermography. Based on the photothermal model, the excitation frequency of the bonding specimen with the steel plate and the lead plate is optimized. A lock-in thermography testing system is established to inspect the specimen. The Fourier transform method is used to process the infrared image sequences. To improve the signal-to-noise ratio (SNR), a fuzzy c-means (FCM) algorithm is used to process the phase matrix. The influence of number of clusters on the processing results is researched, and the optimal value of clusters number is obtained. The shearing phase technique is used to evaluate the size of the disbonds quantitatively. The measurement results of the artificial disbonds in the specimen show good agreement with the actual values. The results prove that FCM is effective in enhancing the SNR of the phase image, which makes it feasible for the quantitative determination of defect size by the shearing phase technique. PMID:27411208

  5. Transient-spatial pattern mining of eddy current pulsed thermography using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Gao, Bin; Tian, Guiyun; Ren, Wenwei; Woo, Wai Lok

    2014-07-01

    Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT & E) technique, which uses hybrid eddy current and thermography NDT & E techniques that enhances the detectability from their compensation. Currently, this technique is limited by the manual selection of proper contrast frames and the issue of improving the efficiency of defect detection of complex structure samples remains a challenge. In order to select a specific frame from transient thermal image sequences to maximize the contrast of thermal variation and defect pattern from complex structure samples, an energy driven approach to compute the coefficient energy of wavelet transform is proposed which has the potential of automatically selecting both optimal transient frame and spatial scale for defect detection using ECPT. According to analysis of the variation of different frequency component and the comparison study of the detection performance of different scale and wavelets, the frame at the end of heating phase is automatically selected as an optimal transient frame for defect detection. In addition, the detection capabilities of the complex structure samples can be enhanced through proper spatial scale and wavelet selection. The proposed method has successfully been applied to low speed impact damage detection of carbon fibre reinforced polymer(CFRP) composite as well as providing the guidance to improve the detectability of ECPT technique.

  6. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    NASA Astrophysics Data System (ADS)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  7. Non-destructive testing of composite materials by means of active thermography-based tools

    NASA Astrophysics Data System (ADS)

    Lizaranzu, Miguel; Lario, Alberto; Chiminelli, Agustín; Amenabar, Ibán

    2015-07-01

    Infrared analysis tools are nowadays widely used for the non-destructive testing of components made up in composite materials, belonging to many different industrial sectors. Being a non-contact method, its capability for the inspection of large areas in short periods of time justifies the great number of works and technical studies that can be found in this field. The growing interest in the technique is also supported by the development, during recent years, of increasingly powerful equipment and data analysis tools. In order to establish a base of knowledge to assist defect identification in real components inspections, the design and manufacturing of inspection samples including controlled defects, is a frequently used strategy. This paper deals with the analysis, by means of transient active thermography, of a set of inspection patterns made out of different composite materials and configurations that can be found in the wind turbine blade manufacturing industry. The design and manufacturing of these patterns are described, including different types of representative defects, stack configurations and composite manufacturing techniques. Reference samples are then inspected by means of active thermography analysis tools and the results obtained are discussed.

  8. Toward understanding the complex mechanisms behind breast thermography: an overview for comprehensive numerical study

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhan, Wang; Loew, Murray H.

    2011-03-01

    The abnormal thermogram has been shown to be a reliable indicator of a high risk of breast cancer. Nevertheless, a major weakness of current infrared breast thermography is its poor sensitivity for deeper tumors. Numerical modeling for breast thermography provides an effective tool to investigate the complex relationships between the breast thermal behaviors and the underlying patho-physiological conditions. We have developed a set of new modeling techniques to take into account some subtle factors usually ignored in previous studies, such as gravity-induced elastic deformations of the breast, nonlinear elasticity of soft tissues, and dynamic behavior of thermograms. Conventional "forward problem" modeling cannot be used directly to improve tumor detectability, however, because the underlying tissue thermal properties are generally unknown. Therefore, we propose an "inverse problem" modeling technique that aims to estimate the tissue thermal properties from the breast surface thermogram. Our data suggest that the estimation of the tumor-induced thermal contrast can be improved significantly by using the proposed inverse problem solving techniques to provide the individual-specific thermal background, especially for deeper tumors. We expect the proposed new methods, taken together, to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis, and treatment, of breast cancer.

  9. Developing written inspection procedures for thermal/infrared thermography

    SciTech Connect

    Snell, J.

    1996-12-31

    Written inspection procedures are essential to acquiring valid data on a repeatable basis. They are also vital to the safety of the thermographer, and may, for that reason alone, be required by a company. Many thermographers are working with no written procedures. To date only a few of the necessary procedures have been developed by recognized standards organizations. The lack of procedures is limiting the use of thermography. Where thermography is being used without them, results are often less than optimum. This paper will (1) survey existing procedures and standards; (2) discuss current efforts by standards organizations to develop standards and procedures; and (3) present a general methodology from which written inspection procedures can be developed for many thermographic inspections.

  10. International standards pertaining to thermography practices, training and certification

    NASA Astrophysics Data System (ADS)

    West Åkerblom, Lisa

    2008-03-01

    American, European and International societies establish standards for individuals and companies within the field of infrared thermography. Historically addressing non-destructive testing (NDT) applications and personnel, standards exist and are being developed within the fields of condition monitoring (CM) and building diagnostics. Incorrect reference to or application of standards and guidelines create widespread market confusion. What type of claim can be made against which standards? Does the standard apply to a company or an individual? To what or whom is the standard intended? Does reference to a standard guarantee compliance or imply quality? How does one become educated or involved in standards? An overview of international standards within the field of thermography (with brief reference to recognizable guidelines and standards such as ASNT SNT-TC-1A and CEN 473), their status and application will be presented.

  11. Efficiency of thermography in the study of hydrological connectivity

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent; Burgeon, Victor; Triquet, Johan; Tuerlinck, Manon; Vaelen, Guillaume; Leemans, Vincent; Degré, Aurore

    2016-04-01

    Hydrologic connectivity is an emerging concept which permits deeper understanding of catchments behavior. However, the measurements of functional connectivity is complex and still needs new developments in order to approach the « dynamic » part of the story. This study aims at assessing the efficiency of thermography to analyze hydrologic connectivity in an agricultural catchment in Belgium (loamy soils). Tests have been performed on experimental tubs at first and on field at second. Under controlled conditions, hot milk was spread on an experimental tub with bare soil and grass. The hot milk permits to compare color tracer with thermic one. The results are quite good. The binarization of pictures from usual camera and from thermic one gives similar percentage of runoff coverage at same locations. The mean difference is about 8% for bare soils and 10% for planted grass. There is a slight overestimation with thermic camera because of time delay of soil cooling after milk passing. In the same time in the planted grass, there are some runoff pixels which are hidden by vegetation. On field, blue colored water was used to simulate a rainfall on a field covered with mustard and on the same field without any coverage. Where runoff flows, the soil appears warmer because of heat extracted by water in the soil. The results comparing visual and thermic pictures are more nuanced. The mean difference reaches 30% on bare soil. Indeed, (i) the rainfall drops seem to hide the runoff during the rain; (ii) the vegetation density (mustard) is quite a problem for runoff detection. However, the difference between successive time pictures permits to distinguish flow paths easily. In conclusion, thermography stands as a good alternative for connectivity study. It's obviously a preliminary study which gives some indications of the possible use of thermography. At present, we are testing real rainfalls (different types) with different camera's positions and different land use (different

  12. Combined use of terrestrial laser scanning and IR thermography applied to a historical building.

    PubMed

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2014-12-24

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.

  13. Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building

    PubMed Central

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2015-01-01

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques. PMID:25609042

  14. Sportswear textiles emissivity measurement: comparison of IR thermography and emissometry techniques

    NASA Astrophysics Data System (ADS)

    Bison, P.; Grinzato, E.; Libbra, A.; Muscio, A.

    2012-06-01

    Three sportswear textiles are compared, one normal and two 'special' with Ag+ ions and Carbon powder added, with different colors. The emissivity of the textiles has been measured to determine if it is increased in the 'special' textiles with respect to the normal one. The test implied some non-standard procedure due to the semitransparent nature of the textiles, in comparison with the normal procedure that is commonly used on opaque surfaces. The test is also carried out by a standard emissometry technique, based on a comparative approach with reference samples having known thermal emissivity. The results are compared and discussed.

  15. IR Windstreaks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    This infrared image shows windstreaks in the region between Gordii Dorsum and Amazonis Mensa.

    Image information: IR instrument. Latitude -15.8, Longitude 215 East (145 West). 97 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Applications of the thermography in the animal production

    NASA Astrophysics Data System (ADS)

    Piñeiro, Carlos; Vizcaino, Elena; Morales, Joaquín.; Manso, Alberto; Díaz, Immaculada; Montalvo, Gema

    2015-04-01

    Infrared thermography is a working technology for over decades, which have been applied mainly in the buildings. We want to move this use to the animal production in order to help us to detect problems of energy efficiency in the facilities preventing, for example, the animal's welfare. In animal production it is necessary to provide a suitable microclimate according to age and production stage of the animals. This microclimate is achieved in the facilities through the environment modification artificially, providing an appropriate comfort for the animals. Many of the problems detected in farms are related to a poor environmental management and control. This is where infrared thermography becomes an essential diagnostic tool to detect failures in the facilities that will be related with health and performance of the animals. The use of this technology in energy audits for buildings, facilities, etc. is becoming more frequent, enabling the technician to easily detect and assess the temperature and energy losses, and it can be used as a support to draft reports and to transmit the situation to the owner in a visual format. In this way, both will be able to decide what improvements are required. Until now, there was not an appropriate technology with affordable prices and easy to manage enough in order to allow the use of the thermography like a routine tool for the diagnostic of these problems, but currently there are some solutions which are starting to appear on the market to meet the requirements needed by the industry.

  17. Infrared thermography system on DIII-D

    SciTech Connect

    Petrie, T.W. ); Hill, D.N.; Baptista, J.; Brown, M. )

    1990-10-01

    Six infrared cameras measure temperature changes on the protective graphite armor inside the DIII-D vacuum vessel. Simultaneous time dependent temperature measurements are made on armor tiles located on the centerpost and divertor regions, and on both outboard limiters. The nearly-complete poloidal coverage is useful in measuring both the plasma heat flux distributions inside the vessel and the plasma power balance. Spatial resolution of each camera system is {approx lt}1 cm, while the minimum resolvable time is 125 {mu}sec. Data from the IR TV systems is recorded on video tape, and is post-processed serially, using an image processor with an AT-compatible microcomputer. The processing system controls all VCRs, interprets DIII-D timing pulses, digitizes video data in the pre-determined regions of interest, averages digitized signals to reduce noise, and constructs data files which are then stored as part of the permanent shot record.

  18. Non-destructive testing of works of art by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Candoré, J. C.; Bodnar, J. L.; Detalle, V.; Grossel, P.

    2012-02-01

    In this work, we present various examples of assistance to the restoration of works of art by stimulated infrared thermography. We show initially that the method allows the detection of delamination located in mural paintings, such as in the "Saint Christophe" of the Campana collection of the Louvre French museum. We show then that it also makes it possible to detect delaminations or galleries of worms in marquetries. We show in a third stage that it provides for the detection of detachment of grayness in stained glasses. We show in a fourth stage that it allows the visualization of shards or metal inserts located in a Greek "panathénaque" amphora of the French National museum of the Ceramics of Sevres. We show finally, that the method permits the detection of a crack located in an ovoid vase of the same French National museum of the Ceramics of Sevres.

  19. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    PubMed

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples.

  20. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    PubMed

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. PMID:27006022

  1. Vibration characteristics measurement of beam-like structures using infrared thermography

    NASA Astrophysics Data System (ADS)

    Talai, S. M.; Desai, D. A.; Heyns, P. S.

    2016-11-01

    Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.

  2. Investigation of factors affecting backside hotspot localization in infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Koh, Nicholas Chiu Yen; Sim, Kok Swee; Hoe, Tiong Min

    2015-07-01

    Infrared lock-in thermography (IR-LIT) is a fault localization technique that serves the purpose of detecting a local heat source or hotspot emitted by the faulty area. Performing backside hotspot localization overcomes the limitation during frontside hotspot localization, especially for shorted areas that emit a low heat source. In order to produce better hotspot localization from the package backside, it is important to study more of the factors affecting backside hotspot localization, including the power settings of the device, the lock-in frequency, and the die thickness of the packages. Power packages are inspected using a tool with varying power and frequency settings. The results are collected by observing the size of the hotspot and by recording the time taken for the hotspot to appear. To investigate the die thickness, the die surface is grinded from the backside of the die and the thickness of the die was measured using x-rays. The relationship between the power settings, the frequency settings, and the die thickness does show significant changes to the hotspot size and the time taken to generate a hotspot.

  3. Using lock-in infrared thermography for the visualization of the hand vascular tree

    NASA Astrophysics Data System (ADS)

    Bouzida, Nabila; Bendada, Abdel Hakim; Piau, Jean-Marc; Akhloufi, Moulay; Maldague, Xavier; Raymond, Mathieu

    2008-03-01

    An imaging technique of the hand vein tree is presented in this paper. Using the natural human circulatory system and a controlled armband pressure around the arm, a lock-in thermography technique with an internal excitation is carried out. Since the stimulation frequency is inversely proportional to the inspection depth, the subcutaneous layer requires the use of a very slow frequency. Thus, a sawtooth waveform is preferred to minimize the duration of the pressure applied to the armband during the experiment. A frequency of approximately 0.03 Hz and a pressure range between 100 and 140 mmHg, according to the diastolic and systolic blood pressure, are used as stimulation. Then, dorsal hand amplitude and phase images are obtained with IR_view (Klein, 1999), a tool specifically designed to analyze infrared images. The hand vein structure is thermally mapped by an infrared camera operating in the middle wavelength infrared range (MWIR) at room temperature. Parasitic frequencies are avoided by keeping the hand fixed. The resulting images show a gradient of temperature between surrounding tissues and the back-of-hand veins. The vascular signature segmentation is extracted from the amplitude and phase images by using a Fast Fourier Transform image processing technique. This work could be used for vein localization for perfusion or for the early diagnosis of vein diseases such as primitive varicose and deep vein thrombosis (DVT). A hand vein signature database for identification purposes is also possible.

  4. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    NASA Astrophysics Data System (ADS)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  5. Use of thermography in testing skin creams

    NASA Astrophysics Data System (ADS)

    Anttonen, Hannu; Kauppinen, Timo T.; Lehmuskallio, Eero; Rintamaki, Hannu

    1994-03-01

    The aim of the study was to test the effect of skin creams and their components in windy (3 m/s) and cold (-15 degree(s)C) conditions on face temperature and heat flux. The tests were carried out in a climatic chamber with 18 persons sitting in front of the opening of the wind tunnel, the wind directed against the face. Skin temperatures were measured from 4 points on both sides of the face with thermistors and the heat fluxes were measured using heat flux sensors on both cheeks. Also the ambient temperature and wind were registered. In addition to these measurements an IR thermal scanner was also used to measure the spatial and temporal distribution of temperature variation on the face during the exposure. The results were continuously recorded on VHS-video tape. Using still pictures from recorded material the area temperature of the cheek was measured, which described the mean temperature of the cheek. Test periods were 30 minutes and the same test subjects were not used until 48 h after the previous cold exposure. The test persons were young (20 - 30 years) healthy male persons. The total number of tests was 38.

  6. Depth-Penetrating Luminescence Thermography of Thermal- Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey

    2005-01-01

    A thermographic method has been developed for measuring temperatures at predetermined depths within dielectric material layers . especially thermal-barrier coatings. This method will help satisfy a need for noncontact measurement of through-the-thickness temperature gradients for evaluating the effectiveness of thermal- barrier coatings designed to prevent overheating of turbine blades, combustor liners, and other engine parts. Heretofore, thermography has been limited to measurement of surface and near-surface temperatures. In the thermographic method that is the immediate predecessor of the present method, a thermographic phosphor is applied to the outer surface of a thermal barrier coating, luminescence in the phosphor is excited by illuminating the phosphor at a suitable wavelength, and either the time dependence of the intensity of luminescence or the intensities of luminescence spectral lines is measured. Then an emissivity-independent surface-temperature value is computed by use of either the known temperature dependence of the luminescence decay time or the known temperature dependence of ratios between intensities of selected luminescence spectral lines. Until now, depth-penetrating measurements have not been possible because light of the wavelengths needed to excite phosphors could not penetrate thermal-barrier coating materials to useful depths. In the present method as in the method described above, one exploits the temperature dependence of luminescence decay time. In this case, the phosphor is incorporated into the thermal-barrier coat at the depth at which temperature is to be measured. To be suitable for use in this method, a phosphor must (1) exhibit a temperature dependence of luminescence decay time in the desired range, (2) be thermochemically compatible with the thermal-barrier coating, and (3) exhibit at least a minor excitation spectral peak and an emission spectral peak, both peaks being at wavelengths at which the thermal-barrier coating is

  7. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  8. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  9. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion.

    PubMed

    Meisel, T; Moser, J; Fellner, N; Wegscheider, W; Schoenberg, R

    2001-03-01

    A method for the determination of low Ru, Pd, Re, Os, Ir and Pt abundances in geological reference materials by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion in a high pressure asher (HPA-S) is presented. The digestion technique is similar to that using Carius tubes but easier to handle and reaches higher temperatures. Osmium can be determined as OsO4 with ICP-MS directly after digestion through a sparging technique. The remaining elements are preconcentrated by means of anion column chromatography. The resin is digested directly without elution leading to high yields but this causes problems if Zr is present at higher levels in the silicate rich materials. The analytical results for international platinum group element (PGE) reference materials, chromitite CHR-Bkg, basalt TDB-1 and gabbro WGB-1, are presented and compared with literature data, demonstrating the validity of the described method. Although higher in concentration, PGEs determined for reference material WGB-1 were worse than for TDB-1 indicating a more inhomogeneous distribution of the platinum group mineral phases. The low PGE abundance chromitite standard, CHR-Bkg, is likely to be homogeneous for Ru, Re, Os and Ir and is recommended as a reference material for the study of chromitites. Detection limits (3s x total procedure blank) range from 0.012 ng (Re and Os) to 0.77 ng (Pt), which could be further improved by applying higher quality acids.

