Science.gov

Sample records for irbesartan suppressing atherosclerosis

  1. Irbesartan

    MedlinePlus

    ... organs may cause heart disease, a heart attack, heart failure, stroke, kidney failure, loss of vision, and other ... Irbesartan is also used sometimes to treat heart failure (condition in which the heart is unable to pump enough blood to the rest of the body). Talk to your doctor about the ...

  2. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  3. Atherosclerosis

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Atherosclerosis Updated:Apr 3,2017 Atherosclerosis, or hardening of ... the arteries as you get older. How does atherosclerosis start and progress? It's a complex process. Exactly ...

  4. Atherosclerosis

    MedlinePlus

    Atherosclerosis is a disease in which plaque builds up inside your arteries. Plaque is a sticky substance ... flow of oxygen-rich blood to your body. Atherosclerosis can lead to serious problems, including Coronary artery ...

  5. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    SciTech Connect

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  6. MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4

    PubMed Central

    LIANG, XUE; XU, ZHAO; YUAN, MENG; ZHANG, YUE; ZHAO, BO; WANG, JUNQIAN; ZHANG, AIXUE; LI, GUANGPING

    2016-01-01

    Programmed cell death 4 (PDCD4) is involved in a number of bioprocesses, such as apoptosis and inflammation. However, its regulatory mechanisms in atherosclerosis remain unclear. In this study, we investigated the role and mechanisms of action of PDCD4 in high-fat diet-induced atherosclerosis in mice and in foam cells (characteristic pathological cells in atherosclerotic lesions) derived from ox-LDL-stimulated macrophages. MicroRNA (miR)-16 was predicted to bind PDCD4 by bioinformatics analysis. In the mice with atherosclerosis and in the foam cells, PDCD4 protein expression (but not the mRNA expression) was enhanced, while that of miR-16 was reduced. Transfection with miR-16 mimic decreased the activity of a luciferase reporter containing the 3′ untranslated region (3′UTR) of PDCD4 in the macrophage-derived foam cells. Conversely, treatment with miR-16 inhibitor enhanced the luciferase activity. However, by introducing mutations in the predicted binding site located in the 3′UTR of PDCD4, the miR-16 mimic and inhibitor were unable to alter the level of PDCD4, suggesting that miR-16 is a direct negative regulator of PDCD4 in atherosclerosis. Furthermore, transfection wtih miR-16 mimic and siRNA targeting PDCD4 suppressed the secretion and mRNA expression of pro-inflammatory factors, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), whereas it enhanced the secretion and mRNA expression of the anti-inflammatory factor, IL-10. Treatment with miR-16 inhibitor exerted the opposite effects. In addition, the phosphorylation of p38 and extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) expression were altered by miR-16. In conclusion, our data demonstrate that the targeting of PDCD4 by miR-16 may suppress the activation of inflammatory macrophages though mitogen-activated protein kinase (MAPK) and NF-κB signaling in atherosclerosis; thus, PDCD4 may prove to be a potential therapeutic target in the treatment of

  7. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs

    PubMed Central

    Subramanian, Manikandan; Thorp, Edward; Hansson, Goran K.; Tabas, Ira

    2012-01-01

    TLR activation on CD11c+ DCs triggers DC maturation, which is critical for T cell activation. Given the expansion of CD11c+ DCs during the progression of atherosclerosis and the key role of T cell activation in atherogenesis, we sought to understand the role of TLR signaling in CD11c+ DCs in atherosclerosis. To this end, we used a mouse model in which a key TLR adaptor involved in DC maturation, MYD88, is deleted in CD11c+ DCs. We transplanted bone marrow containing Myd88-deficient CD11c+ DCs into Western diet–fed LDL receptor knockout mice and found that the transplanted mice had decreased activation of effector T cells in the periphery as well as decreased infiltration of both effector T cells and Tregs in atherosclerotic lesions. Surprisingly, the net effect was an increase in atherosclerotic lesion size due to an increase in the content of myeloid-derived inflammatory cells. The mechanism involves increased lesional monocyte recruitment associated with loss of Treg-mediated suppression of MCP-1. Thus, the dominant effect of MYD88 signaling in CD11c+ DCs in the setting of atherosclerosis is to promote the development of atheroprotective Tregs. In the absence of MYD88 signaling in CD11c+ DCs, the loss of this protective Treg response trumps the loss of proatherogenic T effector cell activation. PMID:23257360

  8. Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model.

    PubMed

    Liu, Xiangjuan; Xu, Qun; Wang, Xiaomeng; Zhao, Zhuo; Zhang, Liping; Zhong, Ling; Li, Li; Kang, Weiqiang; Zhang, Yun; Ge, Zhiming

    2015-03-01

    Recent studies demonstrate an important role of protein kinase D (PKD) in the cardiovascular system. However, the potential role of PKD in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear. Irbesartan has beneficial effects against diabetes-induced heart damage, while the mechanisms were still poorly understood. Our present study was designed to investigate the effects of irbesartan in DCM and whether the cardioprotective effects of irbesartan were mediated by PKD and endoplasmic reticulum (ER) stress. We induced the type 2 diabetic rat model by high fat diet and low dose streptozotocin injection. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. 8-weeks administration of irbesartan (15, 30 and 45mg/kg/day) was used to evaluate the effect irbesartan in DCM. Diabetic rats revealed severe metabolic abnormalities, left ventricular dysfunction, myocardial fibrosis and apoptosis. PKD and ER stress were excessive activated in the myocardium of diabetic rats. Furthermore, cardiac fibrosis, apoptosis, diastolic dysfunction and ER stress were all significantly related to PKD activation in diabetic rats. Irbesartan treatment attenuated the activation of PKD and ER stress, which paralleled its cardioprotective effects. Our study suggests that irbesartan could ameliorate cardiac remodeling and dysfunction in type 2 diabetes, and these beneficial effects were associated with its ability to suppress the activation of PKD and ER stress.

  9. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer's disease.

    PubMed

    Olsen, Ingar; Taubman, Martin A; Singhrao, Sim K

    2016-01-01

    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer's disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host's adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD(+)cells and its ligand PD-L1 on CD11b(+)-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood-brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of

  10. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    PubMed Central

    Olsen, Ingar; Taubman, Martin A.; Singhrao, Sim K.

    2016-01-01

    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of

  11. MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis

    PubMed Central

    Geng, Zhaohua; Xu, Fei; Zhang, Yiguan

    2016-01-01

    Endothelial cell injury and subsequent death play an essential role in the pathogenesis of atherosclerosis. Autophagy of endothelial cells antagonizes the development of atherosclerosis, whereas the underlying molecular mechanisms are unclear. MicroRNA-129-5p (miR-129-5p) is a well-defined tumor suppressorin some types of cancer, while it is unknown whether miR-129-5p may also play a role in the development of atherosclerosis. Here, we addressed this question in the current study. We examined the levels of endothelial cell autophagy in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of Beclin-1 and the levels of miR-129-5p in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-129-5p and 3’-UTR of Beclin-1 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-129-5p were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). We found that HFD mice developed atherosclerosisin 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as CTL mice) did not. Compared to CTL mice, HFD mice had significantly lower levels of endothelial cell autophagy, resulting from decreases in Beclin-1 protein, but not mRNA. The decreases in Beclin-1 in endothelial cells were due to HFD-induced increases inmiR-129-5p, which suppressed the translation of Beclin-1 mRNA via 3’-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Together, these data suggest that upregulation of miR-129-5p by HFD may impair the protective effects of endothelial cell autophagy against development of atherosclerosis through suppressing protein translation of Beclin-1. PMID:27186312

  12. Protective Effect of Irisin on Atherosclerosis via Suppressing Oxidized Low Density Lipoprotein Induced Vascular Inflammation and Endothelial Dysfunction

    PubMed Central

    Zhang, Yuzhu; Mu, Qian; Zhou, Zheng; Song, Haibo; Zhang, Yuan; Wu, Fei; Jiang, Miao; Wang, Fang; Zhang, Wen; Li, Liang; Shao, Lei; Wang, Xingli; Li, Shiwu; Yang, Lijun; Wu, Qi; Zhang, Mingxiang; Tang, Dongqi

    2016-01-01

    Irisin, a newly discovered myokine, is considered as a promising candidate for the treatment of metabolic disturbances and cardiovascular diseases. In the present study, we used two animal models, apolipoprotein E-deficient mice fed on a high-cholesterol diet and a mouse carotid partial ligation model to test the anti-atherosclerotic effect of irisin. Irisin treatment (0.5 μg/g body weight/day) significantly reduced the severity of aortic atherosclerosis in apolipoprotein E-deficient mice fed on a high-cholesterol diet and suppressed carotid neointima formation in a carotid partial ligation model. It was associated with decreased inflammation and cell apoptosis in aortic tissues. In addition, in a cell culture model, irisin restored ox-LDL-induced human umbilical vein endothelial cell dysfunction by reducing the levels of inflammatory genes via inhibiting the reactive oxygen species (ROS)/ p38 MAPK/ NF-κB signaling pathway activation and inhibiting cell apoptosis via up-regulating Bcl-2 and down-regulating Bax and caspase-3 expression. Our study demonstrated that irisin significantly reduced atherosclerosis in apolipoprotein E-deficient mice via suppressing ox-LDL-induced cell inflammation and apoptosis, which might have a direct therapeutic effect on atherosclerotic diseases. PMID:27355581

  13. Suppressed soluble Fms-like tyrosine kinase-1 production aggravates atherosclerosis in chronic kidney disease.

    PubMed

    Matsui, Masaru; Takeda, Yukiji; Uemura, Shiro; Matsumoto, Takaki; Seno, Ayako; Onoue, Kenji; Tsushima, Hideo; Morimoto, Katsuhiko; Soeda, Tsunenari; Okayama, Satoshi; Somekawa, Satoshi; Samejima, Ken-Ichi; Kawata, Hiroyuki; Kawakami, Rika; Nakatani, Kimihiko; Iwano, Masayuki; Saito, Yoshihiko

    2014-02-01

    Patients with chronic kidney disease (CKD) die of cardiovascular diseases for unknown reasons. Blood vessel formation in plaques and its relationship with plaque stability could be involved with signaling through the Flt-1 receptor and its ligands, vascular endothelial growth factor, and the closely related placental growth factor (PlGF). Flt-1 also exists as a circulating regulatory splice variant short-inhibitory form (sFlt-1) that serves as a decoy receptor, thereby inactivating PlGF. Heparin releases sFlt-1 by displacing the sFlt-1 heparin-binding site from heparin sulfate proteoglycans. Heparin could provide diagnostic inference or could also induce an antiangiogenic state. In the present study, postheparin sFlt-1 levels were lower in CKD patients than in control subjects. More importantly, sFlt-1 levels were inversely related to atherosclerosis in CKD patients, and this correlation was more robust after heparin injection, as verified by subsequent cardiovascular events. Knockout of apolipoprotein E (ApoE) and/or sFlt-1 showed that the absence of sFlt-1 worsened atherogenesis in ApoE-deficient mice. Thus, the relationship between atherosclerosis and PlGF signaling, as regulated by sFlt-1, underscores the underappreciated role of heparin in sFlt-1 release. These clinical and experimental data suggest that novel avenues into CKD-dependent atherosclerosis and its detection are warranted.

  14. Protein Inhibitor of Activated STAT3 Suppresses Oxidized LDL-induced Cell Responses during Atherosclerosis in Apolipoprotein E-deficient Mice

    PubMed Central

    Wang, Rong; Zhang, Yanjin; Xu, Liran; Lin, Yan; Yang, Xiaofeng; Bai, Liang; Chen, Yulong; Zhao, Sihai; Fan, Jianglin; Cheng, Xianwu; Liu, Enqi

    2016-01-01

    Atherosclerosis is a serious public health concern. Excessive inflammatory responses of vascular cells are considered a pivotal pathogenesis mechanism underlying atherosclerosis development. It is known that Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signalling plays an important role in atherosclerosis progression. Protein inhibitor of activated STAT3 (PIAS3) is the key negative regulator of JAK/STAT3 signalling. However, its effect on atherogenesis is unknown. Here, we observed that PIAS3 levels are reduced in atherosclerotic lesions and that PIAS3 expression decreases in conjunction with increases in interleukin-6 expression and atherosclerosis severity. Oxidized low-density lipoprotein (ox-LDL), an atherogenic stimulus, reduced PIAS3 expression, an effect that may be attributed to nitric oxide synthesis upregulation. In turn, PIAS3 overexpression effectively suppressed ox-LDL-induced inflammation, lipid accumulation and vascular smooth muscle cell proliferation. These results indicate that PIAS3 is a critical repressor of atherosclerosis progression. The findings of this study have contributed to our understanding on the pathogenesis of atherosclerosis and have provided us with a potential target through which we can inhibit atherosclerosis-related cellular responses. PMID:27845432

  15. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p < 0.05). Pathological observations showed that accumulation of cholesterol crystals in the plaque area was greater in the control group compared with the 0.40 % cacao polyphenol group (p < 0.05). Immunochemical staining in the 0.25 and 0.40 % groups showed that expression of the cell adhesion molecules (VCAM-1 and ICAM-1) and production of oxidative stress markers (4-hydroxynonenal, hexanoyl-lysine, and dityrosine) were reduced in cross-sections of the brachiocephalic trunk. These results suggest that cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  16. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.

  17. Taurine and atherosclerosis.

    PubMed

    Murakami, Shigeru

    2014-01-01

    Taurine is abundantly present in most mammalian tissues and plays a role in many important physiological functions. Atherosclerosis is the underlying mechanism of cardiovascular disease including myocardial infarctions, strokes and peripheral artery disease and remains a major cause of morbidity and mortality worldwide. Studies conducted in laboratory animal models using both genetic and dietary models of hyperlipidemia have demonstrated that taurine supplementation retards the initiation and progression of atherosclerosis. Epidemiological studies have also suggested that taurine exerts preventive effects on cardiovascular diseases. The present review focuses on the effects of taurine on the pathogenesis of atherosclerosis. In addition, the potential mechanisms by which taurine suppress the development of atherosclerosis will be discussed.

  18. Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells

    PubMed Central

    Gruber, Sabrina; Hendrikx, Tim; Tsiantoulas, Dimitrios; Ozsvar-Kozma, Maria; Göderle, Laura; Mallat, Ziad; Witztum, Joseph L.; Shiri-Sverdlov, Ronit; Nitschke, Lars; Binder, Christoph J.

    2016-01-01

    Summary Atherosclerosis is initiated and sustained by hypercholesterolemia, which results in the generation of oxidized LDL (OxLDL) and other metabolic byproducts that trigger inflammation. Specific immune responses have been shown to modulate the inflammatory response during atherogenesis. The sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of the functions of several immune cells, including myeloid cells and B-1 cells. Here, we show that deficiency of Siglec-G in atherosclerosis-prone mice inhibits plaque formation and diet-induced hepatic inflammation. We further demonstrate that selective deficiency of Siglec-G in B cells alone is sufficient to mediate these effects. Levels of B-1 cell-derived natural IgM with specificity for OxLDL were significantly increased in the plasma and peritoneal cavity of Siglec-G-deficient mice. Consistent with the neutralizing functions of OxLDL-specific IgM, Siglec-G-deficient mice were protected from OxLDL-induced sterile inflammation. Thus, Siglec-G promotes atherosclerosis and hepatic inflammation by suppressing protective anti-inflammatory effector functions of B cells. PMID:26947073

  19. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)-RAGE-induced proximal tubular cell injury.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Takeuchi, Masayoshi; Yamagishi, Sho-ichi

    2012-03-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) axis contributes to diabetic nephropathy. An oral hypoglycemic agent, metformin may have a potential effect on the inhibition of glycation reactions. Further, since a pathophysiological crosstalk between renin-angiotensin system (RAS) and AGEs-RAGE axis is involved in diabetic nephropathy, it is conceivable that metformin and irbesartan additively could protect against the AGEs-RAGE-induced tubular cell injury. In this study, we addressed the issues. Metformin dose-dependently inhibited the formation of AGEs modification of bovine serum albumin (BSA). Compared with AGEs-modified BSA prepared without metformin (AGEs-MF0), those prepared in the presence of 30 mM or 100 mM metformin (AGEs-MF30 or AGEs-MF100) significantly reduced RAGE mRNA level, reactive oxygen species (ROS) generation, apoptosis, monocyte chemoattractant protein-1 and transforming growth factor-β mRNA level in tubular cells. Irbesartan further inhibited the harmful effects of AGEs-MF0 or AGEs-MF30 on tubular cells. Our present study suggests that combination therapy with metformin and irbesartan may have therapeutic potential in diabetic nephropathy; it could play a protective role against tubular injury in diabetes not only by inhibiting AGEs formation, but also by attenuating the deleterious effects of AGEs via down-regulating RAGE expression and subsequently suppressing ROS generation.

  20. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.

  1. Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na(+)-dependent taurocholate cotransporting polypeptide activity.

    PubMed

    Wang, Xue-jun; Hu, Wei; Zhang, Ting-yu; Mao, Ying-ying; Liu, Nan-nan; Wang, Sheng-qi

    2015-08-01

    The liver-specific Na(+)-dependent taurocholate cotransporting polypeptide (NTCP) was recently identified as an entry receptor for hepatitis B virus (HBV) hepatotropic infection. In this study, an NTCP-overexpressing HepG2 cell line named HepG2.N9 susceptible to HBV infection was established using transcription activator-like effector nucleases (TALEN) technology. Using this cell line, irbesartan, the new NTCP-interfering molecule reported recently, was demonstrated here to effectively inhibit HBV infection with an IC50 of 3.3μM for hepatitis B e antigen (HBeAg) expression and exhibited no obvious cytotoxicity up to 1000μM. Irbesartan suppressed HBV uptake weakly but inhibited HBV covalently closed circular DNA (cccDNA) formation efficiently at physiological temperature. These results suggested that irbesartan targeted HBV infection at a post-uptake prior to cccDNA formation step such as the cell membrane fusion. Based on these findings, irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, could be a potential candidate for treatment of HBV infection although further in vivo experiments are required.

  2. Hydrogen Sulfide Inhibits the Development of Atherosclerosis with Suppressing CX3CR1 and CX3CL1 Expression

    PubMed Central

    Wu, Duojiao; Zhang, Alian; Gu, Ting; Wang, Liansheng; Wang, Changqian

    2012-01-01

    Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H2S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H2S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1) and chemokine receptors (CCR2, CCR5, and CX3CR1) in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 µM, 100 µM, 200 µM), an H2S donor, and then stimulated with interferon-γ (IFN-γ) or lipopolysaccharide (LPS). It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE), an enzyme that catalyzes H2S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H2S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ) and NF-κB pathway. Furthermore, male apoE−/− mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily) or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily). NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H2S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H2S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H2S hampers the progression of atherosclerosis in fat-fed apoE−/− mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and in lesion

  3. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression.

    PubMed

    Zhang, Huili; Guo, Changfa; Wu, Duojiao; Zhang, Alian; Gu, Ting; Wang, Liansheng; Wang, Changqian

    2012-01-01

    Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H(2)S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H(2)S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1) and chemokine receptors (CCR2, CCR5, and CX3CR1) in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 µM, 100 µM, 200 µM), an H(2)S donor, and then stimulated with interferon-γ (IFN-γ) or lipopolysaccharide (LPS). It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE), an enzyme that catalyzes H(2)S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H(2)S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ) and NF-κB pathway. Furthermore, male apoE(-/-) mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily) or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily). NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H(2)S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H(2)S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H(2)S hampers the progression of atherosclerosis in fat-fed apoE(-/-) mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and in

  4. Atherosclerosis (image)

    MedlinePlus

    Atherosclerosis is a disease of the arteries in which fatty material is deposited in the vessel wall, ... muscle leads to symptoms such as chest pain. Atherosclerosis shows no symptoms until a complication occurs.

  5. Irbesartan enhances GLUT4 translocation and glucose transport in skeletal muscle cells.

    PubMed

    Kobayashi, Tatsuo; Akiyama, Yuko; Akiyama, Nobuteru; Katoh, Hideaki; Yamamoto, Sachiko; Funatsuki, Kenzo; Yanagimoto, Toru; Notoya, Mitsuru; Asakura, Kenji; Shinosaki, Toshihiro; Hanasaki, Kohji

    2010-12-15

    Irbesartan, an angiotensin II type 1 receptor blocker has been reported to alleviate metabolic disorder in animal studies and human clinical trials. Although this effect may be related to the ability of irbesartan to serve as a partial agonist for the peroxisome proliferator-activated receptor (PPAR)-γ, the target tissues on which irbesartan acts remain poorly defined. As muscle glucose transport plays a major role in maintaining systemic glucose homeostasis, we investigated the effect of irbesartan on glucose uptake in skeletal muscle cells. In C2C12 myotubes, 24-h treatment with irbesartan significantly promoted both basal and insulin-stimulated glucose transport. In L6-GLUT4myc myoblasts, irbesartan caused a significant increase in glucose transport and GLUT4 translocation to the cell surface in a concentration-dependent manner. Valsartan, another angiotensin II type 1 receptor blocker had no effect on either glucose uptake or GLUT4 translocation, implying that these actions on glucose transport are independent of angiotensin II receptor blockade. Moreover, irbesartan exerted these effects in an additive manner with insulin, but not with acute treatment for 3 h, suggesting that they may require the synthesis of new proteins. Finally, in insulin-resistant Zucker fatty rat, irbesartan (50 mg/kg/day for 3 weeks) significantly ameliorated insulin resistance without increasing weight gain. We conclude that irbesartan has a direct action, which can be additive to insulin, of promoting glucose transport in skeletal muscle. This may be beneficial for ameliorating obesity-related glucose homeostasis derangement.

  6. Endothelial function, blood pressure control, and risk modification: impact of irbesartan alone or in combination

    PubMed Central

    Derosa, Giuseppe; Salvadeo, Sibilla AT

    2010-01-01

    Irbesartan, an angiotensin II type 1 receptor antagonist, is approved as monotherapy, or in combination with other drugs, for the treatment of hypertension in many countries worldwide. Data in the literature suggest that irbesartan is effective for reducing blood pressure over a 24-hour period with once-daily administration, and slows the progression of renal disease in patients with hypertension and type 2 diabetes. Furthermore, irbesartan shows a good safety and tolerability profile, compared with angiotensin II inhibitors and other angiotensin II type 1 receptor antagonists. Thus, irbesartan appears to be a useful treatment option for patients with hypertension, including those with type 2 diabetes and nephropathy. Irbesartan has an inhibitory effect on the pressor response to angiotensin II and improves arterial stiffness, vascular endothelial dysfunction, and inflammation in hypertensive patients. There has been considerable interest recently in the renoprotective effect of irbesartan, which appears to be independent of reductions in blood pressure. In particular, mounting data suggests that irbesartan improves endothelial function, oxidative stress, and inflammation in the kidneys. Recent studies have highlighted a possible role for irbesartan in improving coronary artery inflammation and vascular dysfunction. In this review we summarize and comment on the most important data available with regard to antihypertensive effect, endothelial function improvement, and cardiovascular risk reduction with irbesartan. PMID:21949618

  7. 77 FR 1695 - Determination That AVALIDE (Hydrochlorothiazide and Irbesartan), Oral Tablets, 25 Milligrams/300...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... and irbesartan), oral tablets, 25 milligrams (mg)/300 mg and 12.5 mg/75 mg, were not withdrawn from... new drug applications (ANDAs) for hydrochlorothiazide and irbesartan, oral tablets, 25 mg/300 mg and 12.5 mg/75 mg, if all other legal and regulatory requirements are met. FOR FURTHER...

  8. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  9. Long-term use and tolerability of irbesartan for control of hypertension

    PubMed Central

    Forni, Valentina; Wuerzner, Grégoire; Pruijm, Menno; Burnier, Michel

    2011-01-01

    In this review, we discuss the pharmacological and clinical properties of irbesartan, a noncompetitive angiotensin II receptor type 1 antagonist, successfully used for more than a decade in the treatment of essential hypertension. Irbesartan exerts its antihypertensive effect through an inhibitory effect on the pressure response to angiotensin II. Irbesartan 150–300 mg once daily confers a lasting effect over 24 hours, and its antihypertensive efficacy is further enhanced by the coadministration of hydrochlorothiazide. Additionally and partially beyond its blood pressure-lowering effect, irbesartan reduces left ventricular hypertrophy, favors right atrial remodeling in atrial fibrillation, and increases the likelihood of maintenance of sinus rhythm after cardioversion in atrial fibrillation. In addition, the renoprotective effects of irbesartan are well documented in the early and later stages of renal disease in type 2 diabetics. Furthermore, both the therapeutic effectiveness and the placebo-like side effect profile contribute to a high adherence rate to the drug. Currently, irbesartan in monotherapy or combination therapy with hydrochlorothiazide represent a rationale pharmacologic approach for arterial hypertension and early-stage and late-stage diabetic nephropathy in hypertensive type II diabetics. PMID:21949635

  10. Imaging Atherosclerosis

    PubMed Central

    Tarkin, Jason M.; Dweck, Marc R.; Evans, Nicholas R.; Takx, Richard A.P.; Brown, Adam J.; Tawakol, Ahmed; Fayad, Zahi A.

    2016-01-01

    Advances in atherosclerosis imaging technology and research have provided a range of diagnostic tools to characterize high-risk plaque in vivo; however, these important vascular imaging methods additionally promise great scientific and translational applications beyond this quest. When combined with conventional anatomic- and hemodynamic-based assessments of disease severity, cross-sectional multimodal imaging incorporating molecular probes and other novel noninvasive techniques can add detailed interrogation of plaque composition, activity, and overall disease burden. In the catheterization laboratory, intravascular imaging provides unparalleled access to the world beneath the plaque surface, allowing tissue characterization and measurement of cap thickness with micrometer spatial resolution. Atherosclerosis imaging captures key data that reveal snapshots into underlying biology, which can test our understanding of fundamental research questions and shape our approach toward patient management. Imaging can also be used to quantify response to therapeutic interventions and ultimately help predict cardiovascular risk. Although there are undeniable barriers to clinical translation, many of these hold-ups might soon be surpassed by rapidly evolving innovations to improve image acquisition, coregistration, motion correction, and reduce radiation exposure. This article provides a comprehensive review of current and experimental atherosclerosis imaging methods and their uses in research and potential for translation to the clinic. PMID:26892971

  11. Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke.

    PubMed

    Kikuchi, Kiyoshi; Tancharoen, Salunya; Ito, Takashi; Morimoto-Yamashita, Yoko; Miura, Naoki; Kawahara, Ko-ichi; Maruyama, Ikuro; Murai, Yoshinaka; Tanaka, Eiichiro

    2013-09-13

    Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs.

  12. How Is Atherosclerosis Diagnosed?

    MedlinePlus

    ... page from the NHLBI on Twitter. How Is Atherosclerosis Diagnosed? Your doctor will diagnose atherosclerosis based on ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  13. How Is Atherosclerosis Treated?

    MedlinePlus

    ... page from the NHLBI on Twitter. How Is Atherosclerosis Treated? Treatments for atherosclerosis may include heart-healthy ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  14. What Causes Atherosclerosis?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Atherosclerosis? The exact cause of atherosclerosis isn't known. ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  15. What Is Atherosclerosis?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Atherosclerosis? Español Atherosclerosis is a disease in which plaque ... problems, including heart attack , stroke , or even death. Atherosclerosis Figure A shows a normal artery with normal ...

  16. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway.

    PubMed

    Lu, Xue-Li; Zhao, Cui-Hua; Yao, Xin-Liang; Zhang, Han

    2017-01-01

    Quercetin is a dietary flavonoid compound extracted from various plants, such as apple and onions. Previous studies have revealed its anti-inflammatory, anti-cancer, antioxidant and anti-apoptotic activities. This study investigated the ability of quercetin to inhibit high fructose feeding- or LPS-induced atherosclerosis through regulating oxidative stress, apoptosis and inflammation response in vivo and in vitro experiments. 50 and 100mg/kg quercetin were used in our study, showing significant inhibitory role in high fructose-induced atherosclerosis via reducing reactive oxygen species (ROS) levels, Caspase-3 activation, inflammatory cytokines releasing, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and collagen contents as well as modulating apoptosis- and inflammation-related proteins expression. We also explored the protective effects of quercetin on atherosclerosis by phosphatidylinositide 3-kinases (PI3K)/Protein kinase B (AKT)-associated Bcl-2/Caspase-3 and nuclear factor kappa B (NF-κB) signal pathways activation, promoting AKT and Bcl-2 expression and reducing Caspase-3 and NF-κB activation. Quercetin reduced the atherosclerotic plaque size in vivo in high fructose feeding-induced mice assessed by oil red O. Also, in vitro experiments, quercetin displayed inhibitory role in LPS-induced ROS production, inflammatory response and apoptosis, which were linked with PI3K/AKT-regulated Caspase-3 and NF-κB activation. In conclusion, our results showed that quercetin inhibited atherosclerotic plaque development in high fructose feeding mice via PI3K/AKT activation regulated by ROS.

  17. Extractive-spectrophotometric determination of disopyramide and irbesartan in their pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Abdellatef, Hisham E.

    2007-04-01

    Picric acid, bromocresol green, bromothymol blue, cobalt thiocyanate and molybdenum(V) thiocyanate have been tested as spectrophotometric reagents for the determination of disopyramide and irbesartan. Reaction conditions have been optimized to obtain coloured comoplexes of higher sensitivity and longer stability. The absorbance of ion-pair complexes formed were found to increases linearity with increases in concentrations of disopyramide and irbesartan which were corroborated by correction coefficient values. The developed methods have been successfully applied for the determination of disopyramide and irbesartan in bulk drugs and pharmaceutical formulations. The common excipients and additives did not interfere in their determination. The results obtained by the proposed methods have been statistically compared by means of student t-test and by the variance ratio F-test. The validity was assessed by applying the standard addition technique. The results were compared statistically with the official or reference methods showing a good agreement with high precision and accuracy.

  18. ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium

    PubMed Central

    Gaudreault, Nathalie; Kumar, Nikit; Posada, Jessica M.; Stephens, Kyle B.; de Mochel, Nabora Soledad Reyes; Eberle, Delphine; Olivas, Victor R.; Kim, Roy Y.; Harms, Matthew J.; Johnson, Amy; Messina, Louis M.; Rapp, Joseph H.; Raffai, Robert L.

    2012-01-01

    Objective We investigated atheroprotective properties of apoE beyond its ability to lower plasma cholesterol. We hypothesized that apoE reduces atherosclerosis by decreasing lipid accumulation in circulating monocytes and the inflammatory state of monocytes and the vascular endothelium. Methods and Results We developed mice with spontaneous hyperlipidemia with and without plasma apoE: Hypomorphic apoE mice deficient in low-density lipoprotein receptor (Apoeh/hLdlr–/–) were compared to Apoe–/–Ldlr–/– mice. Despite 4-fold more plasma apoE than WT mice, Apoeh/hLdlr–/– mice displayed similar plasma cholesterol as Apoe–/–Ldlr–/– mice but developed 4-fold less atherosclerotic lesions by 5 months of age. The aortic arch of Apoeh/hLdlr–/– mice showed decreased endothelial expression of ICAM-1, PECAM-1, and JAM-A. In addition, Apoeh/hLdlr–/– mice had less circulating leukocytes and pro-inflammatory Ly6Chigh monocytes. These monocytes had decreased neutral lipid content and reduced surface expression of ICAM-1, VLA-4, and L-Selectin. Apoeh/hLdlr–/– mice displayed increased levels of apoA1-rich HDL that were potent in promoting cellular cholesterol efflux. Conclusions Our findings suggest that apoE reduces atherosclerosis in the setting of hyperlipidemia by increasing plasma apoA1-HDL that likely contribute to reduce intracellular lipid accumulation and thereby the activation of circulating leukocytes and the vascular endothelium. PMID:22053073

  19. Montelukast and irbesartan ameliorate metabolic and hepatic disorders in fructose-induced metabolic syndrome in rats.

    PubMed

    Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Abdelzaher, Walaa Y; Abdelrahman, Aly M

    2014-02-05

    Metabolic syndrome (MetS) is a global health problem. Elucidation of the role of 5- lipooxygenase/leukotriene pathway and renin angiotensin system in the pathogenesis of MetS suggests a variety of potential therapies worthy of testing. The present work investigated the effect of montelukast, a leukotriene antagonist and/or irbesartan, an angiotensin II-receptor blocker, in the prevention of fructose-induced MetS in rats. Rats were allocated into 9 groups and treated for 6 weeks as follow: normal control; MetS group (received 20% fructose); MetS+montelukast groups (treated with montelukast, 5, 10, and 20 mg/kg/day, respectively); MetS+irbesartan groups (treated withirbesartan 15, 30, and 45 mg/kg/day, respectively); and MetS+montelukast+irbesartan group (co treated with montelukast 5 mg/kg plus irbesartan 15 mg/g). Metabolic parameters (visceral fat index, liver index, insulin resistance, and serum lipid profile), oxidative stress markers (malondialdehyde, reduced glutathione, and catalase), and inflammatory mediators (tumor necrosis factor-α, and uric acid) were measured. Expression of caspase-3 in hepatic tissues was detected by immunohistochemistry. Liver injury was evaluated by histopathological examination and serum alanine aminotransferase (ALT). Montelukast, irbesartan, and their combination caused significant attenuation in metabolic and hepatic disorders. Their effect was associated with attenuation of oxidative stress markers, inflammatory mediators, and caspase-3 expression. This study highlighted the protective effects of montelukast and irbesartan against fructose-induced metabolic and hepatic disorders. The protective effect of either drug relies, at least in part, on their antioxidant and antiinflammatory effect, as well as on the reduction of caspase-3 expression in hepatic tissue.

  20. Matrix elimination ion chromatography method for trace level azide determination in irbesartan drug.

    PubMed

    Subramanian, Narayanan Harihara; Babu, V R Sankar; Jeevan, R Ganesh; Radhakrishnan, Ganga

    2009-08-01

    Ultra-trace analysis of azide in complicated Irbesartan sample matrix is achieved by the in-line sample preparation technique. Sodium azide is the precursor of Irbesartan, which is used as an anti-hypertensive drug. Due to the toxic nature of sodium azide, reliable determination of azide in Irbesartan is necessary. Irbesartan when analyzed for sodium azide, as per the USP 31-NF26 method, gets adsorbed to the analytical column, leading to reduction in column capacity and irreproducible retention time. The retained drug has to be removed with special rinsing solution, followed by re-equilibration with the mobile phase. This process takes at least 3 to 4 h for each sample analysis. The new method developed overcomes the limitations of the USP 31-NF26 method. This method is validated for specificity, linearity, accuracy, precision, sample solution stability, and robustness as per International Conference on Harmonization guidelines. The relationship between peak response and concentration is found to be linear between 5 to 80 ng/mL of sodium azide, with the correlation coefficient (r(2)) of 0.9995. The limits of detection and quantification for sodium azide are 0.532 and 1.61 microg/gm with respect to the sample weight.

  1. Atherosclerosis and Stroke

    MedlinePlus

    ... After Stroke Inspirational Stories Stroke Heroes Among Us Atherosclerosis and Stroke Updated:Oct 24,2016 Excerpted and ... cause difficulty walking and eventually gangrene. Stroke and atherosclerosis There are two types of ischemic stroke caused ...

  2. Living with Atherosclerosis

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Atherosclerosis Improved treatments have reduced the number of deaths ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  3. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    PubMed Central

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-01-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg−1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg−1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI. PMID:27403534

  4. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    NASA Astrophysics Data System (ADS)

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-Ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-07-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg‑1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg‑1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI.

  5. Protective Effect of Irbesartan an Angiotensin (AT1) Receptor Antagonist in Unpredictable Chronic Mild Stress Induced Depression in Mice.

    PubMed

    Ayyub, M; Najmi, A K; Akhtar, M

    2017-01-01

    Objective: Oxidative stress and alternation of renin-angiotensin system has been implicated in the pathophysiology of various cardio vascular, endocrine including mood and anxiety disorders. The present study evaluated the role of irbesartan in stress induced different models of depression. Materials and method: Mice were treated with irbesartan (40 mg/kg), fluoxetine (25 mg/kg) alone in combination orally. Drugs treatment started after 2 weeks from the beginning of the unpredictable mild stress (UCMS) protocol. Behavioural tests were performed on week 6, at least 24 h after the last treatment. Modified forced swim test (MFST), tail suspension test (TST) and open field test (OFT) were used followed by antioxidant markers and 5-HT levels determination. Result: Irbesartan increased swimming, climbing and decreased immobility times in MFST, decrease immobility time in TST. Irbesartan also increased no. of field crossings; rearings and also increased time spent in the centre of OFT. Thus, antidepressant like activity in UCMS mice was observed. Combination of irbesartan with fluoxetine showed potentiating effect of behavioural parameters in all animal models. Combination groups also showed antioxidant effects and elevated the 5-HT levels in UCMS mice. Conclusion: Chronic administration of Irbesartan exerted antidepressant like effect, reduced oxidative stress and elevated brain 5-HT levels.

  6. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    SciTech Connect

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  7. Bioequivalence study of two oral formulations of irbesartan 300 mg in healthy volunteers.

    PubMed

    Cánovas, M; Cabré, F; Polonio, F

    2014-01-01

    A bioequivalence study of 2 irbesartan (CAS 138402-11-6) film-coated tablet formulations was carried out in 40 healthy volunteers according to an open label, randomized, 2-period, 2-sequence, crossover, single dose and fasting conditions design. The test and reference formulations were administered in 2 treatment days, separated by a washout period of 7 days. Blood samples were drawn up to 96 h following drug administration. Plasma concentrations of irbesartan were obtained by a validated HPLC method using MS/MS detection. Log-transformed AUC0-t and Cmax values were tested for bioequivalence based on the ratios of the geometric LSmeans (test/reference). tmax was analysed nonparametrically. The 90% confidence intervals of the geometric LSmean values for the test/reference ratios for AUC0-t (98.06-109.48%, point estimator 103.61%) and Cmax (88.93-100.87%, point estimator 94.72%) were within the bioequivalence acceptance range of 80-125%. According to the European Guideline on the Investigation of Bioequivalence it may be therefore concluded that test formulation of irbesartan 300 mg film-coated tablet is bioequivalent to the reference formulation. Overall, it was judged that the study was conducted with a good tolerance of the subjects to both study drugs.

  8. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma using HPLC coupled with tandem mass spectrometry: Application to bioequivalence studies.

    PubMed

    Tutunji, Lara F; Tutunji, Maha F; Alzoubi, Mamoun I; Khabbas, Manal H; Arida, Adi I

    2010-03-11

    A sensitive, specific and selective liquid chromatography/tandem mass spectrometric method has been developed and validated for the simultaneous determination of irbesartan and hydrochlorothiazide in human plasma. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on a reverse phase C(18) column (50mmx4mm, 3microm) using water with 2.5% formic acid, methanol and acetonitrile (40:45:15, v/v/v (%)) as a mobile phase (flow rate of 0.70mL/min). Irbesartan and hydrochlorothiazide were ionized using ESI source in negative ion mode, prior to detection by multiple reaction monitoring (MRM) mode while monitoring at the following transitions: m/z 296-->269 and m/z 296-->205 for hydrochlorothiazide, 427-->175 for irbesartan. Linearity was demonstrated over the concentration range 0.06-6.00microg/mL for irbesartan and 1.00-112.00ng/mL for hydrochlorothiazide. The developed and validated method was successfully applied to a bioequivalence study of irbesartan (300mg) with hydrochlorothiazide (12.5mg) tablet in healthy volunteers (N=36).

  9. Protective Autoimmunity in Atherosclerosis

    PubMed Central

    Ley, Klaus

    2016-01-01

    Objective Atherosclerosis is an inflammatory disease of the arterial wall. It is accompanied by an autoimmune response against ApoB100, the core protein of LDL, which manifests as CD4 T cell and antibody responses. Approach and Results To assess the role of the autoimmune response in atherosclerosis, the nature of the CD4 T cell response against ApoB100 was studied with and without vaccination with MHC-II restricted ApoB100 peptides. The immunological basis of autoimmunity in atherosclerosis is discussed in the framework of theories of adaptive immunity. Older vaccination approaches are also discussed. Vaccinating Apoe−/− mice with MHC-II restricted ApoB100 peptides reduces atheroma burden in the aorta by ~40%. The protective mechanism likely includes secretion of IL-10. Conclusion Protective autoimmunity limits atherosclerosis in mice and suggests potential for developing preventative and therapeutic vaccines for humans. PMID:26821946

  10. [Epigenetics in atherosclerosis].

    PubMed

    Guardiola, Montse; Vallvé, Joan C; Zaina, Silvio; Ribalta, Josep

    2016-01-01

    The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis.

  11. Quantitative analysis of irbesartan in commercial dosage forms by kinetic spectrophotometry.

    PubMed

    Rahman, Nafisur; Siddiqui, Masoom Raza; Azmi, Syed Najmul Hejaz

    2006-05-01

    The objective of this work is to develop a new kinetic spectrophotometric method for the determination of irbesartan in pharmaceutical formulations. The method is based on the reaction of carboxylic acid group of the oxidized irbesartan with a mixture of potassium iodate (KIO(3)) and iodide (KI) to form yellow colored triiodide ions in aqueous medium at 30+/-1 degrees C. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 352 nm. The initial-rate and fixed-time (DeltaA) methods are adopted for constructing the calibration curves, which were found to be linear over the concentration ranges of 10.0-60.0 and 7.5-60.0 microg ml(-1) respectively. The regression analysis of calibration data yielded the linear equations: rate=-2.138 x 10(-6)+1.058 x 10(-4)C and DeltaA=-3.75 x 10(-3)+3.25 x 10(-3)C for initial rate and fixed time (DeltaA) methods, respectively. The limit of detection for initial rate and fixed time methods are 0.21 and 2.40 mug ml(-1), respectively. The various activation parameters such as E(a), DeltaH++, DeltaS++ and DeltaG++ are also calculated for the reaction and found to be 70.95+/-0.43 kJ mol(-1), 68.48+/-0.21 kJ mol(-1), 16.54+/-0.24 J K(-1) mol(-1) and -4.94+/-0.07 kJ mol(-1), respectively. The proposed methods are optimized and validated as per the guidelines of International Conference on Harmonisation (U.S.A.). The point and interval hypothesis tests have been performed which indicate that there is no significant difference between the proposed methods and the reference method. The methods have been successfully applied to the determination of irbesartan in commercial dosage forms.

  12. Nutrition and Atherosclerosis.

    PubMed

    Torres, Nimbe; Guevara-Cruz, Martha; Velázquez-Villegas, Laura A; Tovar, Armando R

    2015-07-01

    Cardiovascular disease (CVD) is a universal problem in modern society. Atherosclerosis is the leading cause of CVD resulting in high rate of mortality in the population. Nutrition science has focused on the role of essential nutrients in preventing deficiencies, at the present time, the nutritional strategies are crucial to promote health and intervene with these global noncommunicable diseases. In many cases, diet is a major driving force, which is much easier to change and follow than other factors. It is important to establish that the first strategy to treat atherosclerosis is to modify lifestyle habits, focusing on the beneficial properties of specific nutrients. In the last decades, epidemiological, clinical and experimental studies have demonstrated that diet plays a central role in the prevention of atherosclerosis. In this review we will focus on the effect of specific foods, nutrients and bioactive compounds, including epidemiological facts, potential mechanisms of action and dietary recommendations to reduce the risk of atherosclerosis. In particular, we include information about fiber, plant sterols and stanols, niacin, taurine, olive oil, omega 3 fatty acids, antioxidants, minerals, methyl nutrients and soy. In addition, we also show that dysbiosis of the intestinal microbiota associated with a consumption of certain animal food sources can generate some metabolites that are involved in the development of atherosclerosis and its consequences on CVD. According to the epidemiological, clinical and experimental studies we suggest a recommendation for some dietary foods, nutrients and bioactive compounds to support the complementary clinical management of patients with atherosclerosis.

  13. [Genomic instability in atherosclerosis].

    PubMed

    Dzhokhadze, T A; Buadze, T Zh; Gaiozishvili, M N; Kakauridze, N G; Lezhava, T A

    2014-11-01

    A comparative study of the level of genomic instability, parameters of quantitative and structural mutations of chromosomes (aberration, aneuploidy, polyploidy) in lymphocyte cultures from patients with atherosclerosis of age 80 years and older (control group - 30-35 years old) was conducted. The possibility of correction of disturbed genomic indicators by peptide bioregulators - Livagen (Lys-Glu-Asp-Ala) and cobalt ions with separate application or in combination was also studied. Control was lymphocyte culture of two healthy respective age groups. It was also shown that patients with atherosclerosis exhibit high level of genomic instability in all studied parameters, regardless of age, which may suggest that there is marked increase in chromatin condensation in atherosclerosis. It was also shown that Livagen (characterized by modifying influence on chromatin) separately and in combination with cobalt ions, promotes normalization of altered genomic indicators of atherosclerosis in both age groups. The results show that Livagen separately and in combination with cobalt ions has impact on chromatin of patients with atherosclerosis. The identified protective action of Livagen proves its efficacy in prevention of atherosclerosis.

  14. Who Is at Risk for Atherosclerosis?

    MedlinePlus

    ... NHLBI on Twitter. Who Is at Risk for Atherosclerosis? The exact cause of atherosclerosis isn't known. ... role in atherosclerosis risk. Other Factors That Affect Atherosclerosis Other factors also may raise your risk for ...

  15. Molecular imaging in atherosclerosis.

    PubMed

    Glaudemans, Andor W J M; Slart, Riemer H J A; Bozzao, Alessandro; Bonanno, Elena; Arca, Marcello; Dierckx, Rudi A J O; Signore, Alberto

    2010-12-01

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  16. The UPR in atherosclerosis

    PubMed Central

    Zhou, Alex X.; Tabas, Ira

    2014-01-01

    Multiple systemic factors and local stressors in the arterial wall can disturb the functions of endoplasmic reticulum (ER), causing ER stress in endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages during the initiation and progression of atherosclerosis. As a protective response to restore ER homeostasis, the unfolded protein response (UPR) is initiated by three major ER sensors: protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and activating transcription factor 6 (ATF6). The activation of the various UPR signaling pathways displays a temporal pattern of activation at different stages of the disease. The ATF6 and IRE1α pathways that promote the expression of protein chaperones in ER are activated in ECs in athero-susceptible regions of prelesional arteries and before the appearance of foam cells. The PERK pathway that reduces ER protein client load by blocking protein translation is activated in SMCs and macrophages in early lesions. The activation of these UPR signaling pathways aims to cope with the ER stress and plays a pro-survival role in the early stage of atherosclerosis. However, with the progression of atherosclerosis, the extended duration and increased intensity of ER stress in lesions lead to prolonged and enhanced UPR signaling. Under this circumstance, the PERK pathway induces expression of death effectors, and possibly IRE1α activates apoptosis signaling pathways, leading to apoptosis of macrophages and SMCs in advanced lesions. Importantly, UPR-mediated cell death is associated with plaque instability and the clinical progression of atherosclerosis. Moreover, UPR signaling is linked to inflammation and possibly to macrophage differentiation in lesions. Therapeutic approaches targeting the UPR may have promise in the prevention and/or regression of atherosclerosis. However, more progress is needed to fully understand all of the roles of the UPR in atherosclerosis and to harness this information

  17. Insulin resistance and atherosclerosis

    PubMed Central

    Semenkovich, Clay F.

    2006-01-01

    Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel. PMID:16823479

  18. Calcium antagonists and atherosclerosis protection in hypertension.

    PubMed

    Hernández, Rafael Hernández; Armas-Hernández, María José; Velasco, Manuel; Israili, Zafar H; Armas-Padilla, María Cristina

    2003-01-01

    Calcium antagonists are effective in hypertensive patients of all ethnic groups, irrespective of age, dietary salt intake, salt-sensitivity status or plasma renin activity profile. Some prospective studies show that the calcium antagonists, nifedipine GITS and nitrendipine, reduce cardiovascular morbidity and mortality at least to the same extent as the diuretics. Other prospective studies are in progress to evaluate the effect of calcium antagonists on cardiovascular morbidity and mortality, and the progression of atherosclerosis in hypertensive patients. Calcium antagonists, especially the highly lipophilic amlodipine, lacidipine and nisoldipine, are shown to possess antioxidant properties. These drugs reduce the oxidation of LDL and its influx into the arterial wall, and reduce atherosclerotic lesions in animals. Platelet production of malondialdehyde, a marker of oxygen free radical formation, is suppressed by amlodipine, lacidipine or nifedipine in hypertensive patients. New evidence from long-term clinical trials of calcium antagonists indicates that these drugs can reduce the rate of progression of atherosclerosis in hypertensive and coronary heart disease patients. In the Regression Growth Evaluation Statin Study (REGRESS), co-administration of calcium antagonist, amlodipine or nifedipine with pravasatin caused a significant reduction in the appearance of new angiographic lesions. In the Verapamil in Hypertension and Atherosclerosis Study (VHAS), verapamil was more effective than chlorthalidone in promoting regression of thicker carotid lesions in parallel with a reduction in the incidence of cardiovascular events. In the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT), amlodipine slowed the progression of early coronary atherosclerosis in patients with coronary artery disease. In a subprotocol of the Intervention as a Goal in the Hypertension Treatment (INSIGHT) study, nifedipine GITS significantly decreased intima

  19. [Atherosclerosis. Old problem, new perspectives].

    PubMed

    Cortez, J

    2000-01-01

    Atherosclerosis is the major cause of mortality in the population of the, so called, developed countries of western culture. Since the first half of this century, hypercholesterolemia was the hallmark for the investigation of atherosclerosis, improving the level of knowledge about the complex metabolism of lipoproteins. The occurrence of atherosclerosis in normolipidaemic subjects, and the relationship between this illness, other dysmetabolic features and certain infectious agents, led to the reformulation, in the last decade, of the pathophysiological archtypes, atherosclerosis was included in the group of the inflammatory processes. The inflammatory response to aggression of the arterial wall is the innovative issue of atherosclerosis investigation and laboratory follow-up in the new millennium.

  20. Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer

    PubMed Central

    Jones, M. R.; Schrader, K. A.; Shen, Y.; Pleasance, E.; Ch'ng, C.; Dar, N.; Yip, S.; Renouf, D. J.; Schein, J. E.; Mungall, A. J.; Zhao, Y.; Moore, R.; Ma, Y.; Sheffield, B. S.; Ng, T.; Jones, S. J. M.; Marra, M. A.; Laskin, J.; Lim, H. J.

    2016-01-01

    Background A patient suffering from metastatic colorectal cancer, treatment-related toxicity and resistance to standard chemotherapy and radiation was assessed as part of a personalized oncogenomics initiative to derive potential alternative therapeutic strategies. Patients and methods Whole-genome and transcriptome sequencing was used to interrogate a metastatic tumor refractory to standard treatments of a patient with mismatch repair-deficient metastatic colorectal cancer. Results Integrative genomic analysis indicated overexpression of the AP-1 transcriptional complex suggesting experimental therapeutic rationales, including blockade of the renin–angiotensin system. This led to the repurposing of the angiotensin II receptor antagonist, irbesartan, as an anticancer therapy, resulting in the patient experiencing a dramatic and durable response. Conclusions This case highlights the utility of comprehensive integrative genomic profiling and bioinformatics analysis to provide hypothetical rationales for personalized treatment options. PMID:27022066

  1. Nutraceutical therapies for atherosclerosis

    PubMed Central

    Moss, Joe W.E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis is a chronic, inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has resulted in a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one in three global deaths. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, represent a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this review is to highlight potential nutraceuticals for use as anti-atherogenic therapies, with evidence from in vitro, in vivo, clinical, and observational studies. PMID:27383080

  2. Molecular biology of atherosclerosis

    PubMed Central

    Mannarino, Elmo; Pirro, Matteo

    2008-01-01

    The traditional view of atherosclerosis as a pathological lipid deposition within the artery wall has been redefined by a more complex concept of an ongoing inflammatory disease. The atherosclerotic process is initiated when cardiovascular risk factors, through a chemical, mechanical or immunological insult, activate and/or injury the endothelium, thus contributing to endothelial dysfunction and fragmentation. This triggers a cascade of inflammatory reactions, in which monocytes, macrophages, T lymphocytes, vascular smooth muscle cells actively participate. Particularly, atherosclerotic lesions have been seen to have increased expression of T helper-1 cells together with increased levels of the T helper-1 related pro-inflammatory cytokines. Along with pro-inflammatory cytokines, other molecular factors involved in atherosclerosis appearance, progression and complication include chemokines, growth factors, vasoactive substances, enzymes, apoptosis signals and many others. Many of these molecular factors are both involved as possible markers of the atherosclerotic disease activity and burden, but may also play a crucial role in the pathogenesis of the disease. In recent years, the discovery of progenitor cells of myeloid origin has offered the prospect of merging the most recent theories on the pathogenesis of atherosclerosis with the evolving concept of a role of these progenitor cells in the repair of the injured vessel wall and the neovascularisation of ischemic tissues. This review summarizes current knowledge about the biology of atherosclerosis with emphasis on the mechanisms of endothelial damage and repair and on the concept that the turnover and replacement of endothelial cells is a major determinant in the maintenance of vascular integrity. PMID:22460847

  3. Immunological aspects of atherosclerosis.

    PubMed

    Woollard, Kevin J

    2013-09-01

    Cardiovascular disease is the leading cause of death in several countries. The underlying process is atherosclerosis, a slowly progressing chronic disorder that can lead to intravascular thrombosis. There is overwhelming evidence for the underlying importance of our immune system in atherosclerosis. Monocytes, which comprise part of the innate immune system, can be recruited to inflamed endothelium and this recruitment has been shown to be proportional to the extent of atherosclerotic disease. Monocytes undergo migration into the vasculature, they differentiate into macrophage phenotypes, which are highly phagocytic and can scavenge modified lipids, leading to foam cell formation and development of the lipid-rich atheroma core. This increased influx leads to a highly inflammatory environment and along with other immune cells can increase the risk in the development of the unstable atherosclerotic plaque phenotype. The present review provides an overview and description of the immunological aspect of innate and adaptive immune cell subsets in atherosclerosis, by defining their interaction with the vascular environment, modified lipids and other cellular exchanges. There is a particular focus on monocytes and macrophages, but shorter descriptions of dendritic cells, lymphocyte populations, neutrophils, mast cells and platelets are also included.