  10. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion.

    PubMed

    Meisel, T; Moser, J; Fellner, N; Wegscheider, W; Schoenberg, R

    2001-03-01

    A method for the determination of low Ru, Pd, Re, Os, Ir and Pt abundances in geological reference materials by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion in a high pressure asher (HPA-S) is presented. The digestion technique is similar to that using Carius tubes but easier to handle and reaches higher temperatures. Osmium can be determined as OsO4 with ICP-MS directly after digestion through a sparging technique. The remaining elements are preconcentrated by means of anion column chromatography. The resin is digested directly without elution leading to high yields but this causes problems if Zr is present at higher levels in the silicate rich materials. The analytical results for international platinum group element (PGE) reference materials, chromitite CHR-Bkg, basalt TDB-1 and gabbro WGB-1, are presented and compared with literature data, demonstrating the validity of the described method. Although higher in concentration, PGEs determined for reference material WGB-1 were worse than for TDB-1 indicating a more inhomogeneous distribution of the platinum group mineral phases. The low PGE abundance chromitite standard, CHR-Bkg, is likely to be homogeneous for Ru, Re, Os and Ir and is recommended as a reference material for the study of chromitites. Detection limits (3s x total procedure blank) range from 0.012 ng (Re and Os) to 0.77 ng (Pt), which could be further improved by applying higher quality acids. PMID:11284333

  11. Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.

  12. The use of thermography in energy performance of buildings-directive (EPBD)-applications

    NASA Astrophysics Data System (ADS)

    Kauppinen, T.

    2009-05-01

    EPBD-directive has taken into the use in European Union Countries. In Finland, in connection with the directive and with harmonization of building codes, the building codes dealing with insulation and energy use has been renewed. At the first time there is a requirement of energy efficiency calculations. Energy efficiency is connected with energy labeling. Also first time there are now prerequisites for air tightness of buildings. These new challenges have created a boom of increased quality control needs in construction companies, including different verification methods. The use of thermography and air-tightness test (blower door tests) has been exploited by increasing speed. The interpretation of result will be a growing problem, even lot of work has been done e.g. in certification procedure of building thermographers. In this presentation some results of multi-storey apartment houses and other targets will be presented, and discussion about the problems which may occur in the future.

  13. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  14. Thermal performance of windows by means of thermography and heat-flux meters

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo T.

    2002-03-01

    The replacement of windows is the most common renovation measure in Finland. There are also problems in new buildings especially with new thin light metal-framed windows, even though the U-value of the pane would be acceptable. The minor defects in the installation may cause IAQ-problems - because of seam leaks and thermal bridges. There is no general procedure for condition survey of windows based on measurements. In this paper a procedure for testing windows in in-situ conditions is presented based on case studies. Thermal performance of windows can be measured using thermography and supporting methods, like heat-flux measurements and air leak tests. Even though the absolute results may include interfering factors, we can compare the windows with each other (depending on the conditions) and make decisions on the quality of the installation work and the thermal performance of windows.

  15. Comparison of luminescence imaging and illuminated lock-in thermography on silicon solar cells

    NASA Astrophysics Data System (ADS)

    Kasemann, Martin; Schubert, Martin C.; The, Manuel; Köber, Mariana; Hermle, Martin; Warta, Wilhelm

    2006-11-01

    Spatially resolved electroluminescence (EL) and photoluminescence (PL) images of solar cells are compared to spatially resolved power loss images obtained by illuminated lock-in thermography (ILIT). A significant difference is shown for a solar cell with shunts, while series resistance and charge carrier recombination cause only minor differences in the images. The PL image of a solar cell with shunts appears highly blurred in the shunted region. The origin of this effect is discussed, and a circuit simulation with an appropriate solar cell model is performed. The authors conclude that the blurring of shunted regions is inherent in the method of EL/PL imaging and that ILIT is advantageous for localizing shunts.

  16. Determination of the dynamics of temperature variation in a model object by acoustic thermography

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Kazanskiĭ, A. S.; Mansfel'D, A. D.; Sharakshané, A. S.

    2008-07-01

    An experiment on monitoring the dynamics of internal temperature variation in a model object by the acoustic thermography method is carried out. The measurements were performed in a cell filled with an aqueous solution of glycerol, into which a plasticine object was placed. Thermal acoustic radiation of the object was measured in the course of its heating and cooling. Two bars of acoustic thermometers positioned on two sides of the object were used for this purpose. The results of measurements allowed the reconstruction of the dynamics of the varying two-dimensional distribution of in-depth temperature. The position of the heated region, its temperature, and its characteristic size are estimated. In addition, an estimate is obtained for the absorption coefficient.

  17. Logarithmic analysis of eddy current thermography based on longitudinal heat conduction for subsurface defect evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2014-11-01

    Longitudinal heat conduction from surface to inside of solid material could be used to evaluate the subsurface defects. Considering that the skin depth of high frequency eddy current in metal is quite small, this paper proposed logarithmic analysis of eddy current thermography (ECT) to quantify the depth of subsurface defects. The proposed method was verified through numerical and experimental studies. In numerical study, ferromagnetic material and non-ferromagnetic material were both considered. Results showed that the temperature-time curve in the logarithm domain could be used to detect subsurface defects. Separation time was defined as the characteristic feature to measure the defect's depth based on their linear relationships. The thermograms reconstructed by logarithm of temperature can improve defect detectability.

  18. Infrared thermography monitoring of the NaCl crystallisation process

    NASA Astrophysics Data System (ADS)

    Vázquez, Patricia; Thomachot-Schneider, Céline; Mouhoubi, Kamel; Fronteau, Gilles; Gommeaux, Maxime; Benavente, David; Barbin, Vincent; Bodnar, Jean-Luc

    2015-07-01

    In this work, we describe the growth of NaCl crystals by evaporating droplets of aqueous solution while monitoring them with infrared thermography. Over the course of the evaporation experiments, variations in the recorded signal were observed and interpreted as being the result of evaporation and crystallisation. In particular, we observed sharp and transient decreases in the thermosignal during the later stages of high-concentration drop evaporation. The number of such events per experiment, referred to as "pop-cold events", varied from 1 to over 100 and had durations from 1 to 15 s. These events are interpreted as a consequence from the top-supplied creeping (TSC) of the solution feeding the growth of efflorescence-like crystals. This phenomenon occurred when the solution was no longer macroscopically visible. In this case, efflorescence-like crystals with a spherulite shape grew around previously formed cubic crystals. Other crystal morphologies were also observed but were likely fed by mass diffusion or bottom-supplied creeping (BSC) and were not associated with "pop-cold events"; these morphologies included the cubic crystals at the centre, ring-shaped at the edge of droplets and fan-shaped crystals. After complete evaporation, an analysis of the numbers and sizes of the different types of crystals was performed using image processing. Clear differences in their sizes and distribution were observed in relation to the salt concentration. Infrared thermography permitted a level of quantification that previously was only possible using other techniques. As example, the intermittent efflorescence growth process was clearly observed and measured for the first time using infrared thermography.

  19. In-Flight Flow Visualization Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shiu, H. J.; Banks D. W.

    1997-01-01

    The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.

  20. Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Tian, GuiYun; Chen, Dixiang; Tang, Ying; Zhang, Hong

    2013-09-01

    This Letter verified eddy current pulse phase thermography through numerical and experimental studies. During the numerical studies, two characteristic features, blind frequency and min phase, were extracted from differential phase spectra, and their monotonic relationships with defects' depth under different heating time were compared. According to the numerical studies, 100 ms was employed as heating time during the improved experimental studies. The experimental results agreed with the numerical results. Based on their linear relationship with defects' depths, both features can be used to measure the defect's depth.

  1. Finite Element Modeling of Transient Thermography Inspection of Composite Materials

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1998-01-01

    Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.

  2. Visualization of In-Flight Flow Phenomena Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; vanDam, C. P.; Shiu, H. J.; Miller, G. M.

    2000-01-01

    Infrared thermography was used to obtain data on the state of the boundary layer of a natural laminar flow airfoil in supersonic flight. In addition to the laminar-to-turbulent transition boundary, the infrared camera was able to detect shock waves and present a time dependent view of the flow field. A time dependent heat transfer code was developed to predict temperature distributions on the test subject and any necessary surface treatment. A commercially available infrared camera was adapted for airborne use in this application. Readily available infrared technology has the capability to provide detailed visualization of various flow phenomena in subsonic to hypersonic flight regimes.

  3. Defect depth measurement of carbon fiber reinforced polymers by thermography

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  4. Crack detection using pulsed eddy current stimulated thermography

    SciTech Connect

    Kostson, E.; Weekes, B.; Almond, D. P.; Wilson, J.; Tian, G. Y.

    2011-06-23

    This contribution presents results from studies investigating factors that influence the detection of surface breaking cracks using pulsed eddy current thermography. The influences of the current strength and crack orientation in both ferromagnetic and non-ferromagnetic metals have been investigated. It has been found that crack detection is far more sensitive to crack orientation in non-ferromagnetic metals than in ferromagnetic metals. The effects of crack size on detectability are presented for a large number of steel, nickel alloy and titanium samples. Results of studies comparing crack images obtained prior and after coating a nickel alloy sample with a thermal barrier coating are presented.

  5. Infrared Thermography Applied to the Study of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Mercuri, F.; Cicero, C.; Orazi, N.; Paoloni, S.; Marinelli, M.; Zammit, U.

    2015-06-01

    Active infrared thermography is an important non-destructive technique frequently employed in the analysis of cultural heritage. For its capability to show subsurface features in the artifacts, this technique has been used to investigate various kinds of artifacts, composed of different structures and materials. In this work, an overview of its recent applications is presented. In particular, the detection of cold working features in bronze sculpture investigations, of buried features in ancient book bindings, such as their structural characteristics and written scraps re-used in their manufacturing process, and on the investigation of defects and inhomogeneities in illuminations, is reported.

  6. Eddy current step heating thermography for quantitatively evaluation

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Chen, Dixiang; Tian, GuiYun; Zhang, Hong

    2013-11-01

    This Letter proposed eddy current step heating thermography (ECSHT) combing eddy current excitation with SHT. It has been verified through numerical and experimental studies that the temperature-time1/2 curve can be used to detect the subsurface defects. Separation time was defined and extracted from temperature responses as characteristic feature. Experiment studies with mild steel sample were conducted, and the experimental results showed that two features representing separation time can be used to measure the defect's depth based on their linear relationships.

  7. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100cm(-1) respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  8. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  9. Improved method for measuring absolute O2(a1Δg) concentration by O2(a1Δg-->X3Σg-) IR radiation

    NASA Astrophysics Data System (ADS)

    Deng, Liezheng; Shi, Wenbo; Yang, Heping; Sha, Guohe; Zhang, Cunhao

    2004-11-01

    We describe an improved technique for measuring the absolute O2(a1Δ) concentration via the quantitative determination of IR radiation from O2(a1Δg→X3Σg-) transition. An exact geometrical optical model was first established, in which the influence of reflection and refraction on the radiation characteristics of a luminous volume source was given full consideration, making possible the accurate calculation of the coupling efficiency between the volume source and a receiving area. Then, an IR radiation receiving apparatus (IRRRA) was constructed and its responsivity (mV/W) to the power of IR radiation calibrated by a tungsten standard lamp. An optical detection system was, in turn, built according to the optical model with fine alignment between the IRRRA and an optical cell. We then demonstrate the procedure to obtain the absolute concentration of O2(a1Δ) flowing through the optical cell from a jet singlet oxygen generator from the signal of the IRRRA, the optical cell volume, and the coupling efficiency between the cell and the IRRRA. Moreover, to verify the accuracy of this method, the absolute O2(a1Δ) concentration was compared to that measured by an established isothermal calorimetry method. Based on the comparison of the O2(a1Δ) concentrations determined by the two methods, the Einstein A-coefficient was estimated as (2.70±0.84)×10-4 s-1, which agrees with Badger's value of 2.58×10-4, Špalek's of 2.24×10-4, Newman's of 2.19×10-4, and Miller's of 2.3×10-4 within the uncertainty of the experimental techniques. The method advanced in this article is worthwhile for the measurement of absolute O2(a1Δ) concentration in a chemical oxygen iodine laser or a singlet oxygen generator. It can also provide a general technique for the measurement of absolute concentrations of long-lifetime luminous species other than O2(a1Δ).

  10. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization

  11. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction

    NASA Astrophysics Data System (ADS)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1 %), summer (57.6 %), and autumn (64.5 %) showed difference compared to winter (73.0 %; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.

  12. Modeling static and dynamic thermography of the human breast under elastic deformation.

    PubMed

    Jiang, Li; Zhan, Wang; Loew, Murray H

    2011-01-01

    An abnormal thermogram has been shown to be a reliable indicator of increased risk of breast cancer. Numerical modeling techniques for thermography are proposed to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques did not account for gravity-induced elastic deformation arising from various body postures, nor did they suggest that a dynamic thermal procedure may be used to enhance clinical diagnosis. In this paper, 3D finite element method (FEM)-based thermal and elastic modeling techniques are developed to characterize comprehensively both the thermal and elastic properties of normal and tumorous breast tissues during static and dynamic thermography. In the steady state, gravity-induced breast deformation is found to cause an upper-lower asymmetric surface temperature contrast for sitting/standing up body posture, even though all the thermal and elastic properties are assumed uniform. Additionally, the tumor-induced surface temperature alterations are found to be caused primarily by shallow tumors and to be less sensitive to tumor size than to tumor depth. In the dynamic state, the breast exhibits distinctive temporal patterns that are associated with distinct thermal events: cold stress and thermal recovery induced by changes in the ambient temperature. Specifically, the tumor-induced thermal contrast shows an opposite initial change and delayed peak as compared with the deformation-induced thermal contrast. These findings are expected to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis, and treatment of breast cancer.

  13. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    PubMed Central

    2011-01-01

    Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660

  14. [Methods of studying the microcirculation].

    PubMed

    Shagal, D I; Tsvik, A I; Razygrin, B A

    1980-01-01

    The article shows possibilities of thermography in the study of peripheral blood circulation. Data are presented on examining the patients with diverse pathology forms by means of conjunctival biomicroscopy and television capillaroscopy of the nail bed. Evaluation of these methods and analysis of the data obtained are presented. The authors believe in more extended possibilities of applying microcirculation study methods together with thermography for disclosure of some diseases. PMID:7402036

  15. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  16. NDE of FRP Wrapped Timber Bridge Components Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, U. B.; Steele, W. E.; GangaRao, H. V. S.; Klinkhachorn, P.

    2003-03-01

    This paper presents the results of an experimental study on the use of infrared thermography technique for detection of subsurface debonds in fiber reinforced polymer (FRP) wrapped timber railroad bridge components. Simulated subsurface debonds were constructed in the laboratory in timber piles wrapped with FRP composite fabric. The debonds varied in size, thickness and severity. These debonds were placed between the 1/8″ thick FRP wrap and the timber surface. The thermal images from the delaminated specimens were compared with the thermal images from undamaged specimens to study the effect of subsurface debonds. In addition, several field tests were conducted using the infrared imaging system on three timber railroad bridges located in Moorefield, West Virginia that were rehabilitated with FRP composite fabric wraps. The field test data was used to detect any possible debond at the composite-timber interface and study the effect of environmental parameters on the infrared images. This study showed that the infrared thermography technique can be effectively used to detect subsurface debonds in timber components wrapped with FRP composite fabric. The study also shows the effect of different parameters (environmental conditions, heat source, etc.) on the infrared images.

  17. Noninvasive diagnosis of seed viability using infrared thermography

    PubMed Central

    Kranner, Ilse; Kastberger, Gerald; Hartbauer, Manfred; Pritchard, Hugh W.

    2010-01-01

    Recent advances in the noninvasive analyses of plant metabolism include stress imaging techniques, mainly developed for vegetative tissues. We explored if infrared thermography can be used to predict whether a quiescent seed will germinate or die upon water uptake. Thermal profiles of viable, aged, and dead Pisum sativum seeds were recorded, and image analysis of 22,000 images per individual seed showed that infrared thermography can detect imbibition- and germination-associated biophysical and biochemical changes. These “thermal fingerprints” vary with viability in this species and in Triticum aestivum and Brassica napus seeds. Thermogenesis of the small individual B. napus seeds was at the limit of the technology. We developed a computer model of “virtual pea seeds,” that uses Monte Carlo simulation, based on the heat production of major seed storage compounds to unravel physico-chemical processes of thermogenesis. The simulation suggests that the cooling that dominates the early thermal profiles results from the dissolution of low molecular-weight carbohydrates. Moreover, the kinetics of the production of such “cooling” compounds over the following 100 h is dependent on seed viability. We also developed a deterministic tool that predicts in the first 3 hours of water uptake, when seeds can be redried and stored again, whether or not a pea seed will germinate. We believe that the early separation of individual, ungerminated seeds (live, aged, or dead) before destructive germination assessment creates unique opportunities for integrative studies on cell death, differentiation, and development. PMID:20133712

  18. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  19. Computed Tomography and Thermography Increases CMC Material and Process Development Efficiency and Testing Effectiveness

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David

    2002-01-01

    Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.

  20. Coal liquefaction process streams characterization and evaluation: FT-IR methods for characterization of coal liquefaction products

    SciTech Connect

    Serio, M.A.; Teng, H.; Bassilakis, R.; Solomon, P.R.

    1992-04-01

    This study was designed to demonstrate the use of two FTIR techniques for the analysis of direct coal liquefaction process-derived materials. The two methods were quantitative FTIR analysis and themogravimetric (TG) analysis with FTIR analysis of evolved products (TG-FTIR). The quantitative FTIR analyses of both whole resids and THF-soluble resids provided quantitation of total hydrogen, aliphatic and aromatic hydrogen, total carbon, total oxygen, hydroxyl and etheric oxygen, and ash contents. The FTIR results were usually in agreement with values derived by other, more conventional methods. However, the accuracies of specific measurements, in comparisons with results from conventional methods, ranged from good to poor. The TG-FTIR method provided approximate analyses of coals and resids. The data provided included the time dependent evolution profiles of the volatile species and the elemental composition of the char. Reproducible data of gaseous species and pyrolysis tar yields for whole resid samples larger than 10 mg were obtainable. The yields and evolution profiles of certain volatiles (tar, CO, and methane) provided structural information on the samples. There were some experimental and interpretational difficulties associated with both techniques. Optimization of the curve-resolving routine for coal-liquefaction samples would improve the quantitative FTIR accuracy. Aerosol formation limited the full application of the TG-FTIR technique with the THF-soluble resid samples. At this time, further development of these analytical methods as process development tools will be required before their use for that purpose can be recommended. The use of FTIR as an on-line analytical technique for coal liquefaction process streams requires demonstration before it can be recommended; however, such a demonstration may be warranted.

  1. Nondestructive characterization of fatigue damage with thermography

    NASA Astrophysics Data System (ADS)

    Roesner, Henrik; Sathish, Shamachary; Meyendorf, Norbert

    2001-08-01

    A thermal imaging NDE method has been developed for nondestructive characterization of early stages of fatigue damage. The method is based on evaluation of the thermal effects induced in a material by a short-term mechanical loading. The mechanical loading causes in addition to thermoelastic temperature change, an increase due to heat dissipation that depends upon the microstructure of the material in a characteristic manner. The origin of this heat dissipation is the mechanical damping process. Utilizing the initial temperature rise due to a short-term mechanical loading, the dissipated energy per cycle was evaluated as a thermal parameter. This new thermal NDE parameter allows a quantitative characterization of the mechanical hysteresis, without the need for calibration to eliminate influences of thermal boundary conditions. The measurement of the thermal NDE parameters has been performed on Ti-6Al-4V dog-bone specimens, fatigued in low cycle fatigue (LCF) as well as in high cycle fatigue (HCF) experiments. Characteristic dependence of the NDE parameters on the already accumulated fatigue damage has been observed. The advantage of the thermal method is the applicability to components under service conditions because of simplicity, rapid measurements (a few seconds) and the ability of locally resolved evaluations.

  2. Effects of peripheral dynamic movements on the lower-limb circulation assessed by thermography: three one-group studies

    NASA Astrophysics Data System (ADS)

    Kaerki, Anne; Laehdeniemi, Matti

    2002-03-01

    Peripheral dynamic movements are used as part of postoperative protocols and for preventing vascular complications during bed rest. The effects of peripheral movements have not been studied. The purposes of these studies were to explain the effects of peripheral dynamic movements on lower limb circulation. The aim was also to explain how other factors like sex, age, BMI, medication, smoking, sports activity etc. affect the circulation. Healthy young subjects (N=19), healthy elderly subjects (N=19) and diabetic subjects (N=21) participated in the studies between 1997 and 1999. The study design was the same in each study. Infrared technology and image processing belong to our focus fields of applied research and IR is widely used in our real time industrial applications including also ongoing research of new possibilities. This paper presents the results of our newest application of IR thermography, where it was used to measure the skin temperature over the soleus muscle during and after dynamic ankle movements. The results showed that the skin temperature increased further during the recovery period after movements, and temperature was highest after 3- 5 minutes. Diabetic male subjects were the only subgroup that had immediate decrease during recovery period. The studies showed that smoking had a negative effect on circulation. BMI had also negative correlation (-0,356), showing that subjects with higher BMI had less increase. The results proved that peripheral movements were effective for increasing circulation in the soleus muscle and the effect was still seen after 15 minutes.

  3. Sensing cocaine in saliva with attenuated total reflection infrared (ATR-IR) spectroscopy combined with a one-step extraction method

    NASA Astrophysics Data System (ADS)

    Hans, Kerstin M.-C.; Gianella, Michele; Sigrist, Markus W.

    2012-03-01

    On-site drug tests have gained importance, e.g., for protecting the society from impaired drivers. Since today's drug tests are majorly only positive/negative, there is a great need for a reliable, portable and preferentially quantitative drug test. In the project IrSens we aim to bridge this gap with the development of an optical sensor platform based on infrared spectroscopy and focus on cocaine detection in saliva. We combine a one-step extraction method, a sample drying technique and infrared attenuated total reflection (ATR) spectroscopy. As a first step we have developed an extraction technique that allows us to extract cocaine from saliva to an almost infrared-transparent solvent and to record ATR spectra with a commercially available Fourier Transform-infrared spectrometer. To the best of our knowledge this is the first time that such a simple and easy-to-use one-step extraction method is used to transfer cocaine from saliva into an organic solvent and detect it quantitatively. With this new method we are able to reach a current limit of detection around 10 μg/ml. This new extraction method could also be applied to waste water monitoring and controlling caffeine content in beverages.

  4. A comparative review of thermography as a breast cancer screening technique.

    PubMed

    Kennedy, Deborah A; Lee, Tanya; Seely, Dugald

    2009-03-01

    Breast cancer is the most frequently diagnosed cancer of women in North America. Despite advances in treatment that have reduced mortality, breast cancer remains the second leading cause of cancer induced death. Several well established tools are used to screen for breast cancer including clinical breast exams, mammograms, and ultrasound. Thermography was first introduced as a screening tool in 1956 and was initially well accepted. However, after a 1977 study found thermography to lag behind other screening tools, the medical community lost interest in this diagnostic approach. This review discusses each screening tool with a focus brought to thermography. No single tool provides excellent predictability; however, a combination that incorporates thermography may boost both sensitivity and specificity. In light of technological advances and maturation of the thermographic industry, additional research is required to confirm the potential of this technology to provide an effective non-invasive, low risk adjunctive tool for the early detection of breast cancer.

  5. Physical profiling and IR spectroscopy: simple and effective methods to discriminate between genuine and counterfeit samples of Viagra® and Cialis®.

    PubMed

    Custers, Deborah; Vandemoortele, Suzanne; Bothy, Jean-Luc; De Beer, Jacques O; Courselle, Patricia; Apers, Sandra; Deconinck, Eric

    2016-01-01

    Counterfeit medicines are a global threat to public health. High amounts enter the European market, enforcing the need for simple techniques to help customs detect these pharmaceuticals. This study focused on physical profiling and IR spectroscopy to obtain a prime discrimination between genuine and illegal Viagra® and Cialis® medicines. Five post-tableting characteristics were explored: colour, mass, long length, short length, and thickness. Hypothesis testing showed that most illegal samples (between 60 and 100%) significantly differ from the genuine medicines, in particular for mass and long length. Classification and Regression Trees (CART) analysis resulted in a good discrimination between genuine and illegal medicines (98.93% correct classification rate for Viagra®, 99.42% for Cialis®). Moreover, CART confirmed the observation that mass and long length are the key physical characteristics which determine the observed discrimination. IR analysis was performed on tablets without blister and on tablets in intact blister. These data were analyzed using Soft Independent Modelling of Class Analogy (SIMCA) and Partial Least Squares - Discriminant Analysis (PLS-DA). Supervised techniques needed to be applied since Principal Component Analysis (PCA) was not able to generate the desired discrimination. Our study shows that a perfect discrimination between genuine and illegal medicines can be made by both SIMCA and PLS-DA without removing the tablets from the blister. This approach has the advantage of keeping the blister intact. Our study demonstrates that these user friendly techniques are reliable methods to aid customs to obtain a prime distinction between genuine and illegal samples on the spot. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26033891

  6. Survey of thermography in electronics inspection

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen

    2014-05-01

    This paper reviews applications of infrared thermal signature techniques to detection of faults and defects on electronics boards. Issues essential to the successful application of infrared techniques to electronics manufacturing and circuit card maintenance are investigated. These issues include basic know-how such as scanning time interval and screening variables; a description of the types of defects and faults these methods have been used to detect; and a comparison of infrared thermal imaging and other detection means such as X-ray and functional testers. The paper concludes with a summary of potential problems and remedies. Future directions include design for infrared diagnosis and development of integrated testing techniques for detection and root-cause analysis.

  7. Air Coupled Acoustic Thermography (acat) Inspection Technique

    NASA Astrophysics Data System (ADS)

    Zalameda, J. N.; Winfree, W. P.; Yost, W. T.

    2008-02-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of +/-6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  8. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  9. Empirical Calibration of the P-Factor for Cepheid Radii Determined Using the IR Baade-Wesselink Method

    NASA Astrophysics Data System (ADS)

    Joner, Michael D.; Laney, C. D.

    2012-05-01

    We have used 41 galactic Cepheids for which parallax or cluster/association distances are available, and for which pulsation parallaxes can be calculated, to calibrate the p-factor to be used in K-band Baade-Wesselink radius calculations. Our sample includes the 10 Cepheids from Benedict et al. (2007), and three additional Cepheids with Hipparcos parallaxes derived from van Leeuwen et al. (2007). Turner and Burke (2002) list cluster distances for 33 Cepheids for which radii have been or (in a few cases) can be calculated. Revised cluster distances from Turner (2010), Turner and Majaess (2008, 2012), and Majaess and Turner (2011, 2012a, 2012b) have been used where possible. Radii have been calculated using the methods described in Laney and Stobie (1995) and converted to K-band absolute magnitudes using the methods described in van Leeuwen et al. (2007), Feast et al. (2008), and Laney and Joner (2009). The resulting pulsation parallaxes have been used to estimate the p-factor for each Cepheid. These new results stand in contradiction to those derived by Storm et al. (2011), but are in good agreement with theoretical predictions by Nardetto et al. (2009) and with interferometric estimates of the p-factor, as summarized in Groenewegen (2007). We acknowledge the Brigham Young University College of Physical and Mathematical Sciences for continued support of research done using the facilities and personnel at the West Mountain Observatory. This support is connected with NSF/AST grant #0618209.

  10. A reference-free micro defect visualization using pulse laser scanning thermography and image processing

    NASA Astrophysics Data System (ADS)

    Yang, Jinyeol; Choi, Jaemook; Hwang, Soonkyu; An, Yun-Kyu; Sohn, Hoon

    2016-08-01

    As quality control of micro devices and early detection of micro defects in these devices are becoming increasingly important, the demand for a fast and automated online inspection technique to detect micro defects with high spatial resolution is increasing. In this study, a reference-free micro defect visualization algorithm is developed based on laser scanning thermography to detect micro defects in devices instantaneously and automatically with high spatial resolution. A pulse modulated continuous wave laser generates thermal waves in a target device, and the corresponding thermal responses are recorded by an infrared (IR) camera. When the thermal wave encounters a micro defect, the propagation of the thermal wave is blocked at the interface of the micro defect. The blockage of the thermal wave is detected by the proposed reference-free micro defect visualization algorithm. First, an edge detection algorithm is applied to a raw thermal image obtained at a specific time point to extract the thermal discontinuities formed at the boundaries of the defect. The edge images obtained from all time sequences are then assembled into a single accumulated edge image to accentuate defect-induced thermal disturbances in the form of edge features. Finally, the accumulated edge image is automatically processed using a binary imaging algorithm to visualize the micro defect in the target device. The performance of the proposed reference-free micro defect visualization algorithm is examined using two types of specimens, semiconductor chips and ceramic-epoxy composites. The proposed algorithm successfully diagnoses micro defects ranging from 4 μm to 40 μm in width.

  11. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  12. Modeling of the Multiparameter Inverse Task of Transient Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.

    1998-01-01

    Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.

  13. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  14. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  15. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  16. Optimized laser application in dermatology using infrared thermography

    NASA Astrophysics Data System (ADS)

    Thomas, Roderick A.; Donne, Kelvin E.; Clement, Marc; Kiernan, Michael N.

    2002-03-01

    Infrared thermography can be used to optimize the application of lasers in dermatology with particular reference to the treatment of certain skin disorders such as vascular lesions and depilation. The efficacy of treatment is dependent upon a number of factors including: Optimization and correct selection of laser parameters such as wavelength and spot size. Human factors, such as laser operator skill, patient's skin type and anatomical location. By observing the thermal effects of laser irradiation on the skins surface during treatment results in improved efficacy and minimizes the possible threshold to skin damage, reducing the possibility of burning and scarring. This is of particular significance for example, in the control of purpura for the treatment of vascular lesions. The optimization is validated with reference to a computer model that predicts various skin temperatures based on two different laser spot sizes.

  17. Localization of wood floor structure by infrared thermography

    NASA Astrophysics Data System (ADS)

    Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.

    2008-03-01

    One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.

  18. Detection of IR target by fusing multispectral IR data

    NASA Astrophysics Data System (ADS)

    Li, Liya; Qi, Meng; Gao, Xuhui

    2011-08-01

    Detection of the small target in clutter, usually regarded as singular points in the infrared image, is an important issue in infrared searching and tracking (IRST) system. Because of the far range of the target to the sensor, the stealth technology, the effects of inherent sensor noise and the phenomena of nature, the target is more difficult to be detected. Multispectral sensor system has been proved it could greatly improve detection of the small, hard-to-find targets by multispectral processing techniques (such as sensor or image fusion). Aiming at the problem of multispectral IR Target Detection, a kind method of the multispectral IR target detection is proposed, based on the existed detection systems. In this method, the image registration is done firstly to make the different sensors have a same scene. Then, a fusion rule, named as adaptive weighted voting theory, is developed to combine the target detection results from the different spectral sensors. The adaptive weighted voting theory can give the different weights, based on the different spectral IR characteristics, and these weights decide the detected target is identified as real target or background. The experimental results show that the proposed method can reduce the detection uncertainty and improve the detection performance. Compared with the single spectral detection results and the others fusion detection methods, it can decrease the lost alarm rate and the false alarm rate effectively. The proposed method has been employed in our IR surveillance system, and it is easy to be used in the various circumstances.

  19. Dual-band infrared thermography for quantitative nondestructive evaluation

    SciTech Connect

    Durbin, P.F.; Del Grande, N.K.; Dolan, K.W.; Perkins, D.E.; Shapiro, A.B.

    1993-04-01

    The authors have developed dual-band infrared (DBIR) thermography that is being applied to quantitative nondestructive evaluation (NDE) of aging aircraft. The DBIR technique resolves 0.2 degrees C surface temperature differences for inspecting interior flaws in heated aircraft structures. It locates cracks, corrosion sites, disbonds or delaminations in metallic laps and composite patches. By removing clutter from surface roughness effects, the authors clarify interpretation of subsurface flaws. To accomplish this, the authors ratio images recorded at two infrared bands, centered near 5 microns and 10 microns. These image ratios are used to decouple temperature patterns associated with interior flaw sites from spatially varying surface emissivity noise. They also discuss three-dimensional (3D) dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional thermography provides single-band infrared images which are difficult to interpret. Standard procedures yield imprecise (or qualitative) information about subsurface flaw sites which are typically masked by surface clutter. They use a DBIR imaging technique pioneered at LLNL to capture the time history of surface temperature difference patterns for flash-heated targets. They relate these patterns to the location, size, shape and depth of subsurface flaws. They have demonstrated temperature accuracies of 0.2{degree}C, timing synchronization of 3 ms (after onset of heat flash) and intervals of 42 ms, between images, during an 8 s cooling (and heating) interval characterizing the front (and back) surface temperature-time history of an epoxy-glue disbond site in a flash-heated aluminum lap joint.

  20. Infrared thermography analysis of thermal diffusion induced by RF magnetic field on agar phantoms loaded with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, Jose; Macías, J. D.; Caballero-Aguilar, L.; Vales-Pinzón, C.; Alvarado-Gil, J. J.

    2013-02-01

    Recently, several treatments for fighting malignant tumors have been designed. However these procedures have well known inconveniences, depending on their applicability, tumor size and side effects, among others. Magnetic hyperthermia is a safe, non-invasive method for cancer therapy. This treatment is applied via elevation of target tissue temperature by dissipation of heat from Magnetic Nanoparticles (MNPs), previously located within the tumor. The induction of heat causes cell death and therefore the removal of the tumor. In this work the thermal diffusion in phantoms of agar loaded with magnetic nanoparticles (MNPs) is studied using the infrared thermography technique, which is widely used in biology/medicine (e.g. skin temperature mapping). Agar is one of the materials used to simulate different types of body tissues, these samples are known as "phantoms". Agar is of natural origin, low cost and high degree of biocompatibility. In this work the agar gel was embedded with MNPs by coprecipitation and placed in an alternating magnetic field radiation. As a consequence, the energy from the radiation source is dissipated as heat and then transferred from the MNP to the gel, increasing its temperature. For the temperature analysis, the samples of agar gel were stimulated by RF magnetic field generated by coils. Heating was measured with infrared thermography using a Thermovision A20M infrared camera. Thermographic images allowed obtaining the dependence of thermal diffusion in the phantom as a function of the magnitude of the applied RF magnetic field and the load of magnetic particles.

  1. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  2. Molecular structure, FT-IR, FT-Raman, NMR studies and first order molecular hyperpolarizabilities by the DFT method of mirtazapine and its comparison with mianserin

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Sahinturk, Ayse Erbay

    2013-03-01

    Mirtazapine (±)-1,2,3,4,10,14b-hexahydro-2-methylpyrazino(2,1-a)pyrido(2,3-c)(2)benzazepine is a compound with antidepressant therapeutic effects. It is the 6-aza derivative of the tetracyclic antidepressant mianserin (±)-2-methyl-1,2,3,4,10,14b-hexahydrodibenzo[c,f]pyrazino[1,2-a]azepine. The FT-IR and FT-Raman spectra of mirtazapine have been recorded in 4000-400 cm-1 and 3500-10 cm-1, respectively. The optimized geometry, energies, nonlinear optical properties, vibrational frequencies, 13C, 1H and 15N NMR chemical shift values of mirtazapine have been determined using the density functional theory (DFT/B3LYP) method. A comparison of the experimental and theoretical results of mirtazapine indicates that the density-functional B3LYP method is able to provide satisfactory results for predicting vibrational and NMR properties. The experimental and calculated results for mirtazapine have also been compared with mianserin.