  4. Macrophage phenotypes in atherosclerosis.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Staels, Bart

    2014-11-01

    Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype.

  5. Role of Micronutrients on Subclinical Atherosclerosis Micronutrients in Subclinical Atherosclerosis.

    PubMed

    Kocyigit, Duygu; Gurses, Kadri Murat; Yalcin, Muhammed Ulvi; Tokgozoglu, Lale

    2016-01-01

    Atherosclerotic cardiovascular disease (CVD) leading to coronary heart disease is the leading cause of morbidity and mortality in the world. Nutrition is one of the key factors in the etiology of atherosclerosis. Micronutrient supplements are widely used to prevent many chronic diseases including atherosclerosis. However, scientific evidence regarding this issue is still insufficient and current data on the association of dietary micronutrients and CVD risk is contradictory. Most of the randomized studies have failed to demonstrate beneficial effects of micronutrient supplementation on markers of subclinical atherosclerosis. In this review, role of each micronutrient on subclinical atherosclerosis will be evaluated thoroughly.

  6. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    SciTech Connect

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP

  7. Curing atherosclerosis should be the next major cardiovascular prevention goal.

    PubMed

    Robinson, Jennifer G; Gidding, Samuel S

    2014-07-01

    Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death in developed and developing countries. Despite decades of effort, unhealthy lifestyle habits and ASCVD risk factor levels remain high and are increasing in many population groups. A new approach to ASCVD prevention is needed. Multiple lines of evidence from animal and human studies suggest that atherosclerosis regression and normalization of vessel function can occur when low-density lipoprotein cholesterol (LDL-C) lowering occurs early in the course of atherosclerosis or when very aggressive LDL-C lowering occurs somewhat later. We propose a new paradigm focused on curing atherosclerosis early in the course of the disease. An approach that resets the vascular aging clock composed of initial regression therapy followed by periodic retreatment to suppress atherosclerosis development may be possible, with the ultimate goal of preventing subsequent ASCVD events. Proof-of-concept studies are needed to determine: 1) the optimal age and/or extent of atherosclerosis for intervention and LDL-C-lowering therapy; 2) the intensity and duration of therapy for inducing atherosclerosis regression; and 3) documenting the normalization of vascular function. Ultimately, this new paradigm will need to be evaluated in ASCVD outcomes trials.

  8. Efficacy of Zofenopril vs. Irbesartan in Combination with a Thiazide Diuretic in Hypertensive Patients with Multiple Risk Factors not Controlled by a Previous Monotherapy: A Review of the Double-Blind, Randomized "Z" Studies.

    PubMed

    Omboni, Stefano; Malacco, Ettore; Napoli, Claudio; Modesti, Pietro Amedeo; Manolis, Athanasios; Parati, Gianfranco; Agabiti-Rosei, Enrico; Borghi, Claudio

    2017-04-01

    Combinations between an angiotensin converting enzyme (ACE) inhibitor or an angiotensin II receptor blocker (ARB) and hydrochlorothiazide (HCTZ) are among the recommended treatments for hypertensive patients uncontrolled by monotherapy. Four randomized, double-blind, parallel group studies with a similar design, including 1469 hypertensive patients uncontrolled by a previous monotherapy and with ≥1 cardiovascular risk factor, compared the efficacy of a combination of a sulfhydryl ACE inhibitor (zofenopril at 30 or 60 mg) or an ARB (irbesartan at 150 or 300 mg) plus HCTZ 12.5 mg. The extent of blood pressure (BP)-lowering was assessed in the office and over 24 h. Pleiotropic features of the treatments were evaluated by studying their effect on systemic inflammation, organ damage, arterial stiffness, and metabolic biochemical parameters. Both treatments similarly reduced office and ambulatory BPs after 18-24 weeks. In the ZODIAC study a larger reduction in high sensitivity C reactive protein (hs-CRP) was observed under zofenopril (-0.52 vs. +0.97 mg/dL under irbesartan, p = 0.001), suggesting a potential protective effect against the development of atherosclerosis. In the ZENITH study the rate of carotid plaque regression was significantly larger under zofenopril (32% vs. 16%; p = 0.047). In the diabetic patients of the ZAMES study, no adverse effects of treatments on blood glucose and lipids as well as an improvement of renal function were observed. In patients with isolated systolic hypertension of the ZEUS study, a slight and similar improvement in renal function and small reductions in pulse wave velocity (PWV), augmentation index (AI), and central systolic BP were documented with both treatments. Thus, the fixed combination of zofenopril and HCTZ may have a relevant place in the treatment of high-risk or monotherapy-treated uncontrolled hypertensive patients requiring a more prompt, intensive, and sustained BP reduction, in line with the

  9. B Cell Subsets in Atherosclerosis

    PubMed Central

    Perry, Heather M.; Bender, Timothy P.; McNamara, Coleen A.

    2012-01-01

    Atherosclerosis, the underlying cause of heart attacks and strokes, is a chronic inflammatory disease of the artery wall. Immune cells, including lymphocytes modulate atherosclerotic lesion development through interconnected mechanisms. Elegant studies over the past decades have begun to unravel a role for B cells in atherosclerosis. Recent findings provide evidence that B cell effects on atherosclerosis may be subset-dependent. B-1a B cells have been reported to protect from atherosclerosis by secretion of natural IgM antibodies. Conventional B-2 B cells can promote atherosclerosis through less clearly defined mechanism that may involve CD4 T cells. Yet, there may be other populations of B cells within these subsets with different phenotypes altering their impact on atherosclerosis. Additionally, the role of B cell subsets in atherosclerosis may depend on their environmental niche and/or the stage of atherogenesis. This review will highlight key findings in the evolving field of B cells and atherosclerosis and touch on the potential and importance of translating these findings to human disease. PMID:23248624

  10. Prostaglandin E receptors as inflammatory therapeutic targets for atherosclerosis.

    PubMed

    Yang, Cui; Liu, Xiuxia; Cao, Qing; Liang, Qian; Qiu, Xiaohua

    2011-01-31

    Prostaglandin E receptors (EPs) are the G-protein-coupled receptors (GPCRs) that respond to type E(2) prostaglandin (PGE(2)). Data has shown that PGE(2) may function as an endogenous anti-inflammatory mediator by suppressing the production of cytokines. However, other studies have demonstrated that PGE(2), a pro-inflammatory mediator produced by various cell types within the wounded vascular wall, plays a crucial role in early atherosclerotic development. These contradictory results may be due to the versatility of EPs. Experimental data suggest an individual role for each PGE(2) receptor, such as EP(1), EP(2), EP(3) and EP(4), in atherosclerosis. In this review, the roles of EPs in atherosclerosis are summarized, and the value of EPs as new therapeutic targets for atherosclerosis is explored.

  11. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan.

    PubMed

    Patel, Jaydeep; Patel, Anjali; Raval, Mihir; Sheth, Navin

    2011-01-01

    Irbesartan (IRB) is an angiotensin II receptor blocker antihypertensive agent. The aim of the present investigation was to develop a self-nanoemulsifying drug delivery system (SNEDDS) to enhance the oral bioavailability of poorly water-soluble IRB. The solubility of IRB in various oils was determined to identify the oil phase of SNEDDS. Various surfactants and co-surfactants were screened for their ability to emulsify the selected oil. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region. The optimized SNEDDS formulation contained IRB (75 mg), Cremophor(®) EL (43.33%), Carbitol(®) (21.67%) and Capryol(®) 90 (32%). SNEDDS was further evaluated for its percentage transmittance, emulsification time, drug content, phase separation, dilution, droplet size and zeta potential. The optimized formulation of IRB-loaded SNEDDS exhibited complete in vitro drug release in 15 min as compared with the plain drug, which had a limited dissolution rate. It was also compared with the pure drug solution by oral administration in male Wister rats. The in vivo study exhibited a 7.5-fold increase in the oral bioavailability of IRB from SNEDDS compared with the pure drug solution. These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability of poorly water-soluble IRB.

  12. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice.

    PubMed

    Hirase, Tetsuaki; Hara, Hiromitsu; Miyazaki, Yoshiyuki; Ide, Noriko; Nishimoto-Hazuku, Ai; Fujimoto, Hirokazu; Saris, Christiaan J M; Yoshida, Hiroki; Node, Koichi

    2013-08-01

    Chronic inflammation in arterial wall that is driven by immune cells and cytokines plays pivotal roles in the development of atherosclerosis. Interleukin 27 (IL-27) is a member of the IL-12 family of cytokines that consists of IL-27p28 and Epstein-Barr virus induced gene 3 (EBI3) and has anti-inflammatory properties that regulate T cell polarization and cytokine production. IL-27-deficient (Ldlr-/-Ebi3-/-) and IL-27 receptor-deficient (Ldlr-/-WSX-1-/-) Ldlr-/- mice were generated and fed with a high-cholesterol diet to induce atherosclerosis. Roles of bone marrow-derived cells in vivo and macrophages in vitro were studied using bone marrow reconstitution by transplantation and cultured peritoneal macrophages, respectively. We demonstrate that mice lacking IL-27 or IL-27 receptor are more susceptible to atherosclerosis compared with wild type due to enhanced accumulation and activation of macrophages in arterial walls. The number of circulating proinflammatory Ly6C(hi) monocytes showed no significant difference between wild-type mice and mice lacking IL-27 or IL-27 receptor. Administration of IL-27 suppressed the development of atherosclerosis in vivo and macrophage activation in vitro that was indicated by increased uptake of modified low-density lipoprotein and augmented production of proinflammatory cytokines. These findings define a novel inhibitory role for IL-27 in atherosclerosis that regulates macrophage activation in mice.

  13. AdipoRon may be benefit for atherosclerosis prevention

    PubMed Central

    Esfahani, Maryam; Shabab, Nooshin; Saidijam, Massoud

    2017-01-01

    Atherosclerosis has serious role in coronary arteries disease, so it is important to establish effective strategies for prevention or even treatment of atherosclerosis. Adiponectin, as one of the most abundant adipokines, has insulin sensitivity, anti-inflammatory and anti-atherogenic properties. Disturbed adiponectin actions through its receptor, (AdipoR1 and AdipoR2) may be involved in atherosclerosis development. Some adiponectin effects are mediated by AMPK and PPAR-α signaling. AdipoRon is an orally active synthetic molecule which can bind to AdipoR1, Adipo R2 and activate them. AdipoRon can activate AdipoR1-AMPK- PGC-1α pathway and AdipoR2-PPAR-α pathway. Some studies indicated insulin sensitivity, anti-apoptotic and anti-oxidative effect of AdipoRon. We hypothesize that AdipoRon has anti atherosclerotic effect and may suppress atherosclerosis processes. With confirmation the benefit role of AdipoRon on atherosclerosis, it may be used in patients at risk of atherosclerotic development.

  14. A Mechanism by Which Dietary Trans Fats Cause Atherosclerosis*

    PubMed Central

    Chen, Chun-Lin; Tetri, Laura H.; Neuschwander-Tetri, Brent A.; Huang, Shuan Shian; Huang, Jung San

    2010-01-01

    Dietary trans fats have been causally linked to atherosclerosis but the mechanism by which they cause the disease remain elusive. Suppressed TGF-β responsiveness in aortic endothelium has been shown to play an important role in the pathogenesis of atherosclerosis in animals with hypercholesterolemia. We investigated the effects of a high trans-fat (TF) diet on TGF-β responsiveness in aortic endothelium and integration of cholesterol in tissues. Here we show that normal mice fed a high TF diet for 24 weeks exhibit atherosclerotic lesions and suppressed TGF-β responsiveness in aortic endothelium. The suppressed TGF-β responsiveness is evidenced by markedly reduced expression of TGF-β type I and II receptors and profoundly decreased levels of P-Smad2, an important TGF-β–response indicator, in aortic endothelium. These mice exhibit greatly increased integration of cholesterol into tissue plasma membranes. These results suggest that dietary trans fats cause atherosclerosis, at least in part, by suppressing TGF-β responsiveness. This effect is presumably mediated by the increased deposition of cholesterol into cellular plasma membranes in vascular tissue, as in hypercholesterolemia. PMID:21036587

  15. Recent Highlights of ATVB Atherosclerosis

    PubMed Central

    Lu, Hong; Daugherty, Alan

    2015-01-01

    Summary Mechanistic studies over the past decades using in vitro systems, animal models, and human tissues have highlighted the complexity of pathophysiological processes of atherosclerosis. Hypercholesterolemia, as one of the major risk factors for the development and progression of atherosclerosis, is still the focus of many mechanistic studies and the major therapeutic target of atherosclerosis. Although there is a dire need to validate many experimental findings in humans, there is a large number of approaches that have been showing promise for contributing to future therapeutic strategies. PMID:25717174

  16. Obstructive Sleep Apnea and Atherosclerosis.

    PubMed

    Amin, Zulkifli; Amin, Hilman Z; Amin, Lukman Z

    2016-01-01

    Obstructive sleep apnea (OSA) is a sleep respiratory disorder characterized by recurrent episodes of complete or partial airway obstruction, resulting in apneas or hypopneas. OSA could contribute to atherosclerosis through direct and indirect mechanisms. Endothelial dysfunction, sympathetic stimulation, and proinflammatory cytokine modulation caused by OSA play significant role to an atherosclesrotic event. Other risk factors of atherosclerosis like hypertension and diabetes mellitus also associated with OSA. Animal and clinical studies recently showed promising data to prove association between OSA, atherosclerosis, and its risk factors. However, provided data has not showed consistent result. In the future, demand of further research both basic and clinical sciences need to be fulfilled.

  17. MicroRNAs and atherosclerosis

    PubMed Central

    Madrigal-Matute, Julio; Rotllan, Noemi; Aranda, Juan F.; Fernández-Hernando, Carlos

    2014-01-01

    MicroRNAs (miRNAs) are small (~22nucleotide) sequences of RNA that regulate gene expression at posttranscriptional level. MiRNA/mRNA base pairing complementarity provokes mRNA decay and consequent gene silencing. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs) including atherosclerosis. MiRNAs controls endothelial cell (EC), vascular smooth muscle cell (VSMC) and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNAs expression is modulated by different stimuli involved in every stage of atherosclerosis and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis and we further discuss their potential use as biomarkers and therapeutic targets in CVDs. PMID:23512606

  18. Stability indicating LC method for simultaneous determination of irbesartan and hydrochlorothiazide in pharmaceutical preparations.

    PubMed

    Rane, V P; Patil, K R; Sangshetti, J N; Yeole, R D; Shinde, D B

    2010-08-01

    A simple and precise stability-indicating liquid chromatography method is developed and validated for the quantitative simultaneous estimation of irbesartan (IRB) and hydrochlorothiazide (HCTZ) in combined pharmaceutical dosage form. A chromatographic separation of the two drugs was achieved with an Ace5 C(18) 25-cm analytical column using buffer-acetonitrile (70:30 v/v). The buffer used in mobile phase contains 50 mM ammonium acetate pH adjusted 5.5 with acetic acid. The instrumental settings are flow rate of 1.5 mL/min, column temperature at 30 degrees C, and detector wavelength of 235 nm using a photodiode array detector. IRB, HCTZ, and their combination drug products were exposed to thermal, photolytic, hydrolytic, and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. Peak homogeneity data of IRB and HCTZ is obtained using photodiode array detector. In the stressed sample chromatograms, it demonstrated the specificity of the assay method for their estimation in presence of degradation products. The described method shows excellent linearity over a range of 10-200 microg/mL for IRB and 5-100 microg/mL for HCTZ. Methylparaben was used as internal standard. The correlation coefficient for IRB and HCTZ are 0.998 and 0.999. The mean recovery values for IRB and HCTZ ranged from 100.45% to 101.25%. The limit of detection for IRB and HCTZ were 0.019 and 0.023 microg/mL, respectively, and the limit of quantification were 0.053 and 0.070 microg/mL, respectively. The proposed method was suitable for quantitative determination and stability study of IRB and HCTZ in pharmaceutical preparations and also can be used in the quality control of bulk manufacturing and pharmaceutical dosage forms.

  19. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation

    PubMed Central

    Jeong, Jeong-Hee; Na, Hyun Sik; Kim, Eun-Kyung; Lee, Seung Hoon; Jung, KyungAh; Min, Jun-Ki; Cho, Mi-La

    2017-01-01

    Atherosclerosis is a chronic inflammatory disease caused by the accumulation of excess lipid in the aorta and the severity is regulated by T lymphocytes subsets. Rebamipide has therapeutic activity in collagen induced arthritis (CIA) by controlling the balance between T helper (Th) 17 and regulatory T (Treg) cells. In this study, we aimed to determine whether rebamipide reduces the development of atherosclerosis. To investigate the therapeutic effect of rebamipide, ApoE-KO mice fed a western diet were administered rebamipide orally for 8 weeks. Mice were sacrificed followed by the evaluation of plaque formation in the aorta or immunohistochemistry for IL-17 and Foxp3. Serum was also prepared to determine the pro-inflammatory cytokine levels. The ability of rebamipide to regulate lipid metabolism or inflammation was confirmed ex vivo. Results The oral administration of rebamipide decreased plaque formation in atherosclerotic lesions as well as the markers of metabolic disorder in ApoE-deficient mice with atherosclerosis. Pro-inflammatory cytokines were also suppressed by rebamapide. In addition, the population of Th17 was decreased, whereas Treg was increased in the spleen of rebamipide-treated ApoE deficient mice. Rebamipide also ameliorated the severity of obese arthritis and has the capability to reduce the development of atherosclerosis by controlling the balance between Th17 and Treg cells. Thus, rebamipide could be a therapeutic agent to improve the progression of inflammation in metabolic diseases. PMID:28241014

  20. Chemokines in atherosclerosis: proceedings resumed.

    PubMed

    Zernecke, Alma; Weber, Christian

    2014-04-01

    Chemokines play important roles in atherosclerotic vascular disease. Expressed by not only cells of the vessel wall but also emigrated leukocytes, chemokines were initially discovered to direct leukocytes to sites of inflammation. However, chemokines can also exert multiple functions beyond cell recruitment. Here, we discuss novel and recently emerging aspects of chemokines and their involvement in atherosclerosis. While reviewing newly identified roles of chemokines and their receptors in monocyte and neutrophil recruitment during atherogenesis and atheroregression, we also revisit homeostatic functions of chemokines, including their roles in cell homeostasis and foam cell formation. The functional diversity of chemokines in atherosclerosis warrants a clear-cut mechanistic dissection and stage-specific assessment to better appreciate the full scope of their actions in vascular inflammation and to identify pathways that harbor the potential for a therapeutic targeting of chemokines in atherosclerosis.

  1. Low ambient oxygen prevents atherosclerosis.

    PubMed

    Kang, Ju-Gyeong; Sung, Ho Joong; Amar, Marcelo J; Pryor, Milton; Remaley, Alan T; Allen, Michele D; Noguchi, Audrey C; Springer, Danielle A; Kwon, Jaeyul; Chen, Jichun; Park, Ji-hoon; Wang, Ping-yuan; Hwang, Paul M

    2016-03-01

    Large population studies have shown that living at higher altitudes, which lowers ambient oxygen exposure, is associated with reduced cardiovascular disease mortality. However, hypoxia has also been reported to promote atherosclerosis by worsening lipid metabolism and inflammation. We sought to address these disparate reports by reducing the ambient oxygen exposure of ApoE-/- mice. We observed that long-term adaptation to 10% O2 (equivalent to oxygen content at ∼5000 m), compared to 21% O2 (room air at sea level), resulted in a marked decrease in aortic atherosclerosis in ApoE-/- mice. This effect was associated with increased expression of the anti-inflammatory cytokine interleukin-10 (IL-10), known to be anti-atherogenic and regulated by hypoxia-inducible transcription factor-1α (HIF-1α). Supporting these observations, ApoE-/- mice that were deficient in IL-10 (IL10-/- ApoE-/- double knockout) failed to show reduced atherosclerosis in 10% oxygen. Our study reveals a specific mechanism that can help explain the decreased prevalence of ischemic heart disease in populations living at high altitudes and identifies ambient oxygen exposure as a potential factor that could be modulated to alter pathogenesis. Key messages: Chronic low ambient oxygen exposure decreases atherosclerosis in mice. Anti-inflammatory cytokine IL-10 levels are increased by low ambient O2. This is consistent with the established role of HIF-1α in IL10 transactivation. Absence of IL-10 results in the loss of the anti-atherosclerosis effect of low O2. This mechanism may contribute to decreased atherosclerosis at high altitudes.

  2. How Can Atherosclerosis Be Prevented or Delayed?

    MedlinePlus

    ... page from the NHLBI on Twitter. How Can Atherosclerosis Be Prevented or Delayed? Taking action to control ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  3. Long noncoding RNAs and atherosclerosis.

    PubMed

    Zhou, Tian; Ding, Jia-wang; Wang, Xin-an; Zheng, Xia-xia

    2016-05-01

    Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.

  4. Influence of two doses of irbesartan on non-dipper circadian blood pressure rhythm in salt-sensitive black hypertensives under high salt diet.

    PubMed

    Polónia, Jorge; Diogo, Domingos; Caupers, Paula; Damasceno, Albertino

    2003-07-01

    The authors examined whether the blockage of angiotensin II receptors by irbesartan (IRB) can reverse the "non-dipper" circadian rhythm of blood pressure (BP) to a "dipper" pattern in black salt-sensitive hypertensive patients submitted to a high-sodium loading. Twelve black salt-sensitive hypertensive patients (seven men; age, 35-58 years) on a high-sodium diet (300 mmol Na+ per day) were followed for 8 weeks. A placebo was given during the first 2 weeks, followed by 2 weeks on IRB 150 mg/d, 2 weeks on placebo, and 2 weeks on IRB 300 mg/d. On the last day of placebo, IRB 150 mg/d, and IRB 300 mg/d treatments, 24-hour BP and urinary 24-hour excretion of Na+ and potassium were measured. On placebo, ambulatory mean arterial pressure (MAP) was 112 mm Hg+/-2 (24 h), 112 mm Hg+/-2 (daytime), and 111 mm Hg+/-2 (nighttime), showing a clear circadian non-dipper profile. Versus placebo, IRB 150 mg/d reduced MAP by 4.2 mm Hg+/-1.1 (24 h), 2.6 mm Hg+/-0.8 (daytime) and 6.0 mm Hg+/-1.3 (nighttime; P<0.05 vs. placebo) and IRB 300 mg/d reduced MAP by 7.8 mm Hg+/-1.4 (24 h), 3.9 mm Hg+/-1.1 (daytime), and 11.8 mm Hg+/-2.1 mm Hg (all P<0.02 vs. placebo); nighttime/daytime MAP decrease was 0.7+/-0.8% on placebo, 3.5+/-2.1% on IRB 150 mg/d, and 7.0+/-1.2% on IRB 300 mg/d (P<0.02 for trend). Compared with placebo, IRB significantly increased serum potassium and plasma renin activity and reduced fractional excretion of potassium and plasma aldosterone levels in a dose-dependent manner. Body weight and urinary sodium excretion did not change throughout the study. It was concluded that the angiotensin receptor blocker IRB can reverse the BP non-dipper profile in salt-sensitive hypertensive patients on a high-salt diet, restoring nocturnal BP decline by a predominantly dose-dependent reduction of nighttime BP. Although the increment of potassium balance and reduction of aldosterone may account for this effect, it occurs independently of increased natriuresis. It is speculated that

  5. Preventing and arresting coronary atherosclerosis.

    PubMed

    Roberts, W C

    1995-09-01

    The good news about coronary atherosclerosis is that it takes an awful lot of plaque before symptoms of myocardial ischemia occur. The bad news is that despite the need for large quantities of plaque for symptoms to occur, nevertheless nearly half of us in the United States eventually have the necessary quantity. Atherosclerosis is infrequently hereditary in origin. Most of us get atherosclerosis because we consume too much fat, cholesterol, and calories. The consequence is an elevated ( > 150 mg/dl) serum total cholesterol level, and the higher the number is above 150, the greater is the quantity of plaque deposited in our arteries. If the serum total cholesterol level can be prevented from rising to more than 150 mg/dl, plaques are not laid down; if elevated levels are lowered to 150 mg/dl, further plaque does not form, and parts of those present may vanish. A fruit-vegetarian-starch diet is necessary as a rule to achieve the 150 mg/dl level in most adults. Lipid-lowering drugs are required in the patients with familial hypercholesterolemia and in most patients with atherosclerotic events. The best news about atherosclerosis is that it can be prevented in those without the hereditary form, and it can be arrested by lowering elevated serum total (and LDL) cholesterol to the 150 mg/dl level.

  6. Vitamin K Intake and Atherosclerosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been hypothesized that insufficient intake of vitamin K may increase soft tissue calcification due to impaired gamma-carboxylation of the vitamin K-dependent protein, matrix gamma-carboxyglutamic acid (MGP). The evidence to support this putative role of vitamin K intake in atherosclerosis is ...

  7. The Vascular Biology of Atherosclerosis

    DTIC Science & Technology

    2006-01-01

    Cardiovascular disease is the leading cause of mortality in the United States, Europe, a vast majority of Asia, and is likely to be the greatest...threat to overall health worldwide. As a major cause of cardiovascular disease , the development of atherosclerosis starts early in childhood. Despite this

  8. Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation*

    PubMed Central

    Gregory, Jill C.; Buffa, Jennifer A.; Org, Elin; Wang, Zeneng; Levison, Bruce S.; Zhu, Weifei; Wagner, Matthew A.; Bennett, Brian J.; Li, Lin; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2015-01-01

    Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility. PMID:25550161

  9. Therapy with the Combination of Amlodipine and Irbesartan Has Persistent Preventative Effects on Stroke Onset Associated with BDNF Preservation on Cerebral Vessels in Hypertensive Rats.

    PubMed

    Hasegawa, Yu; Nakagawa, Takashi; Uekawa, Ken; Ma, Mingjie; Lin, Bowen; Kusaka, Hiroaki; Katayama, Tetsuji; Sueta, Daisuke; Toyama, Kensuke; Koibuchi, Nobutaka; Kim-Mitsuyama, Shokei

    2016-02-01

    Although calcium channel blockers, angiotensin II receptor blockers, and combination therapy are effective for hypertensive patients, the significant differences among them against stroke onset are undetermined. In this study, we investigated the significant beneficial effects of the combination therapy using amlodipine and irbesartan against stroke onset in hypertensive rats. The animals were fed an 8% sodium diet and assigned to (1) vehicle, (2) amlodipine (2 mg/kg/day), (3) irbesartan (20 mg/kg/day), and (4) amlodipine + irbesartan groups. The drugs were given orally until 35 days, and incidences of stroke-related signs and mortality and blood pressure (BP) were monitored. Cerebral blood flow (CBF), brain water content, weight of the brain and left ventricle, and histological evaluations were conducted for the treated groups at 42 days after the start of the high-salt diet. Amlodipine and the combination therapy significantly reduced BP compared with the vehicle. Although the rates of stroke-related signs and mortality were high in the vehicle group, the rats in the treatment groups were mostly healthy until 35 days. After all drugs were discontinued, stroke onset was frequently seen in the monotherapy groups until 42 days, but no signs were observed in the combination therapy group. Although there were no significant differences in CBF or brain edema, the combination therapy reduced blood-brain barrier disruption, white matter injury, and reactive astrocytes compared with irbesartan, and the combination also inhibited left ventricular hypertrophy and preserved brain-derived neurotrophic factor (BDNF) expression on cerebral vessels compared to the monotherapies. These data suggest that the combination therapy had a persistent preventive effect on stroke onset in hypertensive rats, and the effects might be associated with BDNF preservation on cerebral vessels.

  10. Effect of combination tablets containing amlodipine 10 mg and irbesartan 100 mg on blood pressure and cardiovascular risk factors in patients with hypertension

    PubMed Central

    Yagi, Shusuke; Takashima, Akira; Mitsugi, Minoru; Wada, Toshihiro; Hotchi, Junko; Aihara, Ken-ichi; Hara, Tomoya; Ishida, Masayoshi; Fukuda, Daiju; Ise, Takayuki; Yamaguchi, Koji; Tobiume, Takeshi; Iwase, Takashi; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Shimabukuro, Michio; Akaike, Masashi; Sata, Masataka

    2015-01-01

    Background Hypertension is one of the major risk factors for cardiovascular and cerebrovascular disease and mortality. Patients who receive insufficient doses of antihypertensive agents or who are poorly adherent to multidrug treatment regimens often fail to achieve adequate blood pressure (BP) control. The aim of this study was to determine the efficacy of an angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) combination tablet containing a regular dose of irbesartan (100 mg) and a high dose of amlodipine (10 mg) with regard to lowering BP and other risk factors for cardiovascular disease. Methods We retrospectively evaluated data from 68 patients with essential hypertension whose treatment regimen was changed either from combination treatment with an independent ARB and a low-dose or regular-dose CCB or from a combination tablet of ARB and a low-dose or regular-dose CCB to a combination tablet containing amlodipine 10 mg and irbesartan 100 mg, because of incomplete BP control. Previous treatments did not include irbesartan as the ARB. Results The combination tablet decreased systolic and diastolic BP. In addition, it significantly decreased serum uric acid, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol levels, independent of the BP-lowering effect. Treatment with the combination tablet did not affect serum triglycerides, plasma glucose, glycated hemoglobin, serum potassium or creatinine levels, or the urinary albumin excretion rate. Conclusion The combination tablet containing amlodipine 10 mg and irbesartan 100 mg had a greater BP-lowering effect than an ARB and a low-dose or regular-dose CCB. In addition, the combination tablet had more favorable effects on serum uric acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels in patients with hypertension. PMID:25624765

  11. A prospective, randomized, placebo-controlled, double-blind, multicenter study of the effects of irbesartan on aortic dilatation in Marfan syndrome (AIMS trial): study protocol

    PubMed Central

    2013-01-01

    Background Cardiovascular complications are the leading cause of mortality and morbidity in Marfan syndrome (MFS), a dominantly inherited disorder caused by mutations in the gene that encodes fibrillin-1. There are approximately 18,000 patients in the UK with MFS. Current treatment includes careful follow-up, beta blockers, and prophylactic surgical intervention; however, there is no known treatment which effectively prevents the rate of aortic dilatation in MFS. Preclinical, neonatal, and pediatric studies have indicated that angiotensin receptor blockers (ARBs) may reduce the rate of aortic dilatation. This trial will investigate the effects of irbesartan on aortic dilatation in Marfan syndrome. Methods/Design The Aortic Irbesartan Marfan Study (AIMS) is an investigator-led, prospective, randomized, placebo-controlled, double-blind, phase III, multicenter trial. Currently, 26 centers in the UK will recruit 490 clinically confirmed MFS patients (aged ≥6 to ≤40 years) using the revised Ghent diagnostic criteria. Patients will be randomized to irbesartan or placebo. Aortic root dilatation will be measured by transthoracic echocardiography at baseline and annually thereafter. The primary outcome is the absolute change in aortic root diameter per year measured by echocardiography. The follow-up period will be a minimum of 36 months with an expected mean follow-up period of 48 months. Discussion This is the first clinical trial to evaluate the ARB irbesartan versus placebo in reducing the rate of aortic root dilatation in MFS. Not only will this provide useful information on the safety and efficacy of ARBs in MFS, it will also provide a rationale basis for potentially lifesaving therapy for MFS patients. Trial registration ISRCTN, 90011794 PMID:24289736

  12. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)-irbesartan complex: structure-antihypertensive activity relationships in Cu(II)-sartan complexes.

    PubMed

    Islas, María S; Luengo, Alicia; Franca, Carlos A; Merino, Mercedes Griera; Calleros, Laura; Rodriguez-Puyol, Manuel; Lezama, Luis; Ferrer, Evelina G; Williams, Patricia A M

    2016-10-01

    The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(·)) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH(·) and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu-candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu-sartan compounds.

  13. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    SciTech Connect

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  14. [Vitamin E, antioxidants and atherosclerosis].

    PubMed

    Lecerf, J M; Luc, G; Fruchart, J C

    1994-01-01

    Atherosclerosis is a process in which lipid and factors are mixed. When LDL are oxydized, they are catabolized by the macrophage's pathway, leading to foam cells which constitute the fatty streak, the earliest lesion in atherogenesis, and they have cytotoxic, chemotactic effects. Many protective devices against free radicals and oxydation mechanisms exist, particularly antioxydant vitamins and other natural dietary antioxydants. After a brief recall of their mechanisms, epidemiological, experimental and clinical data are reviewed. To day it seems necessary to take into consideration these factors in prevention and therapeutic of atherosclerosis and dylipidaemia. Many inquiries keep going, particularly about susceptible of LDL to oxydation. One is waiting for intervention surveys in order to conclude about nutritional and medical treatments.

  15. Immunity, atherosclerosis and cardiovascular disease

    PubMed Central

    2013-01-01

    Atherosclerosis, the major cause of cardiovascular disease (CVD), is a chronic inflammatory condition with immune competent cells in lesions producing mainly pro-inflammatory cytokines. Dead cells and oxidized forms of low density lipoproteins (oxLDL) are abundant. The major direct cause of CVD appears to be rupture of atherosclerotic plaques. oxLDL has proinflammatory and immune-stimulatory properties, causes cell death at higher concentrations and contains inflammatory phospholipids with phosphorylcholine (PC) as an interesting epitope. Antibodies against PC (anti-PC) may be atheroprotective, one mechanism being anti-inflammatory. Bacteria and virus have been discussed, but it has been difficult to find direct evidence, and antibiotic trials have not been successful. Heat shock proteins could be one major target for atherogenic immune reactions. More direct causes of plaque rupture include pro-inflammatory cytokines, chemokines, and lipid mediators. To prove that inflammation is a cause of atherosclerosis and CVD, clinical studies with anti-inflammatory and/or immune-modulatory treatment are needed. The potential causes of immune reactions and inflammation in atherosclerosis and how inflammation can be targeted therapeutically to provide novel treatments for CVD are reviewed. PMID:23635324

  16. Intestinal Microbiota Metabolism and Atherosclerosis

    PubMed Central

    Liu, Tian-Xing; Niu, Hai-Tao; Zhang, Shu-Yang

    2015-01-01

    Objective: This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target. Data Sources: This study was based on data obtained from PubMed and EMBASE up to June 30, 2015. Articles were selected using the following search terms: “Intestinal microbiota”, “trimethylamine N-oxide (TMAO)”, “trimethylamine (TMA)”, “cardiovascular”, and “atherosclerosis”. Study Selection: Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis. Studies on TMA-containing nutrients were also included. Results: A new CVD risk factor, TMAO, was recently identified. It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota, resulting in TMA release. TMA is subsequently converted to TMAO in the liver. Several preliminary studies have linked TMAO to CVD, particularly atherosclerosis; however, the details of this relationship remain unclear. Conclusions: Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management. PMID:26481750

  17. Sex Differences in Inflammation During Atherosclerosis

    PubMed Central

    Fairweather, DeLisa

    2014-01-01

    Atherosclerosis is the leading cause of death in the United States and worldwide, yet more men die from atherosclerosis than women, and at a younger age. Women, on the other hand, mainly develop atherosclerosis following menopause, and particularly if they have one or more autoimmune diseases, suggesting that the immune mechanisms that increase disease in men are different from those in women. The key processes in the pathogenesis of atherosclerosis are vascular inflammation, lipid accumulation, intimal thickening and fibrosis, remodeling, and plaque rupture or erosion leading to myocardial infarction and ischemia. Evidence indicates that sex hormones alter the immune response during atherosclerosis, resulting in different disease phenotypes according to sex. Women, for example, respond to infection and damage with increased antibody and autoantibody responses, while men have elevated innate immune activation. This review describes current knowledge regarding sex differences in the inflammatory immune response during atherosclerosis. Understanding sex differences is critical for improving individualized medicine. PMID:25983559

  18. Immune response to lipoproteins in atherosclerosis.

    PubMed

    Samson, Sonia; Mundkur, Lakshmi; Kakkar, Vijay V

    2012-01-01

    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  19. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism.

    PubMed

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

  20. Microorganisms in the aetiology of atherosclerosis

    PubMed Central

    Morre, S; Stooker, W; Lagrand, W; van den Brule, A J C; Niessen, H

    2000-01-01

    Recent publications have suggested that infective pathogens might play an important role in the pathogenesis of atherosclerosis. This review focuses on these microorganisms in the process of atherosclerosis. The results of in vitro studies, animal studies, tissue studies, and serological studies will be summarised, followed by an overall conclusion concerning the strength of the association of the microorganism with the pathogenesis of atherosclerosis. The role of the bacteria Chlamydia pneumoniae and Helicobacter pylori, and the viruses human immunodeficiency virus, coxsackie B virus, cytomegalovirus, Epstein-Barr virus, herpes simplex virus, and measles virus will be discussed. Key Words: atherosclerosis • Chlamydia pneumoniae • Helicobacter pylori PMID:11041053

  1. What Are the Signs and Symptoms of Atherosclerosis?

    MedlinePlus

    ... Twitter. What Are the Signs and Symptoms of Atherosclerosis? Atherosclerosis usually doesn't cause signs and symptoms ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  2. Coronary Atherosclerosis and Interventional Cardiology.

    PubMed

    Peña-Duque, Marco Antonio; Romero-Ibarra, José Luis; Gaxiola-Macías, Manuel Ben Adoniram; Arias-Sánchez, Eduardo A

    2015-07-01

    The atherosclerotic process in coronary arteries begins with endothelial dysfunction and may provoke thrombotic total occlusion and myocardial infarction. In this state-of-the-art review, we discuss recent evidence of atheroslerosis, vulnerable plaque, and hemodynamic changes in the coronary tree, as well as the current techniques we implement in the catheterization lab to evaluate coronary stenosis. It is clear that atherosclerosis is a chronic inflammatory condition with several consequences in the coronary tree, however, we are able now to characterize the plaque and to select the appropriate treatment for many patients.

  3. Rapid Progression of Coronary Atherosclerosis: A Review

    PubMed Central

    Shah, Priyank; Bajaj, Sharad; Virk, Hartaj; Bikkina, Mahesh; Shamoon, Fayez

    2015-01-01

    Atherosclerosis is chronic disease, the prevalence of which has increased steadily as the population ages. Vascular injury is believed to be critical initiating event in pathogenesis of spontaneous atherosclerosis. Syndrome of accelerated atherosclerosis has been classically described in patients undergoing heart transplantation, coronary artery bypass graft, and percutaneous transluminal coronary angioplasty. In contrast to spontaneous atherosclerosis, denuding endothelial injury followed by thrombus formation and initial predominant smooth muscle cell proliferation is believed to be playing a significant role in accelerated atherosclerosis. There is no universal definition of rapid progression of atherosclerosis. However most studies describing the phenomenon have used the following definition: (i) > or = 10% diameter reduction of at least one preexisting stenosis > or = 50%, (ii) > or = 30% diameter reduction of a preexisting stenosis <50%, and (iii) progression of a lesion to total occlusion within few months. Recent studies have described the role of coronary vasospasm, human immunodeficiency virus, various inflammatory markers, and some genetic mutations as predictors of rapid progression of atherosclerosis. As research in the field of vascular biology continues, more factors are likely to be implicated in the pathogenesis of rapid progression of atherosclerosis. PMID:26823982

  4. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Ngo, Phong

    2003-01-01

    This slide presentation reviews the use of microwave technology for treating Atherosclerosis while preserving the endothelium. The system uses catheter antennas as part of the system that is intended to treat atherosclerosis. The concept is to use a microwave catheter for heating the atherosclerotic lesions, and reduce constriction in the artery.

  5. Quantification of carotid vessel atherosclerosis

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Egger, Micaela; Spence, J. D.; Parraga, Grace; Fenster, Aaron

    2006-03-01

    Atherosclerosis is characterized by the development of plaques in the arterial wall, which ultimately leads to heart attacks and stroke. 3D ultrasound (US) has been used to screen patients' carotid arteries. Plaque measurements obtained from these images may aid in the management and monitoring of patients, and in evaluating the effect of new treatment options. Different types of measures for ultrasound phenotypes of atherosclerosis have been proposed. Here, we report on the development and application of a method used to analyze changes in carotid plaque morphology from 3D US images obtained at two different time points. We evaluated our technique using manual segmentations of the wall and lumen of the carotid artery from images acquired in two US scanning sessions. To incorporate the effect of intraobserver variability in our evaluation, manual segmentation was performed five times each for the arterial wall and lumen. From this set of five segmentations, the mean wall and lumen surfaces were reconstructed, with the standard deviation at each point mapped onto the surfaces. A correspondence map between the mean wall and lumen surfaces was then established, and the thickness of the atherosclerotic plaque at each point in the vessel was estimated to be the distance between each correspondence pairs. The two-sample Student's t-test was used to judge whether the difference between the thickness values at each pair corresponding points of the arteries in the two 3D US images was statistically significant.

  6. Platelets: cell proliferation and atherosclerosis.

    PubMed

    Ross, R

    1979-04-01

    Intimal smooth muscle proliferation is the hallmark of the lesions of atherosclerosis. Endothelial injury is postulated to precede this intimal smooth muscle proliferative response, which is mediated by a potent mitogenic factor derived from adherence, aggregation, and release by platelets at sites of endothelial injury. Smooth muscle proliferation is accompanied by varying amounts of connective tissue formation and intracellular and extracellular lipid deposition, dependent upon the risk factors encountered in each patient. The platelet-derived mitogen (PF) is a stable, cationic, relatively low molecular weight (10,000-30,000) protein that has been partially purified by ion exchange chromotography and gel filtration. Less than 100 ng of PF/ml culture medium can stimulate sparse 3T3 cells or smooth muscle cells, but not endothelial cells, to undergo multiple cell divisions in the presence of 5% cell-free, plasma-derived serum. The latter contains no mitogenic activity. The interaction of the platelet mitogen and plasma-derived components, including lipoproteins, plays a critical role in smooth muscle proliferation in vitro and in vivo in the induction of the lesions of atherosclerosis.

  7. Cyanotic congenital heart disease and atherosclerosis.

    PubMed

    Tarp, Julie Bjerre; Jensen, Annette Schophuus; Engstrøm, Thomas; Holstein-Rathlou, Niels-Henrik; Søndergaard, Lars

    2017-03-04

    Improved treatment options in paediatric cardiology and congenital heart surgery have resulted in an ageing population of patients with cyanotic congenital heart disease (CCHD). The risk of acquired heart disease such as atherosclerosis increases with age.Previous studies have speculated whether patients with CCHD are protected against atherosclerosis. Results have shown that the coronary arteries of patients with CCHD are free from plaques and stenosis. Decreased carotid intima-media thickness and low total plasma cholesterol may indicate a reduced risk of later development of atherosclerosis. However, the evidence is still sparse and questionable, and a reasonable explanation for the decreased risk of developing atherosclerosis in patients with CCHD is still missing.This review provides an overview of what is known about the prevalence and potential causes of the reduced risk of atherosclerosis in patients with CCHD.

  8. Vasa Vasorum in Atherosclerosis and Clinical Significance

    PubMed Central

    Xu, Junyan; Lu, Xiaotong; Shi, Guo-Ping

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease that leads to several acute cardiovascular complications with poor prognosis. For decades, the role of the adventitial vasa vasorum (VV) in the initiation and progression of atherosclerosis has received broad attention. The presence of VV neovascularization precedes the apparent symptoms of clinical atherosclerosis. VV also mediates inflammatory cell infiltration, intimal thickening, intraplaque hemorrhage, and subsequent atherothrombosis that results in stroke or myocardial infarction. Intraplaque neovessels originating from VV can be immature and hence susceptible to leakage, and are thus regarded as the leading cause of intraplaque hemorrhage. Evidence supports VV as a new surrogate target of atherosclerosis evaluation and treatment. This review provides an overview into the relationship between VV and atherosclerosis, including the anatomy and function of VV, the stimuli of VV neovascularization, and the available underlying mechanisms that lead to poor prognosis. We also summarize translational researches on VV imaging modalities and potential therapies that target VV neovascularization or its stimuli. PMID:26006236

  9. BIOLOGICAL IMAGING OF ATHEROSCLEROSIS: MOVING BEYOND ANATOMY

    PubMed Central

    Verjans, Johan W.; Jaffer, Farouc A.

    2013-01-01

    Biological or molecular imaging is now providing exciting new strategies to study atherosclerosis in both animals and humans. These technologies hold the promise to provide disease-specific, molecular information within the context of a systemic or organ-specific disease beyond traditional anatomical-based imaging. By integration of biological, chemical and anatomical imaging knowledge into diagnostic strategies, a more comprehensive and predictive picture of atherosclerosis is likely to emerge. As such, biological imaging is well-positioned to study different stages of atherosclerosis and its treatment, including the sequence of atheroma initiation, progression, and plaque rupture. In this review we describe the evolving concepts in atherosclerosis imaging with a focus on coronary artery disease, and we provide an overview of recent exciting translational developments in biological imaging. The illuminated examples and discussions will highlight how biological imaging is providing new clinical approaches to identify high-risk plaques, and to streamline the development process of new atherosclerosis therapies. PMID:23733542

  10. LXR signaling pathways and atherosclerosis

    PubMed Central

    Calkin, Anna; Tontonoz, Peter

    2010-01-01

    First discovered as orphan receptors, liver X receptors (LXRs) were subsequently identified as the nuclear receptor target of the cholesterol metabolites, oxysterols.1 There are 2 LXR receptors encoded by distinct genes: LXRα is most highly expressed in the liver, adipose, kidney, adrenal tissues and macrophages, and LXRβ is ubiquitously expressed. Despite differential tissue distribution, these isoforms have 78% homology in their ligand-binding domain and appear to respond to the same endogenous ligands. Work over the past 10 years has shown that the LXR pathway regulates lipid metabolism and inflammation via both the induction and repression of target genes. Given the importance of cholesterol regulation and inflammation in the development of cardiovascular disease, it is not surprising that activation of the LXR pathway attenuates various mechanisms underlying atherosclerotic plaque development.2 In this minireview we will discuss the impact of the LXR pathway on both cholesterol metabolism and atherosclerosis. PMID:20631351

  11. Gene therapy targeting inflammation in atherosclerosis.

    PubMed

    Van-Assche, Tim; Huygelen, Veronique; Crabtree, Mark J; Antoniades, Charalambos

    2011-12-01

    The extensive cross-talk between the immune system and vasculature leading to the infiltration of immune cells into the vascular wall is a major step in atherogenesis. In this process, reactive oxygen species play a crucial role, by inducing the oxidation of LDL and the formation of foam cells, and by activating a number of redox-sensitive transcriptional factors such as nuclear factor kappa B (NFkappa B) or activating protein 1 (AP1), that regulate the expression of multiple pro/anti inflammatory genes involved in atherogenesis. Delivery of genes encoding antioxidant defense enzymes (e.g. superoxide dismutase, catalase, glutathione peroxidase or heme oxygenase- 1) or endothelial nitric oxide synthase (eNOS), suppress atherogenesis in animal models. Similarly, delivery of genes encoding regulators of redox sensitive transcriptional factors (e.g. NF-kappa B, AP-1, Nrf2 etc) or reactive oxygen species scavengers have been successfully used in experimental studies. Despite the promising results from basic science, the clinical applicability of these strategies has proven to be particularly challenging. Issues regarding the vectors used to deliver the genes (and the development of immune responses or other side effects) and the inability of sufficient and sustained local expression of these genes at the target-tissue are some of the main reasons preventing optimism regarding the use of these strategies at a clinical level. Therefore, although premature to discuss about effective "gene therapy" in atherosclerosis at a clinical level, gene delivery techniques opened new horizons in cardiovascular research, and the development of new vectors may allow their extensive use in clinical trials in the future.

  12. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice

    PubMed Central

    Mohanta, Sarajo; Yin, Changjun; Weber, Christian; Hu, Desheng; Habenicht, Andreas JR

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. Apolipoprotein E-deficient (ApoE-/-) mice are used as experimental models to study human atherosclerosis. ApoE-/- mice are constitutively hyperlipidemic and develop intima plaques that resemble human plaques. Various issues including experimental design for lesion analysis, dietary conditions, isolation of the aorta, staining methods, morphometry, group size, age, the location within the arterial tree, and statistical analyses are important parameters that need to be addressed to obtain robust data. Here, we provide detailed methods to quantify aorta atherosclerosis. PMID:27366759

  13. A validated stability-indicating liquid chromatographic method for determination of process related impurities and degradation behavior of Irbesartan in solid oral dosage.

    PubMed

    Goswami, Nishant

    2014-01-01

    The present work describes the development and validation of a stability-indicating RP-HPLC method for the estimation of degradation and process related impurities of Irbesartan, namely Impurity-1, Impurity-2, Impurity-3 and Impurity-4. The developed LC method was validated with respect to specificity, limit of detection and quantification, linearity, precision, accuracy and robustness. The chromatographic separation was achieved on Hypersil Octadecylsilyl (4.6 mm × 150 mm, 3 μm) column by using mobile phase containing a gradient mixture of solvent A (0.55% v/v ortho-phosphoric acid, pH adjusted to 3.2 with triethyl amine) and B (95:5 v/v mixture of acetonitrile and solvent A) at a flow rate of 1.2 mL/min. The detection was carried out at a wavelength of 220 nm. During method validation parameter such as precision, linearity, accuracy, specificity, limit of detection and quantification were evaluated, which remained within acceptable limits. HPLC analytical method is linear, accurate, precise, robust and specific, being able to separate the main drug from its degradation products. The degradation products were well-resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. The method is stability-indicating in nature and can be used for routine analysis of production samples and to check the stability of the Irbesartan HCl tablets.

  14. Cytokines and Immune Responses in Murine Atherosclerosis.

    PubMed

    Kusters, Pascal J H; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  15. Macrophages, dendritic cells, and regression of atherosclerosis

    PubMed Central

    Feig, Jonathan E.; Feig, Jessica L.

    2012-01-01

    Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression. PMID:22934038

  16. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  17. Innate and Adaptive Immunity in Atherosclerosis

    PubMed Central

    Packard, René R. S.; Lichtman, Andrew H.; Libby, Peter

    2010-01-01

    Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the immune response that mediate the initiation, progression, and ultimate thrombotic complications of atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the atheroma, processes that occur in inflammatorily active, rupture-prone plaques. Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive protein as a biomarker of cardiovascular risk, and the characterization of the anti-inflammatory and immunomodulatory actions of the statin class of drugs. An improved understanding of the pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for the development of future strategies directed toward better risk stratification of patients as well as the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets involved in innate and adaptive immunity and their contributions to atherogenesis. PMID:19449008

  18. Inflammation in Atherosclerosis: From Pathophysiology to Practice

    PubMed Central

    Libby, Peter; Ridker, Paul M; Hansson, Göran K.