  3. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  4. Relaxation dynamics of the LH2 complex from a photosynthetic purple bacterium Thiorhodospira sibirica studied by the near-IR femtosecond pump-probe method

    SciTech Connect

    Razjivin, A P; Pishchal'nikov, R Yu; Kozlovskii, V S; Kompanets, V O; Chekalin, Sergei V; Moskalenko, A A; Makhneva, Z K

    2005-01-31

    Photoinduced changes in the absorption spectrum of the LH2 (B800-830-850) complex from a Thiorhodospira sibirica (Trs. sibirica) bacterium are studied by the pump-probe method. The complex has the anomalous absorption spectrum exhibiting three bands in the near-IR region at 793, 826.5, and 846.5 nm. At room temperature, the excitation energy transfer from the B800, B830, and B859 bands was detected with the time constants {tau}{sub 1{approx}}0.5 ps, {tau}{sub 2{approx}}2.5 ps, and {tau}{sub 3} of the order of a few hundreds of picoseconds, respectively. A rapid energy transfer from the B830 band compared to energy transfer from the B850 band ({tau}{sub 2}||{tau}{sub 3}) suggests that all the three bands belong to the same complex (i.e., that the LH2 complex from Trs. sibirica is homogeneous). A slower energy transfer (by three - five times) from the B830 band of the LH2 complex from Trs. sibirica compared to energy transfer from the B800 band of the LH2 complexes (B800-850 and especially B800-820) from other purple bacteria suggests that the electronic structures of ensembles of bacteriochlorophyll molecules in these complexes are substantially different. (laser applications and other topics in quantum electronics)

  5. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  6. IR imaging of blood circulation of patients with vascular disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  7. From Ultrafast Structure Determination to Steering Reactions: Mixed IR/Non-IR Multidimensional Vibrational Spectroscopies.

    PubMed

    van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-09-28

    Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential. PMID:26394274

  8. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction.

    PubMed

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1%), summer (57.6%), and autumn (64.5%) showed difference compared to winter (73.0%; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls. PMID:26049285

  9. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction.

    PubMed

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1%), summer (57.6%), and autumn (64.5%) showed difference compared to winter (73.0%; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.

  10. Acquisition of the spatial temperature distribution of rock faces by using infrared thermography

    NASA Astrophysics Data System (ADS)

    Beham, Michael; Rode, Matthias; Schnepfleitner, Harald; Sass, Oliver

    2013-04-01

    Rock temperature plays a central role for weathering and therefore influences the risk potential originating from rockfall processes. So far, for the acquisition of temperature mainly point-based measuring methods have been used and accordingly, two-dimensional temperature data is rare. To overcome this limitation, an infrared camera was used to collect and analyse data on the spatial temperature distribution on 10 x 10 m sections of rock faces in the Gesäuse (900m a.s.l.) and in the Dachsteingebirge (2700m a.s.l.) within the framework of the research project ROCKING ALPS (FWF-P24244). The advantage of infrared thermography to capture area-wide temperatures has hardly ever been used in this context. In order to investigate the differences between north-facing and south-facing rock faces at about the same period of time it was necessary to move the camera between the sites. The resulting offset of the time lapse infrared images made it necessary to develop a sophisticated methodology to rectify the captured images in order to create matching datasets for future analysis. With the relatively simple camera used, one of the main challenges was to find a way to convert the colour-scale or grey-scale values of the rectified image back to temperature values after the rectification process. The processing steps were mainly carried out with MATLAB. South-facing rock faces generally experienced higher temperatures and amplitudes compared to the north facing ones. In view of the spatial temperature distribution, the temperatures of shady areas were clearly below those of sunny ones, with the latter also showing the highest amplitudes. Joints and sun-shaded areas were characterised by attenuated diurnal temperature fluctuations closely paralleled to the air temperature. The temperature of protruding rock parts and of loose debris responded very quick to changes in radiation and air temperatures while massive rock reacted more slowly. The potential effects of temperature on

  11. Reduction of evaporative flux in bean leaves due to chitosan treatment assessed by infrared thermography

    NASA Astrophysics Data System (ADS)

    Ludwig, N.; Cabrini, R.; Faoro, F.; Gargano, M.; Gomarasca, S.; Iriti, M.; Picchi, V.; Soave, C.

    2010-01-01

    Infrared thermography can be used as a tool for evaluating antitranspirant treatment through the measurement of evaporative fluxes. The aim of this work is to compare the leaf surface temperatures of plant treated with chitosan (CHT), a potential stomatal-closing antitranspirant, with temperatures of leaves treated with the commercially available antitranspirant Vapor Gard®, a film-forming polyterpene. The main problem in the correct evaluation of stomatal conductance at leaf level is due to the need of performing a measurement in a completely non-invasive method. The main advantage of thermographic method is the possibility to acquire information about instantaneous conditions of transpiration over a large number of plants, with no need of sampling and avoiding any contact with plants. Tests on bean plants ( Phaseolus vulgaris) showed the applicability of the thermal imaging to discriminate plants with different evaporation rate due to treatment with different antitranspirant compounds. Quantitative evaluation of evaporative flux and stomatal conductance was obtained through reference measurements on standards with calibrated conductance. Non-destructive gravimetric measurements were used in order to get a reliable evaluation of evaporative fluxes. In conclusion, thermographic approach, in climatic chamber, seems to be a valid tool for rapidly screening the performance of different antitranspirant products.

  12. A Quantitative Investigation of Surface Roughness Effects on Airfoil Boundary Layer Transition Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Beeby, Todd Daniel

    An investigation of the impact of subcritical leading edge distributed roughness elements on airfoil boundary layer transition location has been undertaken using infrared thermography. In particular, a quantitative approach to boundary layer transition location detection using a differential energy balance method was implemented using a heating pad to produce constant heat flux. This was performed on a S809 airfoil model at Re c = 0.75 and 1.0 x 106, using roughness elements of height k/c = 3.75, 4.25 and 5.00 x 10 --4, pattern densities of 2 to 10 %, and roughness locations of 1 to 6 % chord. Turbulator tape of height k/c = 6.67 x 10--4 was also examined. Results indicate significant impact on transition for all roughness cases, and a more pronounced influence of roughness density as compared to roughness element height. The phenomenon of early laminar bubble collapse was also found to occur for some roughness configurations. The quantitative method used was found to be an effective means for automated transition location determination.

  13. Real-time quantification of viable bacteria in liquid medium using infrared thermography

    NASA Astrophysics Data System (ADS)

    Salaimeh, Ahmad A.; Campion, Jeffrey J.; Gharaibeh, Belal Y.; Evans, Martin E.; Saito, Kozo

    2011-11-01

    Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content ( EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media ( P < 0.0001), and that EC and viable counts were strongly positively correlated ( r = 0.986) over a range of 120 to approximately 5 × 10 8 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.

  14. IOT Overview: IR Instruments

    NASA Astrophysics Data System (ADS)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  15. IR laser chemistry

    NASA Astrophysics Data System (ADS)

    Quack, Martin

    1995-01-01

    Recent progress in IR laser chemistry is reviewed with stress on the conceptual background and experimental advances from our research group. In particular we discuss various experimental schemes in laser chemistry as related to thermal reactions and ordinary photochemistry, and new results in time and frequency resolved kinetic IR spectroscopy at the limit defined by the uncertainty relation. The recent detection of hyperfine effects in IR laser chemistry is reviewed as well as nonlinear intensity dependence over many orders of magnitude including observations of nonlinear intensity fall-off and IR laser ionization of molecules. An outlook is presented on different time scales for intramolecular processes and the resulting future possibilities of IR laser chemical reaction control.

  16. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  17. A comparative study of experimental and finite element analysis on submillimeter flaws by laser and ultrasonic excited thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Fernandes, Henrique; Yu, Lingyao; Hassler, Ulf; Genest, Marc; Robitaille, François; Joncas, Simon; Sheng, Yunlong; Maldague, Xavier

    2016-05-01

    Stitching is used to reduce dry-core and reinforce T-joint structure. However, it might cause new types of flaws, especially submillimeter flaws. In this paper, new approaches including micro-VT, lock-in micro-LLT and micro-LST based on both lock-in and pulse methods are used to detect submillimeter flaws in stitched CFRP. A comparison of laser excitation thermography and micro-VT on micro-porosities is conducted. Micro-CT is used to validate the infrared results. Then, a finite element analysis (FEA) is performed. The geometrical model needed for finite element discretization was developed from micro-CT measurements. The model is validated for the experimental results. Finally a comprehensive experimental and simulation comparison of micro-LLT and micro-LST based on both lock-in and pulse methods is conducted.

  18. Rapid Fabrication of Flat Plate Cavity Phosphor Thermography Test Models for Shuttle Return-to-Flight Aero-Heating

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.

    2006-01-01

    Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.

  19. Monitoring sintering burn-through point using infrared thermography.

    PubMed

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  20. Monitoring sintering burn-through point using infrared thermography.

    PubMed

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  1. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    PubMed Central

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  2. Assessment of lower limb prosthesis through wearable sensors and thermography.

    PubMed

    Cutti, Andrea Giovanni; Perego, Paolo; Fusca, Marcello C; Sacchetti, Rinaldo; Andreoni, Giuseppe

    2014-03-11

    This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity), with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05) is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ~+1.1 ± 0.7 °C) and a more significant one (~+4.1 ± 2.3%) in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction.

  3. Surface temperatures of insulated glazing units: Infrared thermography laboratory measurements

    SciTech Connect

    Griffith, B.T.; Tuerler, D.; Arasteh, D.

    1995-12-01

    Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions corresponding to standard design conditions for winter heating. The temperatures conditions are 2 1.1{degrees}C (70{degrees}F) and -17.8{degrees}C (0{degrees}F) on the warm and cold sides, respectively. Film coefficients varied somewhat with average conditions of about 7.6 W/m{sup 2}{circ}K (1.34 Btu/h-ft{sup 2}{circ}{degrees}F) for the warm-side and 28.9 W/m{sup 2}{circ}K (5.1 Btu/h{circ}ft{sup 2}{circ}{degrees}F) for the cold-side. Surface temperature data are plotted for the vertical distribution along the centerline of the IG and for the horizontal distribution along the centerline. This paper is part of larger collaborative effort that studied the same set of glazings.

  4. Remote monitoring of breathing dynamics using infrared thermography

    PubMed Central

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-01-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient’s body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as “gold standard” for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1–3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages. PMID:26601003

  5. Assessment of Lower Limb Prosthesis through Wearable Sensors and Thermography

    PubMed Central

    Cutti, Andrea Giovanni; Perego, Paolo; Fusca, Marcello C.; Sacchetti, Rinaldo; Andreoni, Giuseppe

    2014-01-01

    This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity), with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05) is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ∼+1.1 ± 0.7 °C) and a more significant one (∼+4.1 ± 2.3%) in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction. PMID:24618782

  6. Infrared thermography based studies on mobile phone induced heating

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  7. International standards for pandemic screening using infrared thermography

    NASA Astrophysics Data System (ADS)

    Pascoe, D. D.; Ring, E. F.; Mercer, J. B.; Snell, J.; Osborn, D.; Hedley-Whyte, J.

    2010-03-01

    The threat of a virulent strain of influenza, severe acute respiratory syndrome (SARS), tuberculosis, H1N1/A virus (swine flu) and possible mutations are a constant threat to global health. Implementation of pandemic infrared thermographic screening is based on the detection of febrile temperatures (inner canthus of the eyes) that are correlated with an infectious disease. Previous attempts at pandemic thermal screening have experienced problems (e.g. SARS outbreak, Singapore 2003) associated with the deployment plan, implementation and operation of the screening thermograph. Since this outbreak, the International Electrotechnical Commission has developed international standards that set minimum requirements for thermographic system fever screening and procedures that insure reliable and reproducible measurements. These requirements are published in IEC 80601-2-59:2008, Medical electrical equipment - Part 2-59: Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. The International Organization for Standardization has developed ISO/TR 13154:2009, Medical Electrical Equipment - which provides deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. These new standards includes recommendations for camera calibrations, use of black body radiators, view field, focus, pixels within measurement site, image positioning, and deployment locations. Many current uses of thermographic screening at airports do not take into account critical issues addressed in the new standard, and are operating below the necessary effectiveness and efficiency. These documents, related thermal research, implications for epidemiology screening, and the future impact on medical thermography are discussed.

  8. Pulse Phase Thermography for Defect Detection and Visualization

    NASA Technical Reports Server (NTRS)

    Marinetti, Sergio; Plotnikov, Yuri A.; Winfree, William P.; Braggiotti, Alberto

    1999-01-01

    Pulse Phase Thermography (PPT) has been reported as a novel powerful technique of the thermal NDE. It employs application of the Discrete Fourier Transform (DFT) to thermal images obtained following flash heating of the front surface of a specimen. The computed phasegrams are excellent for defect visualization in a wide range of materials. This is in part due to their low sensitivity to uneven heating. This work is an attempt to analyze advantages and limitations of PPT. Results of application of the DFT to simulated temperature decays are presented. The temperature evolution on a surface has been simulated based on an analytical solution of the one-dimensional heat diffusion problem. A more sophisticated study has been done for different sizes of defects using numerical solution of the three-dimensional mathematical model. Capabilities of PPT for in-depth scanning and for monitoring of the material loss are discussed. The recommendations for the practical application of the PPT are presented. Experimental results obtained following these recommendations are reported.

  9. Use of infrared thermography in children with shock: A case series

    PubMed Central

    Ortiz-Dosal, Alejandra; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at “Dr. Ignacio Morones Prieto” Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages. PMID:27489669

  10. AN EVALUATION OF INFRARED THERMOGRAPHY FOR DETECTION OF BUMBLEFOOT (PODODERMATITIS) IN PENGUINS.

    PubMed

    Duncan, Ann E; Torgerson-White, Lauri L; Allard, Stephanie M; Schneider, Tom

    2016-06-01

    The objective of this study was to evaluate infrared thermography as a noninvasive screening tool for detection of pododermatitis during the developing and active stages of disease in three species of penguins: king penguin (Aptenodytes patagonicus) , macaroni penguin (Eudyptes chrysolophus), and rockhopper penguin (Eudyptes chrysocome). In total, 67 penguins were examined every 3 mo over a 15-mo period. At each exam, bumblefoot lesions were characterized and measured, and a timed series of thermal images were collected over a 4-min period. Three different methods were compared for analysis of thermograms. Feet with active lesions that compromise the surface of the foot were compared to feet with inactive lesions and no lesions. The hypothesis was that feet with active lesions would have warmer surface temperatures than the other conditions. Analysis of the data showed that although feet with active bumblefoot lesions are warmer than feet with inactive or no lesions, the variability seen in each individual penguin from one exam day to the next and the overlap seen between temperatures from each condition made thermal imaging an unreliable tool for detection of bumblefoot in the species studied. PMID:27468019

  11. Infrared thermography coupled with digital image correlation in studying plastic deformation on the mesoscale level

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Witz, Jean-François; El Bartali, Ahmed; Jiang, Chao

    2016-11-01

    This paper focuses on a study of plastic deformation on the mesoscale level by infrared thermography coupled with digital image correlation. First, a novel technique for fully-coupled thermal and kinematic measurements was developed, and the common problem of spatial coupling in the multifield measurement was solved successfully using an image registration method. Then the developed technique was applied to investigate the plastic deformation of a pure aluminium oligocrystal specimen in a tensile test. The deformed specimen manifested high strains of type out-of-plane, which were found closely associated with the crystallographic structure. From a metrological point of view, the out-of-plane effect on the thermographic measurement was analyzed, and the pertinent radiometric artifacts were estimated. The source of errors was verified through a correlation analysis between the estimated artifacts and specimen surface profile. Moreover, the out-of-plane effect on the kinematic measurement was investigated, and the relevant errors were analyzed via the correlation residual. The analysis highlighted the role of the microstructure that played in the plastic deformation and showed that grain boundary was crucial in shaping the heterogeneous deformation patterns for aluminium oligocrystals.

  12. Frescoes diagnostic using laser Doppler vibrometry and infrared thermography: experimental and numerical approaches

    NASA Astrophysics Data System (ADS)

    Agnani, Alexia; De Andrade, Roberto M.; Esposito, Enrico; Feligiotti, Mara; Tavares, Sinthya G.

    2006-06-01

    In this work laser Doppler vibrometry has been used for damage detection in frescoes. Results were compared with the ones obtained through infrared thermography, and, for both techniques, mathematical models were implemented to simulate the physical domains and conditions of the employed test sample. The limitations of each methodology are also discussed. The numerical model of the vibrometric investigations has been constructed using Finite Elements Method modeling. A new procedure based on the observation of Rayleigh waves propagation velocities allowed to acquire sample mechanical parameters. Comparison of experimental and simulated data and independent defect diameter measurement by echographic equipment, allowed to establish the confidence level and the discrepancies in the developed model. Also operational limits of the vibrometric technique have been studied by acquisition of Signal-to-Noise ratio on different areas of a sample. The Fourier equation has been used for the mathematical model employed for the numerical simulation of the thermographic investigations. Numerical technique with formularization in finite volumes has been employed and a FORTRAN code has been developed to solve the thermal problem.

  13. Differential infrared thermography for boundary layer transition detection on pitching rotor blade models

    NASA Astrophysics Data System (ADS)

    Raffel, Markus; Merz, Christoph B.; Schwermer, Till; Richter, Kai

    2015-02-01

    Differential infrared thermography (DIT) was investigated and applied for the detection of unsteady boundary layer transition locations on a pitching airfoil and on a rotating blade under cyclic pitch. DIT is based on image intensity differences between two successively recorded infrared images. The images were recorded with a high framing rate infrared camera. A pitching NACA0012 airfoil served as the first test object. The recorded images were used in order to investigate and to further improve evaluation strategies for periodically moving boundary layer transition lines. The measurement results are compared with the results of unsteady CFD simulations based on the DLR-TAU code. DIT was then used for the first time for the optical measurement of unsteady transition locations on helicopter rotor blade models under cyclic pitch and rotation. Image de-rotation for tracking the blade was employed using a rotating mirror to increase exposure time without causing motion blur. The paper describes the challenges that occurred during the recording and evaluation of the data in detail. However, the results were found to be encouraging to further improve the method toward the measurement of unsteady boundary layer transition lines on helicopter rotor models in forward flight.