    2010-01-01

    Just three decades ago the prevailing viewpoint envisaged atherosclerosis as a bland proliferative process. (1) According to that concept, endothelial denuding injury led to platelet aggregation and release of platelet-derived growth factor which would trigger the proliferation of smooth muscle cells in the arterial intima, and form the nidus of the atherosclerotic plaque. This cellular model of atherosclerosis updated Virchow's concepts of atherosclerosis as a response to injury formulated in the mid-nineteenth century. The advent of the cell biological era of atherosclerosis supplanted the simplistic concept of the atheroma as a passive deposition of lipid debris on the artery wall. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent work identified immune cells and mediators at work in atheromata, implicating inflammatory mechanisms in disease development. (2) The advent of gene-targeting technology enabled the testing of the roles of specific molecules in the development of experimental atherosclerosis in mice. Such data demonstrated a critical role for hypercholesterolemia and also supported the participation of immune mechanisms in the pathogenesis of atherosclerosis. (3) Multiple independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk factors for atherosclerosis and its complications with altered arterial biology. This revolution in our thinking about the pathophysiology of atherosclerosis has begun to provide clinical insight and practical tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis and highlights how translation of these advances in basic science promises to change clinical practice. PMID:19942084

  19. Infection and atherosclerosis: emerging mechanistic paradigms.

    PubMed

    Epstein, S E; Zhou, Y F; Zhu, J

    1999-07-27

    Although definitive proof of a causal role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Moreover, both Chlamydia pneumoniae and cytomegalovirus exacerbate lesion development in animal models of atherosclerosis and restenosis. The fact that multiple pathogens have been associated with atherosclerosis implies that many "atherogenic" pathogens exist, and recent data suggest that the risk of atherosclerosis conveyed by infection relates to the number of atherogenic pathogens with which an individual is infected. It also is evident that variability in host susceptibility to the atherogenic effects of pathogens exists; this variability appears to be related at least in part to whether the host can generate an immune response that successfully controls pathogen inflammatory activity and in part to the specific pattern of immune response--humoral or cellular. The latter may relate to host capacity to control pathogen activity and to a pathogen-induced autoimmune component of the atherogenic process. Additional animal and human studies are necessary to further test the validity of the infection/atherosclerosis link and to provide more insight into the mechanisms by which infection may contribute to atherosclerosis, information critical for devising strategies to reduce or eliminate any contribution to atherosclerosis caused by infection.

  20. Angiotensin converting enzyme 2 and atherosclerosis.

    PubMed

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan

    2013-01-01

    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models.

  1. Hyperglycemia impairs atherosclerosis regression in mice.

    PubMed

    Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R; Eberlé, Delphine; Stephens, Kyle; Raffai, Robert L

    2013-12-01

    Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.

  2. Protective role of heme oxygenase-1 against inflammation in atherosclerosis.

    PubMed

    Durante, William

    2011-06-01

    Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting step in the metabolism of free heme into equimolar amounts of ferrous iron, carbon monoxide (CO), and biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. HO-1 has recently been identified as a promising therapeutic target in the treatment of vascular inflammatory disease, including atherosclerosis. HO-1 represses inflammation by removing the pro-inflammatory molecule heme and by generating CO and the bile pigments, biliverdin and bilirubin. These HO-1 reaction products are capable of blocking innate and adaptive immune responses by modifying the activation, differentiation, maturation, and/or polarization of numerous immune cells, including endothelial cells, monocytes/macrophages, dendritic cells, T lymphocytes, mast cells, and platelets. These cellular actions by CO and bile pigments result in diminished leukocyte recruitment and infiltration, and pro-inflammatory mediator production within atherosclerotic lesions. This review highlights the mechanisms by which HO-1 suppresses vascular inflammation in atherosclerosis, and explores possible therapeutic modalities by which HO-1 and its reaction products can be employed to ameliorate vascular inflammatory disease.

  3. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-07-01

    The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces their conversion to a contractile phenotype and dramatically reduces atherosclerotic plaque size. The FGF/TGFβ signaling cross talk was observed in vitro and in vivo In vitro, inhibition of FGF signaling increased TGFβ activity, thereby promoting smooth muscle differentiation and decreasing proliferation. In vivo, smooth muscle-specific knockout of an FGF receptor adaptor Frs2α led to a profound inhibition of atherosclerotic plaque growth when these animals were crossed on Apoe(-/-) background and subjected to a high-fat diet. In particular, there was a significant reduction in plaque cellularity, increase in fibrous cap area, and decrease in necrotic core size. In agreement with these findings, examination of human coronary arteries with various degrees of atherosclerosis revealed a strong correlation between the activation of FGF signaling, loss of TGFβ activity, and increased disease severity. These results identify SMC FGF/TGFβ signaling cross talk as an important regulator of SMC phenotype switch and document a major contribution of medial SMC proliferation to atherosclerotic plaque growth.

  4. Metabolic Syndrome, Inflammation and Atherosclerosis

    PubMed Central

    Paoletti, Rodolfo; Bolego, Chiara; Poli, Andrea; Cignarella, Andrea

    2006-01-01

    The inflammatory component of atherogenesis has been increasingly recognized over the last decade. Inflammation participates in all stages of atherosclerosis, not only during initiation and during evolution of lesions, but also with precipitation of acute thrombotic complications. The metabolic syndrome is associated with increased risk for development of both cardiovascular disease and type-2 diabetes in humans. Central obesity and insulin resistance are thought to represent common underlying factors of the syndrome, which features a chronic low-grade inflammatory state. Diagnosis of the metabolic syndrome occurs using defined threshold values for waist circumference, blood pressure, fasting glucose and dyslipidemia. The metabolic syndrome appears to affect a significant proportion of the population. Therapeutic approaches that reduce the levels of proinflammatory biomarkers and address traditional risk factors are particularly important in preventing cardiovascular disease and, potentially, diabetes. The primary management of metabolic syndrome involves healthy lifestyle promotion through moderate calorie restriction, moderate increase in physical activity and change in dietary composition. Treatment of individual components aims to control atherogenic dyslipidemia using fibrates and statins, elevated blood pressure, and hyperglycemia. While no single treatment for the metabolic syndrome as a whole yet exists, emerging therapies offer potential as future therapeutic approaches. PMID:17319458

  5. AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis.

    PubMed

    Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2015-05-01

    AIP1 (ASK1-interacting protein-1; encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an apoptosis signal-regulating kinase 1 (ASK1)-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF, and endoplasmic reticulum (ER) stress in EC (therefore, AIP1 is an anti-inflammatory protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations.

  6. [Health campaign for atherosclerosis prevention].

    PubMed

    Schoberberger, Rudolf; Modes, Michaela

    2005-07-01

    The goal of the campaign "plus leben", a project designed to run for at least 5 years, is to heighten the awareness of patients at risk of heart disease and to provide them with an appropriate prevention program. During the first two years of the campaign 20,000 visitors were registered on the homepage, 400,000 tests for risk of heart disease were distributed, and more than 3,000 health information brochures were requested. Thus, a survey of patients was designed to provide information on the extent to which preventive measures are effective. The survey, which was carried out by mail, had a response rate of 28%, or 230 participants. In the random sample, consisting of about 60% men and 40% women, only 16% are younger than 50 years of age. Thus the survey provides a representative picture of the affected target group. The test for risk of cardiac disease provided by "plus leben" led to an increase in awareness of preventive measures in more than two thirds of the respondents, and 60% also completed the test. Although only a fourth of the patients are regularly informed by their physician about preventive measures, the campaign has led about 90% of the respondents to make fundamental or at least partial changes in their lifestyle. In connection with the study it was shown that the media play an important role in providing information on preventive measures. Communication in the doctor's office as an important building block in raising consciousness about atherosclerosis prevention could be further improved.

  7. Systemic antiphospholipid syndrome and atherosclerosis.

    PubMed

    Jara, Luis J; Medina, Gabriela; Vera-Lastra, Olga

    2007-04-01

    Atherosclerosis (AT) is a metabolic, systemic inflammatory/immune disease characterized by lipoproteins metabolism alteration that leads to immune/inflammatory system activation with the consequent proliferation of smooth-muscle cells, narrowing arteries and atheroma formation. Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombophilic state and circulating antiphospholipid antibodies (aPL) including anti beta2-GPI. Experimental studies and human observations suggest that APS is associated with AT. In fact, innate and adaptive immune responses participate in the pathogenesis of both diseases. Anti-oxLDL, anti-aPL, anti beta2GPI, anti-HSP antibodies, among others, has been found in patients with APS and AT. Endothelial dysfunctions, oxidative stress, increase of cell adhesion molecules, active platelets, are common findings in both diseases. Macrophages, dendritic cells, T-cell activation, CD40-CD40 ligand interaction, are considered as pathogenic mechanism of AT and APS. Premature AT may be the first symptom of APS. Thrombophilia, aPL antibodies, and APS may be present in patients with premature AT. An association between AT and venous thrombosis (a clinical hallmark of APS) has been proposed in unselected patients with deep venous thrombosis of the legs without symptomatic AT. Asymptomatic AT, defined in terms of carotid intima media thickness and lumen diameter decrease, was observed in patients with APS. Premenopausal female patients with PAPS have a higher prevalence of cerebrovascular disease in comparison with male patients. Accelerated AT and hormones could be the explanation of these findings. High levels of aCLs, significantly predict the risk of future ischemic stroke in women but not in men. AT is one of the main features of systemic APS and offer opportunities for new treatment strategies.

  8. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    PubMed Central

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-01-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility, in preventing and reversing atherosclerosis. Here we show that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load, and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques, and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the anti-atherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Since CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774

  9. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.

    PubMed

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Björkhem, Ingemar; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R; Wright, Samuel D; Espevik, Terje; Schultze, Joachim L; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-04-06

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.

  10. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes

    PubMed Central

    Rafieian-Kopaei, Mahmoud; Setorki, Mahbubeh; Doudi, Monir; Baradaran, Azar; Nasri, Hamid

    2014-01-01

    Background: Atherosclerosis is the major cause of morbidities and mortalities worldwide. In this study we aimed to review the mechanism of atherosclerosis and its risk factors, focusing on new findings in atherosclerosis markers and its risk factors. Furthermore, the role of antioxidants and medicinal herbs in atherosclerosis and endothelial damage has been discussed and a list of important medicinal plants effective in the treatment and prevention of hyperlipidemia and atherosclerosis is presented. Methods: The recently published papers about atherosclerosis pathogenesis and herbal medicines effective in the treatment and prevention of hyperlipidemia and atherosclerosis were searched. Results: Inflammation has a crucial role in pathogenesis of atherosclerosis. The disease is accompanied by excessive fibrosis of the intima, fatty plaques formation, proliferation of smooth muscle cells, and migration of a group of cells such as monocytes, T cells, and platelets which are formed in response to inflammation. The oxidation of low density lipoprotein (LDL) to Ox-LDL indicates the first step of atherosclerosis in cardiovascular diseases. Malondialdehyde factor shows the level of lipoperoxidation and is a sign of increased oxidative pressure and cardiovascular diseases. In special pathological conditions such as severe hypercholesterolemia, peroxynitrite concentration increases and atherosclerosis and vascular damage are intensified. Medicinal plants have shown to be capable of interacting these or other pathogenesis factors to prevent atherosclerosis. Conclusions: The pathogenesis factors involved in atherosclerosis have recently been cleared and the discovery of these factors has brought about new hopes for better prevention and treatment of atherosclerosis. PMID:25489440

  11. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis.

    PubMed

    Praticò, D; Cyrus, T; Li, H; FitzGerald, G A

    2000-12-01

    Thromboxane A(2) is a potent vasoconstrictor and platelet agonist; prostacyclin is a potent platelet inhibitor and vasodilator. Altered biosynthesis of these eicosanoids is a feature of human hypercholesterolemia and atherosclerosis. This study examined whether in 2 murine models of atherosclerosis their levels are increased and correlated with the evolution of the disease. Urinary 2,3-dinor thromboxane B(2) and 2,3-dinor-6-keto prostaglandin F(1 alpha), metabolites of thromboxane and prostacyclin, respectively, were assayed in apoliprotein E (apoE)-deficient mice on chow and low-density lipoprotein receptor (LDLR)-deficient mice on chow and a Western-type diet. Atherosclerosis lesion area was measured by en face method. Both eicosanoids increased in apoE-deficient mice on chow and in LDLR-deficient mice on a high-fat diet, but not in LDLR-deficient mice on chow by the end of the study. Aspirin suppressed ex vivo platelet aggregation, serum thromboxane B(2), and 2,3-dinor thromboxane B(2), and significantly reduced the excretion of 2,3-dinor-6-keto prostaglandin F(1 alpha) in these animals. This study demonstrates that thromboxane as well as prostacyclin biosynthesis is increased in 2 murine models of atherogenesis and is secondary to increased in vivo platelet activation. Assessment of their generation in these models may afford the basis for future studies on the functional role of these eicosanoids in the evolution and progression of atherosclerosis. (Blood. 2000;96:3823-3826)

  12. Nanoparticles Containing a Liver X Receptor Agonist Inhibit Inflammation and Atherosclerosis

    PubMed Central

    Zhang, Xue-Qing; Even-Or, Orli; Xu, Xiaoyang; van Rosmalen, Mariska; Lim, Lucas; Gadde, Suresh

    2015-01-01

    Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, we demonstrate that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs were engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR was significantly more effective than free GW3965 at inducing LXR target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Addtionally, the NPs elicited negligible lipogenic gene stimulation in the liver. Using the Ldlr−/− mouse model of atherosclerosis, we saw abundant co-localization of fluorescently labeled NPs within plaque macrophages following systemic administration. Notably, six intravenous injections of NP-LXR over two weeks markedly reduced the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism. PMID:25156796

  13. Inflammatory cytokines in atherosclerosis: current therapeutic approaches.

    PubMed

    Tousoulis, Dimitris; Oikonomou, Evangelos; Economou, Evangelos K; Crea, Filippo; Kaski, Juan Carlos

    2016-06-07

    The notion of atherosclerosis as a chronic inflammatory disease has intensified research on the role of cytokines and the way these molecules act and interact to initiate and sustain inflammation in the microenvironment of an atherosclerotic plaque. Cytokines are expressed by all types of cells involved in the pathogenesis of atherosclerosis, act on a variety of targets exerting multiple effects, and are largely responsible for the crosstalk among endothelial, smooth muscle cells, leucocytes, and other vascular residing cells. It is now understood that widely used drugs such as statins, aspirin, methotrexate, and colchicine act in an immunomodulatory way that may beneficially affect atherogenesis and/or cardiovascular disease progression. Moreover, advancement in pharmaceutical design has enabled the production of highly specific antibodies against key molecules involved in the perpetuation of the inflammatory cascade, raising hope for advances in the treatment of atherosclerosis. This review describes the actions and effects of these agents, their potential clinical significance, and future prospects.

  14. PCSK9 and Atherosclerosis - Lipids and Beyond.

    PubMed

    Shapiro, Michael D; Fazio, Sergio

    2017-03-09

    Even though it is only a little over a decade from the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) as a plasma protein that associates with both high and low cholesterol syndromes, a rich body of knowledge has developed, and drugs inhibiting this target have been approved in many markets. While the majority of research in recent years has focused on the impact of therapeutic antagonism of this molecule, important lines of investigation have emerged characterizing its unique physiology as it relates to cholesterol metabolism and atherosclerosis. The PCSK9 story is unfolding rapidly but is far from complete. One chapter that is of particular interest is the possible direct link between PCSK9 and atherosclerosis. This review specifically examines this relationship drawing from data produced from experimental models of plaque biology and inflammation, atherosclerosis imaging studies, and observational epidemiology.

  15. Global transcriptomic study of atherosclerosis development in rats.

    PubMed

    Chen, Lei; Yao, Hong; Hui, Ji-Yuan; Ding, Sheng-Hao; Fan, Yi-Ling; Pan, Yao-Hua; Chen, Kai-Hong; Wan, Jie-Qing; Jiang, Ji-Yao

    2016-10-30

    Atherosclerosis is a chronic disease of the arterial wall and a leading cause of death worldwide. Though the pathophysiology of atherosclerotic lesion formation has been studied, we still lack evidence of the global changes in the artery during atherosclerosis. In this report, we induced atherosclerosis in rats and conducted GeneChip analysis on carotid arteries with or without plaque formation. We found that molecular pathways underlying plaque formation in atherosclerosis were related to immune response, angiogenesis, cell proliferation, apoptosis and hypoxic microenvironments, suggesting that the pathophysiology of atherosclerosis is varied. In addition, we showed that three lncRNAs, GAS5, SNHG6 and Zfas1, were significantly increased in the plaque of atherosclerosis patients compared to normal people. A complex interaction of mRNA and lncRNA was identified in atherosclerosis. Our results provide a global transcriptomic network of atherosclerosis development in rats and possible targets that could lead to new clinical applications in the future.

  16. Macrophages in atherosclerosis: a dynamic balance

    PubMed Central

    Moore, Kathryn; Sheedy, Frederick; Fisher, Edward

    2015-01-01

    Preface Atherosclerosis is a chronic inflammatory disease arising from an imbalance in lipid metabolism and a maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Through the analysis of animal models of atherosclerosis progression and regression, there is a growing understanding that the balance of macrophages in the plaque is dynamic, with both macrophage numbers and an inflammatory phenotype influencing plaque fate. Here we summarize recently identified pro- and anti-inflammatory pathways linking lipid and inflammation biology with the retention of macrophages in plaques, as well as factors with the potential to promote their egress from these sites. PMID:23995626

  17. [The treatment of atherosclerosis--drug therapy].

    PubMed

    Nakamura, H; Takahashi, Y

    1993-08-01

    Drug treatment against atherosclerosis has been evaluated recently in many epidemiological studies. Lipid Research Clinics Group convincingly reported in a large scale design that anion exchange resin effectively reduced blood cholesterol level and concomitantly decreased the events of coronary heart disease. Subsequently, anion exchange resin with or without combined administration of niacin or statin was found to inhibit the progression of coronary atherosclerotic lesions in FATS, SCOR, CLAS and STARS. Fenofibrate also successfully reduced the coronary artery narrowings. Based on these intervention studies, several hypocholesterolemic agents are definitely effective in the treatment of coronary atherosclerosis.

  18. Adipokines, diabetes and atherosclerosis: an inflammatory association

    PubMed Central

    Freitas Lima, Leandro C.; Braga, Valdir de Andrade; do Socorro de França Silva, Maria; Cruz, Josiane de Campos; Sousa Santos, Sérgio H.; de Oliveira Monteiro, Matheus M.; Balarini, Camille de Moura

    2015-01-01

    Cardiovascular diseases can be considered the most important cause of death in diabetic population and diabetes can in turn increase the risk of cardiovascular events. Inflammation process is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis. Considering that adipose tissue is an important source of adipokines, which may present anti and proinflammatory effects, the aim of this review is to explore the role of the main adipokines in the pathophysiology of diabetes and atherosclerosis, highlighting the therapeutic options that could arise from the manipulation of these signaling pathways both in humans and in translational models. PMID:26578976

  19. Possible roles of platelet-derived microparticles in atherosclerosis.

    PubMed

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei

    2016-05-01

    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.

  20. Zebrafish Models for Dyslipidemia and Atherosclerosis Research

    PubMed Central

    Schlegel, Amnon

    2016-01-01

    Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques. PMID:28018294

  1. Role of gut microbiota in atherosclerosis.

    PubMed

    Jonsson, Annika Lindskog; Bäckhed, Fredrik

    2017-02-01

    Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.

  2. Photoacoustic tomography: applications for atherosclerosis imaging

    NASA Astrophysics Data System (ADS)

    Sangha, Gurneet S.; Goergen, Craig J.

    2016-08-01

    Atherosclerosis is a debilitating condition that increases a patient’s risk for intermittent claudication, limb amputation, myocardial infarction, and stroke, thereby causing approximately 50% of deaths in the western world. Current diagnostic imaging techniques, such as ultrasound, digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and optical imaging remain suboptimal for detecting development of early stage plaques. This is largely due to the lack of compositional information, penetration depth, and/or clinical efficiency of these traditional imaging techniques. Photoacoustic imaging has emerged as a promising modality that could address some of these limitations to improve the diagnosis and characterization of atherosclerosis-related diseases. Photoacoustic imaging uses near-infrared light to induce acoustic waves, which can be used to recreate compositional images of tissue. Recent developments in photoacoustic techniques show its potential in noninvasively characterizing atherosclerotic plaques deeper than traditional optical imaging approaches. In this review, we discuss the significance and development of atherosclerosis, current and novel clinical diagnostic methods, and recent works that highlight the potential of photoacoustic imaging for both experimental and clinical studies of atherosclerosis.

  3. Non-coding RNAs and atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos

    2014-01-01

    Non-coding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases (CVDs) including atherosclerosis. The best-characterized ncRNAs are the microRNAs (miRNAs), which are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MiRNAs control several aspects of atherosclerosis including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from miRNAs, recently ncRNAs, especially long ncRNAs (lncRNAs), have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as significance of other ncRNAs such as small nucleolar RNAs (snoRNAs) during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in CVDs. PMID:24623179

  4. Metabolomic analyses for atherosclerosis, diabetes, and obesity

    PubMed Central

    2013-01-01

    Insulin resistance associated with type 2 diabetes mellitus (T2DM), obesity, and atherosclerosis is a global health problem. A portfolio of abnormalities of metabolic and vascular homeostasis accompanies T2DM and obesity, which are believed to conspire to lead to accelerated atherosclerosis and premature death. The complexity of metabolic changes in the diseases presents challenges for a full understanding of the molecular pathways contributing to the development of these diseases. The recent advent of new technologies in this area termed “Metabolomics” may aid in comprehensive metabolic analysis of these diseases. Therefore, metabolomics has been extensively applied to the metabolites of T2DM, obesity, and atherosclerosis not only for the assessment of disease development and prognosis, but also for the biomarker discovery of disease diagnosis. Herein, we summarize the recent applications of metabolomics technology and the generated datasets in the metabolic profiling of these diseases, in particular, the applications of these technologies to these diseases at the cellular, animal models, and human disease levels. In addition, we also extensively discuss the mechanisms linking the metabolic profiling in insulin resistance, T2DM, obesity, and atherosclerosis, with a particular emphasis on potential roles of increased production of reactive oxygen species (ROS) and mitochondria dysfunctions. PMID:24252331

  5. Risk factors for atherosclerosis in young individuals.

    PubMed

    Misra, A

    2000-06-01

    Atherosclerosis starts in childhood, and is accelerated in some individuals. A cluster of clinical and biochemical factors constitute the risk profile for many of them, perhaps most important being metabolic insulin resistance syndrome. Insulin resistance and its components for children and adolescents, especially obesity and dyslipidemia, are generators of hypertension, glucose intolerance and complications of atherosclerosis in adulthood. Some individuals are genetically predisposed, particularly those with the family history of such disorders. For many subjects, there is 'tracking' of metabolic and lifestyle factors from early age to adulthood. Several new risk factors of atherosclerosis (e.g. level of lipoprotein (a), procoagulant state, hyperhomocysteinemia, low birth weight and adverse in-utero environment, and possibly inflammatory markers) are current and potentially future areas of research concerning children and young individuals. Definition of and research on new and hitherto not investigated factors and formulation of strategies to neutralize the known factors are of paramount importance for primary prevention of atherosclerosis. Simple and effective measures for prevention include increasing awareness of the diseases, maintenance of ideal body weight, regular physical exercise, avoidance of smoking and chewing of tobacco, eating a balanced diet, and early periodic monitoring of blood pressure and metabolic status. These measures, starting from childhood, should be applied to all and in particular to the susceptible offspring, predisposed individuals, and populations.

  6. ERK5 Activation in Macrophages Promotes Efferocytosis and Inhibits Atherosclerosis

    PubMed Central

    Heo, Kyung-Sun; Cushman, Hannah J.; Akaike, Masashi; Woo, Chang-Hoon; Wang, Xin; Qiu, Xing; Fujiwara, Keigi; Abe, Jun-ichi

    2015-01-01

    Background Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. Methods and Results When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity–dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor−/− mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. Conclusions Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases. PMID:25001623

  7. Does vasectomy increase the risk of atherosclerosis?

    PubMed

    Clarkson, T B; Alexander, N J

    1980-11-15

    The work that stimulated a series of experiments, conducted to determine the relationship between vasectomy and atherosclerosis in nonhuman primates, is summarized along with results in 2 nonhuman primate species. Attention is directed to the following: immunologic injury and atherosclerosis; immunologic responses to vasectomy; effects of atherogenic diet and vasectomy; and the effects of vasectomy alone. Using rabbits as the animal model, early workers found that inducing both immunologic serum sickness and hyperlipoproteinemia caused more extensive atherosclerosis than did hyperlipoproteinemia alone and that the resulting lesions more closely resembled those of human beings in both morphologic characteristics and anatomic location. The mechanism by which immunologic injury exacerbates atherosclerosis still remains unclear, but studies focusing on injury to the vascular endothelium as an important mechanism in atherogenesis are currently of considerable interest. Sperm agglutination, sperm immobilization, and immunofluorescence have all been used to demonstrate circulating free antisperm antibodies after vasectomy. Such antibodies occur in about 50% of vasectomized men and in vasectomized males of several animal species. It is unclear why circulating free antisperm antibodies have not been found in all vasectomized men and male animals. The development of an antibody response to sperm antigen in vasectomized rhesus monkeys has been shown to correlate with high sperm counts before vasectomy and similar observations have been made in studies of men. Results in nonhuman primate species showed that vasectomized monkeys developed more extensive and severe atherosclerosis than did nonvasectomized monkeys of the same age and dietary history. In 2 species of monkeys, the effect of vasectomy on atherogenesis seemed to be present whether the animals were hyperlipoproteinemic or had plasma lipid concentrations in the normal range. The presumed mechanism of atherosclerosis

  8. Detection and treatment of atherosclerosis using nanoparticles.

    PubMed

    Zhang, Jia; Zu, Yujiao; Dhanasekara, Chathurika S; Li, Jun; Wu, Dayong; Fan, Zhaoyang; Wang, Shu

    2017-01-01

    Atherosclerosis is the key pathogenesis of cardiovascular disease, which is a silent killer and a leading cause of death in the United States. Atherosclerosis starts with the adhesion of inflammatory monocytes on the activated endothelial cells in response to inflammatory stimuli. These monocytes can further migrate into the intimal layer of the blood vessel where they differentiate into macrophages, which take up oxidized low-density lipoproteins and release inflammatory factors to amplify the local inflammatory response. After accumulation of cholesterol, the lipid-laden macrophages are transformed into foam cells, the hallmark of the early stage of atherosclerosis. Foam cells can die from apoptosis or necrosis, and the intracellular lipid is deposed in the artery wall forming lesions. The angiogenesis for nurturing cells is enhanced during lesion development. Proteases released from macrophages, foam cells, and other cells degrade the fibrous cap of the lesion, resulting in rupture of the lesion and subsequent thrombus formation. Thrombi can block blood circulation, which represents a major cause of acute heart events and stroke. There are generally no symptoms in the early stages of atherosclerosis. Current detection techniques cannot easily, safely, and effectively detect the lesions in the early stages, nor can they characterize the lesion features such as the vulnerability. While the available therapeutic modalities cannot target specific molecules, cells, and processes in the lesions, nanoparticles appear to have a promising potential in improving atherosclerosis detection and treatment via targeting the intimal macrophages, foam cells, endothelial cells, angiogenesis, proteolysis, apoptosis, and thrombosis. Indeed, many nanoparticles have been developed in improving blood lipid profile and decreasing inflammatory response for enhancing therapeutic efficacy of drugs and decreasing their side effects. WIREs Nanomed Nanobiotechnol 2017, 9:e1412. doi: 10

  9. Comparative transcriptomic analysis of mice liver treated with different AMPK activators in a mice model of atherosclerosis.

    PubMed

    Ma, Ang; Wang, Dongmei; An, Yuanyuan; Fang, Wei; Zhu, Haibo

    2017-02-02

    Atherosclerosis is known to be the primary underlying factor responsible for the development of cardiovascular diseases. Suppression of AMP-activated protein kinase stimulates arterial deposition of excess lipids, resulting in the development of atherosclerotic lesions. In this study we successfully developed the disease model of mice and mimicked the therapeutic effect, for that we chose three different AMP-activated protein kinase activators (IMM-H007, A-769662 and Metformin) to identify which one has a superior effect in the atherosclerosis model. We combined the transcriptomes of four groups of mice liver including high-fat diet group and the experimental groups treated with different AMP-activated protein kinase activators. We analyzed the increased genes to candidate metabolic and disease pathways. Compared to the high-fat diet group, a total of 799 differentially expressed genes were identified in treatment groups. There were 291, 473, and 323 differentially expressed genes in H007, Metformin, and A-769662 group respectively. And seven statistically significant pathways were observed in both H007 and Metformin groups. We expect that gene expression profiling in the mice model would extend our understanding of atherosclerosis in the molecular level. This study provides a fundamental framework for future clinical research on human atherosclerosis and new clues for developing novel drugs for the treatment of atherosclerosis.

  10. Probucol via inhibition of NHE1 attenuates LPS-accelerated atherosclerosis and promotes plaque stability in vivo.

    PubMed

    Li, Jian-Fei; Chen, Song; Feng, Jun-Duo; Zhang, Ming-Yu; Liu, Xiao-Xia

    2014-04-01

    Activation of Na(+)/H(+) exchanger 1 (NHE1) by lipopolysaccharide (LPS) via Ca(2+)/calpain is responsible in vascular smooth muscle cell (VSMC) apoptosis and to the process of atherosclerosis. Probucol is a lipid-lowering drug which has an anti-atherosclerosis effect. The mechanism remains poorly understood. Here we hypothesized that probucol via inhibition of NHE1 in VSMCs attenuates LPS-accelerated atherosclerosis and promotes plaque stability. Our results revealed that treatment of VSMCs with LPS increased the NHE1 activity in a time-dependent manner, associated with the increased Ca(2+)i. Probucol inhibited the LPS-induced increase of NHE1 activity in a dose-dependent manner in VSMCs for 24-hour co-incubation, as well as the change of Ca(2+)i. In addition, LPS enhanced the calpain activity. Both probucol and calcium chelation of Ca(2+) abolished the LPS-induced increase of calpain activity. Treatment of VSMCs with LPS reduced the expression of Bcl-2 without altering the mRNA level. Probucol inhibited the LPS-reduced expression of Bcl-2 protein in VSMCs. Animal studies indicated administration of probucol suppressed LPS-accelerated apoptosis, atherosclerosis and plaque instability in Apoe(-/-) mice. In conclusion, probucol via inhibition of NHE1 attenuates atherosclerosis lesion growth and promotes plaque stability.

  11. [Invasive diagnostic imaging of coronary atherosclerosis].

    PubMed

    Gamou, Tadatsugu; Kawashiri, Masaaki; Tada, Hayato; Hayashi, Kenshi; Yamagishi, Masakazu

    2011-01-01

    Invasive diagnostic imaging technique of coronary atherosclerosis has rapidly developed. For example, intravascular ultrasound(IVUS) is recognized as an essential device for percutaneous coronary intervention to evaluate the vessel wall, vascular lumen and coronary plaque morphologies because of its accuracy for quantitative analysis capability. Recently new imaging modalities such as radio-frequency signal analysis, elastography and contrast harmonic echography have been developed for the evaluation of histological characteristics. Also, optical coherence tomography(OCT), which provides approximately ten-times higher-resolutional cross-section images of the coronary arterial wall in comparison with IVUS, became available in clinical setting. In this article, we review the latest progress of the invasive diagnostic imaging of coronary atherosclerosis.

  12. Gamma interferon: a central mediator in atherosclerosis.

    PubMed

    Leon, M L Alfaro; Zuckerman, S H

    2005-10-01

    Atherosclerosis is a chronic inflammatory disease of the vasculature with lesions developing in the arterial wall, frequently in the coronary and carotid arteries. The interaction between macrophages and lymphocytes within the atherosclerotic lesion microenvironment exemplifies a site where both innate and adaptive immunity contribute towards disease progression. As gamma interferon (IFN-gamma), the classic macrophage activating factor, has been localized to atherosclerotic lesions, this review will focus on its contribution to plaque pathology and will finally consider how current therapies, as exemplified by HMG CoA reductase inhibitors or statins, may impact this process beyond lipid lowering, in part by inhibiting IFN-gamma dependent processes. IFN-gamma sources within the atheroma as well as receptors, signaling pathways and its effects on macrophages as well as on vascular smooth muscle and endothelial cells will be considered. Therapeutic interventions targeting molecular events associated with IFN-gamma signaling offer novel approaches to the treatment of atherosclerosis.

  13. Innate immune system cells in atherosclerosis.

    PubMed

    Chávez-Sánchez, Luis; Espinosa-Luna, Jose E; Chávez-Rueda, Karina; Legorreta-Haquet, María V; Montoya-Díaz, Eduardo; Blanco-Favela, Francisco

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by innate and adaptive immune system involvement. A key component of atherosclerotic plaque inflammation is the persistence of different innate immune cell types including mast cells, neutrophils, natural killer cells, monocytes, macrophages and dendritic cells. Several endogenous signals such as oxidized low-density lipoproteins, and exogenous signals such as lipopolysaccharides, trigger the activation of these cells. In particular, these signals orchestrate the early and late inflammatory responses through the secretion of pro-inflammatory cytokines and contribute to plaque evolution through the formation of foam cells, among other events. In this review we discuss how innate immune system cells affect atherosclerosis pathogenesis.

  14. The role of mast cells in atherosclerosis.

    PubMed

    Wezel, A; Quax, P H A; Kuiper, J; Bot, I

    2015-01-01

    Rupture of an atherosclerotic plaque is the major underlying cause of adverse cardiovascular events such as myocardial infarction or stroke. Therapeutic interventions should therefore be directed towards inhibiting growth of atherosclerotic lesions as well as towards prevention of lesion destabilization. Interestingly, the presence of mast cells has been demonstrated in both murine and human plaques, and multiple interventional murine studies have pointed out a direct role for mast cells in early and late stages of atherosclerosis. Moreover, it has recently been described that activated lesional mast cells correlate with major cardiovascular events in patients suffering from cardiovascular disease. This review focuses on the effect of different mast cell derived mediators in atherogenesis and in late stage plaque destabilization. Also, possible ligands for mast cell activation in the context of atherosclerosis are discussed. Finally, we will elaborate on the predictive value of mast cells, together with therapeutic implications, in cardiovascular disease.

  15. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    PubMed

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  16. Heat-shock proteins and atherosclerosis.

    PubMed

    Ferreira, M Branco; Carlos, A G Palma

    2002-06-01

    In this review the authors focus on the possible role of heat-shock proteins (hsp) in the immune pathogenesis of the atherosclerotic process. The authors discuss evidence showing increased expression of these proteins in the vascular wall of stressed and atherosclerotic vessels and the immune mechanisms which could justify some of the inflammatory aspects that are now currently recognized in atherosclerosis, namely some of the possible hsp immune activating properties and also the possibility of hsp representing an innocent auto-antigen which could be the unwanted target of an immune response, initially directed against microbial heat-shock proteins. Epidemiological evidence linking atherosclerosis and cardiovascular diseases to soluble hsp levels as well as the intensity of anti-hsp immune response is also reviewed.

  17. Atherosclerosis risk factors in systemic lupus erythematosus.

    PubMed

    Agarwal, Surabhi; Elliott, Jennifer R; Manzi, Susan

    2009-08-01

    Cardiovascular disease (CVD) has emerged as a leading cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Growing evidence suggests that inflammation plays a key role in the pathogenesis of atherosclerosis from initial endothelial dysfunction to rupture of atheromatous plaques. The increased frequency of atherosclerosis in SLE is likely due to a complex interplay among traditional risk factors, disease-related factors such as medications and disease activity, and inflammatory and immunogenic factors. Identification of these novel risk factors will lead to a better understanding of CVD pathogenesis and may also provide targets for potential treatment strategies. When caring for SLE patients, clinicians should be aware of the increased CVD risk and treat the known modifiable risk factors in addition to controlling disease activity and inflammation.

  18. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications

    PubMed Central

    Kratz, Jeremy D.; Chaddha, Ashish; Bhattacharjee, Somnath

    2016-01-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. PMID:26809711

  19. Leukotriene signaling in atherosclerosis and ischemia

    PubMed Central

    Bäck, Magnus

    2009-01-01

    Introduction The inflammatory process of atherosclerosis is associated with several pathophysiological reactions within the vascular wall. The arachidonic acid released by phospholipase A2 serves as substrate for the production of a group of lipid mediators known as the leukotrienes, which induce pro-inflammatory signaling through activation of specific BLT and CysLT receptors. Discussion Leukotriene signaling has been implicated in early lipid retention and foam cell accumulation, as well as in the development of intimal hyperplasia and advanced atherosclerotic lesions. Furthermore, the association of leukotrienes with degradation of extracellular matrix has suggested a role in atherosclerotic plaque rupture. Finally, studies of either myocardial or cerebral ischemia and reperfusion indicate that leukotriene signaling in addition may be involved in the development of ischemic injury. Conclusion Both leukotriene synthesis inhibitors and leukotriene receptor antagonists have been suggested to induce beneficial effects at different stages of the atherosclerosis process. PMID:18949546

  20. Current status of carotid ultrasound in atherosclerosis

    PubMed Central

    2016-01-01

    Cardiovascular disease (CVD) primarily caused by atherosclerosis is a major cause of death and disability in developed countries. Sonographic carotid intima-media thickness (CIMT) is widely studied as a surrogate marker for detecting subclinical atherosclerosis for risk prediction and disease progress to guide medical intervention. However, there is no standardized CIMT measurement methodology in clinical studies resulting in inconsistent findings, thereby undermining the clinical value of CIMT. Increasing evidences show that CIMT alone has weak predictive value for CVD while CIMT including plaque presence consistently improves the predictive power. Quantification of plaque burden further enhances the predictive power beyond plaque presence. Sonographic carotid plaque characteristics have been found to be predictive of cerebral ischaemic events. With advances in ultrasound technology, enhanced assessment of carotid plaques is feasible to detect high-risk/vulnerable plaques, and provide risk assessment for ischemic stroke beyond measurement of luminal stenosis. PMID:27429912

  1. Clinical Characteristics of Young Type 2 Diabetes Patients with Atherosclerosis

    PubMed Central

    Yang, Wenjia; Cai, Xiaoling; Han, Xueyao; Ji, Linong

    2016-01-01

    Objective The prevalence of type 2 diabetes is increasing rapidly in the young population. The clinical characteristics and risk factors for young type 2 diabetes patients with atherosclerosis are not fully explicated. The aim of the present study was to investigate various clinical and biochemical characteristics of young type 2 diabetic patients with atherosclerosis. Design and Methods This was a cross-sectional study. The study involved 2199 hospitalized patients with type 2 diabetes. The young patients were classified into the atherosclerotic group or the non-atherosclerotic group, and we also enrolled an older group with peripheral atherosclerosis disease and an age of at least 45 years. Comparisons were made between the different groups to investigate the cardiovascular and metabolic risk profiles of young type 2 diabetes patients with atherosclerosis. We also used logistic regression models to assess the atherosclerosis risk factors for young patients. Results Compared to older type 2 diabetes patients with atherosclerosis, young patients with atherosclerosis had more deleterious profiles of weight and hyperlipidemia. Only age and diabetes duration were found to be significant independent risk factors for atherosclerosis in young patients. The ratio of the presence of atherosclerosis in the lower extremity arteries alone was significantly higher in young patients than older patients (26.4% vs. 14.0%, P = 0.000). Conclusion Young type 2 diabetes patients with atherosclerosis have more adverse cardiovascular risk profiles and inadequate control of these risk factors. Lower extremity examination is of high importance in young patients. PMID:27391819

  2. The role of dysfunctional HDL in atherosclerosis

    PubMed Central

    Navab, Mohamad; Reddy, Srinivasa T.; Van Lenten, Brian J.; Anantharamaiah, G. M.; Fogelman, Alan M.

    2009-01-01

    This review focuses on HDL function in modulating LDL oxidation and LDL-induced inflammation. Dysfunctional HDL has been identified in animal models and humans with chronic inflammatory diseases including atherosclerosis. The loss of antiinflammatory function correlated with a loss of function in reverse cholesterol transport. In animal models and perhaps in humans, dysfunctional HDL can be improved by apoA-I mimetic peptides that bind oxidized lipids with high affinity. PMID:18955731

  3. Genetic markers in atherosclerosis: a review.

    PubMed Central

    Morton, N E

    1976-01-01

    There is a growing number of lipoprotein markers recognized by immunological, electrophoretic, and other biochemical methods, and a beginning has been made on studying their modes of inheritance and linkage relations. Suggestive but inconclusive evidence of a relation between the cerumen polymorphism and arteriosclerosis has been published. Associations of the ABO blood groups with cardiovascular disease and serum lipid levels have been established, but the exact relation to lipoproteins and atherosclerosis remains to be determined. PMID:180292

  4. Computer assessment of atherosclerosis from angiographic images

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Brooks, S. H.; Crawford, D. W.; Cashin, W. L.

    1982-01-01

    A computer method for detection and quantification of atherosclerosis from angiograms has been developed and used to measure lesion change in human clinical trials. The technique involves tracking the vessel edges and measuring individual lesions as well as the overall irregularity of the arterial image. Application of the technique to conventional arterial-injection femoral and coronary angiograms is outlined and an experimental study to extend the technique to analysis of intravenous angiograms of the carotid and cornary arteries is described.

  5. EXPERIMENTAL ATHEROSCLEROSIS AND CARDIAC INFARCTS IN RATS

    PubMed Central

    Wilgram, George F.

    1959-01-01

    Marked obesity was induced in rats by feeding a high fat, egg yolk-rich diet. The obese rats were hyperlipemic and showed an increased incidence of lipomatous coronary lesions, but did not develop severe atheromatous lesions. Spontaneous vascular lesions of several kinds have been observed in aging rats. Among them, plaques containing a fibrin-like material seem to be conspicuous. However, these lesions differ from the experimentally induced changes, which were more fatty. Atherosclerosis, as it is defined in human pathology, has not been observed to develop spontaneously in rats. Experimental induction of marked hyperlipemia and hypercholesterolemia by feeding a high fat egg yolk-rich diet (supplemented with cholesterol, choleate, and thiouracil), and use of viosterol to cause vascular injury, led to severe atherosclerosis, coronary occlusion, and myocardial infarction. A consideration of all the findings reported here leads to renewed support of the concept that atherosclerosis has a combination of causes (Aschoff, Anitschkow, Page). Of all the etiological factors considered here, elevation of blood lipides and vascular injury are thought to be the most important ones. PMID:13620855

  6. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    PubMed Central

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis. Initially after treatment, we found higher levels of circulating regulatory T cells. In the long-term, overall numbers of effector T cells were reduced by MSC treatment. Moreover, MSC-treated mice displayed a significant 33% reduction in circulating monocytes and a 77% reduction of serum CCL2 levels. Most strikingly, we found a previously unappreciated effect on lipid metabolism. Serum cholesterol was reduced by 33%, due to reduced very low-density lipoprotein levels, likely a result of reduced de novo hepatic lipogenesis as determined by a reduced expression of Stearoyl-CoA desaturase-1 and lipoprotein lipase. MSCs significantly affected lesion development, which was reduced by 33% in the aortic root. These lesions contained 56% less macrophages and showed a 61% reduction in T cell numbers. We show here for the first time that MSC treatment affects not only inflammatory responses but also significantly reduces dyslipidaemia in mice. This makes MSCs a potent candidate for atherosclerosis therapies. PMID:26490642

  7. MicroRNA regulation of atherosclerosis

    PubMed Central

    Feinberg, Mark W.; Moore, Kathryn J.

    2016-01-01

    Atherosclerosis and its attendant clinical complications such as myocardial infarction, stroke, and peripheral artery disease, are the leading cause of morbidity and mortality in western societies. In response to biochemical and biomechanical stimuli, atherosclerotic lesion formation occurs from the participation of a range of cell types, inflammatory mediators, and shear stress. Over the past decade, microRNAs have emerged as evolutionarily conserved, non-coding small RNAs that serve as important regulators and “fine-tuners” of a range of pathophysiological cellular effects and molecular signaling pathways involved in atherosclerosis. Accumulating studies reveal the importance of miRNAs in regulating key signaling and lipid homeostasis pathways that alter the balance of atherosclerotic plaque progression and regression. In this review, we highlight current paradigms of microRNA-mediated effects in atherosclerosis progression and regression. We provide an update on the potential use of miRNAs diagnostically for detecting increasing severity of coronary disease and clinical events. Finally, we provide a perspective on therapeutic opportunities and challenges for miRNA delivery in the field. PMID:26892968

  8. Emerging role of IL-17 in atherosclerosis.

    PubMed

    Chen, Shuang; Crother, Timothy R; Arditi, Moshe

    2010-01-01

    The IL-23-IL-17 axis is emerging as a critical regulatory system that bridges the innate and adaptive arms of the immune system. Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in various stages of atherogenesis remains poorly understood and is only beginning to be elucidated. While IL-17 is a predominantly proinflammatory cytokine, it has a pleiotropic function and it has been implicated both as an instigator in the pathogenesis of several inflammatory disorders as well as being protective in certain inflammatory disease models. Therefore, it is not surprising that the current literature is conflicting on the role of IL-17 during atherosclerotic lesion development. Various approaches have been used by several groups to discern the involvement of IL-17 in atherosclerosis. While one study found that IL-17 is protective against atherosclerosis, several other recent studies have suggested that IL-17 plays a proatherogenic role. Thus, the function of IL-17 remains controversial and awaits more direct studies to address the issue. In this review, we will highlight all the latest studies involving IL-17 and atherosclerosis, including both clinical and experimental research.

  9. LDL biochemical modifications: a link between atherosclerosis and aging

    PubMed Central

    Alique, Matilde; Luna, Carlos; Carracedo, Julia; Ramírez, Rafael

    2015-01-01

    Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein (LDL) is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the arterial wall by reactive oxygen species (ROS). Evidence suggests that common risk factors for atherosclerosis raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular senescence are well-established markers for atherosclerosis. This review examines LDL modifications and discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and oxidative stress, and the link between aging and atherosclerosis. PMID:26637360

  10. Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions

    PubMed Central

    Hong, Jison; Maron, David J; Shirai, Tsuyoshi; Weyand, Cornelia M

    2015-01-01

    Atherosclerosis is a complex inflammatory disease involving aberrant immune and tissue healing responses, which begins with endothelial dysfunction and ends with plaque development, instability and rupture. The increased risk for coronary artery disease in patients with rheumatologic diseases highlights how aberrancy in the innate and adaptive immune system may be central to development of both disease states and that atherosclerosis may be on a spectrum of immune-mediated conditions. Recognition of the tight association between chronic inflammatory disease and complications of atherosclerosis will impact the understanding of underlying pathogenic mechanisms and change diagnostic and therapeutic approaches in patients with rheumatologic syndromes as well as patients with coronary artery disease. In this review, we provide a summary of the role of the immune system in atherosclerosis, discuss the proposed mechanisms of accelerated atherosclerosis seen in association with rheumatologic diseases, evaluate the effect of immunosuppression on atherosclerosis and provide updates on available risk assessment tools, biomarkers and imaging modalities. PMID:27042216

  11. The role of the vascular dendritic cell network in atherosclerosis

    PubMed Central

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based “atherosclerosis vaccine” therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field. PMID:23552284

  12. Fibroblast Growth Factor 21 Protects against Atherosclerosis via Fine-Tuning the Multiorgan Crosstalk

    PubMed Central

    Jin, Leigang; Lin, Zhuofeng

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on energy metabolism and insulin sensitivity. Besides its antiobese and antidiabetic activity, FGF21 also possesses the protective effects against atherosclerosis. Circulating levels of FGF21 are elevated in patients with atherosclerosis, macrovascular and microvascular complications of diabetes, possibly due to a compensatory upregulation. In apolipoprotein E-deficient mice, formation of atherosclerotic plaques is exacerbated by genetic depletion of FGF21, but is attenuated upon replenishment with recombinant FGF21. However, the blood vessel is not the direct target of FGF21, and the antiatherosclerotic activity of FGF21 is attributed to its actions in adipose tissues and liver. In adipocytes, FGF21 promotes secretion of adiponectin, which in turn acts directly on blood vessels to reduce endothelial dysfunction, inhibit proliferation of smooth muscle cells and block conversion of macrophages to foam cells. Furthermore, FGF21 suppresses cholesterol biosynthesis and attenuates hypercholesterolemia by inhibiting the transcription factor sterol regulatory element-binding protein-2 in hepatocytes. The effects of FGF21 on elevation of adiponectin and reduction of hypercholesterolemia are also observed in a phase-1b clinical trial in patients with obesity and diabetes. Therefore, FGF21 exerts its protection against atherosclerosis by fine-tuning the interorgan crosstalk between liver, brain, adipose tissue, and blood vessels. PMID:26912152

  13. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    PubMed Central

    Ma, Xiaojuan; Feng, Yingmei

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein receptors to control cholesterol homeostasis. Deficiency of these receptors abrogates cellular cholesterol efflux, resulting in HSPC proliferation and differentiation in hypercholesterolemic mice. Reduction of the cholesterol level in the lipid rafts by infusion of reconstituted high-density lipoprotein (HDL) or its major apolipoprotein, apoA-I, reverses hypercholesterolemia-induced HSPC expansion. Apart from impaired cholesterol metabolism, inhibition of reactive oxygen species production suppresses HSPC activation and leukocytosis. These data indicate that the mechanisms underlying the effects of hypercholesterolemia on HSPC proliferation and differentiation could be multifaceted. Furthermore, dyslipidemia also regulates HSPC-neighboring cells, resulting in HSPC mobilization. In the article, we review how hypercholesterolemia evokes HSPC activation and mobilization directly or via its modification of BM microenvironment. We hope this review will bring light to finding key molecules to control HSPC expansion, inflammation, and atherosclerosis for the treatment of CVD. PMID:27447612

  14. Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial adhesion and lesion macrophage accumulation

    PubMed Central

    Ding, Yinyuan; Huang, Linzhang; Xian, Xunde; Yuhanna, Ivan S.; Wasser, Catherine R.; Frotscher, Michael; Mineo, Chieko; Shaul, Philip W.; Herz, Joachim

    2016-01-01

    The multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to Apolipoprotein E receptor-2 (Apoer2) and very low-density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr−/−) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin. In both types of Reelin-deficient mice, atherosclerosis progression was markedly attenuated, and macrophage content and endothelial cell staining for vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1) were reduced at the sites of atherosclerotic lesions. Intravital microscopy revealed decreased leukocyte-endothelial adhesion in the Reelin-deficient mice. In cultured human endothelial cells, Reelin enhanced monocyte adhesion and increased ICAM-1, VCAM-1 and E-selectin expression by suppressing endothelial nitric oxide synthase (eNOS) activity and increasing the activity of NF-kB in an Apoer2-dependent manner. These findings suggest that circulating Reelin promotes atherosclerosis by increasing vascular inflammation, and that reducing or inhibiting circulating Reelin may present a novel approach for the prevention of cardiovascular disease. PMID:26980442

  15. Function of CD147 in atherosclerosis and atherothrombosis.

    PubMed

    Wang, Cuiping; Jin, Rong; Zhu, Xiaolei; Yan, Jinchuan; Li, Guohong

    2015-02-01

    CD147, a member of the immunoglobulin super family, is a well-known potent inducer of extracellular matrix metalloproteinases. Studies show that CD147 is upregulated in inflammatory diseases. Atherosclerosis is a chronic inflammatory disease of the artery wall. Further understanding of the functions of CD147 in atherosclerosis and atherothrombosis may provide a new strategy for preventing and treating cardiovascular disease. In this review, we discuss how CD147 contributes to atherosclerosis and atherothrombosis.

  16. Chemokine binding protein ‘M3’ limits atherosclerosis in apolipoprotein E-/- mice

    PubMed Central

    Ravindran, Dhanya; Ridiandries, Anisyah; Vanags, Laura Z.; Henriquez, Rodney; Cartland, Siân; Tan, Joanne T. M.; Bursill, Christina A.

    2017-01-01

    Chemokines are important in macrophage recruitment and the progression of atherosclerosis. The ‘M3’ chemokine binding protein inactivates key chemokines involved in atherosclerosis (e.g. CCL2, CCL5 and CX3CL1). We aimed to determine the effect of M3 on plaque development and composition. In vitro chemotaxis studies confirmed that M3 protein inhibited the activity of chemokines CCL2, CCL5 and CX3CL1 as primary human monocyte migration as well as CCR2-, CCR5- and CX3CR1-directed migration was attenuated by M3. In vivo, adenoviruses encoding M3 (AdM3) or green fluorescence protein (AdGFP; control) were infused systemically into apolipoprotein (apo)-E-/- mice. Two models of atherosclerosis development were used in which the rate of plaque progression was varied by diet including: (1) a ‘rapid promotion’ model (6-week high-fat-fed) and (2) a ‘slow progression’ model (12-week chow-fed). Plasma chemokine activity was suppressed in AdM3-infused mice as indicated by significantly less monocyte migration towards AdM3 mouse plasma ex vivo (29.56%, p = 0.014). In the ‘slow progression’ model AdM3 mice had reduced lesion area (45.3%, p = 0.035) and increased aortic smooth muscle cell α-actin expression (60.3%, p = 0.014). The reduction in lesion size could not be explained by changes in circulating inflammatory monocytes as they were higher in the AdM3 group. In the ‘rapid promotion’ model AdM3 mice had no changes in plaque size but reduced plaque macrophage content (46.8%, p = 0.006) and suppressed lipid deposition in thoracic aortas (66.9%, p<0.05). There was also a reduction in phosphorylated p65, the active subunit of NF-κb, in the aortas of AdM3 mice (37.3%, p<0.0001). M3 inhibited liver CCL2 concentrations in both models with no change in CCL5 or systemic chemokine levels. These findings show M3 causes varying effects on atherosclerosis progression and plaque composition depending on the rate of lesion progression. Overall, our studies support a

  17. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    SciTech Connect

    Nitta, Norihisa Seko, Ayumi; Sonoda, Akinaga; Ohta, Shinichi; Tanaka, Toyohiko; Takahashi, Masashi; Murata, Kiyoshi; Takemura, Shizuki; Sakamoto, Tsutomu; Tabata, Yasuhiko

    2008-03-15

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atherosclerotic light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery.

  18. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by ultra high performance liquid chromatography tandem mass spectrometry and its application to a bioequivalence study.

    PubMed

    Qiu, Xiangjun; Wang, Zhe; Wang, Bing; Zhan, Hui; Pan, Xiaofeng; Xu, Ren-ai

    2014-04-15

    An ultra high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) method was developed and validated to determine irbesartan (IRB) and hydrochlorothiazide (HCTZ) in human plasma simultaneously. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on an Acquity U-HPLC BEH C18 column and mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electro-spray ionization (ESI) source in the negative ion mode. The MRM transitions of m/z 427.2→206.9 and m/z 296.1→204.9 were used to quantify for IRB and HCTZ, respectively. The linearity of this method was found to be within the concentration range of 5-3000ng/mL for IRB, and 0.5-300ng/mL for HCTZ in human plasma, respectively. The lower limit of quantification (LLOQ) was 5ng/mL and 0.5ng/mL for IRB and HCTZ in human plasma, respectively. The relative standard deviations (RSD) of intra and inter precision were less than 12% for both IRB and HCTZ. The analysis time of per sample was 2.5min. The developed and validated method was successfully applied to a bioequivalence study of IRB (300mg) with HCTZ (12.5mg) tablet in Chinese healthy volunteers (N=20).

  19. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093

  20. Sex Steroids Block the Initiation of Atherosclerosis.

    PubMed

    Naftolin, Frederick; Mehr, Holly; Fadiel, Ahmed

    2016-12-01

    Atherosclerosis is the main cause of death in men and women. This so-called "hardening of the arteries" results from advanced atherogenesis, the accumulation and death of subendothelial fat-laden macrophages (vascular plaque). The macrophages are attracted as the result of signals from injured vessels recruiting and activating cells to quell the injury by inflammation. Among the recruited cells are circulating monocytes that may be captured by the formation of neural cell adhesion molecule (nCAM) tethers between the monocytes and vascular endothelium; the tethers are dependent on electrostatic binding between distal segments of apposed nCAM molecules. The capture of monocytes is followed by their entry into the subendothelial area as macrophages, many of which will remain and become the fat-laden foam cells in vascular plaque. Neural cell adhesion molecules are subject to sialylation that blocks their electrostatic binding. We showed that estradiol-induced nCAM sialylases are present in vascular endothelial cells and tested whether sex steroid pretreatment of human vascular endothelium could inhibit the capture of monocytes. Using in vitro techniques, pretreatment of human arterial endothelial cells with estradiol, testosterone, dehydroepiandrosterone and dihydrotestosterone all induced sialylation of endothelial cells and, in a dose-response manner, reduced the capture of monocytes. Steroid hormones are protective against atherogenesis and its sequellae. Sex steroid depletion is associated with atherosclerosis. Based on this knowledge plus our results using sex steroid pretreatment of endothelial cells, we propose that the blockade of the initial step in atherogenesis by sex steroid-induced nCAM sialylation may be crucial to hormonal prevention of atherosclerosis.

  1. Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice.

    PubMed

    Wang, Renqing; Wang, Yiqin; Mu, Nana; Lou, Xiaoying; Li, Weixuan; Chen, Yanming; Fan, Dong; Tan, Hongmei

    2017-04-10

    Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and atherosclerosis. ApoE(-/-) mice were fed regular chow, high-fat (HF) diet, or HF plus high methionine diet to induce HHcy. To assess the role of NLRP3 inflammasomes in HHcy-aggravated atherosclerosis, NLRP3 shRNA viral suspension was injected via tail vein to knock down the NLRP3 gene. Increased plasma levels of IL-1β and IL-18, aggravated macrophage infiltration into atherosclerotic lesions, and accelerated development of atherosclerosis were detected in HHcy mice as compared with control mice, and were associated with the activation of NLRP3 inflammasomes. Silencing the NLRP3 gene significantly suppressed NLRP3 inflammasome activation, reduced plasma levels of proinflammatory cytokines, attenuated macrophage infiltration and improved HHcy-induced atherosclerosis. We also examined the effect of homocysteine (Hcy) on NLRP3 inflammasome activation in THP-1-differentiated macrophages in the presence or absence of NLRP3 siRNA or the caspase-1 inhibitor Z-WEHD-FMK. We found that Hcy activated NLRP3 inflammasomes and promoted subsequent production of IL-1β and IL-18 in macrophages, which were blocked by NLRP3 gene silencing or Z-WEHD-FMK. As reactive oxygen species (ROS) may have a central role in NLRP3 inflammasome activation, we next investigated whether antioxidant N-acetyl-l-cysteine (NAC) prevented Hcy-induced NLRP3 inflammasome activation in macrophages. We found Hcy-induced NLRP3 inflammasome activation was abolished by NAC. Treatment with NAC in HHcy mice also suppressed NLRP3 inflammasome activation and improved HHcy-induced atherosclerosis. These data suggest that the

  2. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis.

  3. Statins and atherosclerosis: the role of epigenetics.

    PubMed

    Storino Farina, Marcelo; Rojano Rada, Jairo; Molina Garrido, Antony; Martínez, Xiomara; Pulgar, Alfredo; Paniagua, Roxanna; Garrido, Jorge

    2015-11-26

    Atherosclerosis is an immune-inflammatory disease, in which pathophysiological mechanisms include inflammation patterns and epigenetic changes that alter gene expression of several inflammatory and non-inflammatory mediators. Epigenetics is offering explanations on how diet, environmental factors and lifestyle can influence the onset and progression of the disease, and how these alterations can be transmitted to the following generations without any changes in DNA sequences. Statins, through their pleiotropic effects, provide a useful tool in controlling the progression of plaques and their subsequent impact.

  4. Imaging and Nanomedicine in Inflammatory Atherosclerosis

    PubMed Central

    Mulder, Willem J. M.; Jaffer, Farouc A.; Fayad, Zahi A.; Nahrendorf, Matthias

    2014-01-01

    Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications. PMID:24898749

  5. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  6. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Qin, Wei; Zhang, Longyin; Wu, Xianxian; Du, Ning; Hu, Yingying; Li, Xiaoguang; Shen, Nannan; Xiao, Dan; Zhang, Haiying; Li, Zhange; Zhang, Yue; Yang, Huan; Gao, Feng; Du, Zhimin; Xu, Chaoqian; Yang, Baofeng

    2015-03-01

    Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE-/- mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death.

  7. Bioequivalence studies for 2 different strengths of irbesartan/hydrochlorothiazide combination in healthy volunteers: 300/25 mg and 300/12.5 mg film-coated tablets.

    PubMed

    Cánovas, M; Cabré, F; Polonio, F

    2014-05-01

    Two bioequivalence studies of irbesartan (CAS 138402-11-6) and hydrochlorothiazide (CAS 58-93-5) combination at 300/12.5 mg and 300/25 mg strengths were carried out in order to assess the bioequivalence of these film-coated tablet formulations in comparison with the marketed reference formulations.Both studies were performed with 30 healthy volunteers according to an open label, randomized, 2-period, 2-sequence, crossover, single dose and fasting conditions design. In each study, test and reference formulations were administered in 2 treatment days, separated by a washout period of 7 days. Blood samples were drawn up to 72 h following drug administration in case of irbesartan and up to 24 h in case of hydrochlorothiazide. Plasma concentrations of both analytes were obtained by a validated HPLC method using MS/MS detection. Log-transformed AUC0-t and Cmax values were tested for bioequivalence based on the ratios of the geometric LSmeans (test/reference).For both studies, the 90% confidence intervals of the geometric LSmean values for the test/reference ratios for AUC0-t [(irbesartan: 300/12.5 mgstrength: 95.33-111.74%. 300/25 mg strength: 91.27-103.93%) (hydrochlorothiazide: 300/12.5 mg strength: 99.63-107.50%. 300/25 mg strength: 95.72-102.24%)] and Cmax [(irbesartan: 300/12.5 mg strength: 98.73-115.03%. 300/25 mg strength: 97.27-112.12%) (hydrochlorothiazide: 300/12.5 mg strength: 97.34-112.06%. 300/25 mg strength: 93.29-106.38%)] were within the bio-equivalence acceptance range of 80-125%.According to the European Guideline on the Investigation of Bioequivalence it may be therefore concluded that both test formulations are bioequivalent to the corresponding reference formulations. Overall, it was judged that both studies were conducted with a good tolerance of the subjects to study drugs.

  8. Modulation of atherosclerosis by N-3 polyunsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reviewed literature regarding the effects of n-3 polyunsaturated fatty acids (PUFA) on risk factors for atherosclerosis in human subjects. Dietary intervention with long chain n-3 PUFA decreased some risk factor (s) for atherosclerosis in most human studies reviewed. These benefits resulted ...

  9. Atherosclerosis: a chronic inflammatory disease mediated by mast cells.

    PubMed

    Conti, Pio; Shaik-Dasthagirisaeb, Yazdami

    2015-01-01

    Inflammation is a process that plays an important role in the initiation and progression of atherosclerosis and immune disease, involving multiple cell types, including macrophages, T-lymphocytes, endothelial cells, smooth muscle cells and mast cells. The fundamental damage of atherosclerosis is the atheromatous or fibro-fatty plaque which is a lesion that causes several diseases. In atherosclerosis the innate immune response, which involves macrophages, is initiated by the arterial endothelial cells which respond to modified lipoproteins and lead to Th1 cell subset activation and generation of inflammatory cytokines and chemoattractant chemokines. Other immune cells, such as CD4+ T inflammatory cells, which play a critical role in the development and progression of atherosclerosis, and regulatory T cells [Treg], which have a protective effect on the development of atherosclerosis are involved. Considerable evidence indicates that mast cells and their products play a key role in inflammation and atherosclerosis. Activated mast cells can have detrimental effects, provoking matrix degradation, apoptosis, and enhancement as well as recruitment of inflammatory cells, which actively contributes to atherosclerosis and plaque formation. Here we discuss the relationship between atherosclerosis, inflammation and mast cells.

  10. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.

  11. Mechanisms that regulate macrophage burden in atherosclerosis

    PubMed Central

    Randolph, Gwendalyn J.

    2014-01-01

    Mononuclear phagocytes (MPs) relevant to atherosclerosis include monocytes, macrophages, and dendritic cells (DCs). A decade ago, studies on macrophage behavior in atherosclerotic lesions were often limited to quantification of total macrophage area in cross-sections of plaques. While technological advances are still needed to examine plaque MP populations in an increasingly dynamic and informative manner, innovative methods to interrogate the biology of MPs in atherosclerotic plaques developed in the last few years point to a number of mechanisms that regulate the accumulation and function of MPs within plaques. Here, I review the evolution of atherosclerotic plaques with respect to changes in the MP compartment from the initiation of plaque to its progression and regression, discussing the roles that recruitment, proliferation, and retention of MPs play at these different disease stages. Additional work in the future will be needed to better distinguish macrophages and DCs in plaque and to address some basic unknowns in the field, including just how cholesterol drives accumulation of macrophages in lesions to build plaques in the first place and how macrophages as major effectors of innate immunity work together with components of the adaptive immune response to drive atherosclerosis. Answers to these questions are sought with the goal in mind of reversing disease where it exists and preventing its development where it does not. PMID:24855200

  12. Quantum dot mediated imaging of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2009-04-01

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  13. Mammographically Detectable Breast Arterial Calcification and Atherosclerosis

    PubMed Central

    Shah, Neeraj; Chainani, Vinod; Delafontaine, Patrice; Abdo, Abir; Lafferty, James; Rafeh, Nidal Abi

    2014-01-01

    Breast arterial calcification (BAC), observed as an incidental finding on screening mammograms, represents degenerative calcific changes occurring in the mammary arteries, with increasing age. The aim of this review is to discuss relevant literature examining relation between BAC and atherosclerosis. After a thorough literature search, in OVID and PubMed, 199 studies were identified, of which 25 were relevant to our review. Data were abstracted from each study and statistical analysis was done, including calculation of odds ratios and construction of forest plots. A total of 35,542 patients were enrolled across 25 studies looking at an association between BAC and coronary artery disease, cardiovascular disease, stroke, cerebral artery disease, carotid and peripheral artery diseases, and coronary artery calcification. A majority of the studies showed a statistically significant relation between BAC and presence of coronary artery disease cardiovascular disease and associated mortality. Sensitivity of BAC in predicting cardiovascular events was low, but specificity was high. BAC was predictive of incident and prevalent stroke but not mortality of stroke. Similarly, BAC was predictive of cerebral, carotid, and peripheral artery diseases. The role of BAC as a surrogate marker of coronary and systemic atherosclerosis is currently uncertain. Its role may be further elucidated by more large-scale prospective studies and clinical experience. PMID:23584424

  14. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  15. Endothelial dysfunction: the early predictor of atherosclerosis.

    PubMed

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans

    2012-05-01

    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  16. Cardiac CT: atherosclerosis to acute coronary syndrome

    PubMed Central

    Munnur, Ravi Kiran; Cameron, James D.; Ko, Brian S.; Meredith, Ian T.

    2014-01-01

    Coronary computed tomographic angiography (CCTA) is a robust non-invasive method to assess coronary artery disease (CAD). Qualitative and quantitative assessment of atherosclerotic coronary stenosis with CCTA has been favourably compared with invasive coronary angiography (ICA) and intravascular ultrasound (IVUS). Importantly, it allows the study of preclinical stages of atherosclerotic disease, may help improve risk stratification and monitor the progressive course of the disease. The diagnostic accuracy of CCTA in the assessment of coronary artery bypass grafts (CABG) is excellent and the constantly improving technology is making the evaluation of stents feasible. Novel techniques are being developed to assess the functional significance of coronary stenosis. The excellent negative predictive value of CCTA in ruling out disease enables early and safe discharge of patients with suspected acute coronary syndromes (ACS) in the Emergency Department (ED). In addition, CCTA is useful in predicting clinical outcomes based on the extent of coronary atherosclerosis and also based on individual plaque characteristics such as low attenuation plaque (LAP), positive remodelling and spotty calcification. In this article, we review the role of CCTA in the detection of coronary atherosclerosis in native vessels, stented vessels, calcified arteries and grafts; the assessment of plaque progression, evaluation of chest pain in the ED, assessment of functional significance of stenosis and the prognostic significance of CCTA. PMID:25610801

  17. [Infection and coronary atherosclerosis: the role Chlamydia pneumonia].

    PubMed

    Paz, M; de Otero, J; Codinach, P; Ferrer-Ruscalleda, F; Gayà, M; Ibernón, M

    1998-11-01

    The role of inflammatory reactions in the pathogenesis of atherosclerosis is widely accepted. Recently, an increasing body of evidence has linked infections to atherosclerosis. It is hypothesized that infections could interact with other risk factors of vascular disease, enhancing the endothelial damage and the production of atherosclerotic plaques. Several different infectious agents have been related to the atherosclerosis genesis: mainly herpesvirus, Helicobacter pylori and Chlamydia pneumoniae. Several lines of evidence strongly link C. pneumoniae to atherosclerosis. Consequently, several studies evaluating the effectiveness of antibiotic treatment in the reduction of cardiac ischemic events in patients with C. pneumoniae seropositivity have been performed. These studies support a causative role for C. pneumoniae. This article reviews the recent evidence linking infections to atherosclerosis, with emphasis on the role of C. pneumoniae on the atherosclerotic plaque.

  18. Abdominal aortic aneurysm-an independent disease to atherosclerosis?

    PubMed

    Toghill, Bradley J; Saratzis, Athanasios; Bown, Matthew J

    Atherosclerosis and abdominal aortic aneurysms (AAAs) are multifactorial and polygenic diseases with known environmental and genetic risk factors that contribute toward disease development. Atherosclerosis represents an important independent risk factor for AAA, as people with AAA often have atherosclerosis. Studies have shown that comorbidity is usually between ~25% and 55%, but it is still not fully known whether this association is causal or a result of common shared risk profiles. Most recent epidemiological, clinical, and biological evidence suggests that the two pathologies are more distinct than traditionally thought. For instance diabetes mellitus, hypercholesterolemia, and obesity are high risk for atherosclerosis development but are not as pronounced in AAA, whereas smoking, gender, and ethnicity are particularly high risk for AAA but less so for atherosclerosis. In addition, genetic and epigenetic studies have identified independent risk loci involved in AAA susceptibility that are not associated with other cardiovascular diseases, and research on important common cardiovascular biomarkers has illustrated discrepancies in those with AAA.

  19. [Progress in mesenchymal stem cells for treatment of atherosclerosis].

    PubMed

    Liu, Jiajia; Zhang, Yiting; Peng, Hang; Liu, Pengxia

    2013-11-01

    Atherosclerosis is an inflammatory disease. However, its etiology has not been yet fully elucidated. Endothelial dysfunction is currently considered to be one of the most important steps in the initiation of atherosclerosis. In addition, vascular smooth muscle cells, which are the main cellular component of de novo and in-stent restenosis lesions, play an important role in the development of atherosclerosis. Promoting the regeneration of endothelial cells and inhibiting the proliferation of smooth muscle cells are pivotal for the prevention and treatment of vascular injury. Recently, some studies have demonstrated that mesenchymal stem cells can home to the site of injury and differentiate into endothelial cells to repair damaged blood vessels. On the contrary, other researches have revealed that mesenchymal stem cells can differentiate into vascular smooth muscle cells that are involved in the development of restenosis. Here, we review the fundamental researches of mesenchymal stem cell therapy for atherosclerosis and address the perspectives of mesenchymal stem cells in atherosclerosis treatment.

  20. Tissue factor-driven thrombin generation and inflammation in atherosclerosis.

    PubMed

    ten Cate, Hugo

    2012-05-01

    The transmembrane receptor tissue factor is a prominent protein expressed at macrophages and smooth muscle cells within human atherosclerotic lesions. While many coagulation proteins are detectable in atherosclerosis, a locally active thrombin and fibrin generating molecular machinery may be instrumental in manipulating cellular functions involved in atherogenesis. These include inflammation, angiogenesis and cell proliferation. Indeed, many experimental studies in mice show a correlation between hypercoagulability and increased atherosclerosis. In mice, the amount of atherosclerosis and/or the plaque phenotype, appear to be modifiable by specific anticoagulant interventions. While attempts to vary tissue factor level in the vasculature does not directly reduce plaque burden, the overexpression of tissue factor pathway inhibitor attenuates thrombogenicity and neo intima formation in mice. Moreover, inhibition of factor Xa or thrombin with novel selective agents, including rivaroxaban and dabigatran, inhibits inflammation associated with atherosclerosis in apoE(-/-) mice. The potential to modify a complex chronic disease like atherosclerosis with novel selective anticoagulants merits further clinical study.

  1. Accelerated atherosclerosis in SLE: mechanisms and prevention approaches

    PubMed Central

    Wilhelm, Ashley J.; Major, Amy S.

    2014-01-01

    Summary Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease characterized by increased serum autoantibody levels and tissue damage. With improved diagnosis and more effective treatment of the resultant kidney disease, accelerated atherosclerosis has become a major cause of morbidity in patients suffering from SLE. Although the exact mechanisms for SLE-accelerated atherosclerosis are unknown, multiple factors have been established as potential players in this process. Among these potential players are dysregulation of T and B cell populations and increased circulating levels of inflammatory cytokines. In addition, SLE patients exhibit a proatherogenic lipid profile characterized by low HDL and high LDL and triglycerides. Recent therapeutic approaches have focused on targeting B cells, the producers of autoantibodies, but most studies do not consider the effects of these treatments on atherosclerosis. Evidence suggests that T cells play a major role in SLE-accelerated atherosclerosis. Therefore, therapies targeted at T cells may also prove invaluable in treating SLE and atherosclerosis. PMID:24672580

  2. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase.

    PubMed

    Xiao, Lin; Liu, Liang; Guo, Xiaoping; Zhang, Shanshan; Wang, Jing; Zhou, Feng; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2017-03-27

    Reactive oxygen species (ROS) have emerged as important molecules in cardiovascular function. Nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in phagocytic and vascular cells. Several lines of evidence indicate that quercetin contributes to protecting against atherosclerosis. Herein, we investigated the effect of quercetin on alleviating atherosclerosis by regulating NADPH oxidase subunits expression in vivo, and explored the mechanism of quercetin suppressing the ROS overproduction stimulated by ox-LDL in mouse peritoneal macrophages (MPMs). Model ApoE KO mice were fed with either a normal chow diet or a high fat diet (HFD) supplemented with or without dosed quercetin for 24 weeks. Quercetin significantly reduced the atherosclerotic plaque area, alleviated the systemic oxidative stress, and suppressed aortic p47phox, p67phox expressions but partially reversed the NOX4 expression as compared to those in the HFD group. In vitro, quercetin effectively inhibited the ox-LDL induced ROS formation in MPMs, and blocked the vital step in activation of NADPH oxidase - membrane translocation of p47phox. Our findings suggest that regular consumption of dietary quercetin plays a role in preventing atherosclerosis giving its evident regulatory effect on subunits of NADPH oxidase.

  3. Mycophenolate mofetil (MMF) does not slow the progression of subclinical atherosclerosis in SLE over 2 years.

    PubMed

    Kiani, Adnan N; Magder, Laurence S; Petri, Michelle

    2012-09-01

    Accelerated atherosclerosis is a major cause of mortality in SLE. Mycophenolate mofetil (MMF) has been shown to suppress growth factor-induced proliferation of vascular smooth muscle and endothelial cells in animal models. We hypothesized that MMF might modify the inflammatory component of atherosclerosis in SLE. We examined the effect of MMF on atherosclerosis as measured by changes in carotid intima-media thickness (IMT) or coronary artery calcium (CAC) over 2 years. CAC and carotid IMT were measured at baseline and 2 years later in a cohort of 187 patients with SLE. The cohort was 91% women, 59% Caucasian, and 35% African-American, with a mean age of 45 ± 11 years. Of these, 12.5% (n = 25) received MMF during follow-up. The daily dose ranged from 500 to 3,000 mg/day, and duration ranged from 84 days to the entire 2 years. We divided MMF users into three groups: low exposure (<1,500 mg average daily dose), high exposure (≥1,500 average daily dose), and any exposure of MMF (<1,500 or ≥1,500 average daily dose) for 2 years. The mean CAC increased in all four groups: no MMF: 1.17-1.28, low MMF: 1.02-1.13, high MMF: 1.44-1.61, and any MMF: 1.21-1.34 log-Agatston units. Compared to no MMF, there was no statistically different change between the three groups (p = 0.99, 0.87, and 0.91). Similarly, mean carotid IMT increased in all four groups: no MMF: 0.58-0.66, low MMF: 0.55-0.60, high MMF: 0.56-0.71, and any MMF: 0.56-0.66. We then adjusted for statin use, lupus nephritis, body mass index, systolic blood pressure, cholesterol, and age during the 2-year follow-up. The association between MMF exposure and change in CAC or carotid IMT was not statistically significant (p = 0.63 for CAC, and p = 0.085 for carotid IMT). There was no evidence that MMF slowed or decreased the progression of atherosclerosis as measured by carotid IMT or CAC. Because the number of patients taking MMF was only twenty-five, larger studies for longer time periods are needed to explore any

  4. [Nanotechnology, a new paradigm in atherosclerosis treatment].

    PubMed

    Martín Giménez, Virna M; Ruiz-Roso, María Belén; Camargo, Alejandra Beatriz; Kassuha, Diego; Manucha, Walter

    2016-11-30

    Atherosclerosis, a known and prevalent disease, causes progressive deterioration of affected vessels, inducing a blood flow reduction with different complications, and its symptoms usually manifest in advanced stages of the disease. Therefore, the classic therapeutic alternatives are insufficient because the damages are many times irreversible. For this reason, there is a need to implement intelligent forms of drug administration and develop new therapeutic targets that reduce the progression of atherosclerotic lesion. The implementation of new tools for prevention, diagnosis and treatment of this cardiovascular disease is of special interest, focusing our attention on achieving a more effective control of the immune system. Finally, this review highlights the latest knowledge about nanotechnology as a powerful, modern, and promising therapeutic alternative applied to atherosclerotic disease, as well as warning of the potential complications with their use.

  5. Methylglyoxal and glyoxalase I in atherosclerosis.

    PubMed

    Hanssen, Nordin M J; Stehouwer, Coen D A; Schalkwijk, Casper G

    2014-04-01

    Cardiovascular disease, caused predominantly by atherosclerotic plaque rupture, remains one of the leading causes of death. However, the mechanism of plaque rupture remains largely unknown. Recent studies have linked high metabolic activity in inflamed atherosclerotic plaques to the development of plaque rupture. AGEs (advanced glycation end-products) are known to be formed as a result of high metabolic activity and are higher in rupture-prone than stable plaques. Furthermore, AGEs seem to be more than mere markers of metabolic activity, as recent studies have elucidated that AGEs and their major precursor, MG (methylglyoxal), may have an important role in the progression of atherosclerosis and plaque rupture. MG can be detoxified by Glo1 (glyoxalase I), thereby preventing the accumulation of MG and MG-derived AGEs. In the present review, data concerning MG, Glo1 and AGEs in the context of plaque phenotype are discussed.

  6. [Control of atherosclerosis in diabetes mellitus].

    PubMed

    Quiroz Martínez, Alejandro

    2003-01-01

    Diabetic patients develop atherosclerosis in an accelerated way as compared to non-diabetic patients. This is due to a generalized metabolic disorder that includes hyperglycemia, insulin resistance, dyslipidosis, loss of the endothelial regulatory function, a tendency for vasoconstriction, and a prothrombotic state. The main complications are coronary artery disease, peripheral vascular disease, and cerebrovascular disease. In all these manifestations and at all severity levels, diabetic patients, in particular post-menopausal women, have the worst prognosis with any type of treatment as compared to non-diabetic patients. These findings lead to consider the sole presentation of diabetes mellitus to be equivalent to cardiovascular risk. The largest reduction in risk is achieved by controlling hypertension, followed by a control of glycemia, reduction of glycosylated hemoglobulin and control of dyslipidosis. Benefits in the cardiovascular realm have not extended to other vascular territories, such as the lower extremities or the brain.

  7. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    PubMed

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  8. Role of autophagy in advanced atherosclerosis (Review).

    PubMed

    Zhu, Yu-Ning; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Li, Wei; Wang, Yu-Fei; Jiang, Zhi-Sheng; Qu, Shun-Lin

    2017-03-28

    Atherosclerosis (AS) remains the leading cause for global cardiovascular disease morbidity and mortality, and a major cause of cardiopathy, myocardial infarction and peripheral vascular diseases. Macrophages serve a critical role in atherosclerotic plaque stabilization and rupture, and the selective removal of macrophages may be beneficial in improving plaque stability. Autophagy is a process of self‑feeding, during which cytoplasmic proteins or organelles are packaged into vesicles and fused with the lysosome to form an autophagosome. The newly formed autophagosome can degrade internalized proteins, and this process may be used to serve the metabolic and self‑renewal requirements of the cell. Autophagy serves an important role in maintaining cell homeostasis and promoting cell survival, and therefore an imbalance in autophagy is closely associated with multiple diseases.

  9. Homocysteine and the pathogenesis of atherosclerosis.

    PubMed

    McCully, Kilmer S

    2015-03-01

    The homocysteine theory of arteriosclerosis was discovered by study of arteriosclerotic plaques occurring in homocystinuria, a disease caused by deficiencies of cystathionine synthase, methionine synthase or methylenetetrahydrofolate reductase. According to the homocysteine theory, metabolic and nutritional abnormalities leading to elevation of plasma homocysteine cause atherosclerosis in the general population without these rare enzymatic abnormalities. Through studies of metabolism of homocysteine thiolactone, the anhydride of homocysteine, in cell cultures from homocystinuric children, the pathway for synthesis of sulfate was found to be dependent upon thioretinamide, the amide formed from retinoic acid and homocysteine thiolactone. Two molecules of thioretinamide form the complex thioretinaco with cobalamin, and oxidative phosphorylation is catalyzed by reduction of oxygen, which is bound to thioretinaco ozonide, by electrons from electron transport particles. Atherogenesis is attributed to formation of aggregates of homocysteinylated lipoproteins with microorganisms, which obstruct the vasa vasorum during formation of arterial vulnerable plaques.

  10. Catalpol ameliorates diabetic atherosclerosis in diabetic rabbits

    PubMed Central

    Liu, Jiang-Yue; Zheng, Chen-Zhao; Hao, Xin-Ping; Zhang, Dai-Juan; Mao, An-Wei; Yuan, Ping

    2016-01-01

    Catalpol, isolated from the roots of Rehmanniaglutinosa, Chinese foxglove, is an iridoid glycoside with antioxidant, anti-inflammatory and anti-hyperglycemic agent. The present study was to investigate the effects of catalpol on diabetic atherosclerosis in alloxan-induced diabetic rabbits. Diabetes was induced in rabbits by a hyperlipidemic diet and intravenous injection of alloxan (100 mg/kg). Rabbits were treated for 12 weeks. The fasting blood glucose, insulin, homeostasis model of insulin resistance, total cholesterol and triglyceride were measured. The thoracic aorta was excised for histology. The plasma and vascular changes including some markers of oxidative stress, inflammatory cytokines and fibrosis factors were examined. Plasma levels of fasting blood glucose, insulin and homeostasis model of insulin resistance were significantly decreased in catalpol group. Catalpol treatment ameliorated diabetic atherosclerosis in diabetic rabbits as demonstrated by significantly inhibited neointimal hyperplasia and macrophages recruitment. Catalpol treatment also enhanced the activities of superoxide dismutase, glutathione peroxidase, and increased the plasma levels of total antioxidant status, meanwhile reduced the levels of malondialdehyde, protein carbonyl groups and advanced glycation end product. Furthermore, catalpol also reduced circulating levels of tumor necrosis factor-α, monocyte chemotactic protein-1 and vascular cell adhesion molecule-1. Catalpol also decreased transforming growth factor-β1 and collagen IV mRNA and protein expressions in the vessels. Catalpol exerts an ameliorative effect on atherosclerotic lesion in alloxan-induced diabetic rabbits. The possible mechanisms may be related to inhibition of oxidative stress inflammatory response and anti-fibrosis and reduced aggregation of extracellular matrix. PMID:27830011

  11. Atherosclerosis risk factors in pigeon squabs

    SciTech Connect

    Klumpp, S.A.; Clarkson, T.B.

    1986-03-01

    The basis for atherosclerosis susceptibility of White Carneau (WC) and resistance of Show Racer (SR) pigeons is not known. Body weight (BW), total serum cholesterol (TSC), growth of the aorta and replication of endothelial cells of the distal thoracic aorta (lesion prone site) of 1, 2 and 4 week old squabs were studied. Aortic measurements were determined morphometrically, and endothelial cell replication was quantitated by 24-hour /sup 3/H-thymidine labeling and whole-mount SEM autoradiography. From hatching to 4 weeks, BW increased more in WC than SR (22 to 473 gm in WC vs 19 to 416 gm in SR, p < 0.05) in WC than SR (197, 243 and 338 mg/dl in WC and 125, 194 and 282 mg/dl in SR). Surface area of the aorta between 1 and 4 weeks increased by 63% (109, 154 and 178 mm/sup 2/) in WC and 44% (101, 140 and 146 mm/sup 2/) in SR. Aortic surface area was significantly larger (0 = 0.002) in the 4 week WC than 4 week SR. /sup 3/H-thymidine labeled endothelial cells at 1, 2 and 4 weeks were 783, 387 and 53 in WC and 674, 283 and 27 cells/mm/sup 2/ in SR. Endothelial replication in the 4 week WC was twice that of the SR and significantly different between breeds at 2 and 4 weeks (p = 0.04; p = 0.02, respectively). Higher TSC, endothelial cell replication and larger aortic surface area in the WC may be contributing factors to increased atherosclerosis susceptibility.

  12. Antihypercholesterolemic and antioxidant efficacies of zerumbone on the formation, development, and establishment of atherosclerosis in cholesterol-fed rabbits

    PubMed Central

    Hemn, Hassan Othman; Noordin, Muhammad Mustapha; Rahman, Heshu Sulaiman; Hazilawati, Hamza; Zuki, Abubakr; Chartrand, Max Stanley

    2015-01-01

    Owing to the high incidence of cholesterol-induced cardiovascular disease, particularly atherosclerosis, the current study was designed to investigate the preventive and therapeutic efficacies of dietary zerumbone (ZER) supplementation on the formation and development of atherosclerosis in rabbits fed with a high cholesterol diet. A total of 72 New Zealand white rabbits were divided randomly on two experimental studies carried out 8 weeks apart. The first experiment was designed to investigate the prophylactic efficacy of ZER in preventing early developed atheromatous lesion. The second experimental trial was aimed at investigating the therapeutic effect of ZER in reducing the atherosclerotic lesion progression and establishment. Sudanophilia, histopathological, and ultrastructural changes showed pronounced reduction in the plaque size in ZER-medicated aortas. On the other hand, dietary supplementation of ZER for almost 10 weeks as a prophylactic measure indicated substantially decreasing lipid profile values, and similarly, plaque size in comparison with high-cholesterol non-supplemented rabbits. Furthermore, the results of oxidative stress and antioxidant biomarker evaluation indicated that ZER is a potent antioxidant in suppressing the generation of free radicals in terms of atherosclerosis prevention and treatment. ZER significantly reduced the value of malondialdehyde and augmented the value of superoxide dismutase. In conclusion, our data indicated that dietary supplementation of ZER at doses of 8, 16, and 20 mg/kg alone as a prophylactic measure, and as a supplementary treatment with simvastatin, significantly reduced early plague formation, development, and establishment via significant reduction in serum lipid profile, together with suppression of oxidative damage, and therefore alleviated atherosclerosis lesions. PMID:26347047

  13. The Roles of CD137 Signaling in Atherosclerosis

    PubMed Central

    Jung, In-Hyuk

    2016-01-01

    The tumor necrosis factor receptor superfamily (TNFRSF), which includes CD40, LIGHT, and OX40, plays important roles in the initiation and progression of cardiovascular diseases, involving atherosclerosis. CD137, a member of TNFRSF, is a well-known activation-induced T cell co-stimulatory molecule and has been reported to be expressed in human atherosclerotic plaque lesions, and plays pivotal roles in mediating disease processes. In this review, we focus on and summarize recent advances in mouse studies on the involvement of CD137 signaling in the pathogenesis and plaque stability of atherosclerosis, thereby highlighting a valuable therapeutic target in atherosclerosis. PMID:27826331

  14. Rheumatoid arthritis: model of systemic inflammation driving atherosclerosis.

    PubMed

    Ku, Ivy A; Imboden, John B; Hsue, Priscilla Y; Ganz, Peter

    2009-06-01

    Similarities between the inflammatory pathways in atherosclerosis and rheumatoid arthritis (RA) are striking. Chronic systemic inflammation in RA patients leads to cardiovascular (CV) events beyond traditional cardiac risk factors. Clinicians typically focus on treating the joint manifestations of RA while neglecting to eliminate systemic inflammation, which leaves RA patients vulnerable to adverse CV events. In this review we provide an understanding of how systemic inflammation in RA accelerates atherosclerosis. This knowledge should guide therapeutic targets to minimize CV risk in RA, and may lead to insights into the inflammatory mechanisms of atherosclerosis in general.

  15. Imaging Macrophage Development and Fate in Atherosclerosis and Myocardial Infarction

    PubMed Central

    Swirski, Filip K.; Nahrendorf, Matthias

    2013-01-01

    Macrophages are central regulators of disease progression in both atherosclerosis and myocardial infarction. In atherosclerosis, macrophages are the dominant leukocyte population that influences lesional development. In myocardial infarction, which is caused by atherosclerosis, macrophages accumulate readily and play important roles in inflammation and healing. Molecular imaging has grown considerably as a field and can reveal biological process at the molecular, cellular, and tissue levels. Here we explore how various imaging modalities, from intravital microscopy in mice to organ-level imaging in patients, are contributing to our understanding of macrophages and their progenitors in cardiovascular disease. PMID:23207281

  16. MicroRNA-33 in atherosclerosis etiology and pathophysiology.

    PubMed

    Chen, Wu-Jun; Zhang, Min; Zhao, Guo-Jun; Fu, Yuchang; Zhang, Da-Wei; Zhu, Hai-Bo; Tang, Chao-Ke

    2013-04-01

    MicroRNAs are a group of endogenous, small non-coding RNA molecules that can induce translation repression of target genes within metazoan cells by specific base pairing with the mRNA of target genes. Recently, microRNA-33 has been discovered as a key regulator in the initiation and progression of atherosclerosis. This review highlights the impact of microRNA-33-mediated regulation in the major cardiometabolic risk factors of atherosclerosis including lipid metabolism (HDL biogenesis and cholesterol homeostasis, fatty acid, phospholipid and triglyceride, bile acids metabolism), inflammatory response, insulin signaling and glucose/energy homeostasis, cell cycle progression and proliferation, and myeloid cell differentiation. Understanding the etiology and pathophysiology of microRNA-33 in atherosclerosis may provide basic knowledge for the development of novel therapeutic targets for ameliorating atherosclerosis and cardiovascular disease.

  17. Advance of studies on anti-atherosclerosis mechanism of berberine.

    PubMed

    Wu, Min; Wang, Jie; Liu, Long-tao

    2010-04-01

    Coptis Chinensis is a traditional Chinese medicine herb that has the effect of clearing heat and drying dampness, purging fire to eliminate toxin. Berberine is the main alkaloid of Coptis Chinensis, and, recent researches showed that berberine had the effect of anti-atherosclerosis. This paper reviewed the anti-atherosclerosis mechanism of berberine, which may be related to regulating lipids, anti-inflammation, decompression, reducing blood sugar, and inhibiting vascular smooth muscle cell proliferation.

  18. [Advance on study in anti-atherosclerosis mechanism of berberine].

    PubMed

    Wu, Min; Wang, Jie

    2008-09-01

    Coptis chinensis is a traditional Chinese herb that has the effect of clearing heat and drying dampness, purging fire to eliminate toxin. Berberine is the main alkaloid of C. chinensis, and researches showed recently, berberine had the effect of anti-atherosclerosis. This paper has reviewed the mechanism of berberine in anti-atherosclerosis from anti-inflammation, regulating lipid, decompression, reducing blood sugar, and inhibiting vascular smooth muscle cell proliferation.

  19. Proteomic Study of Blood Serum in Coronary Atherosclerosis.

    PubMed

    Stakhneva, E M; Meshcheryakova, I A; Demidov, E A; Starostin, K V; Ragino, Yu I; Peltek, S E; Voevoda, M I

    2017-01-01

    Changes in the blood serum proteins were assessed in men with coronary atherosclerosis and without coronary heart disease. Proteins were separated by 2D-electrophoresis, protein fractions were identified by their peptide fingerprint by MALDI method; fractions with more than twofold increase in protein level were determined. In blood serum of patients with coronary atherosclerosis, the content of C4 complement protein increased and ceruloplasmin level decreased, which is typical of heart failure and coronary heart disease.

  20. IL-17-dependent Autoimmunity to Collagen Type V in Atherosclerosis

    PubMed Central

    Dart, Melanie L.; Jankowska-Gan, Ewa; Huang, Guorui; Roenneburg, Drew A.; Keller, Melissa R.; Torrealba, Jose R.; Rhoads, Aaron; Kim, Byoungjae; Bobadilla, Joseph L.; Haynes, Lynn D.; Wilkes, David S.; Burlingham, William J.; Greenspan, Daniel S.

    2010-01-01

    Rationale Considerable evidence shows atherosclerosis to be a chronic inflammatory disease in which immunity to self-antigens contributes to disease progression. We recently identified the collagen V [col(V)] α1(V) chain as a key autoantigen driving the Th17-dependent cellular immunity underlying another chronic inflammatory disease, obliterative bronchiolitis. Since specific induction of α1(V) chains has previously been reported in human atheromas, we postulated involvement of col(V) autoimmunity in atherosclerosis. Objective To determine whether col(V) autoimmunity may be involved in the pathogenesis of atherosclerosis. Methods and Results Here we demonstrate Th17-dependent anti-col(V) immunity to be characteristic of atherosclerosis in human coronary artery disease (CAD) patients and in apolipoprotein E null (ApoE−/−) atherosclerotic mice. Responses were α1(V)-specific in CAD with variable Th1 pathway involvement. In early atherosclerosis in ApoE−/− mice, anti-col(V) immunity was tempered by an IL-10-dependent mechanism. In support of a causal role for col(V) autoimmunity in the pathogenesis of atherosclerosis, col(V)-sensitization of ApoE−/− mice on a regular chow diet overcame IL-10-mediated inhibition of col(V) autoimmunity, leading to increased atherosclerotic burden in these mice and local accumulation of IL-17 producing cells, particularly in the col(V)-rich adventitia subjacent to the atheromas. Conclusions These findings establish col(V) as an autoantigen in human CAD and show col(V) autoimmunity to be a consistent feature in atherosclerosis in humans and mice. Furthermore, data are consistent with a causative role for col(V) in the pathogenesis of atherosclerosis. PMID:20814021

  1. Aortic Atherosclerosis in Systemic Lupus Erythematosus.

    PubMed

    Roldan, Paola C; Ratliff, Michelle; Snider, Richard; Macias, Leonardo; Rodriguez, Rodrigo; Sibbitt, Wilmer; Roldan, Carlos A

    Aortic atherosclerosis (AoA) defined as intima-media thickening or plaques and aortic stiffness (AoS) also considered an atherosclerotic process and defined as decreased vessel distensibility (higher pulse pressure to achieve similar degree of vessel distension) are common in patients with SLE. Immune-mediated inflammation, thrombogenesis, traditional atherogenic factors, and therapy-related metabolic abnormalities are the main pathogenic factors of AoA and AoS. Pathology of AoA and AoS suggests an initial subclinical endothelialitis or vasculitis, which is exacerbated by thrombogenesis and atherogenic factors and ultimately resulting in AoA and AoS. Computed tomography (CT) for detection of arterial wall calcifications and arterial tonometry for detection of increased arterial pulse wave velocity are the most common diagnostic methods for detecting AoA and AoS, respectively. MRI may become a more applicable and accurate technique than CT. Although transesophageal echocardiography accurately detects earlier and advanced stages of AoA and AoS, it is semi-invasive and cannot be used as a screening method. Although imaging techniques demonstrate highly variable prevalence rates, on average about one third of adult SLE patients may have AoA or AoS. Age at SLE diagnosis; SLE duration; activity and damage; corticosteroid therapy; metabolic syndrome; chronic kidney disease; and mitral annular calcification are common independent predictors of AoA and AoS. Also, AoA and AoS are highly associated with carotid and coronary atherosclerosis. Earlier stages of AoA and AoS are usually subclinical. However, earlier stages of disease may be causally related or contribute to peripheral or cerebral embolism, pre-hypertension and hypertension, and increased left ventricular afterload resulting in left ventricular hypertrophy and diastolic dysfunction. Later stages of disease predisposes to visceral ischemia, aortic aneurysms and aortic dissection. Even earlier stages of AoA and Ao

  2. Positive Expression of Human Cytomegalovirus Phosphoprotein 65 in Atherosclerosis

    PubMed Central

    Wang, Zhe; Cai, Jun; Zhang, Mingming; Wang, Xiaojing; Chi, Hongjie; Feng, Haijun

    2016-01-01

    Previous studies showed that human cytomegalovirus (HCMV) is associated with atherosclerosis. However, local vascular atherosclerosis related HCMV infection and protein expression remain unclear. This study aimed to assess the relationship between HCMV infection and atherosclerosis. Formalin-fixed, paraffin-embedded peripheral artery specimens were obtained from 15 patients with atherosclerosis undergoing vascular surgery from 2008 to 2010 at Zhongnan Hospital, Wuhan University. Pathological analyses were carried out after hematoxylin and eosin (H&E) and Masson trichrome staining. In situ hybridization and immunohistochemistry with two different monoclonal antibodies were employed to detect HCMV nucleic acids and proteins, respectively. H&E and Masson trichrome staining showed homogeneous extracellular matrix in femoral artery, while smooth muscle fibers were interlaced with collagen fibers; in carotid artery, inflammatory cell infiltration, foam cell vascular change, cholesterol crystals, and layered collagen fibers were observed. In situ hybridization showed no expression of HCMV nucleic acids in all 15 cases. Immunohistochemical staining for protein immediate-early protein (IE1 72) was negative in all cases, while phosphoprotein 65 (pp65) expression was detected in 14 cases. A high rate of positive pp65 signals was found in patients with atherosclerosis, suggesting that local HCMV infection may be associated with the pathogenesis of atherosclerosis. Further studies on this relationship are warranted. PMID:27990427

  3. Atherosclerosis and cardiovascular disease in the spondyloarthritides, particularly ankylosing spondylitis and psoriatic arthritis.

    PubMed

    Papagoras, Charalampos; Voulgari, Paraskevi V; Drosos, Alexandros A

    2013-01-01

    The spondyloarthritides (SpA) are a group of idiopathic inflammatory diseases affecting the axial and/or peripheral skeleton. Recent evidence points towards an increased mortality and morbidity due to cardiovascular disease, especially within the two major forms of SpA, ankylosing spondylitis and psoriatic arthritis. Several studies have identified alterations of the lipid profile, insulin sensitivity and other metabolic cardiovascular risk factors in SpA patients. An array of vascular morphologic and functional abnormalities has also been reported in these diseases, supporting the hypothesis of accelerated atherosclerosis in SpA. Inflammation appears to be a major player, involved both in the impairment of the classic cardiovascular risk factors, as well as directly in the process of endothelial injury, dysfunction and ultimately atherosclerosis. Multiple studies in rheumatoid arthritis have suggested that effective suppression of inflammation with synthetic disease-modifying anti-rheumatic drugs or with biologics may also exert favourable effects in the cardiovascular risk. Although such evidence is currently lacking for SpA, there is little doubt that physicians caring for patients with SpA should aim at controlling both inflammation and traditional cardiovascular risk factors. Such an integrated approach is expected to benefit patients in multiple levels.

  4. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis

    PubMed Central

    Koeth, Robert A.; Wang, Zeneng; Levison, Bruce S.; Buffa, Jennifer A.; Org, Elin; Sheehy, Brendan T.; Britt, Earl B.; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D.; DiDonato, Joseph A.; Chen, Jun; Li, Hongzhe; Wu, Gary D.; Lewis, James D.; Warrier, Manya; Brown, J. Mark; Krauss, Ronald M.; Tang, W. H. Wilson; Bushman, Frederic D.; Lusis, Aldons J.; Hazen, Stanley L.

    2013-01-01

    Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk. PMID:23563705

  5. Immune Activation Resulting from NKG2D/Ligand Interaction Promotes Atherosclerosis

    PubMed Central

    Xia, Mingcan; Guerra, Nadia; Sukhova, Galina K.; Yang, Kangkang; Miller, Carla K.; Shi, Guo-Ping; Raulet, David H.; Xiong, Na

    2012-01-01

    Background The interplay between the immune system and abnormal metabolic conditions sustains and propagates a vicious feedback cycle of chronic inflammation and metabolic dysfunction that is critical for atherosclerotic progression. It is well established that abnormal metabolic conditions, such as dyslipidemia and hyperglycemia, cause various cellular stress responses that induce tissue inflammation and immune cell activation, which in turn exacerbate the metabolic dysfunction. However, molecular events linking these processes are not well understood. Methods and Results Tissues and organs of humans and mice with hyperglycemia and hyperlipidemia were examined for expression of ligands for NKG2D, a potent immune activating receptor expressed by several types of immune cells, and the role of NKG2D in atherosclerosis and metabolic diseases was probed using mice lacking NKG2D or by blocking NKG2D with monoclonal antibodies. NKG2D ligands were upregulated in multiple organs, particularly atherosclerotic aortae and inflamed livers. Ligand upregulation was induced in vitro by abnormal metabolites associated with metabolic dysfunctions. Using ApoE-/- mouse models we demonstrated that preventing NKG2D functions resulted in a dramatic reduction in plaque formation, suppressed systemic and organ inflammation mediated by multiple immune cell types, and alleviated abnormal metabolic conditions. Conclusions The NKG2D/ligand interaction is a critical molecular link in the vicious cycle of chronic inflammation and metabolic dysfunction that promotes atherosclerosis and might be a useful target for therapeutic intervention in the disease. PMID:22104546

  6. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.

    PubMed

    Koeth, Robert A; Wang, Zeneng; Levison, Bruce S; Buffa, Jennifer A; Org, Elin; Sheehy, Brendan T; Britt, Earl B; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D; DiDonato, Joseph A; Chen, Jun; Li, Hongzhe; Wu, Gary D; Lewis, James D; Warrier, Manya; Brown, J Mark; Krauss, Ronald M; Tang, W H Wilson; Bushman, Frederic D; Lusis, Aldons J; Hazen, Stanley L

    2013-05-01

    Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.

  7. Increased ABCA1 activity protects against atherosclerosis.

    PubMed

    Singaraja, Roshni R; Fievet, Catherine; Castro, Graciela; James, Erick R; Hennuyer, Nathalie; Clee, Susanne M; Bissada, Nagat; Choy, Jonathan C; Fruchart, Jean-Charles; McManus, Bruce M; Staels, Bart; Hayden, Michael R

    2002-07-01

    The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.

  8. Is Sudden Hearing Loss Associated with Atherosclerosis?

    PubMed Central

    Rajati, Mohsen; Azarpajooh, Mahmoud Reza; Mouhebati, Mohsen; Nasrollahi, Mostafa; Salehi, Maryam; Khadivi, Ehsan; Nourizadeh, Navid; Hashemi, Firoozeh; Bakhshaee, Mehdi

    2016-01-01

    Introduction: Sudden sensorineural hearing-loss (SSNHL) patients constitute approximately 2–3% of referrals to ear, nose and throat (ENT) clinics. Several predisposing factors have been proposed for this condition; one of which is vascular disorders and perfusion compromise. In this research the atherosclerotic changes and their known risk factors are studied in SSNHL patients. Materials and Methods: Thirty SSNHL patients and 30 controls were evaluated with regard to cardiovascular risks including history, heart examination, blood pressure, body mass index, waist circumference, electrocardiogram, blood sugar, triglycerides, cholesterol, high-sensitivity C-reactive protein (HSCRP); also, carotid artery color Doppler study was undertaken to measure intima media thickness(IMT). Results: IMT and HSCRP showed an increased risk in the case group compared with the controls (P= 0.005 & P=0.001). However, waist circumference, history of smoking, fasting blood sugar, lipid profile, and electrocardiogram revealed no significant difference between the two groups. Interestingly, blood pressure and body mass index were higher in the controls in this study. Conclusion: Sudden sensorineural hearing loss may be associated with subclinical atherosclerosis. PMID:27429947

  9. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  10. A Histoenzymatic Study of Human Intracranial Atherosclerosis

    PubMed Central

    Hoff, Henry F.