  14. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography

    PubMed Central

    Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee

    2012-01-01

    A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050

  15. Use of infrared thermography in children with shock: A case series.

    PubMed

    Ortiz-Dosal, Alejandra; Kolosovas-Machuca, Eleazar S; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at "Dr. Ignacio Morones Prieto" Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages.

  16. AN EVALUATION OF INFRARED THERMOGRAPHY FOR DETECTION OF BUMBLEFOOT (PODODERMATITIS) IN PENGUINS.

    PubMed

    Duncan, Ann E; Torgerson-White, Lauri L; Allard, Stephanie M; Schneider, Tom

    2016-06-01

    The objective of this study was to evaluate infrared thermography as a noninvasive screening tool for detection of pododermatitis during the developing and active stages of disease in three species of penguins: king penguin (Aptenodytes patagonicus) , macaroni penguin (Eudyptes chrysolophus), and rockhopper penguin (Eudyptes chrysocome). In total, 67 penguins were examined every 3 mo over a 15-mo period. At each exam, bumblefoot lesions were characterized and measured, and a timed series of thermal images were collected over a 4-min period. Three different methods were compared for analysis of thermograms. Feet with active lesions that compromise the surface of the foot were compared to feet with inactive lesions and no lesions. The hypothesis was that feet with active lesions would have warmer surface temperatures than the other conditions. Analysis of the data showed that although feet with active bumblefoot lesions are warmer than feet with inactive or no lesions, the variability seen in each individual penguin from one exam day to the next and the overlap seen between temperatures from each condition made thermal imaging an unreliable tool for detection of bumblefoot in the species studied.

  17. Classification of electrical problems detected by infrared thermography using a risk assessment process

    NASA Astrophysics Data System (ADS)

    McIntosh, Gregory B.; Huff, Roy

    2016-05-01

    For more than 40 years thermography has been used for electrical problem detection. In addition, since radiometric infrared cameras can establish apparent surface temperature of the problem, a classification system is often utilized based upon surface temperature, or temperature rise above normal operating temperature or ambient air temperature. This however can be an extremely unreliable classification method for a number of reasons including: emissivity and background energy; a lack of regard for failure modes and stressors; surface temperature variability with load and ambient conditions; temperature gradient from internal source to surface; and the presence of convection, just to name a few. Standards, such as NFPA 70B, try to address some of these issues by having very low threshold temperature limits, but this as well has issues including identifying an over-abundance of non-critical problems for immediate repair. This paper will present a risk assessment process and matrix which classifies electrical problems based upon a variety of factors affecting both probability and consequence of electrical component failure. Inherent in this process will be a discussion of understanding and analysing electrical connection failure modes and failure stressors, as well as consideration of both heat energy flow and stored energy rather than only considering surface temperature as a single point predictor of catastrophic failure.

  18. Precise temperature mapping of GaN-based LEDs by quantitative infrared micro-thermography.

    PubMed

    Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee

    2012-01-01

    A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect.

  19. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  20. Thermography for estimating near-surface soil moisture under developing crop canopies

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1980-01-01

    Previous investigations of thermal infrared techniques using remote sensors (thermography) for estimating soil water content have been limited primarily to bare soil. Ground-based and aircraft investigations were conducted to evaluate the potential for extending the thermography approach to developing crop canopies. A significant exponential relationship was found between the volumetric soil water content in the 0-4 cm soil layer and the diurnal difference between surface soil temperature measured at 0230 and 1330 LST (satellite overpass times of NASA's Heat Capacity Mapping Mission - HCMM). Surface soil temperatures were estimated using minimum air temperature, percent cover of the canopy and remote measurements of canopy temperature. Results of the investigation demonstrated that thermography can potentially be used to estimate soil temperature and soil moisture throughout a complete growing season for a number of different crops and soils.

  1. Evaluation of paint coating thickness variations based on pulsed Infrared thermography laser technique

    NASA Astrophysics Data System (ADS)

    Mezghani, S.; Perrin, E.; Vrabie, V.; Bodnar, J. L.; Marthe, J.; Cauwe, B.

    2016-05-01

    In this paper, a pulsed Infrared thermography technique using a homogeneous heat provided by a laser source is used for the non-destructive evaluation of paint coating thickness variations. Firstly, numerical simulations of the thermal response of a paint coated sample are performed. By analyzing the thermal responses as a function of thermal properties and thickness of both coating and substrate layers, optimal excitation parameters of the heating source are determined. Two characteristic parameters were studied with respect to the paint coating layer thickness variations. Results obtained using an experimental test bench based on the pulsed Infrared thermography laser technique are compared with those given by a classical Eddy current technique for paint coating variations from 5 to 130 μm. These results demonstrate the efficiency of this approach and suggest that the pulsed Infrared thermography technique presents good perspectives to characterize the heterogeneity of paint coating on large scale samples with other heating sources.

  2. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  3. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  4. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment

    NASA Astrophysics Data System (ADS)

    Siroux, Monica; Harmand, Souad; Desmet, Bernard

    2001-03-01

    Local and mean convective heat transfer from a rotating TGV brake disc model in the actual environment and submitted to an air flow parallel to the disc surface is studied experimentally in this paper. The experimental technique is based on the use of a heated thermally thick disc combined with the technique of temperature measurement by infrared thermography. The local convective heat transfer coefficient from the disc surface is identified by solving the steady state heat equation by finite difference method using the experimental temperature distribution as boundary conditions. These tests were carried out for rotational speed (omega) between 325 and 2000 rpm (rotational Reynolds number Re between 88500 and 545000) so as to obtain laminar and turbulent flow on the disc, and for air flow velocity U ranging between 0 and 12 m s-1 (air flow Reynolds number Re0 between 0 and 153000).

  5. In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity

    NASA Astrophysics Data System (ADS)

    Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.

    2007-01-01

    The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.

  6. Emissivity-corrected power loss calibration for lock-in thermography measurements on silicon solar cells

    SciTech Connect

    Kasemann, Martin; Walter, Benjamin; Meinhardt, Christoph; Ebser, Jan; Kwapil, Wolfram; Warta, Wilhelm

    2008-06-01

    This paper describes power loss calibration procedures with implemented emissivity correction. The determination of our emissivity correction matrix does neither rely on blackbody reference measurements nor on the knowledge of any sample temperatures. To describe the emissivity-corrected power calibration procedures in detail, we review the theory behind lock-in thermography and show experimentally that the lock-in signal is proportional to the power dissipation in the solar cell. Experiments show the successful application of our emissivity correction procedure, which significantly improves the informative value of lock-in thermography images and the reliability of the conclusions drawn from these images.

  7. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  8. Nondestructive testing of plastered mosaics with the use of active thermography approaches

    NASA Astrophysics Data System (ADS)

    Cheilakou, Eleni; Avdelidis, Nico P.; Ibarra-Castanedo, Clemente; Koui, Maria; Bendada, Abdel Hakim; Maldague, Xavier P.

    2010-05-01

    In this work, different mosaics covered with various plasters (of thickness and compositions) were evaluated in lab by means of active long wave and mid wave thermography approaches, with the intention of detecting the tesserae beneath the plastered surface. Thermal images as well as thermal contrast curves between plastered surfaces and plastered mosaics were recorded. Special considerations concerning the applicability and accuracy of the used approaches for this specific application are presented. Results from the assessment are presented and discussed, indicating that images seeing through the mortar-plaster on plastered mosaic surfaces can be obtained using active thermography approaches.

  9. Role of thermography in the assessment of infraorbital nerve injury after malar fractures.

    PubMed

    McGimpsey, J G; Vaidya, A; Biagioni, P A; Lamey, P J

    2000-12-01

    We studied 45 patients with malar fractures who had some degree of infraorbital nerve deficit. Thermographic facial images failed to show any substantial changes in the temperature profiles of the affected and the normal control sides in relation to reco very of their facial sensation. Although some patients who had thermography on the day of injury showed significant temperature differences between the affected and the normal sides, these differences were probably the result of the acute inflammatory ch anges caused by the injury. We suggest that infrared thermography has little place in the assessment of infraorbital nerve deficits. PMID:11092769

  10. A comparison of thermography, radioisotope scanning and clinical assessment of the knee joints in haemophilia.

    PubMed

    Forbes, C D; James, W; Prentice, C R; Greig, W R

    1975-01-01

    Thermography, radioactive scanning and clinical assessment of the knee joints of a series of patients with haemophilia or Christmas disease have been performed. A positive correlation was found between the abnormalities of the thermograms, radioactive scans and the clinical signs in acute haemarthrosis, but not in chronic haemophilic joint disease nor in patients without clinical joint disease. No correlation between the thermograms, radioactive scans and the number of previous joint bleeds was shown. Thermography and radionuclide scanning provide rapid means of quantifying changes within the haemophilic joint and may be useful in assessing treatment of haemophilic haemarthrosis.

  11. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  12. Modeling turbulent fluxes at a winter wheat stand -possibilities and limitations of ground-based thermography

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Haseneder-Lind, R.; Schickling, A.; Crewell, S.; Rascher, U.

    2013-12-01

    Aircraft and satellite sensors operating in the thermal infrared (TIR) region of the spectrum provide spatially comprehensive information on the radiometric surface temperature (TR), representing an integrated temperature based on the radiation emitted from different surface components. TR data are commonly applied as a proxy for the (theoretical) aerodynamic temperature, which satisfies the bulk resistance formulation for the sensible heat transport. The quantitative relation between the radiometric and the aerodynamic temperature is however complex and strongly affected by ambient conditions and surface characteristics. Consequently, TR-based estimates of the latent and sensible heat flux can have high levels of uncertainty. Ground-based studies for the validation of remotely sensed TR data and for the evaluation of TR-based models are crucial. Ground-based TIR cameras, allowing for a high observation frequency and for studying the spatial variability of temperatures, might provide a suitable tool for such studies. We aim at testing the limitations and the possibilities of passive ground-based thermography for the application in studies on the diurnal and seasonal changes of land-atmosphere interactions. Operating at a frequency of 5 min., a TIR camera is mounted at a height of 2m at a winter wheat stand (TR32 research site, Germany), capturing images of a 1m x 1m area (320 × 240 pixel) during spring and summer 2013. Radiometric temperatures are corrected for the influence of cloud cover and evaluated using observations from thermocouples (leaf temperature), RTDs (canopy temperature profile) and an IR radiometer (spatially integrated temperature). Simultaneous hyperspectral and sun-induced chlorophyll fluorescence measurements are used as a proxy for plant functioning and status. Spatial image information is integrated into the framework of different flux modeling approaches, ranging from established one-source to complex, multi-layer models. Modelled fluxes are

  13. Structure of complex of N-methylpiperidine betaine with p-hydroxybenzoic acid studied by X-ray, FT-IR and DFT methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2008-03-01

    Crystal structure of the complex of N-methylpiperidine betaine ( N-carboxymethyl- N-methylpiperidinium inner salt, MPB) with p-hydroxybenzoic acid (HBA) has been determined by X-ray diffraction. The crystals are triclinic, space group Pī, with a = 6.1156(5), b = 10.6869(10), c = 12.0320(10) Å, α = 109.55(1)°, β = 95.25(1)°, γ = 99.22(1)°, Z = 2, R = 0.034. Two molecules of p-hydroxybenzoic acid and two molecules of N-methylpiperidine betaine are linked together forming a centrosymmetric dimer, (MPB·HBA) 2, by four O-H···O hydrogen bonds of lengths 2.622(1) and 2.617(1) Å, between the carboxylic and hydroxy groups of HBA and both oxygen atoms of the carboxylate group of MPB, respectively. The piperidine ring has a chair conformation with the CH 2COO - substituent in the axial position and the CH 3 group in the equatorial one. Two parallel aromatic rings in (MPB·HBA) 2 are distanced by 3.457 Å. In the crystals the complexes form "islands" related to the neighboring complexes by the inversion centers, weak C-H···O bonds and van der Waals forces. A broad band in the 3100-2400 cm -1 region and two bands attributed to the νC dbnd O (1689 cm -1) and νasCOO (1607 cm -1) vibrations in the FT-IR spectrum confirm the structure of the title complex. The two structures of MPB·HBA, denoted as A and B, have been optimized by the B3LYP/6-31G(d,p) method. In A, MPB forms a O-H···O hydrogen bond (2.562 Å) with the carboxylic group of HBA shorter than in the crystals, while in B it interacts with the phenolic group of HBA by a longer O-H···O hydrogen bond (2.661 Å) than in the crystals. Complex A is slightly more stable than B (0.15 kcal/mol).

  14. Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.; Blandino, Joseph R.; Jenkins, Christopher H.; Pappa, Richard S.; Banik, Jeremy; Brown, Hunter; McEvoy, Kiley

    2005-01-01

    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials.

  15. Subsurface defect detection in first layer of pavement structure and reinforced civil engineering structure by FRP bonding using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Ibos, Laurent

    2010-05-01

    In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete

  16. Application of cooled IR focal plane arrays in thermographic cameras

    NASA Astrophysics Data System (ADS)

    Vollheim, B.; Gaertner, M.; Dammass, G.; Krausz, M.

    2016-05-01

    The usage of cooled IR Focal Plane Array detectors in thermographic or radiometric thermal imaging cameras, respectively, leads to special demands on these detectors, which are discussed in this paper. For a radiometric calibration of wide temperature measuring ranges from -40 up to 2,000 °C, a linear and time-stable response of the photodiode array has to be ensured for low as well as high radiation intensities. The maximum detectable photon flux is limited by the allowed shift of the photodiode's bias that should remain in the linear part of the photodiode's I(V) curve even for the highest photocurrent. This limits the measurable highest object temperature in practice earlier than the minimum possible integration time. Higher temperature measuring ranges are realized by means of neutral or spectral filters. Defense and Security applications normally provide images at the given ambient temperature with small hot spots. The usage of radiometric thermal imagers for thermography often feature larger objects with a high temperature contrast to the background. This should not generate artifacts in the image, like pixel patterns or stripes. Further issues concern the clock regime or the sub-frame capabilities of the Read-Out-Circuit and the frame rate dependency of the signal. We will briefly describe the demands on the lens design for thermal imaging cameras when using cooled IR Focal Plane Array detectors with large apertures.

  17. The super-hydrophobic IR-reflectivity TiO2 coated hollow glass microspheres synthesized by soft-chemistry method

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Wang, Yuanhao; An, Zhenguo; Zhang, Jingjie; Yang, Hongxing

    2016-11-01

    The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).

  18. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  19. Quantifying Flaw Characteristics from IR NDE Data

    SciTech Connect

    Miller, W; Philips, N R; Burke, M W; Robbins, C L

    2003-02-14

    Work is presented which allows flaw characteristics to be quantified from the transient IR NDE signature. The goal of this effort was to accurately determine the type, size and depth of flaws revealed with IR NDE, using sonic IR as the example IR NDE technique. Typically an IR NDE experiment will result in a positive qualitative indication of a flaw such as a cold or hot spot in the image, but will not provide quantitative data thereby leaving the practitioner to make educated guesses as to the source of the signal. The technique presented here relies on comparing the transient IR signature to exact heat transfer analytical results for prototypical flaws, using the flaw characteristics as unknown fitting parameters. A nonlinear least squares algorithm is used to evaluate the fitting parameters, which then provide a direct measure of the flaw characteristics that can be mapped to the imaged surface for visual reference. The method uses temperature data for the heat transfer analysis, so radiometric calibration of the IR signal is required. The method provides quantitative data with a single thermal event (e.g. acoustic pulse or flash), as compared to phase-lock techniques that require many events. The work has been tested with numerical data but remains to be validated by experimental data, and that effort is underway.

  20. Lock-in thermography for evaluation of destruction area and determination of depth

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Liu, Junyan; Dai, Jingmin

    2007-12-01

    Infrared Thermography is a Nondestructive Testing and Evaluating (NDT&E) technique that allows the non-contact inspection of systems and materials through a mapping of thermal patterns on the surface of the objects of interest. Defect detection principle in active thermography is based on the fact that a difference of thermal properties exists between the sound area and a defective region, which can be used for defect detection and quantification purposes. In this paper, experimental studies were made on the applicability to the detection of artificial defects in a steel flat plate with 12 flat-bottomed holes with three different sizes located at three different depths. The object was periodically heated by quartz lamps combined with light controller. The controller was operated by the same reference signal for the lock-in thermography. It was found that the defects were detected by localized contrast change in the phase delay images. It was also found that the location and size of defects can be estimated by the area of contrast change in the phase delay images which was clearly observed compared with conventional thermography techniques. The relationship between the values of phase delay and heating periods or modulation frequency was examined for several defect depths.

  1. Microcavity array IR photodetector

    SciTech Connect

    Esman, A K; Kuleshov, V K; Zykov, G L

    2009-12-31

    An original microcavity array IR photodetector is proposed and the sensitivity and response time of its pixels are calculated. A photosensitive element represents a composite silicon microcavity made of two optically coupled closed waveguides on a dielectric substrate whose resonance wave depends on its temperature. This dependence is used to detect IR radiation which heats an absorbing element and the composite microcavity thermally coupled with this element. It is shown that for a spatial resolution of 45 {mu}m, the time response is 30 ms and the sensitivity is 10{sup -3} K at the IR radiation power of {approx} 4.7 x 10{sup -8} W element{sup -1}. (photodetectors)

  2. Land drainage system detection using IR and visual imagery taken from autonomous mapping airship and evaluation of physical and spatial parameters of suggested method

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.

    2014-10-01

    An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.