    1972-01-01

    A light microscopy study on the localization of enzyme activity within atherosclerotic human intracranial arteries was performed on autopsy material obtained within 4 hours of death. The data suggests that the atherosclerotic process first goes through a proliferative phase and then a degenerative phase culminating in the formation of a plaque. In the proliferative phase, smooth muscle cell proliferation has formed a thickened intima. Tetrazolium reductase, adenosine triphosphatase (ATPase) and adenosine monophosphatase (AMPase) activities are present in these cells, while all dehydrogenases and acid phosphatase activities were weak or not present. As the degenerative phase commences, an area of necrosis, lipid and macrophage accumulation is formed on the lumen side of the elastica. This area increases in size until a plaque is formed. Unsaturated polar and nonpolar lipid, cholesterol, α-glycerophosphate dehydrogenase, acid phosphatase, and AMPase activities are associated with these areas and in foam cells, which are often found in the thickened intima of the proliferative phase. Tetrazolium reductase and ATPase activities decrease in the thickened intima as the area of necrosis increases in size, while dehydrogenase activity, except that for α-glycerophosphate, remains low or not present. Patterns of enzyme alterations for various stages of the disease process in intracranial arteries, the aorta and coronary arteries suggest a similar, if not identical, progression of the atherosclerotic process, irrespective of known differences in the prevalence of atherosclerosis. ImagesFig 2Fig 3Fig 5Fig 1Fig 4 PMID:4260721

  11. Homocysteine Metabolism, Atherosclerosis, and Diseases of Aging.

    PubMed

    McCully, Kilmer S

    2015-12-15

    The importance of homocysteine in vascular function and arteriosclerosis was discovered by demonstration of arteriosclerotic plaques in children with homocystinuria caused by inherited enzymatic deficiencies of cystathionine synthase, methionine synthase, or methylene-tetrahydrofolate reductase. According to the homocysteine theory of arteriosclerosis, an elevated blood homocysteine level is an important risk factor for atherosclerosis in subjects without these rare enzymatic abnormalities. The homocysteine theory is supported by demonstration of arterial plaques in experimental animals with hyperhomocysteinemia, by discovery of a pathway for conversion of homocysteine thiolactone to sulfate in cell cultures from children with homocystinuria, and by demonstration of growth promotion by homocysteic acid in normal and hypophysectomized animals. Studies with cultured malignant cells revealed abnormal homocysteine thiolactone metabolism, resulting in homocysteinylation of proteins, nucleic acids, and glycosaminoglycans, explaining the abnormal oxidative metabolism, abnormalities of cellular membranes, and altered genetic expression observed in malignancy. Abnormal homocysteine metabolism in malignant cells is attributed to deficiency of thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone. Two molecules of thioretinamide combine with cobalamin to form thioretinaco. Based on the molecular structure of thioretinaco, a theory of oxidative phosphorylation was proposed, involving oxidation to a disulfonium derivative by ozone, and binding of oxygen, nicotinamide adenine dinucleotide and phosphate as the active site of adenosine triphosphate synthesis in mitochondria. Obstruction of vasa vasorum by aggregates of microorganisms with homocysteinylated low-density lipoproteins is proposed to cause ischemia of arterial wall and a microabscess of the intima, the vulnerable atherosclerotic plaque.

  12. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Carl, James R. (Inventor); Arndt, G. Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, N. Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)

    2000-01-01

    Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial laser and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C., within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable of focussed heating preserves healthy sectors of the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed beam. A computer simulation predicts isothermic temperature profiles for the given conditions and man be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.

  13. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Carl, James R. (Inventor); Arndt, Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)

    2002-01-01

    Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C. within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable or focussed heating preserves healthy sectors or the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed bean. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.

  14. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Carl, James R. (Inventor); Arndt, G. Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, N. Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C. within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed directable or focussed heating preserves healthy sectors of the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed beam. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.

  15. Molecular Imaging of Inflammation in Atherosclerosis

    PubMed Central

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  16. Oxidative stress in atherosclerosis and diabetes.

    PubMed

    Lankin, V Z; Lisina, M O; Arzamastseva, N E; Konovalova, G G; Nedosugova, L V; Kaminnyi, A I; Tikhaze, A K; Ageev, F T; Kukharchuk, V V; Belenkov, Yu N

    2005-07-01

    We measured the content of lipid peroxides in plasma LDL from patients with chronic CHD not accompanied by hypercholesterolemia; CHD and hypercholesterolemia; type 2 diabetes mellitus and decompensation of carbohydrate metabolism; and CHD, circulatory insufficiency, and type 2 diabetes mellitus (without hypercholesterolemia). The content of lipid peroxides in LDL isolated from blood plasma by differential ultracentrifugation in a density gradient was estimated by a highly specific method with modifications (reagent Fe(2+) xylene orange and triphenylphosphine as a reducing agent for organic peroxides). The content of lipid peroxides in LDL from patients was much higher than in controls (patients without coronary heart disease and diabetes). Hypercholesterolemia and diabetes can be considered as factors promoting LDL oxidation in vivo. Our results suggest that stimulation of lipid peroxidation in low-density lipoproteins during hypercholesterolemia and diabetes is associated with strong autooxidation of cholesterol and glucose during oxidative and carbonyl (aldehyde) stress, respectively. These data illustrate a possible mechanism of the progression of atherosclerosis in patients with diabetes mellitus.

  17. Trivalent chromium, in atherosclerosis and diabetes.

    PubMed

    Mossop, R T

    1991-11-01

    The known effects of trivalent chromium (Cr) in lowering blood levels of low density lipoproteins (LDL), raising high density lipoproteins (HDL) and improving glucose tolerance are summarised. Chromium deficiency cannot easily be established by direct means, but can be inferred by the reversal of symptoms and signs following the administration of trivalent chromium. This evidence can be supported by knowledge or suspicion of a deficiency in the diet, common in those who use highly refined cereal foods. It is considered that the beneficial effects of chromium repletion are now so well established and the trivalent form is so free of toxicity that it should now be used in clinical medicine for the benefit of those with some forms of diabetes and its complications and those suffering from atherosclerosis. Of perhaps more importance is the public health aspect, since most chromium is discarded in the cereal refinement process, we now have added evidence for a return to the diets in which complex carbohydrates predominated. In those who refuse or are unable to do this, possibly the addition of chromium to their drinking water may be of value.

  18. Influence of coronary artery disease and subclinical atherosclerosis related polymorphisms on the risk of atherosclerosis in rheumatoid arthritis

    PubMed Central

    López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A.; Huaranga, Marco A. Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J.; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J.; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J. Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A.

    2017-01-01

    A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA. PMID:28059143

  19. Influence of coronary artery disease and subclinical atherosclerosis related polymorphisms on the risk of atherosclerosis in rheumatoid arthritis.

    PubMed

    López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A; Huaranga, Marco A Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A

    2017-01-06

    A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA.

  20. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    PubMed Central

    Oh, Jisu; Riek, Amy E.; Darwech, Isra; Funai, Katsuhiko; Shao, JianSu; Chin, Kathleen; Sierra, Oscar L.; Carmeliet, Geert; Ostlund, Richard E.; Bernal-Mizrachi, Carlos

    2015-01-01

    Summary Intense effort has been devoted to understanding predisposition to chronic systemic inflammation as this contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver, as well as increase cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque, and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. BM transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice. Graphical Abstract PMID:25801026

  1. Lipid lowering and imaging protease activation in atherosclerosis Lipid therapy and MMP imaging in atherosclerosis

    PubMed Central

    Challa, Azariyas; Zhang, Jiasheng; Golestani, Reza; Jung, Jae-Joon; Robinson, Simon; Sadeghi, Mehran M.

    2014-01-01

    Background Lipid lowering is a mainstay of modern therapeutic approach to atherosclerosis. We sought to evaluate matrix metalloproteinase (MMP)-targeted microSPECT imaging for tracking of the effect of lipid-lowering interventions on plaque biology in atherosclerotic mice in vivo. Methods and Results ApoE−/− mice fed on a high fat diet (HFD) for 2 months were randomly assigned to continuation of HFD, HFD plus simvastatin, HFD plus fenofibrate and high fat withdrawal (HFW). The animals underwent serial microSPECT/CT imaging using RP805, a 99mTc-labeled MMP-targeted tracer at 1 and 4 weeks after randomization. All three interventions reduced total blood cholesterol by 4 weeks. In animals on HFD, aortic arch RP805 uptake significantly increased from 1 week to 4 weeks. Tracer uptake in fenofibrate and HFW groups was significantly lower than uptake in the HFD group at 4 weeks. Similarly, CD 68 gene expression, reflecting plaque inflammation, was significantly lower in fenofibrate and HFW groups compared to HFD group. MMP tracer uptake significantly correlated with aortic CD68, but not VE-cadherin or smooth muscle α-actin expression. Conclusions MMP tracer uptake paralleled the effect of lipid-lowering interventions on plaque inflammation in atherosclerotic mice. MMP-targeted imaging may be used to track the effect of therapeutic interventions in atherosclerosis. PMID:24368425

  2. Diverse Roles of Macrophages in Atherosclerosis: From Inflammatory Biology to Biomarker Discovery

    PubMed Central

    Gui, Ting; Shimokado, Aiko; Sun, Yujing; Akasaka, Takashi; Muragaki, Yasuteru

    2012-01-01

    Cardiovascular disease, a leading cause of mortality in developed countries, is mainly caused by atherosclerosis, a chronic inflammatory disease. Macrophages, which differentiate from monocytes that are recruited from the blood, account for the majority of leukocytes in atherosclerotic plaques. Apoptosis and the suppressed clearance of apoptotic macrophages (efferocytosis) are associated with vulnerable plaques that are prone to rupture, leading to thrombosis. Based on the central functions of macrophages in atherogenesis, cytokines, chemokines, enzymes, or microRNAs related to or produced by macrophages have become important clinical prognostic or diagnostic biomarkers. This paper discusses the impact of monocyte-derived macrophages in early atherogenesis and advanced disease. The role and possible future development of macrophage inflammatory biomarkers are also described. PMID:22577254

  3. GSTM1 polymorphism in patients with clinical manifestations of atherosclerosis.

    PubMed

    Rodrigues, D A; Martins, J V M; E Silva, K S F; Costa, I R; Lagares, M H; Campedelli, F L; Barbosa, A M; de Morais, M P; Moura, K K V O

    2017-03-15

    Atherosclerosis is characterized by lesions, called atheroma or atheromatous plaques, in the inner layer of blood vessels, which block the vascular lumen and weaken the underlying tunica media. Several modifiable and non-modifiable risk factors for the development of atherosclerosis exist. The modifiable risk factors include hypertension, smoking, obesity, high LDL and low HDL cholesterol levels, sedentary lifestyle, and stress; the non-modifiable factors include diabetes mellitus, family history of hypertension and heart disease, thrombophilia, sex, age, and genetic factors. The association of polymorphisms in GST with coronary artery disease has been studied since the polymorphisms can affect enzyme activity and contribute to the onset of atherosclerosis. We analyzed polymorphisms in GSTM1 in individuals diagnosed with atherosclerosis as well as in healthy individuals (control group). The frequency of the GSTM1 present genotype in the atherosclerosis group was 1.2 times higher than that observed in the control group. We found no sex- or alcohol-consumption-dependent differences between the occurrences of the present and null genotypes. However, the GSTM1 present genotype occurred in 52.6% individuals with atherosclerosis who reported smoking 20 or more cigarettes per day and in 60% individuals who smoked 10 to 20 cigarettes per day (P = 0.0035). In addition, the GSTM1 present genotype was more frequent in individuals who reported being former smokers - 45.5% in individuals with atherosclerosis who smoked for more than 20 years and 50% each for individuals in the control group who smoked for less than 10 years or for 10 to 20 years, respectively (P = 0.0240).

  4. Immune mechanisms in atherosclerosis, especially in diabetes type 2.

    PubMed

    Frostegård, Johan

    2013-10-29

    Atherosclerosis and ensuing cardiovascular disease (CVD) are major complications of diabetes type 2. Atherosclerosis is a chronic inflammatory condition involving immunocompetent cells of different types present in the lesions. Even though inflammation and immune activation may be more pronounced in atherosclerosis in diabetes type 2, there does not appear to be any major differences between diabetics and non-diabetics. Similar factors are thus implicated in atherosclerosis-associated immune activation in both groups. The cause of immune activation is not known and different mutually non-exclusive possibilities exist. Oxidized and/or enzymatically modified forms of low-density lipoprotein (OxLDL) and dead cells are present in atherosclerotic plaques. OxLDL could play a role, being pro-inflammatory and immunostimulatory as it activates T-cells and is cytotoxic at higher concentrations. Inflammatory phospholipids in OxLDL are implicated, with phosphorylcholine (PC) as one of the exposed antigens. Antibodies against PC (anti-PC) are anti-atherogenic in mouse studies, and anti-PC is negatively associated with development of atherosclerosis and CVD in humans. Bacteria and virus have been discussed as potential causes of immune activation, but it has been difficult to find direct evidence supporting this hypothesis, and antibiotic trials in humans have been negative or inconclusive. Heat shock proteins (HSP) could be one major target for atherogenic immune reactions. More direct causes of plaque rupture include cytokines such as interleukin 1β (IL-1β), tumor necrosis factor (TNF), and also lipid mediators as leukotrienes. In addition, in diabetes, hyperglycemia and oxidative stress appear to accelerate the development of atherosclerosis, one mechanism could be via promotion of immune reactions. To prove that immune reactions are causative of atherosclerosis and CVD, further studies with immune-modulatory treatments are needed.

  5. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling.

    PubMed

    Du, Ning; Feng, Jiang; Hu, Li-Juan; Sun, Xin; Sun, Hai-Bing; Zhao, Yang; Yang, Yi-Ping; Ren, Hong

    2012-06-01

    Chronic stress and a high-fat diet are well-documented risk factors associated with the renin-angiotensin system in the development of breast cancer. The angiotensin II type 1 receptor (AT1R) is a novel component of the renin-angiotensin system. Several recent studies have focused on the function of AT1R in cell proliferation during cancer development. Thus, we hypothesized that angiotensin II (Ang Ⅱ) can promote proliferation of breast cancer via activated AT1R; the activation of AT1R may play an important role in promoting breast cancer growth, and AT1R blocker (ARB) may suppress the promotional effect on proliferation by antagonizing AT1R. The expression level of AT1R was found to be significantly upregulated in breast cancer cells by immunohistochemistry, but no correlation between AT1R expression and ER/PR/Her-2 expression was observed. The AT1R(+)-MCF-7 cell line exhibited high expression of AT1R protein, and we generated the AT1R(-)-MCF-7 cell line using RNA interference. ARBs, and in particular irbesartan, effectively inhibited the effects of Ang II on cell proliferation, cell cycle development and downstream AT1R signaling events, including the activation of the Ras-Raf-MAPK pathway and the transcription factors NF-κB and CREB. Irbesartan also significantly altered p53, PCNA and cyclin D1 expression, which was also influenced by activated AT1R in AT1R(+)-MCF-7 cells. These results suggest that ARBs may be useful as a novel preventive and therapeutic strategy for treating breast cancer.

  6. G protein-coupled estrogen receptor protects from atherosclerosis.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Howard, Tamara A; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B; Barton, Matthias; Prossnitz, Eric R

    2014-12-23

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.

  7. [Prevalence of carotid atherosclerosis in a cohort of Mexico City].

    PubMed

    Rodríguez Saldaña, J; Cantú Brito, C; Sosa Espinosa, P; Reynoso Marenco, M T; Zuckermann Foullón, D; Barinagarrementería Aldatz, F

    1998-01-01

    In order to investigate the prevalence of atherosclerosis in Mexico, high resolution ultrasound and color Doppler flow imaging of carotid arteries were carried out in a group of participants in CUPA project, a cohort study started in 1989 among persons 60 years and older living permanently in a high rise in México City. Imaging studies included identification of 4 atherosclerosis related abnormalities: 1) intima media thickness; 2) kinkings and tortuousness; 3) non-stenosing plaques; and 4) significant carotid stenosis (> 50%). Analysis of 198 Doppler ultrasonographic studies in 56 males and 142 females showed an overall prevalence of atherosclerosis related lesions of 65.6%, with increasing frequency by age groups: 33% in younger than 65 year-old, 71% in 65-74 years, and up to 88% in the 75 years and older group. The prevalence of high grade stenosis was low (6%) whereas the overall frequency of non-stenosing plaques and intima-media thickness was higher than 60%. Intima-media thickness was more common in males while non-stenosing plaques and high grade stenosis were more frequent in females. However, there were not significant differences among women and men when atherosclerotic lesions were analyzed by age groups. This is the first report on the prevalence of atherosclerosis in a Mexican population using ultrasonography. Findings of the investigation document the high prevalence of atherosclerosis among elderly resident in Mexico City.

  8. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  9. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  10. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress

    PubMed Central

    Cheng, Long; Pan, Guo-feng; Zhang, Xiao-dong; Wang, Jian-lu; Wang, Wan-dan; Zhang, Jian-yong; Wang, Hui; Liang, Ri-xin; Sun, Xiao-bo

    2015-01-01

    Yindanxinnaotong (YD), a traditional Chinese medicine, has been introduced to clinical medicine for more than a decade, while its pharmacological properties are still not to be well addressed. This report aimed to explore the anti-atherosclerosis properties and underlying mechanisms of YD. We initially performed a computational prediction based on a network pharmacology simulation, which clued YD exerted synergistically anti-atherosclerosis properties by vascular endothelium protection, lipid-lowering, anti-inflammation, and anti-oxidation. These outcomes were then validated in atherosclerosis rats. The experiments provided evidences indicating YD’s contribution in this study included, (1) significantly reduced the severity of atherosclerosis, inhibited reconstruction of the artery wall and regulated the lipid profile; (2) enhanced antioxidant power, strengthened the activity of antioxidant enzymes, and decreased malondialdhyde levels; (3) significantly increased the viability of umbilical vein endothelial cells exposed to oxidative stress due to pretreatment with YD; (4) significantly reduced the level of pro-inflammatory cytokines; (5) significantly down-regulated NF-kB/p65 and up-regulated IkB in the YD-treated groups. Overall, these results demonstrated that YD intervention relieves atherosclerosis through regulating lipids, reducing lipid particle deposition in the endothelial layer of artery, enhancing antioxidant power, and repressing inflammation activity by inhibiting the nuclear factor-kappa B signal pathway. PMID:26196108

  11. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-09-02

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis.

  12. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    PubMed Central

    Chistiakov, Dimitry A.; Nikiforov, Nikita G.

    2016-01-01

    Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances. PMID:27493969

  13. Nanomedicine for the prevention, treatment and imaging of atherosclerosis.

    PubMed

    Psarros, Costas; Lee, Regent; Margaritis, Marios; Antoniades, Charalambos

    2012-09-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in developed countries, with an increasing prevalence due to an aging population. The pathology underpinning CVD is atherosclerosis, a chronic inflammatory state involving the arterial wall. Accumulation of low density lipoprotein (LDL) laden macrophages in the arterial wall and their subsequent transformation into foam cells lead to atherosclerotic plaque formation. Progression of atherosclerotic lesions may gradually lead to plaque related complications and clinically manifest as acute vascular syndromes including acute myocardial or cerebral ischemia. Nanotechnology offers emerging therapeutic strategies, which may have advantage overclassical treatments for atherosclerosis. In this review, we present the potential applications of nanotechnology toward prevention, identification and treatment of atherosclerosis.

  14. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    SciTech Connect

    Qiao, Wang; Chaoshu, Tang; Hongfang, Jin; Junbao, Du

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  15. Role of Helicobacter pylori infection in pathogenesis of atherosclerosis

    PubMed Central

    Vijayvergiya, Rajesh; Vadivelu, Ramalingam

    2015-01-01

    Though a century old hypothesis, infection as a cause for atherosclerosis is still a debatable issue. Epidemiological and clinical studies had shown a possible association but inhomogeneity in the study population and study methods along with potential confounders have yielded conflicting results. Infection triggers a chronic inflammatory state which along with other mechanisms such as dyslipidemia, hyper-homocysteinemia, hypercoagulability, impaired glucose metabolism and endothelial dysfunction, contribute in pathogenesis of atherosclerosis. Studies have shown a positive relations between Cytotoxic associated gene-A positive strains of Helicobacter pylori and vascular diseases such as coronary artery disease and stroke. Infection mediated genetic modulation is a new emerging theory in this regard. Further large scale studies on infection and atherosclerosis focusing on multiple pathogenetic mechanisms may help in refining our knowledge in this aspect. PMID:25810813

  16. Nestin+ cells direct inflammatory cell migration in atherosclerosis

    PubMed Central

    del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  17. Common Genetic Variants and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Vargas, Jose D.; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S.; Rotter, Jerome I.; Post, Wendy S.; Polak, Joseph F.; Budoff, Matthew J.; Bluemke, David A.

    2016-01-01

    Background and Aims Subclinical atherosclerosis (sCVD), measured by coronary artery calcium (CAC) and carotid intima media thickness (CIMT) is associated with cardiovascular disease (CVD). Genome Wide Association Studies (GWAS) of CIMT and CVD have focused primarily on Caucasian populations. We hypothesized that these associations may differ in populations from distinct genetic backgrounds. Methods The associations between sCVD and 66 single nucleotide polymorphisms (SNPs) from published GWAS of sCVD and CVD were tested in 8224 Multi-Ethnic Study of Atherosclerosis (MESA) and MESA Family participants [2329 Caucasians (EUA), 691 Chinese (CHN), 2482 African Americans (AFA), and 2012 Hispanic (HIS)] using an additive model adjusting for CVD risk factors, with SNP significance defined by a Bonferroni-corrected p < 7.6 × 10−4 (0.05/66). Results In EUA there were significant associations for CAC with SNPs in 9p21 (rs1333049, P=2 × 10−9; rs4977574, P= 4 × 10−9), COL4A1 (rs9515203, P=9 × 10−6), and PHACTR1 (rs9349379, P= 4 × 10−4). In HIS, CAC was associated with SNPs in 9p21 (rs1333049, P=8 × 10−5; rs4977574, P=5 × 10−5), APOA5 (rs964184, P=2 × 10−4), and ADAMTS7 (rs7173743, P=4 × 10−4). There were no associations with the 9p21 region for AFA and CHN. Fine mapping of the 9p21 region revealed SNPs with robust associations with CAC in EUA and HIS but no significant associations in AFA and CHN. Conclusion Our results suggest some shared genetic architecture for sCVD across ethnic groups, while also underscoring the possibility of novel variants and/or pathways in risk of CVD in ethnically diverse populations. PMID:26789557

  18. Food intake patterns associated with carotid artery atherosclerosis in the Insulin Resistance Atherosclerosis Study.

    PubMed

    Liese, Angela D; Nichols, Michele; Hodo, Denise; Mellen, Philip B; Schulz, Mandy; Goff, David C; D'Agostino, Ralph B

    2010-05-01

    We aimed to identify food intake patterns that operate via haemostatic and inflammatory pathways on progression of atherosclerosis among 802 middle-aged adults with baseline and 5-year follow-up ultrasound measurements of common (CCA) and internal carotid artery (ICA) intimal medial thickness (IMT). Food intake was ascertained with an FFQ. We derived food patterns using reduced rank regression (RRR) with plasminogen activator inhibitor 1 and fibrinogen as response variables. We explored the impact of various food pattern simplification approaches. We identified a food pattern characterised by higher intakes of less healthful foods (low-fibre bread and cereal, red and processed meat, cottage cheese, tomato foods, regular soft drinks and sweetened beverages) and lower intakes of more healthful foods (wine, rice and pasta, meal replacements and poultry). The pattern was positively associated with mean CCA IMT at follow-up (P = 0.0032), a 1 sd increase corresponding to an increase of 13 mum higher CCA IMT at follow-up, adjusted for demographic and cardiovascular risk factors. With increasing pattern quartile (Q), the percentage change in CCA IMT increased significantly: Q1 0.8 %; Q2 3.2 %; Q3 8.6 %; Q4 7.9 % (P = 0.0045). No clear association with ICA IMT was observed. All simplification methods yielded similar results. The present results support the contention that a pro-inflammatory and pro-thrombotic dietary pattern increases the rate of coronary artery atherosclerosis progression, independent of traditional cardiovascular risk factors. RRR is a promising and robust tool for moving beyond the previous focus on nutrients or foods into research on the health effects of broader dietary patterns.

  19. Changes in transcriptome of macrophages in atherosclerosis

    PubMed Central

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-01-01

    characterize changes in macrophage transcriptome in atherosclerosis and discuss key markers that characterize different phenotypes of macrophages present in atherosclerotic lesions. PMID:25973901

  20. Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclerosis

    PubMed Central

    Araujo, Jesus A.; Zhang, Min; Yin, Fen

    2012-01-01

    Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1) is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of HO, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide, and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative, and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This suggests that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation

  1. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis

    PubMed Central

    Karunakaran, Denuja; Geoffrion, Michele; Wei, Lihui; Gan, Wei; Richards, Laura; Shangari, Prakriti; DeKemp, Ella M.; Beanlands, Rachelle A.; Perisic, Ljubica; Maegdefessel, Lars; Hedin, Ulf; Sad, Subash; Guo, Liang; Kolodgie, Frank D.; Virmani, Renu; Ruddy, Terrence; Rayner, Katey J.

    2016-01-01

    Atherosclerosis results from maladaptive inflammation driven primarily by macrophages, whose recruitment and proliferation drive plaque progression. In advanced plaques, macrophage death contributes centrally to the formation of plaque necrosis, which underlies the instability that promotes plaque rupture and myocardial infarction. Hence, targeting macrophage cell death pathways may offer promise for the stabilization of vulnerable plaques. Necroptosis is a recently discovered pathway of programmed cell necrosis regulated by RIP3 and MLKL kinases that, in contrast to apoptosis, induces a proinflammatory state. We show herein that necroptotic cell death is activated in human advanced atherosclerotic plaques and can be targeted in experimental atherosclerosis for both therapeutic and diagnostic interventions. In humans with unstable carotid atherosclerosis, expression of RIP3 and MLKL is increased, and MLKL phosphorylation, a key step in the commitment to necroptosis, is detected in advanced atheromas. Investigation of the molecular mechanisms underlying necroptosis showed that atherogenic forms of low-density lipoprotein increase RIP3 and MLKL transcription and phosphorylation—two critical steps in the execution of necroptosis. Using a radiotracer developed with the necroptosis inhibitor necrostatin-1 (Nec-1), we show that 123I-Nec-1 localizes specifically to atherosclerotic plaques in Apoe−/− mice, and its uptake is tightly correlated to lesion areas by ex vivo nuclear imaging. Furthermore, treatment of Apoe−/− mice with established atherosclerosis with Nec-1 reduced lesion size and markers of plaque instability, including necrotic core formation. Collectively, our findings offer molecular insight into the mechanisms of macrophage cell death that drive necrotic core formation in atherosclerosis and suggest that this pathway can be used as both a diagnostic and therapeutic tool for the treatment of unstable atherosclerosis. PMID:27532042

  2. Therapies targeting innate immunity for fighting inflammation in atherosclerosis.

    PubMed

    Mendel, Itzhak; Yacov, Niva; Harats, Dror; Breitbart, Eyal

    2015-01-01

    Atherosclerosis is a smoldering disease of the vasculature that can lead to the occlusion of the arteries, resulting in ischemia of the heart and brain. For many years, the asserted underlying mechanism of atherosclerosis, supported by its epidemiology, was based on the "cholesterol hypothesis" that people with high blood cholesterol are at higher risk of developing cardiovascular disease. This hypothesis instigated a vigorous search for treatment that yielded the generation of statins, which specifically reduce LDL cholesterol. Since then, statins have revolutionized the way people are treated for the prevention of atherosclerosis. Nonetheless, despite this potent class of drugs, cardiovascular disease continues to be the leading cause of death in many parts of the world, suggesting that additional mechanisms are involved in disease pathogenesis. Intensive research has revealed that the atherosclerotic plaque is enriched with leukocytes, and that macrophages constitute the majority of immune cells in the lesion. Monocytes/macrophages are now recognized as the prime immune cells involved in the development of atherosclerosis and are implicated to affect the size, composition and vulnerability of the atherosclerotic plaque. While many of the macrophage-derived pro-inflammatory mechanisms associated with atherogenesis have been characterized, such as cell adhesion, cytokine production and protease secretion, there is a dearth of drugs that specifically target innate immunity for treating patients with atherosclerosis. This review presents pre-clinical studies, and in most cases following clinical trials with antagonists and agonists that have been designed to counteract inflammation in atherosclerosis and associated diseases, highlighting targets expressed predominantly in monocytes.

  3. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    PubMed Central

    Rotllan, Noemi; Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Wanschel, Amarylis C.; Aryal, Binod; Aranda, Juan F.; Goedeke, Leigh; Salerno, Alessandro G.; Ramírez, Cristina M.; Sessa, William C.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2−/− mice to Ldlr−/− mice results in marked reduction of the progression of atherosclerosis compared with Ldlr−/− mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2−/− macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.—Rotllan, N., Chamorro-Jorganes, A., Araldi, E., Wanschel, A. C., Aryal, B., Aranda, J. F., Goedeke, L., Salerno, A. G., Ramírez, C. M., Sessa,W. C., Suárez, Y., Fernández-Hernando, C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. PMID:25392271

  4. Human Genetic Evidence for Involvement of CD137 in Atherosclerosis

    PubMed Central

    Söderström, Leif Å; Gertow, Karl; Folkersen, Lasse; Sabater-Lleal, Maria; Sundman, Eva; Sheikine, Yuri; Goel, Anuj; Baldassarre, Damiano; Humphries, Steve E; de Faire, Ulf; Watkins, Hugh; Tremoli, Elena; Veglia, Fabrizio; Hamsten, Anders; Hansson, Göran K; Olofsson, Peder S

    2014-01-01

    Atherosclerosis is an inflammatory disease and the main cause of cardiovascular disease. Inflammation promotes plaque instability and clinical disease, such as myocardial infarction, stroke and peripheral vascular disease. Subclinical atherosclerosis begins with thickening of the arterial intimal layer, and increased intima-media thickness (IMT) in the carotid artery is a widely used measurement of subclinical atherosclerosis. Activation of CD137 (tumor necrosis factor receptor super family 9) promotes inflammation and disease development in murine atherosclerosis. CD137 is expressed in human atherosclerosis, but its role is largely unknown. This study uses a genetic approach to investigate CD137 in human atherosclerotic disease. In publicly available data on genotype and gene expression from the HapMap project, the minor T allele of rs2453021, a single nucleotide polymorphism in CD137, was significantly associated with CD137 gene expression. In the PROCARDIS and Wellcome Trust Case Control Consortium (WTCCC) cohorts of 13,029 cases and controls, no significant association was detected between the minor T allele of rs2453021 and risk for coronary artery disease or myocardial infarction. However, in the IMPROVE multicenter study of 3,418 individuals, the minor T allele of rs2453021 was associated with increased IMT of the common carotid artery (CCA), as measured by ultrasonography, with presence of plaque in CCA and with increased incidence of adverse noncardiac vascular events. Taken together, this study shows that the minor T allele of rs2453021 is associated with increased IMT in the CCA and increased risk of incident noncardiac vascular events, thus providing the first human genetic evidence for involvement of CD137 in atherosclerosis. PMID:25032953

  5. 76 FR 3146 - Submission for OMB Review; Comment Request; The Atherosclerosis Risk in Communities Study (ARIC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Atherosclerosis Risk in Communities Study (ARIC) Summary: Under the provisions of Section 3507(a)(1)(D) of the...: Title: The Atherosclerosis Risk in Communities Study (ARIC). Type of Information Collection...

  6. 75 FR 7482 - Submission for OMB Review; Comment Request; The Atherosclerosis Risk in Communities Study (ARIC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Atherosclerosis Risk in Communities Study (ARIC) Summary: Under the provisions of Section 3507(a)(1)(D) of the... Title: The Atherosclerosis Risk in Communities Study (ARIC). Type of Information Collection...

  7. 75 FR 62544 - Proposed Collection; Comment Request; the Atherosclerosis Risk in Communities Study (ARIC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request; the Atherosclerosis... and Budget (OMB) for review and approval. Proposed Collection: Title: The Atherosclerosis Risk...

  8. Transbrachial intraaortic balloon pumping in severe peripheral atherosclerosis.

    PubMed

    Onorati, Francesco; Impiombato, Barbara; Ferraro, Alessandro; Comi, Maria Caterina; Spaccarotella, Carmen; Indolfi, Ciro; Renzulli, Attilio

    2007-07-01

    Preoperative intraaortic balloon pumping improves the results of complex coronary surgery; however, insertion may be harmful or contraindicated in severe and diffuse atherosclerosis of the descending aorta and peripheral arteries. We report our experience with 10 consecutive patients with severe peripheral atherosclerosis or distal abdominal aortic aneurysms, in whom a 7.5F intraaortic balloon catheter was inserted through the brachial artery. Intraaortic balloon pumping was maintained until hemodynamic stability was established; no complications or ischemia of the hand related to the intraaortic balloon pump occurred. Transbrachial intraaortic balloon pumping with a 7.5F catheter is as safe and effective as the transfemoral method in patients with unavailable femoral arteries.

  9. Targeting and therapeutic peptides in nanomedicine for atherosclerosis

    PubMed Central

    2016-01-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo. In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented. PMID:27022138

  10. Perspectives and opportunities for nanomedicine in the management of atherosclerosis

    PubMed Central

    Lobatto, Mark E.; Fuster, Valentin; Fayad, Zahi A.; Mulder, Willem J. M.

    2013-01-01

    The use of nanotechnology for medical purposes — nanomedicine — has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration’s approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis. This Review elaborates on nanoparticle-targeting concepts in atherosclerotic disease, provides an overview of the use of nanomedicine in atherosclerosis, and discusses potential future applications and clinical benefits. PMID:22015921

  11. Perspectives and opportunities for nanomedicine in the management of atherosclerosis.

    PubMed

    Lobatto, Mark E; Fuster, Valentin; Fayad, Zahi A; Mulder, Willem J M

    2011-10-21

    The use of nanotechnology for medical purposes--nanomedicine--has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration's approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis. This Review elaborates on nanoparticle-targeting concepts in atherosclerotic disease, provides an overview of the use of nanomedicine in atherosclerosis, and discusses potential future applications and clinical benefits.

  12. Biothermal modeling of post-cryoplasty atherosclerosis in restenotic patients.

    PubMed

    Men-Chi, H; Ravigururajan, T S

    2007-03-01

    Atherosclerosis is a leading cause of heart diseases and mortality around the world. Recently, cryoplasty has emerged as a potential alternative method to treat arterial atherosclerosis. Finite element heat transfer and mass transfer models are developed using ANSYS in this study. The model analyzes the heat transfer within the atherosclerotic plaque and arterial wall during the cryoplasty procedure. The model is useful in predicting the transient temperature through the diseased wall tissues. The results may be used to decide required treatment procedure to effectively freeze the plaque with minimal damage to the healthy arterial tissues. Finally, the model investigates the parameters that may effect temperature distribution within the tissues during the ablative procedure.

  13. The function of cathepsins B, D, and X in atherosclerosis

    PubMed Central

    Zhao, Caroline F; Herrington, David M

    2016-01-01

    Cathepsins are proteolytic enzymes typically located within the lysosomes of macrophages. Once released, they can enhance the inflammatory process in atherosclerosis. Cathepsin X aids in the migration of T-lymphocytes and the release of cytokines. Cathepsin D modifies low-density lipoprotein to promote its uptake by macrophages and its subsequent foam cell formation. Furthermore, cathepsin D regulates apoptosis. Cathepsin B degrades the extracellular matrix within the arterial intima. Together, they increase plaque vulnerability. This evidence suggests that cathepsins play an important role in the pathogenesis of atherosclerosis. PMID:28078176

  14. Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions.

    PubMed

    Mehanna, Emile; Hamik, Anne; Josephson, Richard A

    2016-05-01

    Historically, the relationship between exercise and the cardiovascular system was viewed as unidirectional, with a disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercise-induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome.

  15. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis

    PubMed Central

    Witztum, Joseph L.; Lichtman, Andrew H.

    2014-01-01

    Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge. PMID:23937439

  16. Fetal programming of atherosclerosis: possible role of the mitochondria.

    PubMed

    Leduc, Line; Levy, Emile; Bouity-Voubou, Maurice; Delvin, Edgard

    2010-04-01

    Growing evidence indicates that being small size at birth from malnutrition is associated with an increased risk of developing type 2 diabetes (T2D), metabolic syndrome and cardiovascular disease in adulthood. Atherosclerosis is common to these aforementioned disorders, and oxidative stress and chronic inflammation are now considered as initiating events in its development, with endothelial cell dysfunction being an early, fundamental step. According to the fetal programming hypothesis, growth-restricted neonates exposed to placental insufficiency exhibit endothelial cell dysfunction very early in life that later on predisposes them to atherosclerosis. Although many investigations have reported early alterations in vascular function in children and adolescents with low birth weight, the mechanisms of such fetal programming of atherosclerosis remain largely unknown. Experimental studies have demonstrated that low birth weight infants are prenatally subjected to conditions of oxidative stress and inflammation that might be involved in the later occurrence of atherosclerosis. Arterial endothelial dysfunction has been encountered in term infants, children and young adults with low birth weight. The loss of appropriate endothelium function with decreased nitric oxide production or activity, manifested as impaired vasodilatation, is considered a basic step in atherosclerosis development and progression. Several lines of evidence indicate that mitochondrial damage is central to this process and that reactive oxygen species (ROS) may act as a double-edged sword. On the one hand, it is well-accepted that the mitochondria are a major source of chronic ROS production under physiological conditions. On the other hand, it is known that ROS generation damages lipids, proteins and mitochondrial DNA, leading to dysregulated mitochondrial function. Elevated mitochondrial ROS production is associated with endothelial cell dysfunction as well as vascular smooth muscle cell

  17. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation.

    PubMed

    Tang, Jun; Lobatto, Mark E; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M; Calcagno, Claudia; Braza, Mounia S; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L; Duivenvoorden, Raphaël; Sager, Hendrik; Astudillo, Yaritzy M; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P; Strijkers, Gustav J; Stroes, Erik S G; Swirski, Filip K; Nahrendorf, Matthias; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2015-04-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E deficient mice (Apoe(-/-) ) with advanced atherosclerotic plaques. This resulted in rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an eight-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis.

  18. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation

    PubMed Central

    Tang, Jun; Lobatto, Mark E.; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M.; Calcagno, Claudia; Braza, Mounia S.; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L.; Duivenvoorden, Raphaël; Sager, Hendrik B.; Astudillo, Yaritzy M.; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P.; Strijkers, Gustav J.; Stroes, Erik S. G.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2015-01-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E–deficient mice (Apoe−/−) with advanced atherosclerotic plaques. This resulted in the rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an 8-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis. PMID:26295063

  19. 75 FR 46945 - Proposed Collection; Comment Request; Multi-Ethnic Study of Atherosclerosis (MESA) Event...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... Atherosclerosis (MESA) Event Surveillance SUMMARY: In compliance with the requirement of Section 3506(c)(2)(A) of... Budget (OMB) for review and approval. Proposed Collection: Title: Multi-Ethnic Study of Atherosclerosis... and progression of subclinical cardiovascular disease (CVD)-- that is, atherosclerosis and other...

  20. 78 FR 77138 - Proposed Collection; 60-day Comment Request: The Atherosclerosis Risk in Communities Study (ARIC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Atherosclerosis Risk in Communities Study (ARIC) Summary: In compliance with the requirement of Section 3506(c) (2... days of the date of this publication. Proposed Collection: The Atherosclerosis Risk in Communities... primary objectives of the study are to: (1) investigate factors associated with both atherosclerosis...

  1. Macrophages heterogeneity in atherosclerosis – implications for therapy

    PubMed Central

    Wilson, Heather M

    2010-01-01

    Abstract Atherosclerosis is a chronic inflammatory disease occurring within the artery wall and is an underlying cause of cardiovascular complications, including myocardial infarction, stroke and peripheral vascular disease. Its pathogenesis involves many immune cell types with a well accepted role for monocyte/macrophages. Cholesterol-loaded macrophages are a characteristic feature of plaques and are major players in all stages of plaque development. As well as modulating lipid metabolism, macrophages secrete inflammatory cytokines, chemokines and reactive oxygen and nitrogen species that drive pathogenesis. They also produce proteases and tissue factor that contribute to plaque rupture and thrombosis. Macrophages are however heterogeneous cells and when appropriately activated, they phagocytose cytotoxic lipoproteins, clear apoptotic bodies, secrete anti-inflammatory cytokines and synthesize matrix repair proteins that stabilize vulnerable plaques. Pharmacological modulation of macrophage activity therefore represents a potential therapeutic strategy for atherosclerosis. The aim of this review is to provide an overview of the current understanding of the different macrophage subsets and their monocyte precursors, and, the implications of these subsets for atherosclerosis. This will present a foundation for highlighting novel opportunities to exploit the heterogeneity of macrophages as important diagnostic and therapeutic targets for atherosclerosis and its associated diseases. PMID:20629993

  2. A Modified Sesamol Derivative Inhibits Progression of Atherosclerosis

    PubMed Central

    Ying, Zhekang; Kherada, Nisharahmed; Kampfrath, Thomas; Mihai, Georgeta; Simonetti, Orlando; Desikan, Rajagopal; Selvendiran, Karuppaiyah; Sun, Qinghua; Ziouzenkova, Ouiliana; Parthasarathy, Sampath; Rajagopalan, Sanjay

    2017-01-01

    Objective Sesamol, a phenolic component of lignans, has been previously shown to reduce lipopolysaccharide-induced oxidative stress and upregulate phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase pathways. In the present study, we synthesized a modified form of sesamol (INV-403) to enhance its properties and assessed its effects on atherosclerosis. Methods and Results Watanabe heritable hyperlipidemic rabbits were fed with high-cholesterol chow for 6 weeks and then randomized to receive high-cholesterol diet either alone or combined with INV-403 (20 mg/kg per day) for 12 weeks. Serial MRI analysis demonstrated that INV-403 rapidly reduced atherosclerotic plaques (within 6 weeks), with confirmatory morphological analysis at 12 weeks posttreatment revealing reduced atherosclerosis paralleled by reduction in lipid and inflammatory cell content. Consistent with its effect on atherosclerosis, INV-403 improved vascular function (decreased constriction to angiotensin II and increased relaxation to acetylcholine), reduced systemic and plaque oxidative stress, and inhibited nuclear factor–κB activation via effects on nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation with coordinate reduction in key endothelial adhesion molecules. In vitro experiments in cultured endothelial cells revealed effects of INV-403 in reducing IκBα phosphorylation via inhibition of IκB kinase 2 (IKK2). Conclusion INV-403 is a novel modified lignan derivative that potently inhibits atherosclerosis progression via its effects on IKK2 and nuclear factor–κB signaling. PMID:21183734

  3. Molecular mechanisms of diabetes and atherosclerosis: role of adiponectin.

    PubMed

    Kishida, Ken; Funahashi, Tohru; Shimomura, Iichiro

    2012-06-01

    Type 2 diabetes mellitus (T2DM) is a disease characterized by inadequate beta-cell response due to progressive insulin resistance that typically accompanies physical inactivity and weight gain. T2DM is associated with substantial morbidity and mortality related to the associated atherosclerotic cardiovascular risks and diabetic vasculopathies, including microangiopathies (e.g., blindness and renal failure) and macroangiopathies (atherosclerosis). The increasing global prevalence of T2DM is linked to the rising rates of obesity, especially abdominal obesity. Visceral fat accumulation is upstream of obesity-related disorders including atherosclerotic cardiovascular disease (ACVD), and is associated with impaired insulin sensitivity and atherosclerosis through dysregulated production of adipocytokines, especially hypoadiponectinemia. This review article discusses the pathophysiological mechanisms responsible for T2DM and atherosclerosis, focusing on adiponectin. Clinical and experimental studies have shown that hypoadiponectinemia contributes to a variety of life style-related diseases including T2DM and atherosclerosis. It is likely that life-style modification, visceral fat reduction and use of medications that increase serum adiponectin levels (e.g., rimonabant, thiazolidinediones, fibrates, angiotensin receptor blocker and mineralocorticoid receptor blockade) when provided in combination can improve hypoadiponectinemia and thus prevent the development of life style-related diseases including T2DM and ACVD.

  4. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development

    PubMed Central

    Berbée, Jimmy F. P.; Boon, Mariëtte R; Khedoe, P. Padmini S. J.; Bartelt, Alexander; Schlein, Christian; Worthmann, Anna; Kooijman, Sander; Hoeke, Geerte; Mol, Isabel M.; John, Clara; Jung, Caroline; Vazirpanah, Nadia; Brouwers, Linda P.J.; Gordts, Philip L.S.M.; Esko, Jeffrey D.; Hiemstra, Pieter S.; Havekes, Louis M.; Scheja, Ludger; Heeren, Joerg; Rensen, Patrick C.N.

    2015-01-01

    Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by β3-adrenergic receptor stimulation protects from atherosclerosis in hyperlipidemic APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism that unlike hyperlipidemic Apoe−/− and Ldlr−/− mice expresses functional apoE and LDLR. BAT activation increases energy expenditure and decreases plasma triglyceride and cholesterol levels. Mechanistically, we demonstrate that BAT activation enhances the selective uptake of fatty acids from triglyceride-rich lipoproteins into BAT, subsequently accelerating the hepatic clearance of the cholesterol-enriched remnants. These effects depend on a functional hepatic apoE-LDLR clearance pathway as BAT activation in Apoe−/− and Ldlr−/− mice does not attenuate hypercholesterolaemia and atherosclerosis. We conclude that activation of BAT is a powerful therapeutic avenue to ameliorate hyperlipidaemia and protect from atherosclerosis. PMID:25754609

  5. Evaluation of the biomechanics of atherosclerosis by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Nitta, Shin-ichi; Schiott Jorgensen, Claus; Falk, Erling

    2001-07-01

    Acoustic microscopy provides not only the morphology, but also the biomechanical properties of the biological soft tissues. The biomechanics of atherosclerosis is important because the pathophysiology of atherosclerosis is closely related with mechanical properties and mechanical stress. Rupture of the fibrous cap of atheromatous plaque is the initial event in acute coronary syndrome such as acute myocardial infarction or unstable angina. In addition to extrinsic physical stresses to the plaque, the intrinsic biomechanical property of the plaque is important for assessing the mechanism of the rupture. Two sets of SAMs operating in 100 to 200 MHz and in 800 MHz to 1.3 GHz were equipped to measure the acoustic properties of atherosclerosis of human or mouse arteries. The values of attenuation and sound speed in the tissue components of atherosclerosis were measured by analyzing the frequency dependent characteristics of the amplitude and phase signals. Both values were highest in calcification and lowest in lipid pool. Although attenuation and sound speed were relatively high in intimal fibrosis, the inhomogeneity of acoustic parameters was found within the fibrous cap. Polarized microscopy for the collagen stained with Picrosirius red showed that the attenuation of ultrasound was significantly higher in type I collagen with orange polarized color compared to type III collagen with green color. SAM has shown the possibility to detect the plaque vulnerability and it might improve our understanding of the sudden rupture from micro-mechanical point of view.

  6. Oversized vein grafts develop advanced atherosclerosis in hypercholesterolemic minipigs

    PubMed Central

    2012-01-01

    Background Accelerated atherosclerosis is the main cause of late aortocoronary vein graft failure. We aimed to develop a large animal model for the study of pathogenesis and treatment of vein graft atherosclerosis. Methods An autologous reversed jugular vein graft was inserted end-to-end into the transected common carotid artery of ten hypercholesteroemic minipigs. The vein grafts were investigated 12-14 weeks later with ultrasound and angiograpy in vivo and microscopy post mortem. Results One minipig died during follow up (patent vein graft at autopsy), and one vein graft thrombosed early. In the remaining eight patent vein grafts, the mean (standard deviation) intima-media thickness was 712 μm (276 μm) versus 204 μm (74 μm) in the contralateral control internal jugular veins (P < .01). Advanced atherosclerotic plaques were found in three of four oversized vein grafts (diameter of graft > diameter of artery). No plaques were found in four non-oversized vein grafts (P < .05). Conclusions Our model of jugular vein graft in the common carotid artery of hypercholesterolemic minipigs displayed the components of human vein graft disease, i.e. thrombosis, intimal hyperplasia, and atherosclerosis. Advanced atherosclerosis, the main cause of late failure of human aortocoronary vein grafts was only seen in oversized grafts. This finding suggests that oversized vein grafts may have detrimental effects on patient outcome. PMID:22463679

  7. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis

    PubMed Central

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-01-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non-atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up- and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  8. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  9. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  10. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis.

  11. The role of the endocannabinoid system in atherosclerosis.

    PubMed

    Mach, F; Steffens, S

    2008-05-01

    Our current understanding of the pathophysiology of atherosclerosis suggests a prominent role for immune responses from its initiation through its complications. Given the increasing prevalence of cardiovascular risk factors worldwide, there is an urgent need to better understand the underlying mechanisms to improve current treatment protocols. A growing body of evidence suggests that endocannabinoid signalling plays a critical role in the pathogenesis of atherogenesis and its clinical manifestations. Blocking CB(1) receptors has been shown to mediate not only weight reduction, but also several cardiometabolic effects in rodents and humans, indicating a potential relevance for the process of atherosclerosis. Activation of CB(2) receptors with Delta(9)-tetrahydrocannabinol (THC) has been shown to inhibit atherosclerotic plaque progression in mice, mainly by inhibiting macrophage recruitment. Endocannabinoids released from endothelial cells, macrophages or platelets, reduce hypertension in rodents, a major risk factor for atherosclerosis. In addition, anandamide inhibits inflammatory gene expression in endothelial cells, and consequently monocyte adhesion. Conversely, endocannabinoids might also mediate pro-atherosclerotic effects by inducing platelet activation. In conclusion, the precise role of the endocannabinoid system during atherosclerosis is not yet understood. Whether increased endocannabinoid signalling is associated with disease progression and increased risk of acute thrombotic events remains to be determined.

  12. A role of matrix metalloproteinase-8 in atherosclerosis

    PubMed Central

    Laxton, Ross C.; Hu, Yanhua; Duchene, Johan; Zhang, Feng; Zhang, Zhongyi; Leung, Kit-Yi; Xiao, Qingzhong; Scotland, Ramona S.; Hodgkinson, Conrad P.; Smith, Katherine; Willeit, Johann; López-Otín, Carlos; Simpson, Iain A.; Kiechl, Stefan; Ahluwalia, Amrita; Xu, Qingbo; Ye, Shu

    2010-01-01

    Rationale Atherosclerotic lesions express matrix metalloproteinase-8 (MMP8) which possesses proteolytic activity on matrix proteins particularly fibrillar collagens and on non-matrix proteins such as angiotensin I (Ang I). Objective We studied whether MMP8 plays a role in atherogenesis. Methods and Results In atherosclerosis-prone apoE deficient mice, inactivating MMP8 resulted in a substantial reduction in atherosclerotic lesion formation. Immunohistochemical examinations showed that atherosclerotic lesions in MMP8 deficient mice had significantly fewer macrophages but increased collagen content. In line with results of in vitro assays showing Ang I cleavage by MMP8 generating angiotensin II (Ang II), MMP8 knockout mice had lower Ang II levels and lower blood pressure. In addition, we found that products of Ang I cleavage by MMP8 increased vascular cell adhesion molecule-1 (VCAM-1) expression and that MMP8 deficient mice had reduced VCAM-1 expression in atherosclerotic lesions. Intravital microscopy analysis showed that leukocyte rolling and adhesion on vascular endothelium was reduced in MMP8 knockout mice. Furthermore, we detected an association between MMP8 gene variation and extent of coronary atherosclerosis in patients with coronary artery disease. A relationship between MMP8 gene variation, plasma VCAM-1 level and atherosclerosis progression was also observed in a population-based, prospective study. Conclusion These results indicate that MMP8 is an important player in atherosclerosis. PMID:19745165

  13. IGFBP-3 Inhibits Cytokine-Induced Insulin Resistance and Early Manifestations of Atherosclerosis

    PubMed Central

    Cai, Qing; Kim, Ki Eun; Shin, Hye-Jung; Lee, Yong-Jae; Lee, Woo Jung; Kim, Jung Hyun; Oh, Youngman

    2013-01-01

    Metabolic syndrome is associated with visceral obesity, insulin resistance and an increased risk of cardiovascular diseases. Visceral fat tissue primarily consists of adipocytes that secrete cytokines leading to a state of systemic inflammation in obese conditions. One of the IGF-independent functions of IGFBP-3 is its role as an anti-inflammatory molecule. Our study in obese adolescents show a decrease in total IGFBP-3 levels and increase in proteolyzed IGFBP-3 in circulation when compared to their normal counterparts and establishes a positive correlation between IGFBP-3 proteolysis and adiposity parameters as well as insulin resistance. In human adipocytes, we show that IGFBP-3 inhibits TNF-α-induced NF-κB activity in an IGF-independent manner, thereby restoring the deregulated insulin signaling and negating TNF-α-induced inhibition of glucose uptake. IGFBP-3 further inhibits TNF-α, CRP and high glucose-induced NF-κB activity in human aortic endothelial cells (HAECs) and subsequently suppresses monocyte adhesion to HAEC through the IGFBP-3 receptor. In conclusion, these findings suggest that reduced levels of IGFBP-3 in circulation and reduced expression of IGFBP-3 in macrophages in obesity may result in suppression of its anti-inflammatory functions and therefore IGFBP-3 may present itself as a therapeutic for obesity-induced insulin resistance and for events occurring in the early stages of atherosclerosis. PMID:23383064

  14. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  15. Prevalence of coronary atherosclerosis in patients with aortic valve replacement

    PubMed Central

    Ottervanger, J.P.; Thomas, K.; Sie, T.H.; Haalebos, M.M.P.; Zijlstra, F.