  3. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  4. Method and apparatus for enhancing surface absorption and emissivity in optical pulsed infrared nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Duan, Yuxia; Zhang, Cunlin; Jin, Wanping; Wu, Naiming

    2009-07-01

    In the application of optical pulsed infrared NDE, the visible light absorption and IR emissivity of the detected object must be considered. One of the simple methods is spraying paint on the highly reflective and low IR emissivity surface before testing. However, for some materials such as with pore space in the surface or easily to be corrupted have to be pretreated by other method and apparatus. Two kinds of apparatus for surface pretreating are designed according to the dimension of the detected object and the testing conditions. One apparatus is independent of the former detecting system, and the other is an improvement of the former system. The basic principle of the two apparatus is covering a flexible membrane of high light absorption and IR emissivity on the specimen surface by vacuum pumping. The paper also present the applications of the method, including the detection of the metal mesh material and the honeycomb structures with aluminum coating. The experimental results show that the technique of covering thin film by vacuum pump is effective for enhancing surface absorption and emissivity; moreover, it does not pollute or damage the sample. The application of the technique has practical significance, because it extends the scope of the application of the optical pulsed thermography nondestructive evaluation.

  5. The evaluation of evaporation by infrared thermography: A critical analysis of the measurements on the Crau test site. [France

    NASA Technical Reports Server (NTRS)

    Seguin, B.; Petit, V.; Devillard, R.; Reich, P.; Thouy, G. (Principal Investigator)

    1980-01-01

    Evapotranspiration was calculated for both the dry and irrigated zone by four methods which were compared with the energy balance method serving as a reference. Two methods did not involve the surface temperature. They are ETR(n) = R(n), liable to be valid under wet conditions and ET(eq) = (delta/delta + gamma) R(n) i.e, the first term of Penman's equation, adapted to moderately dry conditions. The methods using surface temperature were the combined energy balance aerodynamic approach and a simplified approach proposed by Jackson et al. Tests show the surface temperature methods give relatively satisfactory results both in the dry and wet zone, with a precision of 10% to 15% compared with the reference method. As was to be expected, ET(eq) gave satisfactory results only in the dry zone and ET(Rn) in the irrigated zone. Thermography increased the precision in the estimate of ET relative to the most suitable classical method by 5% to 8% and is equally suitable for both dry and wet conditions. The Jackson method does not require extensive ground measurements and the evaluation of the surface roughness.

  6. Determination of Structural and Vibrational Properties of 5-QUINOLINECARBOXALDEHYDE Using Experimental Ft-Ir Ft-Raman Techniques and Theoretical HF and DFT Methods

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Kocademir, Mustafa; Bardakci, Tayyibe

    2013-06-01

    Quinoline derivatives have been used in several pharmaceuticals. They have vital roles in regulating the functions of DNA and cancerous cells. It's necessary to determine the structures and spectroscopic properties of quinoline derivates. In this study, the FT-IR (including mid and far regions) and FT-Raman spectra of 5-quinolinecarboxaldehyde have been investigated. Hartree-Fock (HF) and density functional B3LYP calculations have also been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of the cis and trans conformers of 5-quinolinecarboxaldehyde. Experimental and theoretical results have been compared and the results are in good agreement with each other. Keywords: 5-quinolinecarboxaldehyde; Vibrational Spectroscopy; FT-IR spectra; FT-Raman spectra; Vibrational Modes; HF; DFT [1] V. Kucuk, A. Altun, M. Kumru, Spectrochim. Acta Part A 85(2012)92-98 [2] M. Kumru, V. Kucuk, T. Bardakci, Spectrochim. Acta Part A 90(2012)28-34 [3] M. Kumru, V. Kucuk, M. Kocademir, Spectrochim. Acta Part A, 96 (2012) 242-251 We thank the Turkish Scientific and Technical Research Council (TUBITAK) for their financial support through National Postdoctoral Research Scholarship Programme and Scientific Research Fund of Fatih University under the project number P50011001 G (1457).

  7. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  8. Intraoperative imaging of cortical perfusion by time-resolved thermography using cold bolus approach

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schnabel, Christian; Hoffmann, Nico; Radev, Yordan; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald

    2014-03-01

    During the past decade, thermographic cameras with high thermal and temporal resolution of up to 30 mK and 50 Hz, respectively, have been developed. These camera systems can be used to reveal thermal variations and heterogeneities of tissue and blood. Thus, they provide a fast, sensitive, noninvasive, and label-free application to investigate blood perfusion and to detect perfusion disorders. Therefore, time-resolved thermography is evaluated and tested for intraoperative imaging of the cerebral cortex during neurosurgeries. The motivation of this study is the intraoperative evaluation of the cortical perfusion by observing the temporal temperature curve of the cortex during and after the intravenous application of a cold bolus. The temperature curve caused by a cold bolus is influenced by thermodilution, depending on the temperature difference to the patient's circulation, and the pattern of mixing with the patient's blood. In this initial study, a flow phantom was used in order to determine the temperature variations of cold boli under stable conditions in a vascular system. The typical temperature profile of cold water passing by can be approximated by a bi- Gaussian function involving a set of four parameters. These parameters can be used to assess the cold bolus, since they provide information about its intensity, duration and arrival time. The findings of the flow phantom can be applied to thermographic measurements of the human cortex. The results demonstrate that time-resolved thermographic imaging is a suitable method to detect cold boli not only at a flow phantom but also at the human cortex.

  9. Line scan versus flash thermography: comparative study on reinforced carbon-carbon

    NASA Astrophysics Data System (ADS)

    Woolard, Deonna F.; Cramer, K. Elliott

    2005-03-01

    Thermographic inspection techniques fundamentally vary by method of heat deposition. Some systems use a short burst of energy from a flash lamp while others control the motion of a quartz lamp over the material. Both techniques have had a history of successful inspections on aircraft and boiler tubes, for example. Historically, the system used for inspections was determined by the thermographic equipment available to the researcher. This paper will compare the flash and line scan thermographic systems on Reinforced Carbon-Carbon. Reinforced Carbon-Carbon (RCC) is a brittle composite material that is found on the Space Shuttle"s nose section, wing leading edges, and chin panel. It is used to protect the orbiter"s aluminum frame from superheated air during flight. In the time since the Columbia accident, impact tests on RCC panels have been ongoing. Flash thermography has been successfully used to scan the impact site for delaminations. While the system has proven effective, it is not without limitations. A single scan yields only that section of material that is in the field of view of the infrared camera. Additionally, delaminations deep within the material may not be resolved as well as with quartz heating. A comparative study was conducted using a RCC panel with flat-bottom holes varying in diameter and depth. The panel was scanned with the Thermal Line Scanner, the Thermal Photocopier, and the Echotherm from Thermal Wave Imaging. Signal to noise ratios were calculated for the defects and used to compare the three systems. This paper will discuss the details of the study and show the results obtained from each of the three systems.

  10. Integration of reflectances and thermography imagery for transport infrastructures diagnostics

    NASA Astrophysics Data System (ADS)

    Pignatti, S.; Palombo, A.; Pascucci, S.; Santini, F.

    2012-04-01

    The integrated use of reflectances and thermography to study and diagnostic of transport infrastructures has been applied on the Musumeci Bridge (Potenza, Italy) test site as a fast and non-destructive tool in the framework of the Integrated System for Transport Infrastructures surveillance and Monitoring by Electromagnetic Sensing (ISTIMES) project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, in order to extract appropriate information and make useful decisions [1]. The applied hyperspectral imagery is primarily suited for the detection and characterization of alterations and defects in the structures' surface, whereas by means of thermography it is possible to attain near real-time information about the internal structure such as a bridge. Hyperspectral data is able to discriminate materials on the basis of their different patterns of wavelength-specific absorption; in fact, they are successfully used for identifying minerals and rocks, as well as detecting surface materials properties [2]. For this study we used the HySpex VNIR-1600 and the SWIR-320 hyperspectral scanners (see details in Table 1) located beneath the Musmeci Bridge thus being able to acquire the structure. The hyperspectral data processing has allowed to derive indication/parameters related to the status of the structure surface, i.e. by means of the detection of the surface weathering status of the iron (i.e. iron oxides such as limonite/goethite) used to reinforce the cement structure and the occurring detachments of the cement covering the iron. This assessment can be used to foresee more severe damages of the armed concrete. Concerning the rationale for using a high sensitivity Infrared camera in the MWIR range (3.5-5 micron; see Table 1) for the Musumeci test site is based on the fact that the high radiometric resolution of the thermal images time series allows analyzing the structure homogeneity and the cohesion of

  11. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  12. The Role of Infrared Thermography as a Non-Invasive Tool for the Detection of Lameness in Cattle

    PubMed Central

    Alsaaod, Maher; Schaefer, Allan L.; Büscher, Wolfgang; Steiner, Adrian

    2015-01-01

    The use of infrared thermography for the identification of lameness in cattle has increased in recent years largely because of its non-invasive properties, ease of automation and continued cost reductions. Thermography can be used to identify and determine thermal abnormalities in animals by characterizing an increase or decrease in the surface temperature of their skin. The variation in superficial thermal patterns resulting from changes in blood flow in particular can be used to detect inflammation or injury associated with conditions such as foot lesions. Thermography has been used not only as a diagnostic tool, but also to evaluate routine farm management. Since 2000, 14 peer reviewed papers which discuss the assessment of thermography to identify and manage lameness in cattle have been published. There was a large difference in thermography performance in these reported studies. However, thermography was demonstrated to have utility for the detection of contralateral temperature difference and maximum foot temperature on areas of interest. Also apparent in these publications was that a controlled environment is an important issue that should be considered before image scanning. PMID:26094632

  13. Investigation of the steric structure of optically active 2-(x-benzylidene)-p-menthan-3-ones by dipole-moment, PMR-spectral, and IR-spectral methods

    SciTech Connect

    Kutulya, L.A.; Pivnenko, N.S.; Nemchenok, I.B.; Khandrimailova, T.V.; Semenkova, G.P.; Biba, V.I.; Tishchenko, V.G.

    1987-08-10

    On the basis of dipole-moment and PMR-spectral data the E configuration of the cinnamoyl fragment of molecules of optically active 2-benzylidene-p-menthan-3-ones was established. By means of PMR and IR spectroscopy experimental proofs were obtained of deviation from coplanarity of the separate parts of the cinnamoyl system in the molecules investigated. It was shown that the cinnamoyl fragment of the molecules of 2-benzylidene-p-menthan-3-ones is more aplanar than in the case of the model ..pi..-isoelectronic 2-benzylidenecyclo-hexanone systems. By means of PMR the preferential axial orientation of the methyl group and equatorial orientation of the isopropyl group in the cyclohexanone system of molecules of 2-benzylidene-p-methan-3-ones was established.

  14. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    NASA Astrophysics Data System (ADS)

    Sorvoja H. S., S.; Myllylä, T. S.; Kirillin, M. Yu; Sergeeva, Ekaterina A.; Myllylä, Risto A.; Elseoud, A. A.; Nikkinen, J.; Tervonen, O.; Kiviniemi, V.

    2011-01-01

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source — detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable.

  15. Nuclear IRS-1 and Cancer

    PubMed Central

    Reiss, Krzysztof; Valle, Luis Del; Lassak, Adam; Trojanek, Joanna

    2011-01-01

    The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1 - IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160–185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed in several other laboratories. The nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing ERβ, further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression. PMID:22454254

  16. HWIL IR imaging testing

    NASA Astrophysics Data System (ADS)

    Vinson, R. J.; Passwater, R. D.

    1981-03-01

    The Army simulator facilities are presently configured to conduct hardware-in-the-loop mission tasks on the HELLFIRE and COPPERHEAD missile systems. These systems presently use a LASER seeker. The facility is an ideal candidate to be converted to include infrared (IR) seekers used on the TGSM system. This study investigates the possibility and impact of a facility update. This report documents the feasibility of developing a hardware-in-the-loop (HWIL) hybrid simulation incorporating infrared IR seekers used for the Assault Breaker program. Other hardware to be considered are the autopilot, signal conditioning, signal processing, and actuators which may be integrated into the system simulation. Considerations are given to replacing all or elements of hardware while substituting math models in the system simulation.

  17. IR susceptibility of naval ships using ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Vaitekunas, David A.

    2010-04-01

    Methods of analysing the signature and susceptibility of naval platforms to infrared detection are described. An unclassified ShipIR destroyer model is used to illustrate the primary sources of infrared signature and detection: the exhaust system, solar-heating, and operating climate. The basic detection algorithm used by the Naval Threat Countermeasure Simulator (NTCS) component of ShipIR is described and used to analyse the effectiveness of various stealth technologies: stack suppression, low solar absorptive (LSA) paints, and Active Hull Cooling (AHC). Standard marine climate statistics are used to determine a minimum (5%), average (50%) and maximum (95%) signature condition for each operating region. The change in detection range of two wave-band sensors (3-5μm, 8-12 μm) operating at different altitudes (10m, 270m) in each of four climatic conditions is used to assess the effectiveness of each stealth solution, providing a more integral approach to infrared stealth design. These tools and methods form the basis on which future platform designs are being evaluated.

  18. Applying Infrared Thermography as a Quality-Control Tool for the Rapid Detection of Proton-Electrolyte-Membrane-Fuel-Cell Catalyst-Layer-Thickness Variations

    SciTech Connect

    Aieta, N. V.; Das, P. K.; Perdue, A.; Bender, G.; Herring, A. M.; Weber, A. Z.; Ulsh, M. J.

    2012-08-01

    As fuel cells become more prominent, new manufacturing and production methods are needed to enable increased volumes with high quality. One necessary component of this industrial growth will be the accurate measurement of the variability of a wide range of material properties during the manufacturing process. In this study, a method to detect defects in fuel cell catalyst layers is investigated through experiment and mathematical simulation. The method uses infrared thermography and direct-current electronic-excitation methods to detect variations in platinum-containing catalyst-layer thickness with high spatial and temporal resolution. Data analysis, operating-condition impacts, and detection limits are explored, showing the measurement of defects on the millimeter length scale. Overall, the experimental and modeling results demonstrate great potential of this technique as a nondestructive method to measure defects that is amenable to use on roll-to-roll manufacturing lines.

  19. Nighttime IR Ejecta

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Today's crater is slightly older than one shown yesterday. The ballistically emplaced ejecta is now a uniform gray tone in this nighttime IR image. With time dust will cover young surfaces and control the IR image tone. This crater is located east of Huygens Crater.

    Image information: IR instrument. Latitude -10.6, Longitude 64.3 East (295.7 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Final report on Pilot Study CCQM-P110: Study on the accuracy and uncertainty of FT-IR methods calibrated with synthetic spectra for NO2 concentration measurements

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Viallon, Joële; Wielgosz, Robert; Fernández, Teresa; Rojo, Andrés; Ramírez, Sergio; Aoki, Nobuyuki; Kato, Kenji; Jeongsoon, Lee; Moon, Dongmin; Kim, Jin-Seog; Harling, A.; Milton, M.; Griffith, David; Smeulders, Damian; Chu, Pamela; Gameson, Lyn; Botha, Angelique; Tshilongo, James; Godwill Ntsasa, Napo; Valková, Miroslava; Konopelko, Leonid; Kustikov, Y. A.; Rumyantsev, D. V.; Gromova, Elena

    2013-01-01

    The results of the first pilot study designed to evaluate the level of comparability of measurements of nitrogen dioxide (NO2) mole fractions in nitrogen based on measurement procedures that rely on FT-IR spectroscopy as an absolute method of quantification with the traceability of measurement results to line strength data are reported. Participants were required to report measurement results using FT-IR for the gas standard (nominal mole fraction of 10 µmol/mol NO2 in nitrogen) received from the BIPM as part of the CCQM-K74 exercise. In addition, they were required to provide infrared spectra and instrument parameter information to enable a recalculation of their results by the BIPM's, using only its own synthetic spectra calibration procedure with values traceable to the line parameters contained in HITRAN 2004. The relative standard uncertainties based on FT-IR measurements reported by participating laboratories ranged from 0.6% to 4.3%. The relative standard uncertainty of the reference value for each gas standard was 0.4%, as determined during the CCQM-K74 exercise. Of the ten results submitted, only five agreed with the reference value within their expanded uncertainties. Furthermore, major contributions to the uncertainty of FT-IR measurements arose from the optical path length measurements and the uncertainty that could be attributed to line strength data from the HITRAN molecular database. The inclusion of these uncertainty contributions was estimated by the BIPM to result in achievable relative standard uncertainties of 3.4% for its FT-IR measurements using synthetic spectra calibration procedures. Finally the recalculation of the participants' results by the BIPM using the laboratories' submitted experimental characteristics and infrared spectra showed good agreement with the submitted results, indicating that the calculation algorithms were not in themselves a major reason for the spread of results. Main text. To reach the main text of this paper

  1. Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one by HF and density functional methods.

    PubMed

    Sheena Mary, Y; Yohannan Panicker, C; Anto, P L; Sapnakumari, M; Narayana, B; Sarojini, B K

    2015-01-25

    (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one is synthesized by using 2,4-dichloroacetophenone and 3,4,5-trimethoxybenzaldehyde in ethanol. The structure of the compound was confirmed by IR and single crystal X-ray diffraction studies. FT-IR spectrum of (2E)-1-(2,4-dichloro-phenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one was recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF and DFT methods and are assigned with the help of potential energy distribution method. The first hyperpolarizability and infrared intensities are also reported. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (DFT) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. MEP was performed by the DFT method. From the MEP map of the title molecule, negative region is mainly localized over the electronegative oxygen atoms, in the carbonyl group and the oxygen atom O4 of the methoxy group and the maximum positive region is localized on the phenyl rings.

  2. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  3. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining.

    PubMed

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  4. Is it possible to revive the flagging interest in thermography for neurology?

    NASA Astrophysics Data System (ADS)

    Stulin, Igor D.

    1993-11-01

    The paper describes the results of twenty-years of experience in applying thermography (thermal imaging) in routine and urgent neurology, based on the study of more than ten thousand patients. Stress is laid on the fact that thermography is of great significance for diagnosing dextrocerebral hemorrhagic insult with a manifestation of pronounced hemihypothermia in the paralyzed limbs, identifying paraorbital hyperthermia on the side of rhinogenous cerebral abscess, for instrumental registration of transitory heat-up of the nasolabial region in the case of patients suffering from hypertensive nasal bleeding. Much attention is given to diagnosis of intra- and extracerebral phlebopathy in urgent neurology -- early diagnosis of iatrogenic catheterization phlebitis, interference with the venous return in the paralyzed lower limb. The novelty here is the employment of telethermography for complex diagnosis of cerebral death.

  5. Infrared thermography-based visualization of droplet transport in liquid sprays

    NASA Astrophysics Data System (ADS)

    Akafuah, Nelson K.; Salazar, Abraham J.; Saito, Kozo

    2010-05-01

    An infrared thermography-based technique for the characterization and visualization of liquid sprays was developed. The technique was tested on two atomizers: a high-speed rotary bell atomizer and a high volume low pressure air-assisted atomizer. The technique uses an infrared thermography-based measurement in which a uniformly heated background acts as a thermal radiation source, and an infrared camera as the receiver. The infrared energy emitted by the radiation source in traveling through the spray is attenuated by the presence of the droplets inside the spray. The infrared intensity is captured by the receiver showing the attenuation in the image as a result of the presence of the spray. The captured thermal image is used to study detailed macroscopic features of the spray flow field and the evolution of the paint droplets as they are transferred from the applicator to the target surface.

  6. Intraoperative imaging of cortical cerebral perfusion by time-resolved thermography and multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Sobottka, Stephan B.; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias

    2011-01-01

    A new approach to cortical perfusion imaging is demonstrated using high-sensitivity thermography in conjunction with multivariate statistical data analysis. Local temperature changes caused by a cold bolus are imaged and transferred to a false color image. A cold bolus of 10 ml saline at ice temperature is injected systemically via a central venous access. During the injection, a sequence of 735 thermographic images are recorded within 2 min. The recorded data cube is subjected to a principal component analysis (PCA) to select slight changes of the cortical temperature caused by the cold bolus. PCA reveals that 11 s after injection the temperature of blood vessels is shortly decreased followed by an increase to the temperature before the cold bolus is injected. We demonstrate the potential of intraoperative thermography in combination with multivariate data analysis to image cortical cerebral perfusion without any markers. We provide the first in vivo application of multivariate thermographic imaging.

  7. IR nanoscale spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H.

    2011-10-01

    Sub diffraction limited infrared absorption imaging was applied to hemoglobin by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  8. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  9. Study on flaw detectability of NDT induction thermography technique for laminated CFRP composites

    NASA Astrophysics Data System (ADS)

    Kien Bui, Huu; Wasselynck, Guillaume; Trichet, Didier; Berthiau, Gérard

    2016-01-01

    Using a 3D finite elements simulation tool, a study on the flaw detection capacity of the non destructive testing (NDT) induction thermography (IT) technique for laminated carbon fiber reinforced polymers (CFRP) composites is presented. Delamination and fiber rupture flaw occurring at the elementary-ply scale are considered. In order to reduce the impact of measurement noise on the flaw detectability, several signal processing techniques are proposed. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  10. Application of infrared thermography to the interpretation of tests in an icing wind tunnel

    NASA Astrophysics Data System (ADS)

    Henry, R.; Guffond, D.

    Wall temperature measurements were obtained in an icing wind tunnel using infrared thermography in order to validate models for the simulation of electrothermal deicers intended for helicopter blades. The measurement procedure involves adjusting the camera for the temperature range considered, determining the directional emissivity of the profile surface and of the ice, and using Mie theory to determine the atmospheric transmission factor. The present results demonstrate the importance of taking the phase change of the ice into account in deicer modeling.

  11. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.

    PubMed

    Layman, Christopher N; Sou, In Mei; Bartak, Rico; Ray, Chittaranjan; Allen, John S

    2011-09-01

    Real-time measurements of acoustic streaming velocities and surface temperature fields using synchronized particle image velocimetry and infrared thermography are reported. Measurements were conducted using a 20 kHz Langevin type acoustic horn mounted vertically in a model sonochemical reactor of either degassed water or a glycerin-water mixture. These dissipative phenomena are found to be sensitive to small variations in the medium viscosity, and a correlation between the heat flux and vorticity was determined for unsteady convective heat transfer.

  12. Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study

    NASA Astrophysics Data System (ADS)

    Liu, Chanjuan; van der Heijden, Ferdi; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van Netten, Jaap J.

    2013-03-01

    Diabetic foot ulceration is a major complication for patients with diabetes mellitus. If not adequately treated, these ulcers may lead to foot infection, and ultimately to lower extremity amputation, which imposes a major burden to society and great loss in health-related quality of life for patients. Early identification and subsequent preventive treatment have proven useful to limit the incidence of foot ulcers and lower extremity amputation. Thus, the development of new diagnosis tools has become an attractive option. The ultimate objective of our project is to develop an intelligent telemedicine monitoring system for frequent examination on patients' feet, to timely detect pre-signs of ulceration. Inflammation in diabetic feet can be an early and predictive warning sign for ulceration, and temperature has been proven to be a vicarious marker for inflammation. Studies have indicated that infrared dermal thermography of foot soles can be one of the important parameters for assessing the risk of diabetic foot ulceration. This paper covers the feasibility study of using an infrared camera, FLIR SC305, in our setup, to acquire the spatial thermal distribution on the feet soles. With the obtained thermal images, automated detection through image analysis was performed to identify the abnormal increased/decreased temperature and assess the risk for ulceration. The thermography for feet soles of patients with diagnosed diabetic foot complications were acquired before the ordinary foot examinations. Assessment from clinicians and thermography were compared and follow-up measurements were performed to investigate the prediction. A preliminary case study will be presented, indicating that dermal thermography in our proposed setup can be a screening modality to timely detect pre-signs of ulceration.

  13. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems

    NASA Astrophysics Data System (ADS)

    Ptaszek, Grzegorz; Cawley, Peter; Almond, Darryl; Pickering, Simon

    2012-05-01

    Transient thermography is commonly used for the detection of disbonds in thermal barrier coatings (TBC). As for other NDT techniques, reference test specimens are required for calibration, but unfortunately, real disbonds are very difficult to use because it is difficult to control their size, and larger ones tend to spall. Flat bottomed holes are commonly used, but these over-estimate the thermal contrast obtained for a defect of a given diameter. This paper quantifies the difference, and proposes an artificial disbond.

  14. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    PubMed

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation.

  15. Structure of 1:1 complex of 1-naphthylmethyl ester of monensin A with sodium perchlorate studied by X-ray, FT-IR and ab initio methods

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil

    2012-12-01

    A new crystalline complex formed between 1-naphthylmethyl ester of the naturally occurring antibiotic - monensin A (MON8) with sodium perchlorate has been obtained and studied using X-ray crystallography and FT-IR spectroscopy. The X-ray data of the complex show that MON8 forms a pseudo-cyclic structure stabilised by one weak intramolecular hydrogen bond and the sodium cation co-ordinated by two oxygen atoms of hydroxyl groups and four etheric oxygen atoms in the hydrophilic sphere. Within this structure the oxygen atoms of the ester groups are not involved in the coordination of sodium cation. In contrast to the solid state structure of the complex, in acetonitrile solution an equilibrium between two structures, in which the oxygen atom of the carbonyl ester group is either involved or not involved in the complexation of the sodium cation, is found. In acetonitrile this equilibrium is shifted towards the latter structure i.e. the structure existing in the solid state. The gas-phase structure of [MON8sbnd Na]+ cation as shown the ab initio MO calculations is comparable with the crystal one. Three-dimensional molecular electrostatic potential calculated for the neutral MON8 and [MON8sbnd Na]+ molecules is helpful for understanding the structural aspects of the sodium complex formation.

  16. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs

    PubMed Central

    McManus, Concepta; Bianchini, Eliandra; Paim, Tiago do Prado; de Lima, Flavia Gontijo; Braccini Neto, José; Castanheira, Marlos; Esteves, Geisa Isilda Ferreira; Cardoso, Caio Cesar; Dalcin, Vanessa Calderaro

    2015-01-01

    Heat stress is considered a limiting factor for sheep production. We used information from physiological characteristics linked to heat tolerance to determine whether infrared thermography temperatures were able to separate groups of animals and determine the most important variables in this differentiation. Forty-eight four-month-old male lambs from eight genetic groups were used. Physiological (rectal temperature–RT, heart rate–HR, respiratory rate–RR) and blood traits, infrared thermography temperatures, heat tolerance indices, body measurements, weight and carcass traits were measured. Statistical analyses included variance, correlations, factor, discrimination and regression. Observing the correlations between physiological characteristics (RT, RR and HR) with temperatures measured by infrared thermography, regions for further studies should include the mean temperature of flank, nose and rump. Results show that there are strong relationships between thermograph measurements and RR, RT and HR in lambs, which are suggested to be directly correlated with heat tolerance capacity of the different genetic groups evaluated in this study. The assessment of body surface temperature measured by the thermograph could be used as a noninvasive tool to assess heat tolerance of the animals. PMID:26193274

  17. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs.

    PubMed

    McManus, Concepta; Bianchini, Eliandra; Paim, Tiago do Prado; de Lima, Flavia Gontijo; Neto, José Braccini; Castanheira, Marlos; Esteves, Geisa Isilda Ferreira; Cardoso, Caio Cesar; Dalcin, Vanessa Calderaro

    2015-07-16

    Heat stress is considered a limiting factor for sheep production. We used information from physiological characteristics linked to heat tolerance to determine whether infrared thermography temperatures were able to separate groups of animals and determine the most important variables in this differentiation. Forty-eight four-month-old male lambs from eight genetic groups were used. Physiological (rectal temperature-RT, heart rate-HR, respiratory rate-RR) and blood traits, infrared thermography temperatures, heat tolerance indices, body measurements, weight and carcass traits were measured. Statistical analyses included variance, correlations, factor, discrimination and regression. Observing the correlations between physiological characteristics (RT, RR and HR) with temperatures measured by infrared thermography, regions for further studies should include the mean temperature of flank, nose and rump. Results show that there are strong relationships between thermograph measurements and RR, RT and HR in lambs, which are suggested to be directly correlated with heat tolerance capacity of the different genetic groups evaluated in this study. The assessment of body surface temperature measured by the thermograph could be used as a noninvasive tool to assess heat tolerance of the animals.

  18. Application of infrared thermography to structural integrity evaluation of steel bridges

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Izumi, Yui; Kubo, Shiro

    2010-10-01

    A new remote nondestructive evaluation technique based on thermoelastic temperature measurement by infrared thermography was developed for the evaluation of fatigue cracks propagating from welded joints in steel bridges. Fatigue cracks were detected from localized thermoelastic temperature changes at crack tips due to stress singularities generated by wheel loading from traffic on a bridge. A self-reference lock-in data-processing technique was developed to improve the signal-to-noise ratio of the thermal images obtained in the crack detection process. Thermoelastic stress analyses in the vicinity of crack tips were carried out after the crack detection process by self-reference lock-in thermography. The stress distribution under wheel loading by traffic was measured by infrared thermography. Stress intensity factors were directly evaluated from the measured stress distribution. It was found that these fracture mechanics parameters can be evaluated with reasonable accuracy by the proposed technique, enabling the assessment of structural integrity based on the evaluated fracture mechanics parameters.

  19. FT-IR analysis of phosphorylated protein

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Yoshihashi, Sachiko S.; Chihara, Kunihiro; Awazu, Kunio

    2004-09-01

    Phosphorylation and dephosphorylation, which are the most remarkable posttranslational modifications, are considered to be important chemical reactions that control the activation of proteins. We examine the phosphorylation analysis method by measuring the infrared absorption peak of phosphate group that observed at about 1070cm-1 (9.4μm) with Fourier Transform Infrared Spectrometer (FT-IR). This study indicates that it is possible to identify a phosphorylation by measuring the infrared absorption peak of phosphate group observed at about 1070 cm-1 with FT-IR method. As long as target peptides have the same amino acid sequence, it is possible to identify the phosphorylated sites (threonine, serine and tyrosine).

  20. The IRS-1 signaling system.

    PubMed

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  1. Intraoperative IR imaging in the cardiac operating room

    NASA Astrophysics Data System (ADS)

    Szabo, Tamas; Fazekas, Levente; Horkay, Ferenc; Geller, Laslu; Gyongy, Tibor; Juhasz-Nagy, Alexander

    1999-07-01

    The high blood flow rate and the considerable metabolic activity render the myocardium a possible candidate for IR imaging. The study was aimed to test cardiothermography in evaluating arterial bypass graft patency and in assessing myocardial protection during open-heart surgery. Ten patients underwent arterial bypass grafting. Thermograms were obtained immediately before and after opening the grafts. As the bypasses were opened in hypothermia the warmer blood coming from the extracorporeal circulation readily delineated graft and coronary anatomy. By the end of the 5 min observation period, the revascularized area exhibited a temperature increase of 5.9 +/- 0.7 degrees C. The affectivity of antegrade cardioplegia was monitored in 38 patients undergoing either valve implantations or aorto- coronary bypass surgery. Thermographic imags were taken after sternotomy, before aortic cross-clamping and after administrating the 4 degrees C cardioplegic solution. Most of the patients displayed adequate myocardial cooling, moreover the bypass-group exhibited a more profound temperature-decrease. In conclusion, cardiothermography can visualize arterial grafts, recipient coronaries and collaterals seconds after opening by bypass, thus it properly evaluated arterial bypass graft patency. The obtained images could easily be analyzed for qualitative flow- and quantitative temperature changes. Myocardial protection could also be safely assessed with thermography.

  2. IR signature management for the modern navy

    NASA Astrophysics Data System (ADS)

    Vaitekunas, David A.; Kim, Yoonsik

    2013-06-01

    A methodology for analysing the infrared (IR) signature and susceptibility of naval platforms using ShipIR/NTCS was presented by Vaitekunas (2010). This paper provides three key improvements: use of a larger climatic data set (N=100), a new target sub-image algorithm eliminating false detections from pixel-aliasing at the horizon, and a new seeker model interfacing with a line-by-line background clutter model. Existing commercial stealth technologies (exhaust stack suppression, low solar absorptive paints, extended hull film-cooling) are re-analysed using the new models and methods to produce a more rigorous and comprehensive analysis of their effectiveness based on the statistics of reduction in IR susceptibility. These methods and results combined with the cost of each stealth option should allow platform managers to select an appropriate level of infrared suppression and establish the design criteria for a new ship.

  3. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions

  4. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  5. Thermography Applied During Exercises With or Without Infrared Light-Emitting Diode Irradiation: Individual and Comparative Analysis

    PubMed Central

    Lins, Emery C.; Corazza, Adalberto Vieira; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2013-01-01

    Abstract Objective: The aim of our study was to evaluate the cutaneous temperature during an exercise on a treadmill with or without infrared light-emitting diode (LED) irradiation in postmenopausal women. Background data: Thermography is an imaging technique in which radiation emitted by a body in the middle and far infrared spectrum is detected and associated with the temperature of the body's surface. Materials and methods: Eighteen postmenopausal women were randomly divided into two groups: (1) the LED group, which performed the exercises on a treadmill associated with phototherapy (n=9) and; (2) the exercise group, which performed the exercises on a treadmill without additional phototherapy (n=9). The irradiation parameters for each women's thigh were: array of 2000 infrared LEDs (850 nm) with an area of 1,110 cm2, 100 mW, 39 mW/cm2, and 108 J/cm2 for 45 min. The submaximal constant-speed exercise on the treadmill at intensities between 85% and 90% maximal heart rate (HRmax) with or without phototherapy were performed during 45 min, to perform the thermographic analysis. Thermography images were captured before the exercise (t=0), after 10, 35, and 45 min of exercising (t=10, t=35, and t=45) and at 5 min post-exercising (t=50). Results: The LED group showed an increased cutaneous thigh temperature during the exercise (from 33.5±0.8°C to 34.6±0.9°C, p=0.03), whereas the exercise group showed a reduced cutaneous temperature (from 33.5±0.6 to 32.7±0.7°C, p=0.02). The difference between the groups was significant (p<0.05) at t=35, t=45, and t=50. Conclusions: These data indicate an improved microcirculation, and can explain one possible mechanism of action of phototherapy associated with physical exercises. PMID:23819505

  6. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment

    NASA Astrophysics Data System (ADS)

    Siroux, Monica; Harmand, Souad; Desmet, Bernard

    2002-07-01

    We present an experimental identification of the local and mean Nusselt number from a rotating TGV brake disk model in the actual environment and exposed to an air flow parallel to the disk surface. This method is based on the use of a heated thermally thick disk combined with the technique of temperature measurement by infrared thermography. The local and mean convective heat transfer coefficient from the disk surface is identified by solving the steady state heat equation by a finite difference method using the experimental temperature distribution as boundary conditions. The experimental setup is constituted of a model disk with all the representative parts of the actual TGV brake system. The disk and its actual environment are inside a wind tunnel test section, so that the rotational disk speed and the air flow velocity can be varied. Tests were carried out for rotational speeds w between 325 and 2000 rpm (rotational Reynolds number Re between 88,500 and 545,000), and for an air flow velocity U ranging between 0 and 12 m(DOT)s-1 (air flow Reynolds number Re0 between 0 and 153,000).

  7. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  8. [Study on the IR and UV dual-spectrum radiation].

    PubMed

    Chen, Z; Zhu, Q; Xu, S; Wan, S

    2000-06-01

    The article gives a method to produce dual spectrum radiation in IR and UV. Relying on theoretical analysis, the relative data are computed, some atomic materials are selected and added to a double-base propellants. When the UV pyrotechnics is ignited together with traditional IR pyrotechnics, the spectrum of IR and UV is emitted at the same time. The final measuring curves show that all results are satisfying.