    2002-01-01

    Background Because of a high prevalence of coronary artery disease in patients with aortic valve disease, coronary angiography is recommended before aortic valve replacement. However, during the last three decades, a decline in mortality due to coronary heart disease has been observed in the general population in both Western Europe and the United States. It is unknown whether preoperative angiography is still mandatory in all patients. Aim To assess the prevalence of angiographically defined coronary artery disease in patients with aortic valve replacement and trends during a ten-year period. Methods We performed a retrospective cross-sectional study of patients undergoing aortic valve replacement between 1988 and 1998 in our institution. Patients with a history of coronary artery disease and patients younger than 25 years were excluded. Coronary atherosclerosis was defined as one or more coronary artery luminal stenosis of 50% or more on preoperative coronary angiography. Results During the study period 1339 patients had aortic valve replacement in our institution, data on 1322 (98%) were available for analysis. Previous coronary artery disease was documented in 124 patients (10%). After exclusion of 17 patients (no angiography), data on a total of 1181 patients were analysed. Coronary atherosclerosis was present in 472 patients (40%) on preoperative coronary angiography. Several well-known risk factors of ischaemic heart disease were associated with coronary atherosclerosis. The prevalence of angiographically defined coronary atherosclerosis varied between 30% and 50% per year. There was, however, no significant trend during the study period. Multivariate analyses, to adjust for potential differences in risk factors during the observation period, did not change this conclusion. Conclusions The prevalence of angiographically defined coronary artery disease in patients scheduled for aortic valve replacement is still high. From 1988 to 1998, no significant change

  16. Subclinical Atherosclerosis and Obesity Phenotypes Among Mexican Americans

    PubMed Central

    Laing, Susan T.; Smulevitz, Beverly; Vatcheva, Kristina P.; Rahbar, Mohammad H.; Reininger, Belinda; McPherson, David D.; McCormick, Joseph B.; Fisher‐Hoch, Susan P.

    2015-01-01

    Background Data on the influence of obesity on atherosclerosis in Hispanics are inconsistent, possibly related to varying cardiometabolic risk among obese individuals. We aimed to determine the association of obesity and cardiometabolic risk with subclinical atherosclerosis in Mexican‐Americans. Methods and Results Participants (n=503) were drawn from the Cameron County Hispanic Cohort. Metabolic health was defined as <2 of the following: blood pressure ≥130/85; triglyceride ≥150 mg/dL; high‐density lipoprotein cholesterol <40 mg/dL (men) or <50 mg/dL (women); fasting glucose ≥100 mg/dL; homeostasis model assessment of insulin resistance value >5.13; or high‐sensitivity C‐reactive protein >3 mg/L. Carotid intima media thickness (cIMT) was measured. A high proportion of participants (77.8%) were metabolically unhealthy; they were more likely to be male, older, with fewer years of education, and less likely to meet daily recommendations regarding fruit and vegetable servings. One‐third (31.8%) had abnormal carotid ultrasound findings. After adjusting for covariates, mean cIMT varied across the obesity phenotypes (P=0.0001); there was no difference among the metabolically unhealthy regardless of whether they were obese or not. In multivariable analysis, after adjusting for covariates, cardiometabolic risk (P=0.0159), but not obesity (P=0.1446), was significantly associated with subclinical atherosclerosis. Conclusions In Mexican‐Americans, cardiometabolic risk has a greater effect on early atherosclerosis development than body mass index. Non‐obese but metabolically unhealthy participants had similar development of subclinical atherosclerosis as their obese counterparts. Interventions to maintain metabolic health among obese and non‐obese patients may be a more important goal than weight loss alone. PMID:25787312

  17. Gradient Echo MRI Characterization of Development of Atherosclerosis in the Abdominal Aorta in Watanabe Heritable Hyperlipidemic Rabbits

    SciTech Connect

    Wang, Yi-Xiang J. Kuribayashi, Hideto; Wagberg, Maria; Holmes, Andrew P.; Tessier, Jean J.; Waterton, John C.

    2006-08-15

    Purpose. The Watanabe Heritable Hyperlipidemic (WHHL) rabbit provides an important model of spontaneous atherosclerosis. With a strain of WHHL rabbits which do not develop abdominal aorta lumen stenosis even with advanced atherosclerosis, we studied the MRI-histology correlation, and the natural progression of atherosclerosis in the abdominal aorta. In addition, intra-reader segmentation repeatability and scan-rescan reproducibility were assessed. Methods. Two batches of female WHHL rabbits were used. The first batch of 6 rabbits was scanned at 20 weeks old. A second batch of 17 rabbits was scanned at 50 weeks old and then randomly divided into two subgroups: 8 were killed for histologic investigation; 9 were kept alive for follow-up, with repeat scanning a week later to assess scan-rescan reproducibility, and again at 73 weeks old to assess disease progression. MR images were acquired at 4.7 T using a chemical shift selective fat suppression gradient echo with a saturation band suppressing blood signal within the aortic lumen. Five slices per animal were acquired, centered around the renal artery region of the abdominal aorta, with in-plane resolution of 0.195 mm and slice thickness of 3 mm. Results. The coefficient of variation for intra-reader reproducibility for aortic wall thickness measurements was 2.5% for repeat segmentations of the same scans on the same day, but segmentations of these same scans made 8 months later showed a systematic change, suggesting that intra-reader bias as well as increased variability could compromise assessments made over time. Comparative analyses were therefore performed in one postprocessing session. The coefficient of variation for scan-rescan reproducibility for aortic wall thickness was 5.5% for nine pairs of scans acquired a week apart and segmented on the same day. Good MRI-histology correlation was obtained. The MRI-measured mean aortic wall thickness of animals at 20 weeks of age was 76% that of animals at 50 weeks of

  18. Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies.

    PubMed

    Zhang, Na; Xie, Xiaojie; Chen, Huiqiang; Chen, Han; Yu, Hong; Wang, Jian-An

    2014-08-01

    Atherosclerosis is a major contributor to life-threatening cardiovascular events, the leading cause of death worldwide. Since the mechanisms of atherosclerosis have not been fully understood, currently, there are no effective approaches to regressing atherosclerosis. Therefore, there is a dire need to explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of atherosclerosis. In recent years, stem cell-based therapies have held promises to various diseases, including atherosclerosis. Unfortunately, the efficacy of stem cell-based therapies for atherosclerosis as reported in the literature has been inconsistent or even conflicting. In this review, we summarize the current literature of stem cell-based therapies for atherosclerosis and discuss possible mechanisms and future directions of these potential therapies.

  19. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  20. Dexamethasone suppression test

    MedlinePlus

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medication. Afterward, your blood is drawn ...

  1. [Treatment of atherosclerosis. New percutaneous intraluminal techniques].

    PubMed

    Lablanche, J M

    1990-10-06

    Balloon-catheter angioplasty was introduced by Gruntzig in 1977 and has since proved effective, but 3 problems are still encountered: immediate reobstruction, restenosis during the first 3 months and extension of the procedure to a greater number of cases. In an attempt to solve these problems, other percutaneous/technics, associated or not with balloon angioplasty, have been devised. They are: (1) intraluminal stents which perfectly keep the vessel open after balloon angioplasty; (2) vaporization of atheromatous plaques by laser, and notably excimer laser which results in immediate recanalization, later completed by balloon angioplasty; (3) heating balloons which stick dissections and improve the immediate success rate; (4) atheroma-cutting and storing systems, such as Simpson's atherocath, cutting and aspirating systems, such as Stack's transluminal extraction catheter, or erasing systems, such as Auth's rotablator; (5) other sources of energy, such as ultrasounds, microwaves and radiofrequencies, will perhaps, be used in the near future. None of these new technics has solved the restenosis problem, but all have proved effective in suppressing the obstacle, there by giving hopes of reducing immediate complications and gradually widening the indications of percutaneous revascularization.

  2. Abdominal Aortic Diameter and Vascular Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Laughlin, Gail A.; Allison, Matthew A.; Jensky, Nicole; Aboyans, Victor; Wong, Nathan D.; Detrano, Robert; Criqui, Michael H.

    2011-01-01

    Objectives To gain insight into early mechanisms of aortic widening, we examined associations between the diameter of the abdominal aorta (AD) and cardiovascular disease (CVD) risk factors and biomarkers, as well as measures of subclinical atherosclerosis, in a multi-ethnic population. Design Cross-sectional cohort Methods A total of 1926 participants (mean age 62, 50% women) underwent chest and abdomen scanning by computed tomography, ultrasound of the carotid arteries, and CVD risk factor assessment. AD was measured 5 cm above and at the bifurcation. Results In a model containing traditional CVD risk factors, biomarkers and ethnicity, only age (standardized β=0.97), male sex (β=1.88), body surface area (standardized β=0.92), current smoking (β=0.42), D-dimer levels (β=0.19) and hypertension (β=0.53) were independently and significantly associated with increasing AD (in mm) at the bifurcation; use of cholesterol-lowering medications predicted smaller AD (β=-0.70) (P<.01 for all). These findings were similar for AD 5 cm above the bifurcation with one exception: compared to Caucasian-Americans, Americans of Chinese, African and Hispanic descent had significantly smaller AD 5 cm above the bifurcation (β's= -0.59, -0.49, and -0.52, respectively, all P<.01), whereas AD at the bifurcation did not differ by ethnicity. Physical activity, alcohol consumption, diabetes and levels of IL-6, CRP and homocysteine were not independently associated with AD. Higher aortic and coronary artery calcium burden, but not common carotid artery intima-media thickness, were independently, but modestly (β=0.11 to 0.19), associated with larger AD. Conclusions Incremental widening of the aortic diameter shared some, but not all, risk factors for occlusive vascular disease. PMID:21236707

  3. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: potential use in atherosclerosis.

    PubMed

    Selvarajan, Krithika; Narasimhulu, Chandrakala Aluganti; Bapputty, Reena; Parthasarathy, Sampath

    2015-04-01

    Dietary intervention to prevent inflammation and atherosclerosis has been a major focus in recent years. We previously reported that sesame oil (SO) was effective in inhibiting atherosclerosis in low-density lipoprotein-receptor negative mice. We also noted that the levels of many proinflammatory markers were lower in the SO-treated animals. In this study we tested whether the non-lipid, aqueous components associated with SO would have anti-inflammatory and antioxidant effects. Polymerase chain reaction array data indicated that sesame oil aqueous extract (SOAE) was effective in reducing lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. Expression of inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor α (TNF-α) was also analyzed independently in cells pretreated with SOAE followed by inflammatory assault. Effect of SOAE on TNF-α-induced MCP-1 and VCAM1 expression was also tested in human umbilical vein endothelial cells. We observed that SOAE significantly reduced inflammatory markers in both macrophages and endothelial cells in a concentration-dependent manner. SOAE was also effective in inhibiting LPS-induced TNF-α and IL-6 levels in vivo at different concentrations. We also noted that in the presence of SOAE, transcription and translocation of NF-kappaB was suppressed. SOAE was also effective in inhibiting oxidation of lipoproteins in vitro. These results suggest the presence of potent anti-inflammatory and antioxidant compounds in SOAE. Furthermore, SOAE differentially regulated expression of scavenger receptors and increased ATP-binding cassette A1 (ABCA1) mRNA expression by activating liver X receptors (LXRs), suggesting additional effects on lipid metabolism. Thus, SOAE appears multipotent and may serve as a valuable nonpharmacological agent in atherosclerosis and other inflammatory diseases.

  4. Chlamydia pneumoniae and atherosclerosis: the role of mast cells.

    PubMed

    Di Pietro, M; Schiavoni, G; Del Piano, M; Shaik, Y; Boscolo, P; Caraffa, A; Grano, M; Teté, S; Conti, F; Sessa, R

    2009-01-01

    Chlamydia pneumoniae (C. pneumoniae), a respiratory pathogen, has been implicated in the pathogenesis of atherosclerosis, an inflammatory progressive disease, characterized by the formation of atherosclerotic plaques. Among several types of inflammatory cells involved in the atherogenesis process, recently particular attention has been directed toward the mast cells. Experimental studies have provided several mechanisms by which C. pneumoniae and mast cells could play a role in all stages of atherosclerosis, from initial inflammatory lesions to plaque rupture. C. pneumoniae, as well as mast cells, may actively participate both through the production of cytokines and matrix-degrading metalloproteinases and by provoking apoptosis of atheroma-associated vascular cells, key events in plaque rupture. This mini-review provides a brief overview on adventitial inflammatory effects of C. pneumoniae and mast cells and their potential role in plaque instability. In addition, in this paper we review the role of mast cells in innate immunity.

  5. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis.

    PubMed

    Kim, Yongtae; Lobatto, Mark E; Kawahara, Tomohiro; Lee Chung, Bomy; Mieszawska, Aneta J; Sanchez-Gaytan, Brenda L; Fay, Francois; Senders, Max L; Calcagno, Claudia; Becraft, Jacob; Tun Saung, May; Gordon, Ronald E; Stroes, Erik S G; Ma, Mingming; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M; Langer, Robert

    2014-01-21

    Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid-polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.

  6. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis

    PubMed Central

    Kim, YongTae; Lobatto, Mark E.; Kawahara, Tomohiro; Lee Chung, Bomy; Mieszawska, Aneta J.; Sanchez-Gaytan, Brenda L.; Fay, Francois; Senders, Max L.; Calcagno, Claudia; Becraft, Jacob; Tun Saung, May; Gordon, Ronald E.; Stroes, Erik S. G.; Ma, Mingming; Farokhzad, Omid C.; Fayad, Zahi A.; Mulder, Willem J. M.; Langer, Robert

    2014-01-01

    Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid–polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system. PMID:24395808

  7. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    PubMed

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  8. Angiotensin-(1-7): new perspectives in atherosclerosis treatment

    PubMed Central

    Zhang, Feng; Liu, Jun; Li, Su-Fang; Song, Jun-Xian; Ren, Jing-Yi; Chen, Hong

    2015-01-01

    Angiotensin (Ang)-(1-7) is recognized as a new bioactive peptide in renin-angiotensin system (RAS). Ang-(1-7) is a counter-regulatory mediator of Ang-II which appears to be protective against cardiovascular disease. Recent studies have found that Ang-(1-7) played an important role in reducing smooth muscle cell proliferation and migration, improving endothelial function and regulating lipid metabolism, leading to inhibition of atherosclerotic lesions and increase of plaque stability. Although clinical application of Ang-(1-7) is restricted due to its pharmacokinetic properties, identification of stabilized compounds, including more stable analogues and specific delivery compounds, has enabled clinical application of Ang-(1-7). In this review, we discussed recent findings concerning the biological role of Ang-(1-7) and related mechanism during atherosclerosis development. In addition, we highlighted the perspective to develop therapeutic strategies using Ang-(1-7) to treat atherosclerosis. PMID:26788046

  9. [Morphological manifestations of systemic atherosclerosis found in fundus (experimental study)].

    PubMed

    Budzinskaia, M V; Fedorov, A A; Pliukhova, A A; Voevodina, T M; Balatskaia, N V

    2013-01-01

    Results of angiography and morphology of 32 eyes (16 chinchilla rabbits) with experimental atherosclerosis are presented. N.N. Anichkov and S.S. Khalatova experimental hypercholesterolemia model (1912) was used. The animals were divided into the following groups: initial and advanced atherosclerosis, control group, follow-up 3 and 6 months. After 3 months progressive reduction of perfused retinal vessels and early degenerative changes of neurons and photoreceptors were found. In 6 months these changes became more significant and generalized. Due to ongoing small vessel reduction blood flow went to the major vessels and changed its distribution followed by ischemia of adjacent retina. No changes in choriocapillary layer and retinal pigment epithelium were found in any of groups studied.

  10. Lysophospholipids and their G protein-coupled receptors in atherosclerosis.

    PubMed

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2016-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc.

  11. Lysophospholipids and their G protein-coupled receptors in atherosclerosis

    PubMed Central

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B.; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2015-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc. PMID:26594106

  12. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets

    PubMed Central

    Moss, Joe W. E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  13. Large animal models of atherosclerosis--new tools for persistent problems in cardiovascular medicine.

    PubMed

    Shim, J; Al-Mashhadi, R H; Sørensen, C B; Bentzon, J F

    2016-01-01

    Coronary heart disease and ischaemic stroke caused by atherosclerosis are leading causes of illness and death worldwide. Small animal models have provided insight into the fundamental mechanisms driving early atherosclerosis, but it is increasingly clear that new strategies and research tools are needed to translate these discoveries into improved prevention and treatment of symptomatic atherosclerosis in humans. Key challenges include better understanding of processes in late atherosclerosis, factors affecting atherosclerosis in the coronary bed, and the development of reliable imaging biomarker tools for risk stratification and monitoring of drug effects in humans. Efficient large animal models of atherosclerosis may help tackle these problems. Recent years have seen tremendous advances in gene-editing tools for large animals. This has made it possible to create gene-modified minipigs that develop atherosclerosis with many similarities to humans in terms of predilection for lesion sites and histopathology. Together with existing porcine models of atherosclerosis that are based on spontaneous mutations or severe diabetes, such models open new avenues for translational research in atherosclerosis. In this review, we discuss the merits of different animal models of atherosclerosis and give examples of important research problems where porcine models could prove pivotal for progress.

  14. Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity

    PubMed Central

    Yin, Changjun; Mohanta, Sarajo Kumar; Srikakulapu, Prasad; Weber, Christian; Habenicht, Andreas J. R.

    2016-01-01

    Artery tertiary lymphoid organs (ATLOs) are atherosclerosis-associated lymphoid aggregates with varying degrees of complexity ranging from small T/B-cell clusters to well-structured lymph node-like though unencapsulated lymphoid tissues. ATLOs arise in the connective tissue that surrounds diseased arteries, i.e., the adventitia. ATLOs have been identified in aged atherosclerosis-prone hyperlipidemic apolipoprotein E-deficient (ApoE−/−) mice: they are organized into distinct immune cell compartments, including separate T-cell areas, activated B-cell follicles, and plasma cell niches. Analyses of ATLO immune cell subsets indicate antigen-specific T- and B-cell immune reactions within the atherosclerotic arterial wall adventitia. Moreover, ATLOs harbor innate immune cells, including a large component of inflammatory macrophages, B-1 cells, and an aberrant set of antigen-presenting cells. There is marked neoangiogenesis, irregular lymphangiogenesis, neoformation of high endothelial venules, and de novo synthesis of lymph node-like conduits. Molecular mechanisms of ATLO formation remain to be identified though media vascular smooth muscle cells may adopt features of lymphoid tissue organizer-like cells by expressing lymphorganogenic chemokines, i.e., CXCL13 and CCL21. Although these data are consistent with the view that ATLOs participate in primary T- and B-cell responses against elusive atherosclerosis-specific autoantigens, their specific protective or disease-promoting roles remain to be identified. In this review, we discuss what is currently known about ATLOs and their potential impact on atherosclerosis and make attempts to define challenges ahead. PMID:27777573

  15. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis

    PubMed Central

    2014-01-01

    Background In humans there is a positive association between epicardial adipose tissue (EAT) volume and coronary atherosclerosis (CAD) burden. We tested the hypothesis that EAT contributes locally to CAD in a pig model. Methods Ossabaw miniature swine (n = 9) were fed an atherogenic diet for 6 months to produce CAD. A 15 mm length by 3–5 mm width coronary EAT (cEAT) resection was performed over the middle segment of the left anterior descending artery (LAD) 15 mm distal to the left main bifurcation. Pigs recovered for 3 months on atherogenic diet. Intravascular ultrasound (IVUS) was performed in the LAD to quantify atheroma immediately after adipectomy and was repeated after recovery before sacrifice. Coronary wall biopsies were stained immunohistochemically for atherosclerosis markers and cytokines and cEAT was assayed for atherosclerosis-related genes by RT-PCR. Total EAT volume was measured by non-contrast CT before each IVUS. Results Circumferential plaque length increased (p < 0.05) in the proximal and distal LAD segments from baseline until sacrifice whereas plaque length in the middle LAD segment underneath the adipectomy site did not increase. T-cadherin, scavenger receptor A and adiponectin were reduced in the intramural middle LAD. Relative to control pigs without CAD, 11β-hydroxysteroid dehydrogenase (11βHSD-1), CCL19, CCL21, prostaglandin D2 synthase, gp91phox [NADPH oxidase], VEGF, VEGFGR1, and angiotensinogen mRNAs were up-regulated in cEAT. EAT volume increased over 3 months. Conclusion In pigs used as their own controls, resection of cEAT decreased the progression of CAD, suggesting that cEAT may exacerbate coronary atherosclerosis. PMID:24387639

  16. Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis.

    PubMed

    Barton, Matthias

    2010-10-01

    Endothelial cells are both the source and target of factors contributing to atherosclerosis. After the discovery of the endothelium-derived relaxing factor (EDRF) by Robert F. Furchgott in 1980 it soon became clear that endothelial cells also release vasoactive factors distinct from nitric oxide (NO) namely, endothelium-derived contracting factors (EDCF) as well as hyperpolarizing factors (EDHF). Vasoactive factors derived from endothelial cells include NO/EDRF, reactive oxygen species, endothelins and angiotensins which have either EDRF or EDCF functions, cyclooxygenase-derived EDCFs and EDRFs, and EDHFs. Endothelial factors are formed by enzymes such as NO synthase, cyclooxygenase, converting enyzmes, NADPH oxidases, and epoxigenases, among others, and participate in the regulation of vascular homeostasis under physiological conditions; however, their abnormal regulation due to endothelial cell dysfunction contributes to disease processes such as atherosclerosis, arterial hypertension, and renal disease. Because of recent changes in world demographics and the declining health status of the world's population, both aging and obesity as independent risk factors for atherosclerosis-related diseases such as coronary artery disease and stroke, will continue to increase in the years to come. Obesity and associated conditions such as arterial hypertension and diabetes are now also some of the primary health concerns among children and adolescents. The similarities of pathomechanisms activated in obesity and aging suggest that obesity--at least in the vasculature--can be considered to have effects consistent with accelerated, "premature" aging. Pathomechanisms as well as the clinical issues of obesity- and aging-associated vascular changes important for atherosclerosis development and prevention are discussed.

  17. Westernization of Chinese adults and increased subclinical atherosclerosis.

    PubMed

    Woo, K S; Chook, P; Raitakari, O T; McQuillan, B; Feng, J Z; Celermajer, D S

    1999-10-01

    Cardiovascular event rates are much lower in China compared with developed countries. "Westernization" of diet and lifestyle in the Chinese, however, may lead to an increased prevalence of atherosclerosis-related diseases. Because carotid intima-media thickness (IMT) is a marker of subclinical atherosclerosis, we examined IMT and vascular risk profile in community-based groups of rural Chinese, Westernized urban Chinese, and urban whites. Mean IMT of the common carotid artery was measured in 348 healthy adults, aged 42+/-13 years (range 21 to 71 years); 116 subjects from rural China, 116 urban Chinese subjects living in Hong Kong or in Australia, and 116 urban Caucasians living in Australia. These 3 groups were matched for age, sex, and cigarette smoke exposure. Urban Chinese subjects had slightly better risk factor profile (higher HDL-cholesterol and lower blood pressure) compared with rural Chinese subjects. Despite this, however, the mean IMT was lowest in rural Chinese (0.50+/-0.10 mm), intermediate in urban Chinese (0.56+/-0.12 mm), and highest in urban whites (0.64+/-0.13 mm) (P<0.001 for comparisons between all groups). These differences in IMT were not altered after adjustment for the major traditional cardiovascular risk factors (serum lipids, smoking, and blood pressure or for body mass index). The influence of vascular risk factors on atherosclerosis between urban versus rural Chinese subjects was studied by multivariate regression models and by comparing the steepness of regression slopes between risk factors and IMT in the subject groups. The effects of smoking, HDL-cholesterol, and triglycerides on IMT were significantly greater in the urban compared with the rural Chinese (P<0.01). These data suggest that Westernization of Chinese subjects is associated with greater susceptibility to the pro-atherogenic effects of traditional vascular risk factors, such as lipids and smoking, and with evidence of increased IMT as a marker of subclinical

  18. Sublingual vaccine with GroEL attenuates atherosclerosis.

    PubMed

    Hagiwara, M; Kurita-Ochiai, T; Kobayashi, R; Hashizume-Takizawa, T; Yamazaki, K; Yamamoto, M

    2014-04-01

    Autoimmune responses to heat-shock protein 60 (HSP60) contribute to the progression of atherosclerosis, whereas immunization with HSP60 may induce atheroprotective responses. We assessed the capacity of an atheroprotective vaccine that targeted a recombinant HSP60 from Porphyromonas gingivalis (rGroEL) to induce a protective mucosal immune response. Female apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice received sublingual delivery of rGroEL prior to P. gingivalis 381 injection. The animals were euthanized 16 weeks later. Sublingual immunization with rGroEL induced significant rGroEL-specific serum IgG responses. Antigen-specific cells isolated from spleen produced significantly high levels of IL-10 and IFN-γ after antigen re-stimulation in vitro. Flow cytometric analysis indicated that the frequencies of both IL-10(+) and IFN-γ(+) CD4(+) Foxp3(+) cells increased significantly in submandibular glands (SMG). Furthermore, sublingual immunization with rGroEL significantly reduced atherosclerosis lesion formation in the aortic sinus and decreased serum CRP, MCP-1, and ox-LDL levels. These findings suggest that sublingual immunization with rGroEL is associated with the increase of IFNγ(+) or IL-10(+) Foxp3(+) cells in SMG and a systemic humoral response, which could be an effective strategy for the prevention of naturally occurring or P. gingivalis-accelerated atherosclerosis.

  19. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice

    PubMed Central

    Xu, Suowen; Yin, Meimei; Koroleva, Marina; Mastrangelo, Michael A.; Zhang, Wenbo; Bai, Peter; Little, Peter J.; Jin, Zheng Gen

    2016-01-01

    SIRT6 is an important member of sirtuin family that represses inflammation, aging and DNA damage, three of which are causing factors for endothelial dysfunction. SIRT6 expression is decreased in atherosclerotic lesions from ApoE−/− mice and human patients. However, the role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. Here we show that SIRT6 protects against endothelial dysfunction and atherosclerosis. Global and endothelium-specific SIRT6 knockout mice exhibited impaired endothelium-dependent vasorelaxation. Moreover, SIRT6+/− haploinsufficient mice fed a high-fat diet (HFD) also displayed impaired endothelium-dependent vasorelaxation. Importantly, SIRT6+/−;ApoE−/− mice after HFD feeding exhibited exacerbated atherosclerotic lesion development, concurrent with increased expression of the proinflammatory cytokine VCAM-1. Loss- and gain-of-SIRT6 function studies in cultured human endothelial cells (ECs) showed that SIRT6 attenuated monocyte adhesion to ECs. RNA-sequencing profiling revealed that SIRT6 overexpression decreased the expression of multiple atherosclerosis-related genes, including proatherogenic gene TNFSF4 (tumor necrosis factor superfamily member 4). Chromatin immunoprecipitation assays showed that SIRT6 decreased TNFSF4 gene expression by binding to and deacetylating H3K9 at TNFSF4 gene promoter. Collectively, these findings demonstrate that SIRT6 play a pivotal role in maintaining endothelial function and increased SIRT6 activity could be a new therapeutic strategy to combat atherosclerotic disease. PMID:27249230

  20. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis

    PubMed Central

    Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.

    2014-01-01

    Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472

  1. Plasma IL-5 concentration and subclinical carotid atherosclerosis

    PubMed Central

    Silveira, Angela; McLeod, Olga; Strawbridge, Rona J.; Gertow, Karl; Sennblad, Bengt; Baldassarre, Damiano; Veglia, Fabrizio; Deleskog, Anna; Persson, Jonas; Leander, Karin; Gigante, Bruna; Kauhanen, Jussi; Rauramaa, Rainer; Smit, Andries J.; Mannarino, Elmo; Giral, Philippe; Gustafsson, Sven; Söderberg, Stefan; Öhrvik, John; Humphries, Steve E.; Tremoli, Elena; de Faire, Ulf; Hamsten, Anders

    2015-01-01

    Objective Genetic variants robustly associated with coronary artery disease were reported in the vicinity of the interleukin (IL)-5 locus, and animal studies suggested a protective role for IL-5 in atherosclerosis. Therefore, we set this work to explore IL-5 as a plasma biomarker for early subclinical atherosclerosis, as determined by measures of baseline severity and change over time of carotid intima-media thickness (cIMT). Methods We used biobank and databases of IMPROVE, a large European prospective cohort study of high-risk individuals (n = 3534) free of clinically overt cardiovascular disease at enrollment, in whom composite and segment-specific measures of cIMT were recorded at baseline and after 15 and 30 months. IL-5 was measured with an immunoassay in plasma samples taken at baseline. Results IL-5 levels were lower in women than in men, lower in the South than in North of Europe, and showed positive correlations with most established risk factors. IL-5 showed significant inverse relationships with cIMT change over time in the common carotid segment in women, but no significant relationships to baseline cIMT in either men or women. Conclusions Our results suggest that IL-5 may be part of protective mechanisms operating in early atherosclerosis, at least in women. However, the relationships are weak and whereas IL-5 has been proposed as a potential molecular target to treat allergies, it is difficult to envisage such a scenario in coronary artery disease. PMID:25587992

  2. Subclinical coronary atherosclerosis and neighbourhood deprivation in an urban region.

    PubMed

    Dragano, Nico; Hoffmann, Barbara; Stang, Andreas; Moebus, Susanne; Verde, Pablo E; Weyers, Simone; Möhlenkamp, Stefan; Schmermund, Axel; Mann, Klaus; Jöckel, Karl-Heinz; Erbel, Raimund; Siegrist, Johannes

    2009-01-01

    Inhabitants of deprived neighbourhoods are at higher risk of coronary heart disease. In this study we investigate the hypothesis that social inequalities at neighbourhood level become already manifest in subclinical coronary atherosclerosis, as defined by electron-beam computed tomography derived measures. Coronary artery calcification was assessed as a marker of atherosclerosis in a population based sample of 4301 men and women (45-75 years) without a history of coronary heart disease. Participants lived in three adjacent cities in Germany and were examined between 2000 and 2003 as part of the Heinz Nixdorf Recall Study. Individual level data was combined with neighbourhood level information about unemployment, welfare and living space per inhabitant. This dataset was analysed with descriptive and multilevel regression methods. An association between neighbourhood deprivation and subclinical coronary calcification was observed. After adjustment for age and individual socioeconomic status male inhabitants of high unemployment neighbourhoods had an odds ratio of 1.45 (1.11, 1.96) of exhibiting a high calcification score (>75th percentile) compared to men living in low unemployment areas. The respective odds for women was 1.29 (0.97, 1.70). Additional explorative analyses suggest that clustering of unhealthy lifestyles in deprived neighbourhoods contributes to the observed association. In conclusion, findings suggest that certain neighbourhood characteristics promote the emergence of coronary atherosclerosis. This might point to a pathway from neighbourhood deprivation to manifest coronary heart disease.

  3. Robustness and evidence of mechanisms in early experimental atherosclerosis research.

    PubMed

    Parkkinen, Veli-Pekka

    2016-12-01

    This article considers the evaluation of experimental evidence for a causal relation between cholesterol and atherosclerosis from the beginning of the 1900s until the late 1950s. It has been argued that the medical community failed to see the implications of this early research, and at first unjustifiably rejected a causal link between cholesterol and atherosclerosis. This article argues to the contrary that the medical community was justified to conclude based on the experimental evidence that cholesterol (dietary or blood) is probably not an effective target for preventive treatment. However, the evidence would have been sufficient to ascribe to cholesterol a contributing causal role in atherosclerotic heart disease. This view is argued for based on a rational reconstruction of the researchers' evaluation of evidence, specifically, the robustness of evidence for a manipulable dependence between cholesterol and atherosclerosis on the one hand, and the evidence for a mediating mechanism on the other. The case study is used to illustrate that robustness is a feasible methodological principle even when evidence is discordant, and evidence of mechanism should be evaluated on a par with evidence of statistical dependence in establishing causal claims.

  4. [How corticoids, growth hormone and oestrogens influence lipids and atherosclerosis].

    PubMed

    Marek, J; Hána, V; Krsek, M

    2007-04-01

    The hormones with a strong influence on the lipid spectrum and the development of atherosclerosis include cortisol, growth hormone and oestrogens. Cortisol accelerates atherosclerosis both through dyslipidemia and through an increase in visceral fat, hypertension, increased insulin resistance and the development of reduced glucose tolerance which may result in diabetes mellitus. Even when a cortisol excess disappears, as is the case of patients cured of Cushing syndrome, arterial walls remain permanently vulnerable to the atherosclerotic process. In conditions involving a lack of growth hormone, dyslipidemia develops and increases the burden on the cardiovascular system if not treated in a timely manner by the substitution of growth hormone. Oestrogens have a double effect: they have an anti-atherogenic effect on artery walls that are not yet damaged by an atherosclerotic process, but where atherosclerosis has already developed they have a prothrombotic effect and destabilise the atheromatous plaques. If oestrogen is to be used as protection against the onset of atherogenesis, it is necessary to start in a period when the atherosclerotic process has not yet begun to damage the woman's arterial walls and it is best to use natural hormones (estradiol) and to prevent endometriosis it should be combined with crystalline progesterone applied locally--inravaginally. Oestrogens should be given in small doses, preferably parenterally. Even this will not prevent genetic oestrogen effects though.

  5. Association of Serum Osteocalcin with Insulin Resistance and Coronary Atherosclerosis

    PubMed Central

    2016-01-01

    Background To determine the associations between serum osteocalcin level and insulin resistance, coronary atherosclerosis by using dual-source coronary computed tomography angiography. Methods A total of 98 subjects (24 men and 74 women) were selected for this retrospective cross-sectional study who voluntarily visited a health examination center for routine health check-up including the blood test for serum osteocalcin level and coronary computed tomography angiography. Multiple regression analysis was used to determine which variables were independently related to osteocalcin levels and coronary atherosclerosis. Results Stepwise multiple regression analysis adjusted for age, sex, menopausal status, body mass index, serum alkaline phosphatase, serum calcium and phosphate showed that osteocalcin negatively correlated with serum glucose (β=-0.145, P=0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) index (β=-1.794, P=0.027) independently. The age, serum glucose, smoking status but not osteocalcin level were independent risk factors for coronary atherosclerosis by use of multiple logistic regression analysis after controlling for other variables. Conclusions Serum osteocalcin level was inversely associated with fasting glucose level and insulin resistance measured by HOMA-IR, suggesting that osteocalcin is important for glucose metabolism. However, in this study, no significant difference was observed in the serum osteocalcin level according to the presence of coronary atherosclerotic plaques. PMID:27965939

  6. Eating the Dead to Keep Atherosclerosis at Bay

    PubMed Central

    Brophy, Megan L.; Dong, Yunzhou; Wu, Hao; Rahman, H. N. Ashiqur; Song, Kai; Chen, Hong

    2017-01-01

    Atherosclerosis is the primary cause of coronary heart disease (CHD), ischemic stroke, and peripheral arterial disease. Despite effective lipid-lowering therapies and prevention programs, atherosclerosis is still the leading cause of mortality in the United States. Moreover, the prevalence of CHD in developing countries worldwide is rapidly increasing at a rate expected to overtake those of cancer and diabetes. Prominent risk factors include the hardening of arteries and high levels of cholesterol, which lead to the initiation and progression of atherosclerosis. However, cell death and efferocytosis are critical components of both atherosclerotic plaque progression and regression, yet, few currently available therapies focus on these processes. Thus, understanding the causes of cell death within the atherosclerotic plaque, the consequences of cell death, and the mechanisms of apoptotic cell clearance may enable the development of new therapies to treat cardiovascular disease. Here, we review how endoplasmic reticulum stress and cholesterol metabolism lead to cell death and inflammation, how dying cells affect plaque progression, and how autophagy and the clearance of dead cells ameliorates the inflammatory environment of the plaque. In addition, we review current research aimed at alleviating these processes and specifically targeting therapeutics to the site of the plaque. PMID:28194400

  7. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  8. DNA modifications in atherosclerosis: from the past to the future.

    PubMed

    Borghini, Andrea; Cervelli, Tiziana; Galli, Alvaro; Andreassi, Maria Grazia

    2013-10-01

    The role of DNA damage in the pathogenesis of atherosclerosis has been extensively investigated in recent decades. There is now clear that oxidative stress is an important inducer of both DNA damage and telomere attrition which, in turn, can gives rise to genome instability and vascular senescence. This review discusses the role of the DNA damage response, including the key DNA repair pathways (base excision repair, nucleotide excision repair, homologous recombination and non-homologous end joining), deregulated cell cycle and apoptosis in atherosclerosis. We also highlight emerging evidence suggesting that epigenetic changes (DNA methylation and microRNA-mediated mechanisms), not associated with alterations in DNA sequences, may play a critical role in the regulation of the DNA damage response. Nevertheless, further investigation is still required to better understand the complexity of DNA repair and DNA damage response in atherosclerosis, making this topic an exciting and promising field for future investigation. Unraveling these molecular mechanisms provide the rationale for the development of novel efficient therapies to combat the vascular aging process.

  9. Lasting monitoring of immune state in patients with coronary atherosclerosis

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Immune state monitoring is an expensive, invasive and sometimes difficult necessity in patients with different disorders. Immune reaction dynamics study in patients with coronary atherosclerosis provides one of the leading components to complication development, clinical course prognosis and treatment and rehabilitation tactics. We've chosen intravenous glucose injection as metabolic irritant in the following four groups of patients: men with proved coronary atherosclerosis (CA), non insulin dependent diabetes mellitus (NIDDM), men hereditary burden by CA and NIDDM and practically healthy persons with longlivers in generation. Immune state parameters such as quantity of leukocytes and lymphocytes, circulating immune complexes levels, serum immunoglobulin levels, HLA antigen markers were studied at 0, 30 and 60 minutes during glucose loading. To obtain continues time function of studied parameters received data were approximated by polynomials of high degree with after going first derivatives. Time functions analyze elucidate principally different dynamics studied parameters in all chosen groups of patients, which couldn't be obtained from discontinuous data compare. Leukocyte and lymphocyte levels dynamics correlated HLA antigen markers in all studied groups. Analytical estimation of immune state in patients with coronary atherosclerosis shows the functional "margin of safety" of immune system state under glucose disturbance. Proposed method of analytical estimation also can be used in immune system monitoring in other groups of patients.

  10. Anti-Atherosclerotic Effects of Vitamins D and E in Suppression of Atherogenesis.

    PubMed

    Rashidi, Bahman; Hoseini, Zahra; Sahebkar, Amirhossein; Mirzaei, Hamed

    2016-12-14

    Atherosclerosis is a progressive and multifactorial disease which occurs under the influence of various risk factors including endothelial dysfunction (ED), oxidative stress, and low-density lipoprotein (LDL) oxidation. In contract to the initial hypotheses on the usefulness of vitamin E supplementation for cardiovascular disease prevention, large outcome trials showed consumption of vitamin E has no obvious effect on cardiovascular disease and, in some cases, it may even increase the rate of mortality. This seemingly unexpected finding may be due to the opposite effects of vitamin E compounds. Vitamin E is a group of compounds which have different and even opposing effects, yet in most of the studies, the exact consumed component of vitamin E is not determined. It appears that the combined consumption of gamma-tocopherol, vitamin C, vitamin D, and tetrahydrobiopterin (BH4) may be extremely effective in both preventing atherogenesis and suppressing plaque development. In this regard, one of main issues is effect of vitamin E and D deficiency on microRNAs network in atherosclerosis. Various studies have indicated that miRNAs have key roles in atherosclerosis pathogenesis. The deficiency of vitamin E and D could provide a deregulation for miRNAs network and these events could lead to progression of atherosclerosis. Here, we highlighted a variety of mechanisms involve in the progression of atherosclerosis and effects of vitamin D and E on these mechanisms. Moreover, we summarized miRNAs involve in atherosclerosis and their regulation by vitamin E and D deficiency. This article is protected by copyright. All rights reserved.

  11. Association between high cystatin C levels and carotid atherosclerosis

    PubMed Central

    Kobayashi, Toshiyuki; Yokokawa, Hirohide; Fujibayashi, Kazutoshi; Haniu, Tomomi; Hisaoka, Teruhiko; Fukuda, Hiroshi; Naito, Toshio

    2017-01-01

    AIM To investigate the association between carotid atherosclerosis and cystatin C (CysC) and to determine the optimal CysC cut-off value. METHODS One hundred twenty-eight subjects were included in this study. Atherosclerosis was defined as a maximum carotid plaque thickness (MCPT) of greater than 2 mm. A receiver operating characteristic curve analysis was used to determine the diagnostic value of serum CysC for atherosclerosis. The subjects were divided into two groups according to the CysC cut-off value. We screened for diabetes, hypertension, dyslipidemia, smoking status, alcohol consumption, and exercise behavior. The association between atherosclerosis and CysC levels was assessed using multivariate analysis. RESULTS The subjects were then divided into two groups according to the CysC cut-off value (0.73 mg/L). The median age of the high CysC group was 72 years (85% males), whereas that of the low CysC group was 61 years (63% males). The CysC levels were significantly correlated with Cr and estimated glomerular filtration rate (eGFR) values. Body-mass index, visceral fat area, hypertension, diabetes mellitus, and MCPT were significantly higher in the high CysC group than in the low CysC group. Furthermore, the eGFR was significantly lower in the high CysC group. Regarding lifestyle habits, only the exercise level was lower in the high CysC group than in the low CysC group. Multivariate analysis, adjusted for age and sex, revealed that high CysC levels were significantly associated with an MCPT of ≥ 2 mm (odds ratio: 2.92; 95%CI: 1.13-7.99). CONCLUSION Higher CysC levels were associated with an MCPT of ≥ 2 mm. The CysC cut-off value of 0.73 mg/L appears to aid in the diagnosis of atherosclerosis. PMID:28289532

  12. Habitual fish intake and clinically silent carotid atherosclerosis

    PubMed Central

    2014-01-01

    Background Fish consumption is recommended as part of a healthy diet. However, there is a paucity of data concerning the relation between fish consumption and carotid atherosclerosis. We investigated the association between habitual fish consumption and asymptomatic carotid atherosclerosis, defined as the presence of plaques and/or increased intima-media thickness (≥ 0.90 mm), in non-diabetic participants. Methods Nine hundred-sixty-one (range of age: 18–89 yrs; 37.1% males) adult participants without clinically known atherosclerotic disease were randomly recruited among the customers of a shopping mall in Palermo, Italy, and cross-sectionally investigated. Each participant answered a food frequency questionnaire and underwent high-resolution ultrasonographic evaluation of both carotid arteries. Routine laboratory blood measurements were obtained in a subsample of 507 participants. Results Based on habitual fish consumption, participants were divided into three groups: non-consumers or consumers of less than 1 serving a week (24.0%), consumers of 1 serving a week (38.8%), and consumers of ≥ 2 servings a week (37.2%). Age-adjusted prevalence of carotid atherosclerosis (presence of plaques or intima media thickness ≥ 0.9 mm) was higher in the low fish consumption group (13.3%, 12.1% and 6.6%, respectively; P = 0.003). Multivariate analysis evidenced that carotid atherosclerosis was significantly associated with age (OR = 1.12; 95% CI = 1.09-1.14), hypertension on pharmacologic treatment (OR = 1.81; 95% CI = 1.16-2.82), and pulse pressure (OR = 1.03; 95% CI = 1.01-1.04), while consuming ≥2 servings of fish weekly was protective compared with the condition of consumption of <1 serving of fish weekly (OR = 0.46; 95% CI = 0.26-0.80). Conclusions High habitual fish consumption seems to be associated with less carotid atherosclerosis, though adequate interventional trials are necessary to confirm the role of fish

  13. Detailed analysis of association between common single nucleotide polymorphisms and subclinical atherosclerosis: The Multi-ethnic Study of Atherosclerosis.

    PubMed

    Vargas, Jose D; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Rotter, Jerome I; Post, Wendy S; Polak, Joseph F; Budoff, Matthew J; Bluemke, David A

    2016-06-01

    Previously identified single nucleotide polymorphisms (SNPs) in genome wide association studies (GWAS) of cardiovascular disease (CVD) in participants of mostly European descent were tested for association with subclinical cardiovascular disease (sCVD), coronary artery calcium score (CAC) and carotid intima media thickness (CIMT) in the Multi-Ethnic Study of Atherosclerosis (MESA). The data in this data in brief article correspond to the article Common Genetic Variants and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis [1]. This article includes the demographic information of the participants analyzed in the article as well as graphical displays and data tables of the association of the selected SNPs with CAC and of the meta-analysis across ethnicities of the association of CIMT-c (common carotid), CIMT-I (internal carotid), CAC-d (CAC as dichotomous variable with CAC>0) and CAC-c (CAC as continuous variable, the log of the raw CAC score plus one) and CVD. The data tables corresponding to the 9p21 fine mapping experiment as well as the power calculations referenced in the article are also included.

  14. Fire Suppression and Response

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?

  15. Down-regulation of hsa-miR-148b inhibits vascular smooth muscle cells proliferation and migration by directly targeting HSP90 in atherosclerosis

    PubMed Central

    Zhang, Xinqi; Shi, Hua; Wang, Yuanlin; Hu, Jianxin; Sun, Zhaolin; Xu, Shuxiong

    2017-01-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are crucial pathological processes that are involved in atherosclerosis. Growing evidence suggests that microRNAs (miRNAs) play critical roles in VSMCs functions. Here, we analyzed the expression of four atherosclerosis-related miRNAs and found that hsa-miR-148b was significantly down-regulated in plaques from atherosclerotic patients compared to a healthy control group. The restoration of hsa-miR-148b function in cells transfected with a hsa-miR-148b mimicmarkedly inhibited VSMCs proliferation and migration compared to a hsa-miR-148b mimic control. Furthermore, we discovered that heat shock protein 90 (HSP90) was a direct target of hsa-miR-148b in VSMCs. Hsa-miR-148b suppressed HSP90 expression by directly binding its 3’-untranslated region (UTR). In addition, the expression of hsa-miR-148b was negatively correlated with the HSP90 mRNA levels in plaques of atherosclerotic patients. Interestingly, the overexpression of HSP90 partly abrogated the hsa-miR-148b-mediated inhibition of VSMCs proliferation and migration. Our study provides the first evidence that hsa-miR-148b has anti-proliferative and migratory functions by targeting HSP90 in VSMCs and may aidin the development of new biomarkers and potential therapeutic targets for atherosclerosis. PMID:28337290

  16. Dietary Cocoa Powder Improves Hyperlipidemia and Reduces Atherosclerosis in apoE Deficient Mice through the Inhibition of Hepatic Endoplasmic Reticulum Stress

    PubMed Central

    Guan, Hua; Lin, Yan; Bai, Liang; An, Yingfeng; Shang, Jianan; Wang, Zhao; Zhao, Sihai; Fan, Jianglin

    2016-01-01

    Cocoa powder is rich in flavonoids, which have many beneficial effects on human health, including antioxidative and anti-inflammatory effects. The aim of our study was to investigate whether the intake of cocoa powder has any influence on hyperlipidemia and atherosclerosis and examine the underlying molecular mechanisms. We fed apoE knockout mice a Western diet supplemented with either 0.2% (low group) or 2% (high group) cocoa powder for 12 weeks. The groups fed dietary cocoa powder showed a significant reduction in both plasma cholesterol levels and aortic atherosclerosis compared to the control group. Analysis of mRNA profiling of aortic atherosclerotic lesions revealed that the expression of several genes related to apoptosis, lipid metabolism, and inflammation was significantly reduced, while the antiapoptotic gene Bcl2 was significantly increased in the cocoa powder group compared to the control. RT-PCR analysis along with Western blotting revealed that a diet containing cocoa powder inhibited the expression of hepatic endoplasmic reticulum stress. These data suggest that cocoa powder intake improves hyperlipidemia and atherosclerosis, and such beneficial effects are possibly mediated through the suppression of hepatic endoplasmic reticulum stress. PMID:26980943

  17. Atherosclerosis associated with pericardial effusion in a central bearded dragon (Pogona vitticeps).

    PubMed

    Schilliger, Lionel; Lemberger, Karin; Chai, Norin; Bourgeois, Aude; Charpentier, Maud

    2010-09-01

    Atherosclerosis is a common disease in pet birds, particularly in psittacines, and is frequently found when performing postmortem examinations on adult and old dogs, in which it is mainly associated with endocrine diseases, such as hypothyroidism and diabetes mellitus. However, atherosclerosis is poorly documented in reptiles and consequently poorly understood. In the current case report, atherosclerosis and pericardial effusion were diagnosed in a 2-year-old male central bearded dragon (Pogona vitticeps) based on ultrasound visualization, necropsy, and histologic examination.

  18. Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice.

    PubMed

    Zhang, Yuan; Zhang, Yi

    2016-07-01

    Atherosclerosis is a specific form of an artery wall thickens, a syndrome affecting arterial blood vessels due to a chronic inflammatory response in the walls of arteries, which is promoted by fat accumulation. Toll-like receptors (TLRs) play prominent roles in inflammatory responses. And TLR5 is overexpressed in several diseases. Here in our study, we investigated the effect of TLR5 in high fat-induced atherosclerosis via NF-κB signaling pathway modulating pro-inflammatory cytokines releasing. Our results found that high fat induced atherosclerosis in wild type mice with fat accumulation and inflammatory response through NF-κB activation. Contrastly, TLR5 knockout mice displayed lower fat accumulation and ameliorated inflammation after high fat feeding with NF-κB inactivation. In addition, pterostilbene, as a natural dimethyl ether derivative of resveratrol mainly from blueberries, has diverse pharmacological activities, especially anti-inflammation. Our study also found that pterostilbene displayed inhibited role in suppressing inflammatory response through inactivating NF-κB signaling pathway regulated by TLR5 down-regulation in high fat-induced mice. Moreover, in vitro experiments of vascular smooth muscle cells (VSMCs) challenged with LPS or TNF-α, further indicated that NF-κB was involved in atherosclerosis progression, leading to high secretion of pro-inflammatory cytokines. However, VSMCs from TLR5 deficient mice inhibited phosphorylated levels of NF-κB signalilng pathway, finally resulting in down-regulation of inflammatory cytokines. Notably, pterostilbene also displayed suppressed role in inflammatory response via NF-κB inactivity in LPS or TNF-α-induced VSMCs by decreasing TLR5 expression. The results above indicated a novel therapeutic strategy of pterostilbene to protect against atherosclerosis via TLR5 regulation for clinic treatment in the future.

  19. A Proinflammatory Secretome Mediates the Impaired Immunopotency of Human Mesenchymal Stromal Cells in Elderly Patients With Atherosclerosis.

    PubMed

    Kizilay Mancini, Özge; Lora, Maximilien; Shum-Tim, Dominique; Nadeau, Stephanie; Rodier, Francis; Colmegna, Inés

    2017-02-14

    Inflammation plays a pivotal role in the initiation and progression of atherosclerosis (ATH). Due to their potent immunomodulatory properties, mesenchymal stromal cells (MSCs) are evaluated as therapeutic tools in ATH and other chronic inflammatory disorders. Aging reduces MSCs immunopotency potentially limiting their therapeutic utility. The mechanisms that mediate the effect of age on MSCs immune-regulatory function remain elusive and are the focus of this study. Human adipose tissue-derived MSCs were isolated from patients undergoing coronary artery bypass graft surgery. MSCs:CD4(+) T-cell suppression, a readout of MSCs' immunopotency, was assessed in allogeneic coculture systems. MSCs from elderly subjects were found to exhibit a diminished capacity to suppress the proliferation of activated T cells. Soluble factors and, to a lesser extent, direct cell-cell contact mechanisms mediated the MSCs:T-cell suppression. Elderly MSCs exhibited a pro-inflammatory secretome with increased levels of interleukin-6 (IL-6), IL-8/CXCL8, and monocyte chemoattractant protein-1 (MCP-1/CCL2). Neutralization of these factors enhanced the immunomodulatory function of elderly MSCs. In summary, our data reveal that in contrast to young MSCs, MSCs from elderly individuals with ATH secrete high levels of IL-6, IL-8/CXCL8 and MCP-1/CCL2 which mediate their reduced immunopotency. Consequently, strategies aimed at targeting pro-inflammatory cytokines/chemokines produced by MSCs could enhance the efficacy of autologous cell-based therapies in the elderly. © Stem Cells Translational Medicine 2017.