  9. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  10. NBO, HOMO-LUMO, UV, NLO, NMR and vibrational analysis of veratrole using FT-IR, FT-Raman, FT-NMR spectra and HF-DFT computational methods.

    PubMed

    Suvitha, A; Periandy, S; Gayathri, P

    2015-03-01

    This work deals with FT-IR, FT-Raman and FT-NMR spectral analysis and NBO, NLO, HOMO-LUMO and electronic transitions studies on veratrole. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands were interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d, p) basis set. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. In addition, molecular electrostatic potential (MEP), Natural Bond-Orbital (NBO) analysis and thermodynamic properties were performed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method and compared with experimental chemical shift.

  11. Infrared thermography in the detection of brown adipose tissue in humans

    PubMed Central

    Jang, Christina; Jalapu, Sandya; Thuzar, Moe; Law, Phillip W; Jeavons, Susanne; Barclay, Johanna L.; Ho, Ken K.Y.

    2014-01-01

    Abstract PET‐CT using 18F‐FDG is employed for detecting brown adipose tissue (BAT) in humans. Alternative methods are needed because of the radiation and cost of PET‐CT imaging. The aim was to evaluate the accuracy of infrared thermography (IRT) in detecting human BAT benchmarked to PET‐CT imaging. Seventeen individuals underwent a total of 29 PET‐CT scans, 12 of whom were studied twice, after 2 h of cold stimulation at 19°C, in parallel with measurement of skin temperatures overlying the supraclavicular (SCV) fossa and the lateral upper chest (control), before and after cold stimulation. Of the 29 scans, 20 were BAT positive after cold stimulation. The mean left SCV temperature tended to be higher in the BAT‐positive group before and during cooling. It was significantly higher (P =0.04) than the temperature of the control area, which fell significantly during cooling in the BAT‐positive (−1.2 ± 0.3°C, P =0.002) but not in the negative (−0.2 ± 0.4°C) group. The temperature difference (Δtemp) between left SCV and chest increased during cooling in the BAT‐positive (1.2 ± 0.2 to 2.0 ± 0.3°C, P <0.002) but not in the negative group (0.6 ± 0.1 to 0.7 ± 0.1°C). A Δtemp of 0.9°C conferred a positive predictive value of 85% for SCV BAT, superior to that of SCV temperature. The findings were similar on the right. In conclusion, the Δtemp is significantly and consistently greater in BAT‐positive subjects. The Δtemp quantified by IRT after 2‐h cooling shows promise as a noninvasive convenient technique for studying SCV BAT function. PMID:25413316

  12. Diverging drought resistance of Scots pine provenances revealed by infrared thermography and mortality

    NASA Astrophysics Data System (ADS)

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-04-01

    Climate warming and more frequent and severe drought events will alter the adaptedness and fitness of tree species. Especially, Scots pine forests have been affected above average by die-off events during the last decades. Assisted migration of adapted provenances might help alleviating impacts by recent climate change and successfully regenerating forests. However, the identification of suitable provenances based on established ecophysiological methods is time consuming, sometimes invasive, and data on provenance-specific mortality are lacking. We studied the performance, stress and survival of potted Scots pine seedlings from 12 European provenances grown in a greenhouse experiment with multiple drought and warming treatments. In this paper, we will present results of drought stress impacts monitored with four different thermal indices derived from infrared thermography imaging as well as an ample mortality study. Percent soil water deficit (PSWD) was shown to be the main driver of drought stress response in all thermal indices. In spite of wet and dry reference surfaces, however, fluctuating environmental conditions, mainly in terms of air temperature and humidity, altered the measured stress response. In linear mixed-effects models, besides PSWD and meteorological covariates, the factors provenance and provenance - PSWD interactions were included. The explanatory power of the models (R2) ranged between 0.51 to 0.83 and thus, provenance-specific responses to strong and moderate drought and subsequent recovery were revealed. However, obvious differences in the response magnitude of provenances to drought were difficult to explicitly link to general features such Mediterranean - continental type or climate at the provenances' origin. We conclude that seedlings' drought resistance may be linked to summer precipitation and their experienced stress levels are a.o. dependent on their above ground dimensions under given water supply. In respect to mortality, previous

  13. Compressive sensing in the EO/IR.

    PubMed

    Gehm, M E; Brady, D J

    2015-03-10

    We investigate the utility of compressive sensing (CS) to electro-optic and infrared (EO/IR) applications. We introduce the field through a discussion of historical antecedents and the development of the modern CS framework. Basic economic arguments (in the broadest sense) are presented regarding the applicability of CS to the EO/IR and used to draw conclusions regarding application areas where CS would be most viable. A number of experimental success stories are presented to demonstrate the overall feasibility of the approaches, and we conclude with a discussion of open challenges to practical adoption of CS methods.

  14. Buckled silicene formation on Ir(111).

    PubMed

    Meng, Lei; Wang, Yeliang; Zhang, Lizhi; Du, Shixuan; Wu, Rongting; Li, Linfei; Zhang, Yi; Li, Geng; Zhou, Haitao; Hofer, Werner A; Gao, Hong-Jun

    2013-02-13

    Silicene, a two-dimensional (2D) honeycomb structure similar to graphene, has been successfully fabricated on an Ir(111) substrate. It is characterized as a (√7×√7) superstructure with respect to the substrate lattice, as revealed by low energy electron diffraction and scanning tunneling microscopy. Such a superstructure coincides with the (√3×√3) superlattice of silicene. First-principles calculations confirm that this is a (√3×√3)silicene/(√7×√7)Ir(111) configuration and that it has a buckled conformation. Importantly, the calculated electron localization function shows that the silicon adlayer on the Ir(111) substrate has 2D continuity. This work provides a method to fabricate high-quality silicene and an explanation for the formation of the buckled silicene sheet.

  15. The IRS-1 signaling system.

    PubMed

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  16. Flash thermography with a periodic mask: profile evaluation of the principal diffusivities for the control of composite materials

    NASA Astrophysics Data System (ADS)

    Spagnolo, Leonardo; Krapez, Jean-Claude; Friess, Martin; Maier, Hans-Peter; Neuer, Guenther

    2003-04-01

    Recently we proposed a modification of the classical flash thermography method for diffusivity measurement: by putting a mask having a periodic pattern of apertures between the flash lamp and the orthotropic material to be tested, one can obtain simultaneously the out-of-plane diffusivity and the in-plane diffusivity of the material. Here we present two examples where the measurement of the thermal properties is made at a local level: the experiment is performed with a large grid mask, however the parameter identification is made on a sliding window whose width corresponds to one-period of the mask. By this way, one can get a profile for each diffusivity. By applying this procedure, one can expect detecting localised variations of the thermal properties, as well as cracks. We controlled by this way a series of C/C-SiC dog-bone samples during a tensile test. We systematically observed a rather uniform and linear decrease of about 0.1%/MPa for the in-plane diffusivity. This behaviour is related with the fact that a stress increase induces a gradual increase of the microcracks density. The second example deals with carbon disk brakes control. By using a circular mask, one can get in about two minutes the circumferential profile of both in-plane and out of plane diffusivities of the composite piece.

  17. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants.

    PubMed

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V

    2015-05-08

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.

  18. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants.

    PubMed

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V

    2015-01-01

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events. PMID:25992743

  19. IR laser-induced protein crystal transformation

    SciTech Connect

    Kiefersauer, Reiner Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-05-01

    A novel method and the associated instrumentation for improving crystalline order (higher resolution of X-ray diffraction and reduced mosaicity) of protein crystals by precisely controlled heating is demonstrated. Crystal transformation is optically controlled by a video system. A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress.

  20. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  1. SIMULTANEOUS ESTIMATION OF ELECTRICAL AND THERMAL PROPERTIES OF MATERIAL FROM THE TONE-BURST EDDY CURRENT THERMOGRAPHY (TBET) TIME-TEMPERATURE DATA

    SciTech Connect

    Biju, N.; Ganesan, N.; Krishnamurthy, C. V.; Balasubramaniam, Krishnan

    2010-02-22

    In this paper, an inversion method is proposed to determine simultaneously the electrical and thermal properties of a given isotropic material from the time-temperature data obtained from the Tone-Burst Eddy current Thermography (TBET). A multi-physics forward model for computing the surface temperature data was used in a Genetic Algorithm (GA) based inversion technique to determine the material properties such as electrical conductivity (sigma), thermal conductivity (k), density (rho), and specific heat (C{sub p}) simultaneously. Different trials were carried out initially with simulated temperature data (with and without noise). A typical case of inversion of anisotropic material properties using a 2D finite element model is also discussed.

  2. Using infrared thermography to determine the presence and correct placement of grouted cells in single-width concrete masonry unit (CMU) walls

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.; Allen, Lee R.

    1999-03-01

    Determining the placement of reinforcing grout in single-width CMU (Concrete Masonry Unit) walls has, in the past, been a painstaking and destructive undertaking. Usually, a test is performed because -- by accident -- missing cells are discovered when a wall penetration is retrofitted or change order is executed, requiring that the wall be opened. Often, a hammer or hammer drill is used to punch holes where the grouting is supposed to be. The test results are used to extrapolate the extent of the problem. This method falls short, since the sample is so small, that only outright fraud can be found, and excess grouting cannot be determined. This paper discusses the results of a joint effort between Stockton Infrared Thermographic Services, Inc. (SITS) and Allen Applied Infrared Technology, Inc. (AAIT) to produce a methodology for using non-destructive infrared thermography to ensure that the design specifications are being met.

  3. In-Field-of-View Thermal Image Calibration System for Medical Thermography Applications

    NASA Astrophysics Data System (ADS)

    Simpson, R. C.; McEvoy, H. C.; Machin, G.; Howell, K.; Naeem, M.; Plassmann, P.; Ring, F.; Campbell, P.; Song, C.; Tavener, J.; Ridley, I.

    2008-06-01

    Medical thermography has become ever more accessible to hospitals, medical research, and clinical centers with the new generation of thermal cameras, which are easier to use and lower in cost. Some diagnostic techniques using thermal cameras are now regarded as standardized, such as the cold challenge test for Raynaud’s phenomenon. The future for medical thermography appears to be improved accuracy, standardization, and establishment as a mainstream medical imaging methodology. Medical thermography standardization, quantitative measurements, image comparison, and multi-center research trials all require thermal cameras to provide a demonstrably traceable, accurate, and reliable temperature output. To this end, the National Physical Laboratory (NPL) has developed a multi-fixed-point source that serves as an in-image calibration system, thereby providing a reliable means for radiometric image validation. An in-field-of-view fixed-point validation system for thermal imaging has successfully been developed, tested, and validated at NPL and has undergone field trials at three clinical centers in the UK. The sources use the phase change plateaux of gallium zinc eutectic, gallium, and ethylene carbonate. The fixed-point sources have an estimated cavity emissivity of greater than 0.998, a plateau longevity of nominally 3 h at ambient conditions, a stability of 0.1°C, or better, over that period, a repeatability of 0.1°C or better, and an estimated temperature uncertainty of ±0.4°C ( k = 2). In this article, the source specifications and design as well as testing, validation, and field trial results are described in detail.

  4. Simulations and measurements of artificial cracks and pits in flat stainless steel plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.

  5. IR laser-induced protein crystal transformation.

    PubMed

    Kiefersauer, Reiner; Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-05-01

    A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress.

  6. Mapping soil surface macropores using infrared thermography: an exploratory laboratory study.

    PubMed

    de Lima, João L M P; Abrantes, João R C B; Silva, Valdemir P; de Lima, M Isabel P; Montenegro, Abelardo A A

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  7. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    PubMed

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  8. Characterization of an Inclusion of Plastazote Located in an Academic Fresco by Photothermal Thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Mouhoubi, K.; Candore, J. C.; Detalle, V.

    2013-09-01

    The aim of this study is to approach the possibilities of stimulated infrared thermography in dimensional characterization of defects situated in mural paintings. For this purpose, it is suggested to proceed in two stages. First, an in situ longitudinal thermal-diffusivity measurement is developed. Then the characterization of the depth of the studied defect by means of an extended photothermal analysis and a comparison between theory and experiment is carried out. In this article is shown that this approach allows a good estimate of the depth of a plastazote inclusion in a partial copy of the “Saint Christophe” of the Campana collection in the Louvre Museum.

  9. Parameterisation of non-homogeneities in buried object detection by means of thermography

    NASA Astrophysics Data System (ADS)

    Stepanić, Josip; Malinovec, Marina; Švaić, Srećko; Krstelj, Vjera

    2004-05-01

    Landmines and their natural environment form a system of complex dynamics with variable characteristics. A manifestation of that complexity within the context of thermography-based landmines detection is excessive noise in thermograms. That has severely suppressed application of thermography in landmines detection for the purposes of humanitarian demining. (To be differentiated from military demining and demining for military operations other than war [Land Mine Detection DOD's Research Program Needs a Comprehensive Evaluation Strategy, US GAO Report, GAO-01 239, 2001; International Mine Action Standards, Chapter 4.--Glossary. Available at: < http://www.mineactionstandards.org/IMAS_archive/Final/04.10.pdf>].) The discrepancy between the existing role and the actual potential of thermography in humanitarian demining motivated systematic approach to sources of noise in thermograms of buried objects. These sources are variations in mine orientation relative to soil normal, which modify the shape of mine signature on thermograms, as well as non-homogeneities in soil and vegetation layer above the mine, which modify the overall quality of thermograms. This paper analyses the influence of variable mines, and more generally the influence of axially symmetric buried object orientation on the quality of its signature on thermograms. The following two angles have been extracted to serve as parameters describing variation in orientation: (i) θ--angle between the local vertical axis and mine symmetry axis and (ii) ψ--angle between local vertical axis and soil surface normal. Their influence is compared to the influence of (iii) d--the object depth change, which serves as control parameter. The influences are quantified and ranked within a statistically planned experiment. The analysis has proved that among the parameters listed, the most influential one is statistical interaction dψ, followed with the statistical interaction dθ. According to statistical tests, these two

  10. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    PubMed

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-01-01

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique. PMID:26473871

  11. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    PubMed Central

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-01-01

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique. PMID:26473871

  12. An Overview of Recent Application of Medical Infrared Thermography in Sports Medicine in Austria

    PubMed Central

    Hildebrandt, Carolin; Raschner, Christian; Ammer, Kurt

    2010-01-01

    Medical infrared thermography (MIT) is used for analyzing physiological functions related to skin temperature. Technological advances have made MIT a reliable medical measurement tool. This paper provides an overview of MIT’s technical requirements and usefulness in sports medicine, with a special focus on overuse and traumatic knee injuries. Case studies are used to illustrate the clinical applicability and limitations of MIT. It is concluded that MIT is a non-invasive, non-radiating, low cost detection tool which should be applied for pre-scanning athletes in sports medicine. PMID:22399901

  13. Thermoelastic Analysis of a Vibrating TiB/Ti Cantilever Beam Using Differential Thermography

    SciTech Connect

    Byrd, Larry; Wyen, Travis; Byrd, Alex

    2008-02-15

    Differential thermography has been used to detect the fluctuating temperatures due the thermoelastic effect for a number of years. This paper examines functionally graded TiB/Ti cantilever beams excited on an electromechanical shaker in fully reversed bending. Finite difference analysis of specimens was used to look at the effect of heat conduction, convection and the fundamental frequency on the surface temperature distribution and compared to experimental data. The thermoelastic effect was also used to detect cracking and the stress field at the tip of the fixture during fatigue.

  14. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  15. New applications of liquid-crystal thermography in rotating turbomachinery heat transfer research

    NASA Technical Reports Server (NTRS)

    Blair, M. F.; Wagner, J. H.; Steuber, G. D.

    1991-01-01

    Two new liquid-crystal thermography techniques developed for use in rotating heat transfer experiments are described. In one experiment steady-state heat transfer data were obtained on the exterior surface of rotating turbine airfoil models. In the second study a transient technique was employed to obtain interior-surface heat transfer data in a rotating turbine blade coolant passage model. Sample data are presented in the form of photographs of the liquid-crystal temperature patterns and as contour maps and distributions of heat transfer on the rotor and coolant passage surfaces.

  16. Comparative study on submillimeter flaws in stitched T-joint carbon fiber reinforced polymer by infrared thermography, microcomputed tomography, ultrasonic c-scan and microscopic inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Hassler, Ulf; Genest, Marc; Fernandes, Henrique; Robitaille, Francois; Ibarra-Castanedo, Clemente; Joncas, Simon; Maldague, Xavier

    2015-10-01

    Stitching is used to reduce dry-core (incomplete infusion of T-joint core) and reinforce T-joint structure. However, it may cause new types of flaws, especially submillimeter flaws. Microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography, and laser spot thermography are used to investigate the internal flaws in a stitched T-joint carbon fiber-reinforced polymer (CFRP) matrix composites. Then, a new microlaser line thermography is proposed. Microcomputed tomography (microCT) is used to validate the infrared results. A comparison between microlaser line thermography and microCT is performed. It was concluded that microlaser line thermography can detect the internal submillimeter defects. However, the depth and size of the defects can affect the detection results. The microporosities with a diameter of less than 54 μm are not detected in the microlaser line thermography results. Microlaser line thermography can detect the microporosity (a diameter of 0.162 mm) from a depth of 90 μm. However, it cannot detect the internal microporosity (a diameter of 0.216 mm) from a depth of 0.18 mm. The potential causes are given. Finally, a comparative study is conducted.

  17. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods

    NASA Astrophysics Data System (ADS)

    Bhavani, K.; Renuga, S.; Muthu, S.; Sankara narayanan, K.

    2015-02-01

    In this work, colorless crystals of 2-acetoxybenzoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-500 cm-1 and 4000-100 cm-1 respectively. Molecular structure is optimized with the help of density functional theory method (B3LYP) with 6-31+G(d,p), 6-311++G(d,p) basis sets. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ∗ antibonding orbitals and E(2) energies confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule.

  18. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  19. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  20. Detection of defects in laser powder deposition (LPD) components by pulsed laser transient thermography

    NASA Astrophysics Data System (ADS)

    Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John

    2013-05-01

    Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.