  20. Why did ancient people have atherosclerosis?: from autopsies to computed tomography to potential causes.

    PubMed

    Thomas, Gregory S; Wann, L Samuel; Allam, Adel H; Thompson, Randall C; Michalik, David E; Sutherland, M Linda; Sutherland, James D; Lombardi, Guido P; Watson, Lucia; Cox, Samantha L; Valladolid, Clide M; Abd El-Maksoud, Gomaa; Al-Tohamy Soliman, Muhammad; Badr, Ibrahem; el-Halim Nur el-Din, Abd; Clarke, Emily M; Thomas, Ian G; Miyamoto, Michael I; Kaplan, Hillard S; Frohlich, Bruno; Narula, Jagat; Stewart, Alexandre F R; Zink, Albert; Finch, Caleb E

    2014-06-01

    Computed tomographic findings of atherosclerosis in the ancient cultures of Egypt, Peru, the American Southwest and the Aleutian Islands challenge our understanding of the fundamental causes of atherosclerosis. Could these findings be true? Is so, what traditional risk factors might be present in these cultures that could explain this apparent paradox? The recent computed tomographic findings are consistent with multiple autopsy studies dating as far back as 1852 that demonstrate calcific atherosclerosis in ancient Egyptians and Peruvians. A nontraditional cause of atherosclerosis that could explain this burden of atherosclerosis is the microbial and parasitic inflammatory burden likely to be present in ancient cultures inherently lacking modern hygiene and antimicrobials. Patients with chronic systemic inflammatory diseases of today, including systemic lupus erythematosus, rheumatoid arthritis, and human immunodeficiency virus infection, experience premature atherosclerosis and coronary events. Might the chronic inflammatory load of ancient times secondary to infection have resulted in atherosclerosis? Smoke inhalation from the use of open fires for daily cooking and illumination represents another potential cause. Undiscovered risk factors could also have been present, potential causes that technologically cannot currently be measured in our serum or other tissue. A synthesis of these findings suggests that a gene-environmental interplay is causal for atherosclerosis. That is, humans have an inherent genetic susceptibility to atherosclerosis, whereas the speed and severity of its development are secondary to known and potentially unknown environmental factors.

  1. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis

    NASA Astrophysics Data System (ADS)

    Hamada, Michito; Nakamura, Megumi; Tran, Mai Thi Nhu; Moriguchi, Takashi; Hong, Cynthia; Ohsumi, Takayuki; Dinh, Tra Thi Huong; Kusakabe, Manabu; Hattori, Motochika; Katsumata, Tokio; Arai, Satoko; Nakashima, Katsuhiko; Kudo, Takashi; Kuroda, Etsushi; Wu, Chien-Hui; Kao, Pei-Han; Sakai, Masaharu; Shimano, Hitoshi; Miyazaki, Toru; Tontonoz, Peter; Takahashi, Satoru

    2014-01-01

    MafB is a transcription factor that induces myelomonocytic differentiation. However, the precise role of MafB in the pathogenic function of macrophages has never been clarified. Here we demonstrate that MafB promotes hyperlipidemic atherosclerosis by suppressing foam-cell apoptosis. Our data show that MafB is predominantly expressed in foam cells found within atherosclerotic lesions, where MafB mediates the oxidized LDL-activated LXR/RXR-induced expression of apoptosis inhibitor of macrophages (AIM). In the absence of MafB, activated LXR/RXR fails to induce the expression of AIM, a protein that is normally responsible for protecting macrophages from apoptosis; thus, Mafb-deficient macrophages are prone to apoptosis. Haematopoietic reconstitution with Mafb-deficient fetal liver cells in recipient LDL receptor-deficient hyperlipidemic mice revealed accelerated foam-cell apoptosis, which subsequently led to the attenuation of the early atherogenic lesion. These findings represent the first evidence that the macrophage-affiliated MafB transcription factor participates in the acceleration of atherogenesis.

  2. Atherosclerosis and Liver Function Tests in Coronary Angiography Patients

    PubMed Central

    Doganer, YC; Rohrer, JE; Aydogan, U; Agerter, DC; Cayci, T; Barcin, C

    2015-01-01

    ABSTRACT Objective: Elevated aminotransferase levels indicating liver function, even in the normal range, have attracted great concern as potential novel markers of cardiovascular risk assessment. We hypothesized the possibility that liver function test variations in the normal range might be meaningfully associated to coronary artery disease (CAD). Method: Eighty-eight patients were randomly selected from those who underwent coronary angiography from June 2010 to June 2011 after applying to the outpatient cardiology clinic in Gulhane Military Medical Academy. According to the results of angiographies, patients were classified into three groups as normal, non-critical (< 50% involvement in coronaries), and critical (≥ 50% involvement in coronaries). In addition to angiographic intervention, measurements of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, albumin and the other serum parameters were performed in all patients. Results: The patient groups of CAD were balanced (28 critical cases, 30 non-critical cases and 30 normal cases). Mean age was 51.93 ± 9.3 (range 32–65) years and 19.3 per cent (n = 17) were females. Multiple linear regression analysis of all three liver function tests explained a significant portion of the variance, but adjusted r-squares were small (AST = 0.174, ALT = 0.242, albumin = 0.124). Albumin was significantly higher for patients with critical CAD than for patients with no CAD (beta = 3.205, p = 0.002). Non-critical CAD was not significantly different from no CAD for any of the dependent variables. Mean AST was significantly higher for patients taking aspirin (beta = 0.218, p = 0.049), as was mean ALT (beta = 0.264, p = 0.015). Conclusion: Alanine aminotransferase and AST may not be associated with angiographically determined coronary atherosclerosis. Albumin may be more sensitive to demonstrate the burden of atherosclerosis. These results indicate that the association between the liver

  3. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  4. Lipoprotein(a) accelerates atherosclerosis in uremic mice[S

    PubMed Central

    Pedersen, Tanja X.; McCormick, Sally P.; Tsimikas, Sotirios; Bro, Susanne; Nielsen, Lars B.

    2010-01-01

    Uremic patients have increased plasma lipoprotein(a) [Lp(a)] levels and elevated risk of cardiovascular disease. Lp(a) is a subfraction of LDL, where apolipoprotein(a) [apo(a)] is disulfide bound to apolipoprotein B-100 (apoB). Lp(a) binds oxidized phospholipids (OxPL), and uremia increases lipoprotein-associated OxPL. Thus, Lp(a) may be particularly atherogenic in a uremic setting. We therefore investigated whether transgenic (Tg) expression of human Lp(a) increases atherosclerosis in uremic mice. Moderate uremia was induced by 5/6 nephrectomy (NX) in Tg mice with expression of human apo(a) (n = 19), human apoB-100 (n = 20), or human apo(a) + human apoB [Lp(a)] (n = 15), and in wild-type (WT) controls (n = 21). The uremic mice received a high-fat diet, and aortic atherosclerosis was examined 35 weeks later. LDL-cholesterol was increased in apoB-Tg and Lp(a)-Tg mice, but it was normal in apo(a)-Tg and WT mice. Uremia did not result in increased plasma apo(a) or Lp(a). Mean atherosclerotic plaque area in the aortic root was increased 1.8-fold in apo(a)-Tg (P = 0.025) and 3.3-fold (P = 0.0001) in Lp(a)-Tg mice compared with WT mice. Plasma OxPL, as detected with the E06 antibody, was associated with both apo(a) and Lp(a). In conclusion, expression of apo(a) or Lp(a) increased uremia-induced atherosclerosis. Binding of OxPL on apo(a) and Lp(a) may contribute to the atherogenicity of Lp(a) in uremia. PMID:20584868

  5. Influence of chronic exercise on carotid atherosclerosis in marathon runners

    PubMed Central

    Taylor, Beth A; Zaleski, Amanda L; Capizzi, Jeffrey A; Ballard, Kevin D; Troyanos, Christopher; Baggish, Aaron L; D'Hemecourt, Pierre A; Dada, Marcin R; Thompson, Paul D

    2014-01-01

    Objectives The effect of habitual, high-intensity exercise training on the progression of atherosclerosis is unclear. We assessed indices of vascular health (central systolic blood pressure (SBP) and arterial stiffness as well as carotid intima-medial thickness (cIMT)) in addition to cardiovascular risk factors of trained runners versus their untrained spouses or partners to evaluate the impact of exercise on the development of carotid atherosclerosis. Setting field study at Boston Marathon. Participants 42 qualifiers (mean age±SD: 46±13 years, 21 women) for the 2012 Boston Marathon and their sedentary domestic controls (46±12 years, n=21 women). Outcomes We measured medical and running history, vital signs, anthropometrics, blood lipids, C reactive protein (CRP), 10 years Framingham risk, central arterial stiffness and SBP and cIMT. Results Multiple cardiovascular risk factors, including CRP, non-high-density lipoprotein cholesterol, triglycerides, heart rate, body weight and body mass index (all p<0.05), were reduced in the runners. The left and right cIMT, as well as central SBP, were not different between the two groups (all p>0.31) and were associated with age (all r≥0.41; p<0.01) and Framingham risk score (all r≥0.44; p<0.01) independent of exercise group (all p>0.08 for interactions). The amplification of the central pressure waveform (augmentation pressure at heart rate 75 bpm) was also not different between the two groups (p=0.07) but was related to age (p<0.01) and group (p=0.02) in a multiple linear regression model. Conclusions Habitual endurance exercise improves the cardiovascular risk profile, but does not reduce the magnitude of carotid atherosclerosis associated with age and cardiovascular risk factors. PMID:24531453

  6. Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis

    PubMed Central

    Allen, Sean; Liu, Yu-Gang; Scott, Evan

    2016-01-01

    Atherosclerosis is an inflammatory disorder with a pathophysiology driven by both innate and adaptive immunity and a primary cause of cardiovascular disease (CVD) worldwide. Vascular inflammation and accumulation of foam cells and their products induce maturation of atheromas, or plaques, which can rupture by metalloprotease action, leading to ischemic stroke or myocardial infarction. Diverse immune cell populations participate in all stages of plaque maturation, many of which directly influence plaque stability and rupture via inflammatory mechanisms. Current clinical treatments for atherosclerosis focus on lowering serum levels of low-density lipoprotein (LDL) using therapeutics such as statins, administration of antithrombotic drugs, and surgical intervention. Strategies that address cell-mediated inflammation are lacking, and consequently have recently become an area of considerable research focus. Nanomaterials have emerged as highly advantageous tools for these studies, as they can be engineered to target specific inflammatory cell populations, deliver therapeutics of wide-ranging solubilities and enhance analytical methods that include imaging and proteomics. Furthermore, the highly phagocytic nature of antigen presenting cells (APCs), a diverse cell population central to the initiation of immune responses and inflammation, make them particularly amenable to targeting and modulation by nanoscale particulates. Nanomaterials have therefore become essential components of vaccine formulations and treatments for inflammation-driven pathologies like autoimmunity, and present novel opportunities for immunotherapeutic treatments of CVD. Here, we review recent progress in the design and use of nanomaterials for therapeutic assessment and treatment of atherosclerosis. We will focus on promising new approaches that utilize nanomaterials for cell-specific imaging, gene therapy and immunomodulation. PMID:27135051

  7. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis.

    PubMed

    Huo, Mingyu; Huang, Yuhong; Qu, Dan; Zhang, Hongsong; Wong, Wing Tak; Chawla, Ajay; Huang, Yu; Tian, Xiao Yu

    2017-03-01

    BMAL1, the nonredundant transcription factor in the core molecular clock, has been implicated in cardiometabolic diseases in mice and humans. BMAL1 controls the cyclic trafficking of Ly6c(hi) monocytes to sites of acute inflammation. Myeloid deficiency of Bmal1 also worsens chronic inflammation in diet-induced obesity. We studied whether myeloid Bmal1 deletion promotes atherosclerosis by enhancing monocyte recruitment to atherosclerotic lesions. By generating Bmal1(FloxP/FloxP);LysM(Cre) mice on the Apoe(-/-) background, we showed that Bmal1 deletion in myeloid cells increased the size of atherosclerotic lesions. Bmal1 deficiency in monocytes and macrophages resulted in an increased total number of lesional macrophages in general and Ly6c(hi) infiltrating monocyte-macrophages in particular, accompanied by skewed M2 to M1 macrophage phenotype. Ly6c(hi) and/or Ly6c(lo) monocyte subsets in blood, spleen, and bone marrow were not altered. Cell tracking and adoptive transfer of Ly6c(hi) monocytes showed Bmal1 deficiency induced more trafficking of Ly6c(hi) monocytes to atherosclerotic lesions, preferential differentiation of Ly6c(hi) monocytes into M1 macrophages, and increased macrophage content and lesion size in the carotid arteries. We demonstrated that Bmal1 deficiency in macrophages promotes atherosclerosis by enhancing recruitment of Ly6c(hi) monocytes to atherosclerotic lesions.-Huo, M., Huang, Y., Qu, D., Zhang, H., Wong, W. T., Chawla, A., Huang, Y., Tian, X. Y. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis.

  8. STAT4 deficiency reduces the development of atherosclerosis in mice.

    PubMed

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses.

  9. Experimental diet-induced atherosclerosis in Quaker parrots (Myiopsitta monachus).

    PubMed

    Beaufrère, H; Nevarez, J G; Wakamatsu, N; Clubb, S; Cray, C; Tully, T N

    2013-11-01

    Spontaneous atherosclerosis is common in psittaciformes, and clinical signs associated with flow-limiting stenosis are encountered in pet birds. Nevertheless, a psittacine model of atherosclerosis has not been developed for research investigations. Sixteen captive-bred Quaker parrots (Myiopsitta monachus) were used in this study. While 4 control birds were fed a maintenance diet, 12 other birds were fed an atherogenic diet composed of 1% cholesterol controlling for a calorie-to-protein ratio for periods ranging from 2 to 8 months. The birds were euthanized at the end of their respective food trial period. Histopathology, transmission electron microscopy, and cholesterol measurement were performed on the ascending aorta and brachiocephalic and pulmonary arteries. Plasma lipoproteins, cholesterol, and triglycerides were also measured on a monthly basis. Significant atherosclerotic lesions were induced within 2 months and advanced atherosclerotic lesions within 4 to 6 months. The advanced lesions were histologically similar to naturally occurring lesions identified in the same parrot species with a lipid core and a fibrous cap. Ultrastructurally, there were extracellular lipid, foam cell, and endothelial changes. Arterial cholesterol content increased linearly over time. Plasma cholesterol and low-density lipoprotein (LDL) significantly increased over time by an average of 5- and 15-fold, respectively, with a shift from high-density lipoprotein to LDL as the main plasma lipoprotein. Quaker parrots also exhibited high plasma cholesteryl ester transfer protein activity that increased, although not significantly, over time. This experiment demonstrates that in Quaker parrots fed 1% cholesterol, advanced atherosclerosis can be induced relatively quickly, and lesions resemble those found in other avian models and humans.

  10. The pigeon (Columba livia) model of spontaneous atherosclerosis.

    PubMed

    Anderson, J L; Smith, S C; Taylor, R L

    2014-11-01

    Multiple animal models have been employed to study human atherosclerosis, the principal cause of mortality in the United States. Each model has individual advantages related to specific pathologies. Initiation, the earliest disease phase, is best modeled by the White Carneau (WC-As) pigeon. Atherosclerosis develops spontaneously in the WC-As without either external manipulation or known risk factors. Furthermore, susceptibility is caused by a single gene defect inherited in an autosomal recessive manner. The Show Racer (SR-Ar) pigeon is resistant to atherosclerosis. Breed differences in the biochemistry and metabolism of celiac foci cells have been described. For example, WC-As have lower oxidative metabolism but higher amounts of chondroitin-6-sulfate and nonesterified fatty acids compared with SR-Ar. Gene expression in aortic smooth muscle cells was compared between breeds using representational difference analysis and microarray analysis. Energy metabolism and cellular phenotype were the chief gene expression differences. Glycolysis and synthetic cell types were related to the WC-As but oxidative metabolism and contractile cell types were related to the SR-Ar. Rosiglitazone, a PPARγ agonist, blocked RNA binding motif (RBMS1) expression in WC-As cells. The drug may act through the c-myc oncogene as RBMS1 is a c-myc target. Proteomic tests of aortic smooth muscle cells supported greater glycosylation in the WC-As and a transforming growth factor β effect in SR-Ar. Unoxidized fatty acids build up in WC-As cells because of their metabolic deficiency, ultimately preventing the contractile phenotype in these cells. The single gene responsible for the disease is likely regulatory in nature.

  11. The association between periodontal disease parameters and severity of atherosclerosis

    PubMed Central

    Ketabi, Mohammad; Meybodi, Fatemeh Rashidi; Asgari, Mohammad Reza

    2016-01-01

    Background: Atherosclerosis is the most common cause for heart attack and stroke. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. The aim of this research was to determine the possible association between chronic periodontal disease and severity of atherosclerosis. Materials and Methods: Eighty-two subjects that were referred to Chamran Heart Hospital in Isfahan for angiography were involved in this study. Fifty-nine subjects had coronary artery obstruction (CAO) and 23 showed no obstruction after angiography. The severity of CAO was assessed. Periodontal parameters including pocket depth (PD), gingival recession (R), clinical attachment level (CAL), and bleeding on probing (BOP) of all subjects were recorded. The decayed-missing-filled (DMF) index of all subjects was also measured. For statistical analysis, Pearson correlation test, Chi-square, and independent t-test were used. Results: There were significant positive correlation between variables R, PD, CAL, decayed (D), missing (M), DMF, BOP, and degree of CAO. However, there were no significant differences between filling variable degree of CAO (left anterior descending, left circumflex, and right coronary artery). Independent t-test showed that the mean of variables R, PD, AL, D, M, and DMF in patients with obstructed arteries were significantly higher than subjects without CAO. But there were no significant differences between variable F in two groups. Conclusion: The results of this cross-section analytical study showed an association between periodontal disease and dental parameters with the severity of CAO measured by angiography. However, this association must not interpret as a cause and effect relationship. PMID:27274346

  12. Fluorescent Molecular Tomography for In Vivo Imaging of Mouse Atherosclerosis.

    PubMed

    Arranz, Alicia; Rudin, Markus; Zaragoza, Carlos; Ripoll, Jorge

    2015-01-01

    Optical imaging technologies such as fluorescence molecular tomography (FMT) are gaining great relevance in cardiovascular research. The main reason is the increased number of available fluorescent agents, especially those termed "activatable probes," which remain quenched under baseline conditions and are fluorescent when a specific enzymatic activity is present. A major characteristic of FMT is the possibility of obtaining quantitative data of fluorescence signal distribution in a noninvasive fashion and using nonionizing radiation, making FMT an invaluable tool for longitudinal studies with biomedical applications. Here, we describe a standard procedure to perform FMT experiments in atherosclerosis mouse models, from the handling of the animals to the reconstruction of the 3D images.

  13. Recent Advances of Radionuclide-based Molecular Imaging of Atherosclerosis

    PubMed Central

    Kazuma, Soraya M.; Sultan, Deborah; Zhao, Yongfeng; Detering, Lisa; You, Meng; Luehmann, Hannah P.; Abdalla, Dulcineia S.P.; Liu, Yongjian

    2015-01-01

    Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclide-based imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression. PMID:26369676

  14. Studies of atherosclerosis determinants and precursors during childhood and adolescence*

    PubMed Central

    Tell, G. S.; Tuomilehto, J.; Epstein, F. H.; Strasser, T.

    1986-01-01

    At a Meeting of Investigators on Epidemiological Studies of Atherosclerosis Determinants and Precursors, which was held in Geneva on 7-9 November 1983, representatives from 26 countries reviewed the current status of epidemiological studies in this area. Particular interest was shown in the following determinants of cardiovascular disease: blood pressure, blood lipid levels, body weight, pathological studies, and tobacco use. Working papers on each determinant were prepared, and recommendations were made on areas for research, and on the need for prevention programmes and pathological studies. This article summarizes the work of the meeting. PMID:3490929

  15. Prevention of atherosclerosis progression in asymptomatic healthy elderly.

    PubMed

    Lees, Robert S

    2007-11-01

    This review focuses on the role of lipid-lowering, blood pressure-lowering, antithrombotic drugs and diet and their place in the prevention and treatment of atherosclerosis in middle-aged and elderly men and woman. The major emphasis is on noninvasive assessment of the extent of atherosclerotic plaque and the importance of following plaque progression or regression by use of noninvasive ultrasound. With these data, we can demonstrate to both patients and physicians the value, at any age, of treating hypertension and abnormal blood lipids.

  16. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    PubMed Central

    Kurita-Ochiai, Tomoko; Jia, Ru; Cai, Yu; Yamaguchi, Yohei; Yamamoto, Masafumi

    2015-01-01

    Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis. PMID:26783845

  17. Hail suppression and society.

    PubMed

    Changnon, S A; Farhar, B C; Swanson, E R

    1978-04-28

    An interdisciplinary assessment of hail suppression in the past, present, and future has shown it to be currently scientifically uncertain but a potentially beneficial future technology. An established suppression technology would be widely adopted in the Great Plains, providing benefits to agriculture and secondarily to the American consumer. Development of a reliable technology will require a sizable longterm federal commitment to atmospheric and social research. Subcritical funding would be a mistake. Orderly future usage of hail suppression, with its scientific complexities and regional character, will necessitate development of governmental regulations, evaluation procedures, interstate arrangements, and means for compensating those who lose from modification.

  18. Atherosclerosis in LDLR-Knockout Mice Is Inhibited, but Not Reversed, by the PPARγ Ligand Pioglitazone

    PubMed Central

    Nakaya, Hideaki; Summers, Barbara D.; Nicholson, Andrew C.; Gotto, Antonio M.; Hajjar, David P.; Han, Jihong

    2009-01-01

    Thiazolidinediones, a class of drugs for the treatment of type-2 diabetes, are synthetic ligands for peroxisome proliferator-activated receptor-γ. They have been demonstrated to possess cardioprotective effects in humans and anti-atherogenic properties in animal models. However, the question remains whether a peroxisome proliferator-activated receptor-γ ligand can reverse the development of atherosclerosis. In this study, we tested the effects of pioglitazone on the development of established atherosclerosis in low-density lipoprotein receptor-null mice. We observed that atherosclerosis in low-density lipoprotein receptor-null mice progressed when mice were fed a high-fat diet. Pioglitazone treatment of atherogenic mice prevented this progression of atherosclerosis from its middle stages of disease, but was not able to reverse it. Withdrawal of the high-fat diet from mice with advanced atherosclerosis did not result in a reduction in lesion sizes. Pioglitazone treatment also had no effect on advanced atherosclerosis. Levels of high density lipoprotein cholesterol correlated inversely with lesion development when pioglitazone was given during lesion progression. However, pioglitazone had no effect on circulating high density lipoprotein levels in mice in which treatment was initiated following 14 weeks on the high-fat diet. These findings have implications for the analysis of therapeutic agents in murine models of atherosclerosis and the use of pioglitazone in patients with established atherosclerosis. PMID:19435790

  19. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis.

    PubMed

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-03-22

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.

  20. Prevention of Coronary Atherosclerosis: The Role of a College Health Service.

    ERIC Educational Resources Information Center

    Manchester, Ralph A.; Greenland, Philip

    1987-01-01

    This paper reviews the concept of behavioral risk factors for atherosclerosis which become entrenched in adolescence or young adulthood. Evidence favoring intervention in the adolescent years and a screening program at the University of Rochester Health Service are described. A preliminary strategy for prevention of atherosclerosis on campus is…

  1. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis

    PubMed Central

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1. PMID:27011179

  2. Coronary Atherosclerosis The Implications of Being a Woman.

    PubMed

    Morales-Villegas, E

    2014-07-01

    The profile of ischemic heart disease by coronary atherosclerosis has been developed based on clinical, paraclinical and angiographic grounds inherent to the male gender. A man in his 40s - 50s with "classical" cardiovascular risk factors, angina pectoris and hemodynamically significant myocardial ischemia associated with angiographic stenosis (≥ 50% endovascular diameter reduction equivalent to ≥ 75% endovascular area reduction and determining a trans-stenotic pressure gradient) is the prototype over which guidelines for prevention, diagnosis and treatment of this disease are structured. However, this "male" pattern of coronary atherosclerosis is not the rule in female gender. Therefore, in women, the frequent lack of a clinical, paraclinical and angiographic profile, classically masculine, results in a suboptimal medical approach, characterized by low implementation of the guidelines for prevention, diagnosis and treatment of ischemic heart disease. The final consequence of this cycle, favored by other gender, social and environmental circumstances, is a high morbidity and mortality caused by this pathology in the female gender. In this chapter, which concludes with a review of the state-of-the-art knowledge of atheroma in females, the current concepts on the physiological level of c-LDL, oxidized c-LDL "a mimicked pathogen" and atherogenesis will be reviewed in sequence for didactic purposes.

  3. CD47 blocking antibodies restore phagocytosis and prevent atherosclerosis

    PubMed Central

    Kojima, Yoko; Volkmer, Jens-Peter; McKenna, Kelly; Civelek, Mete; Lusis, A. Jake; Miller, Clint; Direnzo, Daniel; Nanda, Vivek; Ye, Jianqin; Connolly, Andrew; Schadt, Eric; Quertermous, Thomas; Betancur, Paola; Maegdefessel, Lars; Perisic, Ljubica; Hedin, Ulf; Weissman, Irv; Leeper, Nicholas J.

    2016-01-01

    Summary Atherosclerosis is the disease process underlying heart attack and stroke1. Advanced lesions at risk for rupture are characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris2. Why these cells are not cleared remains unknown3. Here we show that atherogenesis is associated with upregulation of CD47, a key ‘don’t eat me’ molecule known to render malignant cells resistant to programmed cell removal (PrCR), or ‘efferocytosis’4–7. We find that administration of CD47 blocking antibodies reverses this defect in efferocytosis, normalizes the clearance of diseased vascular tissue, and ameliorates atherosclerosis in multiple mouse models. Mechanistic studies implicate the pro-atherosclerotic factor TNF-α as a fundamental driver of impaired PrCR, explaining why this process is compromised in vascular disease. Similar to recent observations in cancer5, impaired efferocytosis appears to play a pathogenic role in cardiovascular disease, but is not a fixed defect and may represent a novel therapeutic target. PMID:27437576

  4. BHUx: a patented polyherbal formulation to prevent hyperlipidemia and atherosclerosis.

    PubMed

    Tripathi, Yamini B

    2009-01-01

    Since hyperlipidemia, inflammation and obesity are closely related to atherosclerosis, therefore management of these factors together would be beneficial for overall treatment approach for atherosclerosis. Although, Indian system of medicine, especially Ayurveda has several medicinal plants with proven beneficial claims towards these pathological conditions, but most of them lack enough experimental data. BHUx is a novel polyherbal formulation, consisting of 5 medicinal plants namely Termenalia arjuna, Strychnox nux vomica, Boswellia serrata, Commiphora mukul, and Semecarpus anacardium, which have history of clinical use as single or in other combinations, but these plant fractions were never tried collectively in this ratio as in BHUx, which has been found to be effective on all the etiological factors, together. In this paper, antioxidant, anti-inflammatory, hypo-lipidemic, anti-proliferative properties of BHUx have been studied on several experimental models based on chemical tests, cell culture, in vitro models, and in vivo experiments with normal and transgenic animals. A separate pre-clinical toxicity study has also been carried out to prove its safety margin in therapeutic doses. Further, clinical trail of BHUx is under way, before it comes to market for public use as functional food to maintain healthy heart. This article also review some patent related to the field.

  5. Targeting IRE1 with small molecules counteracts progression of atherosclerosis

    PubMed Central

    Tufanli, Ozlem; Telkoparan Akillilar, Pelin; Acosta-Alvear, Diego; Kocaturk, Begum; Onat, Umut Inci; Hamid, Syed Muhammad; Çimen, Ismail; Weber, Christian

    2017-01-01

    Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis. PMID:28137856

  6. Lipoproteins and the progression/regression of atherosclerosis.

    PubMed

    Barth, J D

    1995-10-01

    Lipoproteins and the impact of lipid lowering on progression and regression of coronary artery disease are discussed. Angiographically assessed regression studies are reviewed (NHLBI, LIT, LHT, CLAS I and II, FATS, POSCH, Heidelberg, STARS, SCRIP, MAAS, PLAC I, HARP, UC-SF), as are B-mode ultrasound studies (ACAPS, PLAC II) and survival studies (Oslo diet-smoking study, SSSS, Pravastatin, Oxford). Although study populations and the interventions are different in the studies, I have come to the following conclusions. Regression of atherosclerosis correlates well with reduction in LDL cholesterol and an increase in HDL cholesterol. Although overall improvement in the severity and extent of the disease was modest, reduction of clinical events was impressive. Lipid modulation may stabilize existing lesions by improving the stability of the lesion cap and/or promoting loss of cholesterol content from within the plaque. Survival studies indicate that lipid lowering lowers morbidity and increases longevity in patients with established coronary heart disease. The B-mode ultrasound studies using the carotid artery as surrogate for the change in atherosclerosis in the coronary seems extremely promising. The atherosclerotic process as well as complications may be studied at an early stage using noninvasive methods.

  7. Imaging of coronary atherosclerosis in various susceptible groups

    PubMed Central

    Nerlekar, Nitesh; Wong, Dennis T. L.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of death and disability worldwide. Atherosclerosis, which is the primary pathophysiologic mechanism for the development of plaque leading to CAD, is a multifactorial process resulting from a complex interplay between genetic susceptibility and various risk factors such as hypertension (HT), dyslipidaemia, diabetes mellitus (DM) and smoking. In addition, influences from other disease states such as chronic kidney disease (CKD), obesity and the metabolic syndrome as well as gender and ethnic diversity also contribute to the disease process. Insights from pathological observations and advances in cellular and molecular biology have helped us understand the process of plaque formation, progression and rupture leading to events. Several intravascular imaging techniques such as intravascular ultrasound (IVUS), Virtual histology IVUS (VH-IVUS) and optical coherence tomography (OCT) allow in vivo assessment of plaque burden, plaque morphology and response to therapy. In addition, non invasive assessment using coronary artery calcium (CAC) score allows risk stratification and plaque burden assessment whilst computed tomography coronary angiography (CTCA) allows evaluation of luminal stenosis, plaque characterisation and quantification. This review aims to summarise the results of invasive and non-invasive imaging studies of coronary atherosclerosis seen in various high-risk populations including DM, metabolic syndrome, obesity, CKD and, gender differences and ethnicity. Understanding the phenotype of plaques in various susceptible groups may allow potential development of personalised therapies. PMID:27500095

  8. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis

    PubMed Central

    Rojas, Joselyn; Salazar, Juan; Martínez, María Sofía; Palmar, Jim; Bautista, Jordan; Chávez-Castillo, Mervin; Gómez, Alexis; Bermúdez, Valmore

    2015-01-01

    Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD. PMID:26491604

  9. MicroRNAs and lipoproteins: a connection beyond atherosclerosis?

    PubMed Central

    Norata, Giuseppe Danilo; Sala, Federica; Catapano, Alberico Luigi; Fernández-Hernando, Carlos

    2014-01-01

    MicroRNAs (miRNAs) are involved in the pathogenesis of a number of cardiovascular diseases. In this review article, we have summarized the role of miRNAs in regulating lipid metabolism and how their therapeutical inhibition may lead to new approaches to treat cardiometabolic diseases, including atherosclerosis and metabolic syndrome. Specific miRNAs, such as miR-33a and -33b, represent one of the most interesting and attractive targets for metabolic-related disorders and anti-miR33 approaches are under intensive investigation. In addition to miR-33, other miRNAs, including miR-122, are also emerging as key players in lipid metabolism. More recently miRNAs were shown to exert their activities in a paracrine manner and also systemically. The latter is possible due to lipid-carriers, including lipoproteins, that transport and protect miRNAs from degradation. The emerging strong connection between miRNAs, lipoproteins and lipid metabolism indicates the existence of a reciprocal modulation that might go beyond atherosclerosis. PMID:23260873

  10. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    SciTech Connect

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of ({sup 35}S)-sodium sulfate and ({sup 3}H)-serine or ({sup 3}H)-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of {sup 35}S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect.

  11. Regression of Atherosclerosis: Insights from Animal and Clinical Studies

    PubMed Central

    Feig, Jonathan E.

    2014-01-01

    Based on studies that extend back to the 1920s, regression and stabilization of atherosclerosis in humans has gone from just a dream to one that is achievable. Review of the literature indicates that the successful attempts at regression generally applied robust measures to improve plasma lipoprotein profiles. Examples include extensive lowering of plasma concentrations of atherogenic apolipoprotein B and enhancement of reverse cholesterol transport from atheromata to the liver. Possible mechanisms responsible for lesion shrinkage include decreased retention of atherogenic apolipoprotein B within the arterial wall, efflux of cholesterol and other toxic lipids from plaques, emigration of lesional foam cells out of the arterial wall, and influx of healthy phagocytes that remove necrotic debris as well as other components of the plaque. However, currently available clinical agents cause less dramatic changes in plasma lipoprotein levels, and thereby fail to stop most cardiovascular events. There is, therefore, a clear need for preclinical and clinical testing of new agents expected to facilitate atherosclerosis regression with the hope that additional mechanistic insights will allow further progress. PMID:24751561

  12. Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress.

    PubMed

    Battelli, Maria Giulia; Polito, Letizia; Bolognesi, Andrea

    2014-12-01

    Endothelial xanthine oxidoreductase (XOR) together with NAD(P)H oxidase and nitric oxide (NO) synthase plays a physiologic role in inflammatory signalling, the regulation of NO production and vascular function. The oxidative stress generated by these enzymes may induce endothelial dysfunction, leading to atherosclerosis, cardiovascular diseases and metabolic syndrome. XOR activity creates both oxidant and anti-oxidant products that are implicated in the development of hypertension, smoking vascular injury, dyslipidemia and diabetes, which are the main risk factors of atherosclerosis. In particular, uric acid may have a protective as well as a detrimental role in vascular alterations, thus justifying the multi-directional effects of XOR inhibition. Moreover, XOR products are associated with cell differentiation, leading to adipogenesis and foam cell formation, as well as to the production of monocyte chemoattractant protein-1 from arterial smooth muscle cells, after proliferation and migration. The role of XOR in adipogenesis is also connected with insulin resistance and obesity, two main features of type 2 diabetes.

  13. Telomere Length and the Cancer–Atherosclerosis Trade-Off

    PubMed Central

    Stone, Rivka C.; Horvath, Kent; Kark, Jeremy D.; Susser, Ezra; Tishkoff, Sarah A.; Aviv, Abraham

    2016-01-01

    Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan. PMID:27386863

  14. Atherosclerosis--an immune disease: The Anitschkov Lecture 2007.

    PubMed

    Hansson, Göran K

    2009-01-01

    Atherosclerosis is an inflammatory disease. This article reviews the emergence of this concept from studies of patients and their lesions, experimental animal models, and epidemiological cohorts. Immunohistochemical studies identified immune cells and mediators and provided evidence for inflammatory activation in the atherosclerotic lesion. In parallel, cell culture studies demonstrated the capacity of vascular cells to interact with immune cells. Subsequent studies of clinical and epidemiological materials have identified inflammatory markers and immunoregulatory genes as contributors of risk for myocardial infarction and stroke. Finally, experiments using gene-targeted mice have provided mechanistic understanding of the disease process. It is now thought that the atherosclerotic process is initiated when low-density lipoproteins accumulate in the intima, activate the endothelium, and promote recruitment of monocytes and T cells. Monocytes differentiate into macrophages, internalize modified lipoproteins, and end up as foam cells. T cells in lesions recognize local antigens and mount T helper-1 responses that contribute to local inflammation and plaque growth. This atherogenic pathway is counterbalanced by anti-inflammatory signals provided by regulatory immunity. Intensified inflammatory activation may lead to local proteolysis, plaque rupture, thrombus formation, ischemia and infarction. Novel therapeutic opportunities may emerge from understanding the role of inflammation in atherosclerosis.

  15. Myeloid cells in atherosclerosis: a delicate balance of anti-inflammatory and proinflammatory mechanisms

    PubMed Central

    Koltsova, Ekaterina K.; Hedrick, Catherine C.; Ley, Klaus

    2016-01-01

    Purpose of review Atherosclerosis is chronic disease, whose progression is orchestrated by the balance between proinflammatory and anti-inflammatory mechanisms. Various myeloid cells, including monocytes, macrophages, dendritic cells and neutrophils can be found in normal and atherosclerotic aortas, in which they regulate inflammation and progression of atherosclerosis. The lineage relationship between blood monocyte subsets and the various phenotypes and functions of myeloid cells in diseased aortas is under active investigation. Recent findings Various subsets of myeloid cells play diverse roles in atherosclerosis. This review discusses new findings in phenotypic and functional characterization of different subsets of macrophages, in part determined by the transcription factors IRF5 and Trib1, and dendritic cells, characterized by the transcription factor Zbtb46, in atherosclerosis. Summary Improved understanding proinflammatory and anti-inflammatory mechanisms of macrophages and dendritic cell functions is needed for better preventive and therapeutic measures in atherosclerosis. PMID:24005215

  16. Progress and prospect of mesenchymal stem cell-based therapy in atherosclerosis

    PubMed Central

    Zhang, Ximei; Huang, Feng; Chen, Yanming; Qian, Xiaoxian; Zheng, Song Guo

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial intima, occurring usually in the aged populations who are suffering from hypertension, dyslipidemia and diabetes for a long time. Research on atherosclerosis has shown that macrophage foam cell formation, inflammation, dyslipidemia and immune cells infiltration are all involved in regulating the onset and progression of atherosclerosis. Mesenchymal stem cells (MSCs) originated from different kinds of tissue are a group of cells possessing well-established self-renewal and multipotent differentiation properties as well as immunomodulatory and anti-inflammatory roles. Recent studies have displayed their dyslipidemia regulation functions. Transplantation of MSCs to atherosclerotic patients might be a new multifactorial therapeutic strategy to improve atherosclerosis. This review updates the advancement on MSCs and atherosclerosis. PMID:27829989

  17. Growth hormone suppression test

    MedlinePlus

    GH suppression test; Glucose loading test; Acromegaly - blood test; Gigantism - blood test ... At least 3 blood samples are taken. The test is done in the following way: The first blood sample is collected between 6 ...

  18. 75 FR 63488 - Submission for OMB Review; Comment Request; Multi-Ethnic Study of Atherosclerosis (MESA) Event...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Study of Atherosclerosis (MESA) Event Surveillance SUMMARY: Under the provisions of Section 3507(a)(1)(D... Collection: Title: Multi-Ethnic Study of Atherosclerosis (MESA) Event Surveillance. Type of Information... disease (CVD)-- that is, atherosclerosis and other forms of CVD that have not produced signs and...

  19. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  20. The atherosclerosis burden score (ABS): a convenient ultrasound-based score of peripheral atherosclerosis for coronary artery disease prediction.

    PubMed

    Yerly, Patrick; Marquès-Vidal, Pedro; Owlya, Reza; Eeckhout, Eric; Kappenberger, Lukas; Darioli, Roger; Depairon, Michèle

    2015-03-01

    Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to <0.001 with the other five US endpoints) in 203 patients undergoing coronary angiography. ABS was also more correlated with CAD extension (R = 0.55; P < 0.001). Furthermore, in a second group of 1128 patients without cardiovascular disease, ABS was weakly correlated with the European Society of Cardiology chart risk categories (R(2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.

  1. Role of adiponectin in insulin-resistant hypertension and atherosclerosis.

    PubMed

    Murakami, Hideyuki; Ura, Nobuyuki; Furuhashi, Masato; Higashiura, Katsuhiro; Miura, Tetsuji; Shimamoto, Kazuaki

    2003-09-01

    Insulin resistance is one of the major risk factors associated with development of hypertension and atherosclerosis. Recent studies have shown that adiponectin, an adipocyte-derived hormone, may be involved in insulin resistance and development of atherosclerosis in diabetes patients. The aim of this study was to examine adiponectin levels in patients with essential hypertension to determine the relationships between adiponectin levels and insulin sensitivity and to examine the relationship of adiponectin with pulse wave velocity (PWV) in a general population based on the results of an epidemiological survey in Japan. In a clinical study, 20 normotensives (NT) and 30 non-treated essential hypertensives (EHT) were hospitalized, and euglycemic hyperinsulinemic glucose clamp (GC) was performed to evaluate insulin sensitivity defined as M value. EHT were divided into insulin-resistant EHT (EHT-R) and insulin-nonresistant EHT (EHT-N) according to the mean -1 SD of the M value of NT as a cut-off point. Fasting plasma glucose (FPG), immunoreactive insulin (IRI), and adiponectin concentrations were measured. There were no significant differences in body mass index (BMI) or FPG among the NT, EHT-N, and EHT-R groups. The M value and adiponectin concentration in EHT-R were significantly lower than those in the NT or EHT-N. The IRI level in the EHT-R was significantly higher than those in the other groups. A positive correlation between adiponectin concentration and M value was found in all subjects, and adiponectin concentration and M value were found to be significant determinants of each other in multiple regression analysis. In an epidemiological study, we studied 391 male inhabitants of rural communities in Hokkaido, Japan. Systolic blood pressure (SBP), BMI, FPG, IRI, and adiponectin were measured in all subjects early in the morning. Homeostasis model assessment (HOMA) values were calculated as an index of insulin sensitivity, and PWV was used as an index of

  2. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    SciTech Connect

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  3. Non-Invasive Molecular Imaging of Disease Activity in Atherosclerosis

    PubMed Central

    Dweck, Marc R; Aikawa, Elena; Newby, David E; Tarkin, Jason; Rudd, James; Narula, Jagat; Fayad, Zahi A.

    2016-01-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is therefore shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis and the advantages and challenges posed by these techniques. PMID:27390335

  4. [Optimization of organizational approaches to management of patients with atherosclerosis].

    PubMed

    Barbarash, L S; Barbarash, O L; Artamonova, G V; Sumin, A N

    2014-01-01

    Despite undoubted achievements of modern cardiology in prevention and treatment of atherosclerosis, cardiologists, neurologists, and vascular surgeons are still facing severe stenotic atherosclerotic lesions in different vascular regions, both symptomatic and asymptomatic. As a rule hemodynamically significant stenoses of different locations are found after development of acute vascular events. In this regard, active detection of arterial stenoses localized in different areas just at primary contact of patients presenting with symptoms of ischemia of various locations with care providers appears to be crucial. Further monitoring of these stenoses is also important. The article is dedicated to innovative organizational approaches to provision of healthcare to patients suffering from circulatory system diseases that have contributed to improvement of demographic situation in Kuzbass.

  5. Emerging roles of GPER in diabetes and atherosclerosis.

    PubMed

    Barton, Matthias; Prossnitz, Eric R

    2015-04-01

    The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.

  6. LOX-1-Mediated Effects on Vascular Cells in Atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-01-01

    In healthy arteries, expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is almost undetectable. However, in proatherogenic conditions, LOX-1 is markedly up-regulated in vascular cells. In atherosclerosis, LOX-1 appears to be the key scavenger receptor for binding oxidized LDL (oxLDL). Notably, a positive feedback exists between LOX-1 and oxLDL. LOX-1 is involved in mediating of proatherosclerotic effects of oxLDL which result in endothelial dysfunction, proinflammatory recruitment of monocytes into the arterial intima, formation of foam cells, apoptosis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), as well as in plaque destabilization and rupture. In this review, we consider effects of the LOX-1/oxLDL axis on several types of vascular cells such as ECs, VSMCs, and macrophages.

  7. Venous thromboembolism has the same risk factors as atherosclerosis

    PubMed Central

    Mi, Yuhong; Yan, Shufeng; Lu, Yanhui; Liang, Ying; Li, Chunsheng

    2016-01-01

    Abstract Background: Previous studies have shown that idiopathic pulmonary embolism is positively associated with other cardiovascular events, such as myocardial infarction and stroke, suggesting a potentially important association between atherosclerosis risk factors and venous thromboembolism (VTE). We performed a meta-analysis to evaluate the correlation between risk factors for atherosclerosis and VTE. Methods: In December 2014, we searched MEDLINE and EMBASE for studies evaluating the associations between VTE and risk factors for atherosclerosis and pooled outcome data using random-effects meta-analysis. In addition, we analyzed publication bias. Results: Thirty-three case-control and cohort studies with a total of 185,124 patients met the inclusion criteria. We found that participants with body mass index (BMI) ≥30 kg/m2 had a significantly higher prevalence of VTE than those with BMI <30 kg/m2 in both case-control studies (odds ratio [OR] = 2.45, 95% confidence interval [CI]: 1.78–3.35) and cohort studies (relative risk [RR] = 2.39, 95% CI: 1.79–3.17). VTE was more prevalent in patients with hypertension than without hypertension (OR = 1.40, 95% CI: 1.06–1.84; RR = 1.36, 95% CI: 1.11–1.67). The findings were similar for VTE prevalence between patients with and without diabetes (OR = 1.78, 95% CI: 1.17–2.69; RR = 1.41, 95% CI: 1.20–1.66). Current smoking was significantly associated with VTE prevalence in case-control studies (OR = 1.34, 95% CI: 1.01–1.77), but not in cohort studies (RR = 1.29, 95% CI: 0.96–1.72). In addition, we found that total cholesterol and triglyceride concentrations were significantly higher in patients with VTE than without VTE (weighted mean differences [WMD] = 8.94 mg/dL, 95% CI: 3.52–14.35 mg/dL, and WMD = 14.00 mg/dL, 95% CI: 8.85–19.16 mg/dL, respectively). High-density lipoprotein cholesterol concentrations were significantly lower in patients with VTE

  8. Prediction of cardiovascular outcomes by imaging coronary atherosclerosis

    PubMed Central

    Pathan, Faraz

    2016-01-01

    Over the last two decades, several invasive and non-invasive coronary atherosclerosis imaging modalities have emerged as predictors of cardiovascular outcomes in at-risk population. These modalities have demonstrated independent or incremental prognostic information over existing/standard risk stratification schemes, such as the Framingham risk score (FRS), by identifying characteristics of coronary artery diseases (CADs). In this review, we begin with discussing the importance of pre-test probability and quality of outcome measure, followed by specific findings of each modality in relation to prognosis. We focused on both short and long term prognostic aspects of coronary computed tomography (CT) (including coronary calcium score and coronary angiography) and magnetic resonance imaging as non-invasive tools, as well as invasive modalities including intravascular ultrasound (IVUS), optical coherence tomography (OCT), near infrared spectroscopy and Angioscopy. PMID:27500091

  9. Anti-chlamydophila pneumoniae antibodies as associated factor for carotid atherosclerosis in patients with AIDS.

    PubMed

    Gaona-Flores, Verónica; García-Elorriaga, Guadalupe; Valerio-Minero, Maricela; González-Veyrand, Emma; Navarrete-Castro, Rogelio; Palacios-Jiménez, Norma; Del Rey-Pineda, Guillermo; González-Bonilla, César; Monasta, Lorenzo

    2008-05-01

    Atherosclerosis is a multifactor disease. Lately, infectious factors such as C. pneumoniae have been found to be involved. To determine whether the infection by C. pneumoniae is a risk factor for atherosclerosis in patients with AIDS. Case-control study on 43 patients with AIDS under HAART (16 cases and 27 controls). To document atherosclerosis, a carotid and transcranial Doppler ultrasound was performed. Anti-C pneumoniae antibodies were searched using a microimmunofluorescence test for IgM and IgG levels. To study the associations with risk of atherosclerosis, Odds Ratios were calculated for each IgG anti-C. pneumoniae antibody titre. A titre of 1:64 significantly increased the risk of atherosclerosis. These results suggest that hypertriglyceridemia and C. pneumoniae infection coexistence significantly increases the risk of atherosclerosis. The inverse geometric average of the antibodies titre against C. pneumoniae in individuals with atheromatous plaque fell to 64, two titres above the controls. This difference turned out to be statistically significant. Exposure to C. pneumoniae with antibodies (IgG) should be considered in any HIV diagnosed patient as a risk factor for atherosclerosis, having found that the inverse geometric averages of antibodies titre are significantly different comparing cases and controls, especially in patients with dyslipidemia, hypertriglyceridemia or in patients whose treatments could cause these conditions. In patients with concomitant hypertriglyceridemia, the association increases up to three times. It is advisable that AIDS patients take a serological test to determine exposure to C. pneumoniae, and to assess treatment options.

  10. Predictive value of the augmentation index derived vascular age in patients with newly diagnosed atherosclerosis.

    PubMed

    Betge, Stefan; Kretzschmar, Daniel; Figulla, Hans-Reiner; Lichtenauer, Michael; Jung, Christian

    2017-03-01

    Early detection of atherosclerosis, i.e., in occupational health screening programs could reduce the rate of cardiovascular events in the working population. Changes of the augmentation index (AIX) correlate with changes of the arterial stiffness induced by aging, atherosclerosis, or arterial hypertension and have a prognostic value for cardiovascular events. Their diagnostic yield should be increased by normalizing the AIX to age, in terms of a calculating the vascular age (VA). In this pilot study, 30 patients (mean age 65.3 ± 8.8 years, 21 male) with suspected coronary heart disease underwent a duplex ultrasound of the carotid arteries and a measurement of the ankle brachial index in addition to the coronary angiography. The AIX was recorded with a portable device (Vascular Explorer), and the VA was calculated. Atherosclerosis was found in 24 patients. They were older than the patients without atherosclerosis, but there was no age dependency found for the distribution pattern or severity of atherosclerosis. In patients with findings of atherosclerosis, the calculated VA was higher than the chronological age, and these differences were significant in patients below 65 years of age. Comparing patients in higher blood pressure classes with patients in lower classes, significantly higher AIX, VA, and differences to the chronological age were found. The VA, deduced from the noninvasively obtained AIX, is a promising candidate for screening programs for atherosclerosis, i.e., in occupational health screening programs.

  11. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis

    PubMed Central

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-01-01

    Cardiovascular disease (CVD) due to atherosclerosis is the main cause of death in both the elderly and patients with metabolic diseases, including diabetes. Aging processes contribute to the pathogenesis of atherosclerosis. Calorie restriction (CR) is recognized as a dietary intervention for promoting longevity and delaying age-related diseases, including atherosclerosis. Sirt1, an NAD+-dependent deacetylase, is considered an anti-aging molecule and is induced during CR. Sirt1 deacetylates target proteins and is linked to cellular metabolism, the redox state and survival pathways. Sirt1 expression/activation is decreased in vascular tissue undergoing senescence. Sirt1 deficiency in endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and monocytes/macrophages contributes to increased oxidative stress, inflammation, foam cell formation, senescences impaired nitric oxide production and autophagy, thereby promoting vascular aging and atherosclerosis. Endothelial dysfunction, activation of monocytes/macrophages, and the functional and phenotypical plasticity of VSMCs are critically implicated in the pathogenesis of atherosclerosis through multiple mechanisms. Therefore, the activation of Sirt1 in vascular tissue, which includes ECs, monocytes/macrophages and VSMCs, may be a new therapeutic strategy against atherosclerosis and the increasing resistance to the metabolic disorder-related causal factors of CVD. In this review, we discuss the protective role of Sirt1 in the pathophysiology of vascular aging and atherosclerosis. PMID:27744418

  12. Is hepcidin-25 a predictor of atherosclerosis in hemodialysis patients?

    PubMed

    Kali, Alaaddin; Yayar, Ozlem; Erdogan, Bulent; Eser, Baris; Buyukbakkal, Mehmet; Ercan, Zafer; Merhametsiz, Ozgur; Haspulat, Ayhan; Gök Oğuz, Ebru; Canbakan, Basol; Ayli, Mehmet D

    2016-04-01

    Atherosclerotic cardiovascular disease is an important cause of mortality and morbidity in hemodialysis patients. Iron accumulation in arterial wall macrophages is increased in atherosclerotic lesions. Hepcidin is a key hepatic hormone regulating iron balance. It inhibits iron release from macrophages and iron absorption from enterocytes by binding and inactivating the cellular iron exporter ferroportin. The aim of this study is to investigate the relation of hepcidin-25, iron parameters, and atherosclerosis measured by carotid intima media thickness (CIMT) in hemodialysis patients. Eighty-two hemodialysis patients were enrolled in this cross-sectional study. Predialysis blood samples were centrifuged at 1500 g and 4°C for 10 minutes and stored at -80°C for the measurement of hepcidin-25. DRG hepcidin enzyme-linked immunosorbent assay kit was used for the measurement of hepcidin-25. Ultrasonographical B-mode imaging of bilateral carotid arteries was performed with a high-resolution real-time ultrasonography (Mindray DC7). Mean age of the study population was 57.90 ± 16.08 years and 43.9% were men. Total study population was grouped into two according to median value of hepcidin-25. There was no difference between groups with respect to age, dialysis vintage, and C-reactive protein. CIMT was found to be statistically significantly higher in low hepcidin-25 group. In correlation analysis, CIMT was found to be correlated with age (P < 0.01, R = 0.33) and hepcidin-25 (P < 0.01, R = 0.46). In linear regression analysis, age (β = 0.31) and hepcidin-25 (β = 0.44) were found to be the determinants of CIMT in hemodialysis patients. Our results implicate that hepcidin may take part in pathophysiology of atherosclerosis and cardiovascular disease in hemodialysis patients.

  13. Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis.

    PubMed

    Lund, Amie K; Knuckles, Travis L; Obot Akata, Chrys; Shohet, Ralph; McDonald, Jacob D; Gigliotti, Andrew; Seagrave, Jean Clare; Campen, Matthew J

    2007-02-01

    Epidemiological evidence indicates that environmental air pollutants are positively associated with the development of chronic vascular disease; however, the mechanisms involved have not been fully elucidated. In the present study we examined molecular pathways associated with chronic vascular disease in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice, including markers of vascular remodeling and oxidative stress, in response to exposure to the ubiquitous environmental pollutant, gasoline engine emissions. ApoE(-/-) mice, on a high-fat diet, were exposed by inhalation to either filtered air; 8, 40, or 60 mug/m(3) particulate matter whole exhaust; or filtered exhaust with gases matching the 60-mug/m(3) concentration, for 7 weeks. Aortas and plasma were collected and assayed for changes in histochemical markers, real-time reverse transcriptase-polymerase chain reaction, and indicators of oxidative damage. Inhalational exposure to gasoline engine emissions resulted in increased aortic mRNA expression of matrix metalloproteinase-3 (MMP-3), MMP-7, and MMP-9, tissue inhibitor of metalloproteinases-2, endothelin-1 and heme oxygenase-1 in ApoE(-/-) mice; increased aortic MMP-9 protein levels were confirmed through immunohistochemistry. Elevated reactive oxygen species were also observed in arteries from exposed animals, despite absence of plasma markers. Similar findings were also observed in the aortas of ApoE(-/-) mice exposed to particle-filtered atmosphere, implicating the gaseous components of the whole exhaust in mediating the expression of markers associated with the vasculopathy. These findings demonstrate that exposure to gasoline engine emissions results in the transcriptional upregulation of factors associated with vascular remodeling, as well as increased markers of vascular oxidative stress, which may contribute to the progression of atherosclerosis and reduced stability of vulnerable plaques.

  14. Genetic predisposition to obesity and risk of subclinical atherosclerosis.

    PubMed

    Shi, Juan; Hong, Jie; Qi, Lu; Cui, Bin; Gu, Weiqiong; Zhang, Yifei; Li, Lijuan; Miao, Lin; Wang, Rui; Wang, Weiqing; Ning, Guang

    2014-10-10

    Obesity has been associated with increased common carotid artery (CCA) intima-media thickness (IMT), a measure of subclinical atherosclerosis. We assessed the association between genetic predisposition to obesity and CCA IMT. The study included 428 young Chinese adults with CCA IMT measured using a high-resolution B-mode tomographic ultrasound system. We created a genetic risk score (GRS) by summing the risk alleles of 6 obesity-associated genetic variants confirmed in our previous analyses. The GRS was significantly associated with greater CCA IMT (p<0.001) after adjustment for age and gender. Per 2 alleles of the GRS was related to 0.023 mm increment in IMT. The association was attenuated by one half with additional adjustment for obesity status, but remained significant (p=0.009). In addition, we found that blood pressure significantly modified the association between the GRS and CCA IMT (p for interaction=0.001). The associations between the GRS and CCA IMT were stronger in participants with systolic blood pressure (SBP) ≥120 mmHg and/or diastolic blood pressure (DBP) ≥80 mmHg (per 2 allele increment of the GRS relating to 0.028 mm greater CCA IMT, p for trend<0.001) than those with SBP<120 mmHg and DBP<80 mmHg (per 2 allele increment of the GRS relating to 0.001 smaller CCA IMT, p for trend=0.930). Our data provides suggestive evidence supporting the potential causal relation between obesity and development of subclinical atherosclerosis. Elevated blood pressure might amplify the adverse effect of obesity on cardiovascular risk.

  15. Subclinical atherosclerosis in gouty arthritis patients: a comparative study.

    PubMed

    Çukurova, Selçuk; Pamuk, Ömer Nuri; Ünlü, Ercüment; Pamuk, Gülsüm Emel; Çakir, Necati

    2012-06-01

    We evaluated the incidence of subclinical atherosclerosis and associated factors in our gouty arthritis patients. We included 55 gouty arthritis patients diagnosed at our center within the last 4 years. The control group included 41 patients with rheumatoid arthritis (RA) and 34 patients with asymptomatic hyperuricemia (AHU). Atherosclerotic risk factors were determined in all subjects. Carotid intima-media thickness (IMT) and the presence of plaques were evaluated by B-mode ultrasonography. The carotid IMT in gouty arthritis patients (0.730 ± 0.19) was significantly higher than in AHU subjects (0.616 ± 0.12) (P = 0.004) and tended to be higher than the RA group (0.669 ± 0.17) (P = 0.1). Atheromatous plaques were significantly more frequent in gouty arthritis patients (16 cases, 29.1%) than in RA patients (5 cases, 12.2%) and AHU subjects (3 cases, 8.8%) (P values, 0.05 and 0.023). Gout patients with plaques were older (P = 0.006) and tended to have tophi more frequently (P = 0.06). Logistic regression analysis showed that age (OR: 1.3, 95% CI: 1.02-1.54) and the presence of tophi (OR: 12.5, 95% CI: 1.2-140) were independent risk factors for the presence of plaques. Gouty arthritis bears a higher risk of atherosclerosis than both RA and AHU.

  16. Peculiarities of spectroscopic information of whole blood in atherosclerosis

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Yusupova, Lira B.; Prigoun, Natalia

    1995-01-01

    The coefficient of diffuse reflection and light transmission measurements in an optically thick layer of blood at atherosclerosis conditions under multiple scattering of light in the visual and nearest IR-spectra region (590 -900 nm) were measured for calculation of the absorption coefficients of the material of particles and surrounding medium K((lambda) ) and parameter Q (the latter parameter was defined by the sizes of erythrocytes and aggregates and by refraction coefficient of red cells relative to plasma at atherosclerosis). For the main quantitative spectroscopy of particles the K1((lambda) ) for known value of K((lambda) ) and the parameter Q determinations it is necessary to have the knowledge of relative volume part H occupied by particles. In the case of a high concentration of particles H >= 0.2 as it takes place in the blood the parameters Q and K((lambda) ) are in dependence of H (H - is hematocrit ration for the case of whole blood). It should be noted that spectroscopy of multiple scattering light can give some information out of main absorption bands with the higher accuracy and higher light scattering. The latter value provides the opportunity of determination of faint absorption bands which couldn't be achieved by other methods. The method proposed is characterized by absence of probe preparations, approach to in viva conditions, expressivity, and high informativity of each experiment. A many-fold investigation of the blood of healthy men in the spectral region 650 - 810 nm shows the electron spectrum of absorption of molecular hemoglobin hem is the most optically active blood spectra component K((lambda) ). The broadening of spectral investigations, as in short wave or long wave areas of the spectrum, by the use of multiple scattering methods for calculations of K((lambda) ) and Q((lambda) ) enlarges the number of chromophores studied.

  17. Recent advances in pathogenesis, assessment, and treatment of atherosclerosis

    PubMed Central

    Spence, J. David

    2016-01-01

    In recent years, there have been a number of advances in the pathogenesis and treatment of atherosclerosis and in assessing prognosis in carotid atherosclerosis. Risk stratification to improve vascular prevention by identifying patients most likely to benefit from intensive therapy is much improved by measuring carotid plaque burden. In patients with asymptomatic carotid stenosis, a number of modalities can be used to identify the 10-15% who could benefit from endarterectomy or stenting. Transcranial Doppler embolus detection, echolucency and ulceration on 3D ultrasound, intraplaque hemorrhage on magnetic resonance imaging (MRI), and reduced cerebrovascular reserve are useful already; new approaches including plaque texture on ultrasound and imaging of plaque inflammation and early calcification on positron emission tomography/computed tomography (PET/CT) are in development. The discovery that the intestinal microbiome produces vasculotoxic metabolites from dietary constituents such as carnitine in meat (particularly red meat) and phosphatidylcholine from egg yolk and other sources has revolutionized nutritional aspects of vascular prevention. Because many of these vasculotoxic metabolites are removed by the kidney, it is particularly important in patients with renal failure to limit their intake of red meat and egg yolk. A new approach to lowering low-density lipoprotein (LDL) cholesterol by blocking the action of an enzyme that destroys LDL receptors promises to revolutionize vascular prevention once less costly treatments are developed, and a new approach to vascular prevention—“treating arteries instead of risk factors”—shows promise but requires randomized trials. These advances all promise to help in the quest to prevent strokes in high-risk patients. PMID:27540477

  18. Subclinical atherosclerosis measures for cardiovascular prediction in CKD.

    PubMed

    Matsushita, Kunihiro; Sang, Yingying; Ballew, Shoshana H; Shlipak, Michael; Katz, Ronit; Rosas, Sylvia E; Peralta, Carmen A; Woodward, Mark; Kramer, Holly J; Jacobs, David R; Sarnak, Mark J; Coresh, Josef

    2015-02-01

    Whether inclusion of the coronary artery calcium score improves cardiovascular risk prediction in individuals with CKD, a population with unique calcium-phosphate homeostasis, is unknown. Among 6553 participants ages 45-84 years without prior cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis, coronary artery calcium score was assessed for cardiovascular risk prediction beyond the Framingham predictors in those with (n=1284) and without CKD and contrasted with carotid intima-media thickness and ankle-brachial index (two other measures of subclinical atherosclerosis). During a median follow-up of 8.4 years, 650 cardiovascular events (coronary heart disease, stroke, heart failure, and peripheral artery disease) occurred (236 events in subjects with CKD). In Cox proportional hazards models adjusted for Framingham predictors, each subclinical measure was independently associated with cardiovascular outcomes, with larger adjusted hazard ratios (HRs; per 1 SD) for coronary artery calcium score than carotid intima-media thickness or ankle-brachial index in subjects without and with CKD (HR, 1.69; 95% confidence interval [95% CI], 1.45 to 1.97 versus HR, 1.12; 95% CI, 1.00 to 1.25 and HR, 1.20; 95% CI, 1.08 to 1.32, respectively). Compared with inclusion of carotid intima-media thickness or ankle-brachial index, inclusion of the coronary artery calcium score led to greater increases in C statistic for predicting cardiovascular disease and net reclassification improvement. Coronary artery calcium score performed best for the prediction of coronary heart disease and heart failure, regardless of CKD status. In conclusion, each measure improved cardiovascular risk prediction in subjects with CKD, with the greatest improvement observed with coronary artery calcium score.

  19. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    PubMed

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  20. Inflammatory markers, rather than conventional risk factors, are different between carotid and MCA atherosclerosis

    PubMed Central

    Bang, O; Lee, P; Yoon, S; Lee, M; Joo, I; Huh, K

    2005-01-01

    Background: The apparent differences in risk factors for intra- and extracranial atherosclerosis are unclear and the mechanisms that underlie strokes in patients with intracranial atherosclerosis are not well known. We investigated the conventional vascular risk factors as well as other factors in stroke patients with large artery atherosclerosis. Methods: Using diffusion weighted imaging (DWI) and vascular and cardiologic studies, we selected patients with acute non-cardioembolic cerebral infarcts within the middle cerebral artery (MCA) territory. Patients were divided into two groups: those with atherosclerotic lesions on the carotid sinus (n = 112) and those with isolated lesions on the proximal MCA (n = 160). Clinical features, risk factors, and DWI patterns were compared between groups. Results: There were no differences in conventional risk factors, but markers for inflammation were significantly higher in patients with carotid atherosclerosis than in those with isolated MCA atherosclerosis (p<0.01 for both). After adjustments for age/sex and the severity of stroke, an inverse correlation was observed between C-reactive protein levels and MCA atherosclerosis (odds ratio 0.57 per 1 mg/dl increase; 95% confidence interval 0.35 to 0.92; p = 0.02). Internal borderzone infarcts suggestive of haemodynamic causes were the most frequent DWI pattern in patients with MCA occlusion, whereas territorial infarcts suggesting plaque ruptures were most common in those with carotid occlusion. Conclusions: Our results indicate that inflammatory markers, rather than conventional risk factors, reveal clinical and radiological differences between patients with carotid and MCA atherosclerosis. Plaques associated with MCA atherosclerosis may be more stable than those associated with carotid atherosclerosis. PMID:16024892

  1. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    PubMed Central

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-01-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  2. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.

    PubMed

    Björkegren, Johan L M; Hägg, Sara; Talukdar, Husain A; Foroughi Asl, Hassan; Jain, Rajeev K; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-02-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob (100/100) Mttp (flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  3. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  4. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits

    PubMed Central

    Suddek, Ghada M

    2016-01-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. PMID:26490346

  5. Characterization of the europium tetracycline complex as a biomarker for atherosclerosis

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; da Silva, Mônica N.; Sicchieri, Leticia B.

    2016-04-01

    Atherosclerosis is a narrowing of the arteries caused by an increase of atheromatous plaque: material formed by macrophage cells containing cholesterol and fatty acids, calcium and a variable amount of fibrous connective tissue. The elation between vulnerable plaques and cardiovascular events can be determined using plaque biomarkers. In this work, atherosclerotic plaques stained with different molar ratios of europium, in a potential plaque biomarker, europium tetracycline complex, were studied by fluorescence microscopy. The tetracycline antibiotic used was chlortetracycline. The growth of atherosclerotic plaque was followed during 60 days in New Zealand rabbits divided in two groups: an experimental group (EG), with nine animals and a control group (CG) with three animals. The animals in the EG received a diet with 1% of cholesterol and the animals of GC received a normal diet. The aortic arch of the animals with 60 days were cut in the vertical plane in 6 μm thick slices, which were mounted on glass slides and stained with hematoxylin an eosin and europium chlortetracycline complex (EuCTc). The fluorescence images were obtained exciting the EuCTc absorption band with a filter cube D (BP 355 - 425) and the emission was collected with a LP 470 suppression filter. Light intensity, detector gain and acquisition time were fixed for comparisons. The 20× magnified images were collected with 12 bit (or 4096 gray tones) resolution. The mean value of gray scale for each molar ratio of EuCTc was different, indicating that the complex interacts with the components of atherosclerotic plaque and the best molar ratio was 1.5 EuCTc. These results indicate the potential use of the EuCTc biomarker for atherosclerotic plaque characterization.

  6. Therapeutic implications of chemokine-mediated pathways in atherosclerosis: realistic perspectives and utopias.

    PubMed

    Apostolakis, Stavros; Amanatidou, Virginia; Spandidos, Demetrios A

    2010-09-01

    Current perspectives on the pathogenesis of atherosclerosis strongly support the involvement of inflammatory mediators in the establishment and progression of atherosclerostic lesions. Chemokine-mediated mechanisms are potent regulators of such processes by orchestrating the interactions of inflammatory cellular components of the peripheral blood with cellular components of the arterial wall. The increasing evidence supporting the role of chemokine pathways in atherosclerosis renders chemokine ligands and their receptors potential therapeutic targets. In the following review, we aim to highlight the special structural and functional features of chemokines and their receptors in respect to their roles in atherosclerosis, and examine to what extent available data can be applied in disease management practices.

  7. Prevention of induced atherosclerosis by diversion of bile or blockade of intestinal lymphatics in dogs.

    PubMed Central

    Wilk, P J; Karipineni, R C; Pertsemlidis, D; Danese, C A

    1976-01-01

    The prevention of induced hypercholesterolemia and atherosclerosis was studied by means of intestinal lymphatic blockade and of bile diversion in the dog. Hypercholesterolemia and atherosclerosis were produced by high cholesterol feeding after induction of hypothyroidism with radio-iodine plus thiouracil. Complete diversion of bile, by shunting all bile into the urinary bladder, effectively prevented hypercholesterolemia and atherosclerosis; in contrast, blockade of the intestinal lymphatics failed to prevent the consequences of the atherogenic regimen, because of the development of collateral lymphatic channels. Images Fig. 3. Fig. 4. Fig. 5. PMID:817679

  8. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    SciTech Connect

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  9. Innate immunity, Toll-like receptors, and atherosclerosis: mouse models and methods.

    PubMed

    Sorrentino, Rosalinda; Arditi, Moshe

    2009-01-01

    Chronic inflammation and aberrant lipid metabolism represent hallmarks of atherosclerosis. Innate immunity critically depends upon Toll-like receptor (TLR) signalling. Recent data directly implicate signalling by TLR4 and TLR2 in the pathogenesis of atherosclerosis. The role that TLRs play in the pathogenesis of atherosclerosis can be assessed by using several animal models, which provide a double genetic deficiency in TLRs and molecules implicated in the lipid metabolism, such as ApoE or LDL receptor. Furthermore, a more recent technique, such as the bone marrow transplantation (BMT), can be a useful and straightforward method to elucidate the role of stromal versus hematopoietic cells in the acceleration of the atheroma.

  10. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice.

    PubMed

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Chen, Cheng-Hsien; Peng, Wei-Jung; Chen, Chee-Shan; Li, Mei-Ling; Hsu, Li-Sung; Liao, Jiunn-Wang; Hseu, You-Cheng

    2017-04-03

    Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases.

  11. Sensory suppression during feeding

    PubMed Central

    Foo, H.; Mason, Peggy

    2005-01-01

    Feeding is essential for survival, whereas withdrawal and escape reactions are fundamentally protective. These critical behaviors can compete for an animal's resources when an acutely painful stimulus affects the animal during feeding. One solution to the feeding-withdrawal conflict is to optimize feeding by suppressing pain. We examined whether rats continue to feed when challenged with a painful stimulus. During feeding, motor withdrawal responses to noxious paw heat either did not occur or were greatly delayed. To investigate the neural basis of sensory suppression accompanying feeding, we recorded from brainstem pain-modulatory neurons involved in the descending control of pain transmission. During feeding, pain-facilitatory ON cells were inhibited and pain-inhibitory OFF cells were excited. When a nonpainful somatosensory stimulus preactivated ON cells and preinhibited OFF cells, rats interrupted eating to react to painful stimuli. Inactivation of the brainstem region containing ON and OFF cells also blocked pain suppression during eating, demonstrating that brainstem pain-modulatory neurons suppress motor reactions to external stimulation during homeostatic behaviors. PMID:16275919

  12. mTOR Enhances Foam Cell Formation by Suppressing the Autophagy Pathway

    PubMed Central

    Li, Lingxia; Niu, Xiaolin; Dang, Xiaoyan; Li, Ping; Qu, Li; Bi, Xiaoju; Gao, Yanxia; Hu, Yanfen; Li, Manxiang; Qiao, Wanhai; Peng, Zhuo; Pan, Longfei

    2014-01-01

    Recently, autophagy has drawn more attention in cardiovascular disease as it has important roles in lipid metabolism. Mammalian target of rapamycin (mTOR) is a key regulator of autophagy; however, its effect on atherosclerosis and the underlying mechanism remains undefined. In this study, an obvious upregulation of mTOR and p-mTOR protein was observed in macrophage-derived foam cells. Blocking mTOR expression with specific small interference RNA (siRNA) dramatically suppressed foam cell formation, accompanied by a decrease of lipid deposition. Further mechanistic analysis indicated that suppressing mTOR expression significantly upregulated autophagic marker LC3 expression and downregulated autophagy substrate p62 levels, indicating that mTOR silencing triggered autophagosome formation. Moreover, blocking mTOR expression obviously accelerated neutral lipid delivery to lysosome and cholesterol efflux from foam cells, implying that mTOR could induce macrophage foam cell formation by suppressing autophagic pathway. Further, mTOR silencing significantly upregulated ULK1 expression, which was accounted for mTOR-induced foam cell formation via autophagic pathway as treatment with ULK1 siRNA dampened LC3-II levels and increased p62 expression, concomitant with lipid accumulation and decreased cholesterol efflux from foam cells. Together, our data provide an insight into how mTOR accelerates the pathological process of atherosclerosis. Accordingly, blocking mTOR levels may be a promising therapeutic agent against atherosclerotic complications. PMID:24512183

  13. [Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis].

    PubMed

    Camargo, Alejandra B; Manucha, Walter

    Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions.

  14. Stress-induced cardiac autonomic reactivity and preclinical atherosclerosis: does arterial elasticity modify the association?

    PubMed

    Chumaeva, Nadja; Hintsanen, Mirka; Pulkki-Råback, Laura; Merjonen, Päivi; Elovainio, Marko; Hintsa, Taina; Juonala, Markus; Kähönen, Mika; Raitakari, Olli T; Keltikangas-Järvinen, Liisa

    2015-01-01

    The effect of acute mental stress on atherosclerosis can be estimated using arterial elasticity measured by carotid artery distensibility (Cdist). We examined the interactive effect of acute stress-induced cardiac reactivity and Cdist to preclinical atherosclerosis assessed by carotid intima-media thickness (IMT) in 58 healthy adults aged 24-39 years participated in the epidemiological Young Finns Study. Cdist and IMT were measured ultrasonographically. Impedance electrocardiography was used to measure acute mental stress-induced cardiac autonomic responses: heart rate (HR), respiratory sinus arrhythmia and pre-ejection period after the mental arithmetic and the public speaking tasks. Interactions between HR reactivity and Cdist in relation to preclinical atherosclerosis were found. The results imply that elevated HR reactivity to acute mental stress is related to less atherosclerosis among healthy participants with higher arterial elasticity. Possibly, increased cardiac reactivity in response to challenging tasks is an adaptive reaction related to better cardiovascular health.

  15. 10-Year Study Links Faster Progression of Atherosclerosis to Air Pollution

    EPA Pesticide Factsheets

    The Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air) was the first U.S. research study to measure directly how long-term exposure to air pollution contributes to the development of heart disease.

  16. Toward understanding the molecular basis of atherosclerosis with genetics and genomics

    PubMed Central

    Chen, Yaoyu; Rollins, Jarod; Paigen, Beverly; Wang, Xiaosong

    2007-01-01

    Summary Atherosclerosis is a very complex disease involving both genetic and environmental risk factors, and their interactions. In the general population, genetic polymorphisms of many genes in the pathways of lipid metabolism, inflammation, and thrombogenesis are likely responsible for the wide range of susceptibilities to myocardial infarction, the most deadly consequence of atherosclerosis. To identify these polymorphisms, genetic linkage studies have been carried out in both humans and mouse models. Approximately 40 quantitative trait loci for atherosclerotic disease have been found in humans, and approximately 30 in mice. Recently, genome-wide association studies have been used to identify atherosclerosis-susceptibility polymorphisms. Although finding new atherosclerosis genes through these approaches remains challenging, the pace of finding these polymorphisms is accelerating due to the rapidly improving bioinformatics resources and biotechnologies. The results from these efforts will not only reveal the molecular basis of, but will facilitate finding drug targets and individualized medicine for, atherosclerotic disease. PMID:17767904

  17. Understanding the Role of B cells in Atherosclerosis: Potential Clinical Implications

    PubMed Central

    Morris-Rosenfeld, Samuel; Lipinski, Michael J.; McNamara, Coleen A.

    2015-01-01

    Atherosclerosis is a progressive inflammatory disease of the medium to large arteries that is the largest contributor to cardiovascular disease (CVD). B cell subsets have been shown in animal models of atherosclerosis to have both atherogenic and atheroprotective properties. In this review we highlight the research that developed our understanding of the role of B cells in atherosclerosis both in humans and mice. From this we discuss the potential clinical impact B cells could have both as diagnostic biomarkers and as targets for immunotherapy. Finally, we recognize the inherent difficulty in translating findings from animal models into humans given the differences in both cardivascular disease and the immune system between mice and humans, making the case for greater efforts at addressing the role of B cells in humans atherosclerosis. PMID:24308836

  18. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE−/− Mice through the ROS/MAPK/NF-κB Pathway

    PubMed Central

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-01-01

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis. PMID:26305254

  19. The Essential Role of Pin1 via NF-κB Signaling in Vascular Inflammation and Atherosclerosis in ApoE(-/-) Mice.

    PubMed

    Liu, Ming; Yu, Peng; Jiang, Hong; Yang, Xue; Zhao, Ji; Zou, Yunzeng; Ge, Junbo

    2017-03-16

    Atherosclerosis, as a chronic inflammatory disease, is the major underlying cause of death worldwide. However, the mechanisms that underlie the inflammatory process are not completely understood. Prolyl-isomerase-1 (Pin1), as a unique peptidyl-prolyl isomerase, plays an important role in inflammation and endothelial dysfunction. Herein, we investigate whether Pin1 regulates vascular inflammation and atherosclerosis, and clarify its mechanisms in these processes. ApoE(-/-) mice were randomly given either juglone (0.3, 1 mg/kg, two times per week) or vehicle i.p. for 4 weeks. Compared with ApoE(-/-) mice, treatment by juglone resulted not only in markedly attenuated macrophage infiltration and atherosclerotic lesion area in a lipid-independent manner, but also in decreased expression of Pin1, vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and NF-κB activity in aorta. Then, EA.hy926 cells were pretreated with juglone (6 μmol/L), Pin1 siRNA, NF-κB inhibitor, or vehicle prior to exposure to ox-LDL (50 μg/mL). It was observed that treatment with juglone or Pin1 siRNA suppressed expression of VCAM-1 in oxLDL-incubated EA.hy926 cells and decreased THP-1 cell adhesion to oxLDL-stimulated endothelial cells through the NF-κB signal pathway. Our findings indicate that Pin1 plays a vital role on the development of vascular inflammation and atherosclerosis.

  20. The Essential Role of Pin1 via NF-κB Signaling in Vascular Inflammation and Atherosclerosis in ApoE−/− Mice

    PubMed Central

    Liu, Ming; Yu, Peng; Jiang, Hong; Yang, Xue; Zhao, Ji; Zou, Yunzeng; Ge, Junbo

    2017-01-01

    Atherosclerosis, as a chronic inflammatory disease, is the major underlying cause of death worldwide. However, the mechanisms that underlie the inflammatory process are not completely understood. Prolyl-isomerase-1 (Pin1), as a unique peptidyl-prolyl isomerase, plays an important role in inflammation and endothelial dysfunction. Herein, we investigate whether Pin1 regulates vascular inflammation and atherosclerosis, and clarify its mechanisms in these processes. ApoE−/− mice were randomly given either juglone (0.3, 1 mg/kg, two times per week) or vehicle i.p. for 4 weeks. Compared with ApoE−/− mice, treatment by juglone resulted not only in markedly attenuated macrophage infiltration and atherosclerotic lesion area in a lipid-independent manner, but also in decreased expression of Pin1, vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and NF-κB activity in aorta. Then, EA.hy926 cells were pretreated with juglone (6 μmol/L), Pin1 siRNA, NF-κB inhibitor, or vehicle prior to exposure to ox-LDL (50 μg/mL). It was observed that treatment with juglone or Pin1 siRNA suppressed expression of VCAM-1 in oxLDL-incubated EA.hy926 cells and decreased THP-1 cell adhesion to oxLDL-stimulated endothelial cells through the NF-κB signal pathway. Our findings indicate that Pin1 plays a vital role on the development of vascular inflammation and atherosclerosis. PMID:28300760

  1. Relation between Birth Weight, Growth, and Subclinical Atherosclerosis in Adulthood

    PubMed Central

    Valente, Maria Helena; Gomes, Filumena Maria da Silva; Benseñor, Isabela Judith Martins; Brentani, Alexandra Valéria Maria; Escobar, Ana Maria de Ulhôa; Grisi, Sandra J. F. E.

    2015-01-01

    Background and Objectives. Adverse conditions in the prenatal environment and in the first years of life are independently associated with increased risk for cardiovascular disease. This paper aims to study the relation between birthweight, growth in the first year of life, and subclinical atherosclerosis in adults. Methods. 88 adults aged between 20 and 31 were submitted to sociodemographic qualities, anthropometric data, blood pressure measurements, metabolic profile, and evaluation of subclinical atherosclerosis. Results. Birthweight <2,500 grams (g) was negatively correlated with (a) increased waist-to-hip ratio (WHR), according to regression coefficient (RC) equal to −0.323, 95% CI [−0.571, −0.075] P < 0.05; (b) diastolic blood pressure (RC = −4.744, 95% CI [−9.017, −0.470] P < 0.05); (c) low HDL-cholesterol (RC = −0.272, 95% CI [−0.516, −0.029] P < 0.05); (d) frequency of intima-media thickness (IMT) of left carotid >75th percentile (RC = −0.242, 95% CI [−0.476, −0.008] P < 0.05). Birthweight >3,500 g was associated with (a) BMI >25.0 kg/m2, (RC = 0.317, 95% CI [0.782, 0.557] P < 0.05); (b) increased waist circumference (RC = 0.284, 95% CI [0.054, 0.513] P < 0.05); (c) elevated WHR (RC = 0.280, 95% CI [0.054, 0.505] P < 0.05); (d) minimum subcutaneous adipose tissue (SAT) (RC = 4.354, 95% CI [0.821, 7.888] P < 0.05); (e) maximum SAT (RC = 7.095, 95% CI [0.608, 13.583] P < 0.05); (f) right lobe of the liver side (RC = 6.896, 95% CI [1.946, 11.847] P < 0.001); (g) frequency's right lobe of the liver >75th percentile (RC = 0.361, 95% CI [0.169, 0.552] P < 0.001). Weight gain in the first year of life was inversely correlated with (a) mean IMT of left carotid (RC = −0.046, 95% CI [−0.086, −0.006] P < 0.05; (b) frequency IMT of left carotid >75th percentile (RC = −0.253, 95% CI [−0.487, −0.018] P < 0.05); (c) mean IMT (RC = −0.038, 95% CI [0.073, −0.002] P < 0.05); (d) the frequency of the mean IMT >75th percentile (RC

  2. Increased Cardiovascular Events and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients: 1 Year Prospective Single Centre Study

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Masedu, Francesco; Romano, Silvio; Berardicurti, Onorina; Liakouli, Vasiliki; Carubbi, Francesco; Di Benedetto, Paola; Alvaro, Saverio; Penco, Maria; Valenti, Marco; Giacomelli, Roberto

    2017-01-01

    Objectives Several studies showed the close relationship between Rheumatoid Arthritis (RA) and cerebro-cardiovascular events (CVEs) and subclinical atherosclerosis. In this study, we investigated the occurrence of CVEs and subclinical atherosclerosis during the course of RA and we evaluated the possible role of both traditional cardiovascular (CV) and disease related risk factors to predict the occurrence of new CVEs and the onset of subclinical atherosclerosis. Methods We designed a single centre, bias-adjusted, prospective, observational study to investigate, in a homogeneous subset of RA patients, the occurrence of new onset of CVEs and subclinical atherosclerosis. Statistical analyses were performed to evaluate the role of traditional CV and disease-related risk factors to predict the occurrence of new CVEs and subclinical atherosclerosis. Results We enrolled 347 RA patients prospectively followed for 12 months. An increased percentage of patients experienced CVEs, developed subclinical atherosclerosis and was affected by systemic arterial hypertension (SAH), type 2 diabetes mellitus and metabolic syndrome (MS), at the end of follow up. Our analysis showed that the insurgence of both SAH and MS, during the follow up, the older age, the CVE familiarity and the lack of clinical response, were associated with a significantly increased risk to experience CVEs and to develop subclinical atherosclerosis. Conclusions Our study quantifies the increased expected risk for CVEs in a cohort of RA patients prospectively followed for 1 year. The occurrence of both new CVEs and subclinical atherosclerosis in RA patients may be explained by inflammatory burden as well as traditional CV risk factors. PMID:28103312

  3. Pathogen-accelerated atherosclerosis occurs early after exposure and can be prevented via immunization.

    PubMed

    Miyamoto, Takanari; Yumoto, Hiromichi; Takahashi, Yusuke; Davey, Michael; Gibson, Frank C; Genco, Caroline Attardo

    2006-02-01

    Here we report on early inflammatory events associated with Porphyromonas gingivalis-accelerated atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. Animals challenged with P. gingivalis presented with increased macrophage infiltration, innate immune marker expression, and atheroma without elevated systemic inflammatory mediators. This early local inflammatory response was prevented in mice immunized with P. gingivalis. We conclude that localized up-regulation of innate immune markers early after infection, rather than systemic inflammation, contributes to pathogen-accelerated atherosclerosis.

  4. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs.

    PubMed

    Gibson, Frank C; Genco, Caroline A

    2007-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. Furthermore hyperlipidemic mice deficient in TLR2, TLR4, and MyD88 signaling exhibit diminished inflammatory responses and decreased atherosclerosis. Accumulating evidence has implicated specific infectious agents including the periodontal disease pathogen Porphyromonas gingivalis in the progression of atherosclerosis. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen P. gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. We have established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate immune signaling in the context of local and distant chronic inflammation induced by this pathogen. We have demonstrated that P. gingivalis requires TLR2 to induce oral inflammatory bone lose in mice. Furthermore, we have demonstrated that P. gingivalis infection accelerates atherosclerosis in hyperlipidemic mice with an associated increase in expression of TLR2 and TLR4 in atherosclerotic lesions. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. Improved understanding of the mechanisms driving infection, and chronic inflammation during atherosclerosis may ultimately provide new targets for therapy.

  5. PKCβ Promotes Vascular inflammation and Acceleration of Atherosclerosis in Diabetic ApoE Null Mice

    PubMed Central

    Kong, Linghua; Shen, Xiaoping; Lin, Lili; Leitges, Michael; Rosario, Rosa; Zou, Yu Shan; Yan, Shi Fang

    2013-01-01

    Objective Diabetic subjects are at high risk for developing atherosclerosis through a variety of mechanisms. As the metabolism of glucose results in production of activators of protein kinase C (PKC)β, it was logical to investigate the role of PKCβ in modulation of atherosclerosis in diabetes. Approach and Results ApoE−/− and PKCβ −/−/ApoE−/− mice were rendered diabetic with streptozotocin. Quantification of atherosclerosis, gene expression profiling or analysis of signaling molecules was performed on aortic sinus or aortas from diabetic mice. Diabetes-accelerated atherosclerosis increased the level of phosphorylated ERK1/2 and JNK mitogen activated protein (MAP) kinases and augmented vascular expression of inflammatory mediators, as well as increased monocyte/macrophage infiltration and CD11c+ cells accumulation in diabetic ApoE−/− mice; processes which were diminished in diabetic PKCβ −/−/ApoE−/− mice. In addition, pharmacological inhibition of PKCβ reduced atherosclerotic lesion size in diabetic ApoE−/− mice. In vitro, the inhibitors of PKCβ and ERK1/2, as well as small interfering RNA (siRNA) to Egr-1 significantly decreased high glucose-induced expression of CD11c (Itgax), chemokine (C-C motif) ligand 2 (CCL2) and interleukin (IL)-1β in U937 macrophages. Conclusions These data link enhanced activation of PKCβ to accelerated diabetic atherosclerosis via a mechanism that includes modulation of gene transcription and signal transduction in the vascular wall; processes that contribute to acceleration of vascular inflammation and atherosclerosis in diabetes. Our results uncover a novel role for PKCβ in modulating CD11c expression and inflammatory response of macrophages in the development of diabetic atherosclerosis. These findings support PKCβ activation as a potential therapeutic target for prevention and treatment of diabetic atherosclerosis. PMID:23766264

  6. Liraglutide Reduces Both Atherosclerosis and Kidney Inflammation in Moderately Uremic LDLr-/- Mice

    PubMed Central

    Bisgaard, Line S.; Bosteen, Markus H.; Fink, Lisbeth N.; Sørensen, Charlotte M.; Rosendahl, Alexander; Mogensen, Christina K.; Rasmussen, Salka E.; Rolin, Bidda; Nielsen, Lars B.

    2016-01-01

    Chronic kidney disease (CKD) leads to uremia. CKD is characterized by a gradual increase in kidney fibrosis and loss of kidney function, which is associated with a progressive increase in risk of atherosclerosis and cardiovascular death. To prevent progression of both kidney fibrosis and atherosclerosis in uremic settings, insight into new treatment options with effects on both parameters is warranted. The GLP-1 analogue liraglutide improves glucose homeostasis, and is approved for treatment of type 2 diabetes. Animal studies suggest that GLP-1 also dampens inflammation and atherosclerosis. Our aim was to examine effects of liraglutide on kidney fibrosis and atherosclerosis in a mouse model of moderate uremia (5/6 nephrectomy (NX)). Uremic (n = 29) and sham-operated (n = 14) atherosclerosis-prone low density lipoprotein receptor knockout mice were treated with liraglutide (1000 μg/kg, s.c. once daily) or vehicle for 13 weeks. As expected, uremia increased aortic atherosclerosis. In the remnant kidneys from NX mice, flow cytometry revealed an increase in the number of monocyte-like cells (CD68+F4/80-), CD4+, and CD8+ T-cells, suggesting that moderate uremia induced kidney inflammation. Furthermore, markers of fibrosis (i.e. Col1a1 and Col3a1) were upregulated, and histological examinations showed increased glomerular diameter in NX mice. Importantly, liraglutide treatment attenuated atherosclerosis (~40%, p < 0.05) and reduced kidney inflammation in NX mice. There was no effect of liraglutide on expression of fibrosis markers and/or kidney histology. This study suggests that liraglutide has beneficial effects in a mouse model of moderate uremia by reducing atherosclerosis and attenuating kidney inflammation. PMID:27992511

  7. Betulin attenuates atherosclerosis in apoE−/− mice by up-regulating ABCA1 and ABCG1

    PubMed Central

    Gui, Yu-zhou; Yan, Hong; Gao, Fei; Xi, Cong; Li, Hui-hui; Wang, Yi-ping

    2016-01-01

    Aim: Betulin is a pentacyclic triterpenoid isolated from the bark of yellow and white birch trees with anti-cancer and anti-malaria activities. In this study we examined the effects of betulin on atherosclerosis in apoE−/− mice and the underlying mechanisms. Methods: Murine macrophage RAW264.7 cells and human monocyte-derived THP-1 cells were tested. Foam cell formation was detected with Oil Red O staining. Cholesterol efflux was assessed using [3H]-cholesterol efflux assay. The expression of ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) was examined using RT-PCR and Western-blotting. The ABCA1 promoter activity was evaluated using luciferase activity assay. Male apoE−/− mice fed on a high-fat-diet (HFD), and received betulin (20 and 40 mg·kg−1·d−1, ig) for 12 weeks. The macrophage content and ABCA1 expression in the aortic sinuses were evaluated with immunofluorescence staining. The hepatic, intestinal and fecal cholesterol were also analyzed in the mice. Results: In RAW264.7 cells, betulin (0.1–2.5 μg/mL) dose-dependently ameliorated oxLDL-induced cholesterol accumulation and enhanced cholesterol efflux. In both RAW264.7 and THP-1 cells, betulin increased the expression of ABCA1 and ABCG1 via suppressing the transcriptional repressors sterol-responsive element-binding proteins (SREBPs) that bound to E-box motifs in ABCA1 promoter, whereas E-box binding site mutation markedly attenuated betulin-induced ABCA1 promoter activity. In HFD-fed apoE−/− mice, betulin administration significantly reduced lesions in en face aortas and aortic sinuses. Furthermore, betulin administration significantly increased ABCA1 expression and suppressed macrophage positive areas in the aortic sinuses. Moreover, betulin administration improved plasma lipid profiles and enhanced fecal cholesterol excretion in the mice. Conclusion: Betulin attenuates atherosclerosis in apoE−/− mice by promoting cholesterol efflux in macrophages. PMID:27374487

  8. [Atherosclerosis--progression by nonspecific activation of the immune system].

    PubMed

    Lehr, Hans-Anton; Sagban, Tolga Atilla; Kirkpatrick, C James

    2002-04-15

    Atherogenesis is a disease of middle-sized and large-caliber blood vessels that can be divided into three major phases. The initial lesions of early atherosclerosis are characterized by the adhesion and subendothelial emigration of blood-borne monocytes, which differentiate into macrophages and provide the morphologic basis for the formation of foam cells and fatty streak lesions. These lesions are found in most children and teenagers in industrialized nations. The next key event in atherogenesis is the proliferation of smooth muscle cells within the intima and media, resulting in the gradual compromise of the vessel lumen. Myofibroblastic cells also contribute to lesion growth through the production of excessive amounts of extracellular matrix. Such lesions are clinically silent unless progression to the next phase continues: the lesions degenerate, forming a mostly necrotic "lipid core" consisting of extracellular lipid, cholesterol crystals, inflammatory cells and necrotic debris. A fibrous cap is formed which prevents the interaction of blood cells, particularly of platelets with the highly proaggregatory material found in the lipid core. However, continuous inflammatory activity and/or heightened mechanical stress (i.e., in hypertension) tends to weaken the fibrous caps. Eventually, plaque rupture ensues, platelets aggregate, and the lesions become clinically manifest in such dramatic events as myocardial infarction, stroke, or mesenteric ischemia. Research into lesion formation and progression is limited by the fact that lesions develop in silence over many decades and that animal models only incompletely model the situation in humans. Most currently debated concepts accept the "response to injury" hypothesis formulated by the late Russell Ross and the multi-factorial nature of atherogenesis. The discussion today circles around the relative contributions of low density lipoproteins (oxidized or enzymatically modified LDL?), the immune response (adaptive or

  9. NLRP3 inflammasome: a novel link between lipoproteins and atherosclerosis

    PubMed Central

    Li, Wang Li; Hua, Li Gui; Yan, Wang Hong; Ming, Cui; Jun, Yuan Da; Yuan, Lou Da; Nan, Niu

    2016-01-01

    Introduction Pattern recognition receptor-mediated signaling pathways have recently been elucidated to bridge the innate immune system and atherosclerosis. NLRP3 is a member of the NLR family. Upon activation, it initiates IL-1β and IL-18 processing, a key step in the inflammatory process of atherosclerosis. Material and methods We used three different types of lipoproteins, ox-LDL, ox-HDL, and HDL, in Thp-1 at the concentration of 50 mg/l, 100 mg/l, and 150 mg/l respectively. Using real-time polymerase chain reaction and western blot, ELISA detected the expression of NLRP3 and downstream cytokines. NLRP3 siRNA was constructed to down-regulate expression of the NLRP3 gene via the RNA interference technique. 150 mg/l of ox-LDL, ox-HDL and HDL was added to the Thp-1 cell line respectively. We observed the changes in the expression of caspase-1, IL-1β and IL-18 when the NLRP3 gene was down-regulated. Results Ox-LDL and ox-HDL addition not only increases the expression of NLRP3, but also activates the NLRP3 downstream cytokines and caspase-1 and induces IL-1β and IL-18 secretion. Moreover, the effects of activation and induction are shown to have a dose-dependent manner. Expression of NLRP3 and its downstream inflammatory cytokines is reduced in the presence of HDL (p < 0.05). Furthermore, our data demonstrated that NLRP3 siRNA downregulates NLRP3 expression in mononuclear cells, thus leading to a dramatic reduction in the expression of caspase-1, IL-1β and IL-18 (p < 0.05). Conclusions The data suggest that activation of the NLRP3 inflammasome is a critical step in caspase-1 activation and IL-1β and IL-18 secretion. Interference with the NLRP3 inflammasome can significantly inhibit the generation of cytokines, thus impeding the pathogenesis of inflammation. PMID:27695484

  10. Asymptomatic Atherosclerosis in Egyptian Rheumatoid Arthritis Patients and Its Relation to Disease Activity

    PubMed Central

    Elshereef, Rawhya R.; Darwish, Aymen; Ali, Amal; Abdel-kadar, Mohammed; Hamdy, Lamiaa

    2015-01-01

    Aim. To detect the frequency of subclinical atherosclerosis in rheumatoid arthritis patients without clinically evident atherosclerosis and to correlate its presence with the disease activity. Patients and Methods. Our study includes 112 RA patients (group 1) and 40 healthy controls (group 11). All patients and controls were subjected to full history taking, clinical examination, and laboratory investigations. Carotid intima media wall thickness (IMT) and carotid plaques were measured in both groups by B-mode ultrasonography; also color duplex Doppler ultrasound of the brachial artery was done to detect endothelial function. Results. There is atherosclerosis in 31.3% of asymptomatic RA patients compared with only 5% in controls (P = 0.003**). A significant difference was detected in patients with and without atherosclerosis regarding duration of the disease (P = 0.0001***) and patient's age (P = 0.01*). There is highly statistical significant correlation between atherosclerosis and disease activity index. Conclusion. The frequency of subclinical atherosclerosis was high in long-term active RA patients. PMID:25737726

  11. A perspective for atherosclerosis vaccination: is there a place for plant-based vaccines?

    PubMed

    Salazar-González, Jorge Alberto; Rosales-Mendoza, Sergio

    2013-02-27

    Alternatives to pharmacological treatments for atherosclerosis are highly desirable in terms of cost and compliance. During the last two decades several vaccination strategies have been reported as an effort to develop immunotherapeutic treatments. This approach consists on eliciting immune responses able to modulate either the atherosclerosis-associated inflammatory processes or the activity of some physiological mechanisms that are up-regulated under this pathologic condition. In particular, the apolipoprotein B100 (ApoB100) and the cholesterilester transferase protein (CETP) have been targeted in these strategies. It is considered that recent progress in the development of experimental models of oral vaccines against atherosclerosis has opened a new avenue in the field: as plant-based vaccines are considered a viable platform for vaccine production and delivery at low costs, they could serve as an oral-delivered therapeutic approach for atherosclerosis in an economical and patient-friendly manner. The rationale of the design, development and evaluation of possible plant-based vaccines against atherosclerosis is discussed in this review. We identify within this approach a significant trend that will positively impact the field of atherosclerosis vaccination.

  12. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang; Santos, Marcela M; Fernandes, Cleverson; Sukhova, Galina K; Zhang, Jin-Ying; Cheng, Xiang; Yang, Chongzhe; Huang, Xiaozhu; Levy, Bruce; Libby, Peter; Wu, Gongxiong; Shi, Guo-Ping

    2016-05-01

    Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology.

  13. Chronic intermittent hypoxia induces atherosclerosis by NF-κB-dependent mechanisms.

    PubMed

    Song, D; Fang, G; Mao, S-Z; Ye, X; Liu, G; Gong, Y; Liu, S F

    2012-11-01

    Chronic intermittent hypoxia (CIH) causes atherosclerosis in mice fed a high cholesterol diet (HCD). The mechanisms by which CIH promotes atherosclerosis are incompletely understood. This study defined the mechanistic role of NF-κB pathway in CIH+HCD induced atherosclerosis. Wild type (WT) and mice deficient in the p50 subunit of NF-κB (p50-KO) were fed normal chow diet (ND) or HCD, and exposed to sham or CIH. Atherosclerotic lesions on the en face aortic preparation and cross-sections of aortic root were examined. In WT mice, neither CIH nor HCD exposure alone caused, but CIH+HCD caused evident atherosclerotic lesions on both preparations after 20weeks of exposure. WT mice on ND and exposed to CIH for 35.6weeks did not develop atherosclerotic lesions. P50 gene deletion diminished CIH+HCD induced NF-κB activation and abolished CIH+HCD induced atherosclerosis. P50 gene deletion inhibited vascular wall inflammation, reduced hepatic TNF-α level, attenuated the elevation in serum cholesterol level and diminished macrophage foam cell formation induced by CIH+HCD exposure. These results demonstrate that inhibition of NF-κB activation abrogates the activation of three major atherogenic mechanisms associated with an abolition of CIH+HCD induced atherosclerosis. NF-κB may be a central common pathway through which CIH+HCD exposure activates multiple atherogenic mechanisms, leading to atherosclerosis.

  14. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk.

    PubMed

    Gupta, Akanksha; Mohanty, Pallavi; Bhatnagar, Sonika

    2015-04-01

    Atherosclerosis is a life-threatening disease and a major cause of mortalities worldwide. While many of the atherosclerotic sequelae are reflected as microvascular effects in the eye, the molecular mechanisms of their development is not yet known. In this study, we employed a systems biology approach to unveil the most significant events and key molecular mediators of ophthalmic sequelae caused by atherosclerosis. Literature mining was used to identify the proteins involved in both atherosclerosis and ophthalmic diseases. A protein-protein interaction (PPI) network was prepared using the literature-mined seed nodes. Network topological analysis was carried out using Cytoscape, while network nodes were annotated using database for annotation, visualization and integrated discovery in order to identify the most enriched pathways and processes. Network analysis revealed that mitogen-activated protein kinase 1 (MAPK1) and protein kinase C occur with highest betweenness centrality, degree and closeness centrality, thus reflecting their functional importance to the network. Our analysis shows that atherosclerosis-associated ophthalmic complications are caused by the convergence of neurotrophin signaling pathways, multiple immune response pathways and focal adhesion pathway on the MAPK signaling pathway. The PPI network shares features with vasoregression, a process underlying multiple vascular eye diseases. Our study presents a first clear and composite picture of the components and crosstalk of the main pathways of atherosclerosis-induced ocular diseases. The hub bottleneck nodes highlight the presence of molecules important for mediating the ophthalmic complications of atherosclerosis and contain five established drug targets for future therapeutic modulation efforts.

  15. Mutation in KERA Identified by Linkage Analysis and Targeted Resequencing in a Pedigree with Premature Atherosclerosis

    PubMed Central

    van Capelleveen, Julian C.; Bot, Ilze; de Jager, Saskia C.; van Eck, Miranda; Jolley, Jennifer; Kuiper, Johan; Stephens, Jonathon; Albers, Cornelius A.; Vosmeer, C. Ruben; Kruize, Heleen; Geerke, Daan P.; van der Wal, Allard C.; van der Loos, Chris M.; Kastelein, John J. P.; Trip, Mieke D.

    2014-01-01

    Aims Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. Methods and Results Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe−/− mice (r2 = 0.69; p<0.0001). Conclusion A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis. PMID:24879339

  16. Learning motion discrimination with suppressed and un-suppressed MT.

    PubMed

    Thompson, Benjamin; Liu, Zili

    2006-06-01

    Perceptual learning of motion direction discrimination is generally thought to rely on the middle temporal area of the brain (MT/V5). A recent study investigating learning of motion discrimination when MT was psychophysically suppressed found that learning was possible with suppressed MT, but only when the task was sufficiently easy [Lu, H., Qian, N., Liu, Z. (2004). Learning motion discrimination with suppressed MT. Vision Research 44, 1817-1825]. We investigated whether this effect was indeed due to MT suppression or whether it could be explained by task difficulty alone. By comparing learning of motion discrimination when MT was suppressed vs. un-suppressed, at different task difficulties, we found that task difficulty alone could not explain the effects. At the highest difficulty, learning was not possible with suppressed MT, confirming [Lu, H., Qian, N., Liu, Z. (2004). Learning motion discrimination with suppressed MT. Vision Research 44, 1817-1825]. In comparison, learning was possible with un-suppressed MT at the same difficulty level. At the intermediate task difficulty, there was a clear learning disadvantage when MT was suppressed. Only for the easiest level of difficulty, did learning become equally possible for both suppressed and un-suppressed conditions. These findings suggest that MT plays an important role in learning to discriminate relatively fine differences in motion direction.

  17. Pressure suppression containment system

    DOEpatents

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  18. Pressure suppression containment system

    DOEpatents

    Gluntz, Douglas M.; Townsend, Harold E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  19. Drug Insight: appetite suppressants.

    PubMed

    Bray, George A

    2005-02-01

    The term 'appetite suppressant' is used to denote drugs that act primarily on the neurochemical transmitters of the central nervous system to reduce food intake. In addition to drugs that release or mimic the effect of norepinephrine (noradrenaline), this could include drugs that inhibit: reuptake of norepinephrine or 5-hydroxytryptamine (also known as serotonin); bind to the gamma-aminobutyric acid receptors or the cannabinoid receptors; and some peptides that reduce food intake. The sympathomimetic drugs phentermine, diethylpropion, benzphetamine, and phendimetrazine--so named because they mimic many effects of norepinephrine--are only approved in a few countries, and then only for short-term use. Sibutramine, a norepinephrine-5-hydroxytryptamine reuptake inhibitor, is approved for long-term use. Several new mechanisms for drug action are under investigation. Appetite suppressants should be viewed as useful adjuncts to diet and physical activity and might help selected patients to achieve and maintain weight loss.

  20. Tactile suppression of displacement.

    PubMed

    Ziat, Mounia; Hayward, Vincent; Chapman, C Elaine; Ernst, Marc O; Lenay, Charles

    2010-10-01

    In vision, the discovery of the phenomenon of saccadic suppression of displacement has made important contributions to the understanding of the stable world problem. Here, we report a similar phenomenon in the tactile modality. When scanning a single Braille dot with two fingers of the same hand, participants were asked to decide whether the dot was stationary or whether it was displaced from one location to another. The stimulus was produced by refreshable Braille devices that have dots that can be swiftly raised and recessed. In some conditions, the dot was stationary. In others, a displacement was created by monitoring the participant's finger position and by switching the dot activation when it was not touched by either finger. The dot displacement was of either 2.5 mm or 5 mm. We found that in certain cases, displaced dots were felt to be stationary. If the displacement was orthogonal to the finger movements, tactile suppression occurred effectively when it was of 2.5 mm, but when the displacement was of 5 mm, the participants easily detected it. If the displacement was medial-lateral, the suppression effect occurred as well, but less often when the apparent movement of the dot opposed the movement of the finger. In such cases, the stimulus appeared sooner than when the brain could predict it from finger movement, supporting a predictive rather than a postdictive differential processing hypothesis.

  1. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis.

    PubMed

    Luna-Luna, María; Medina-Urrutia, Aida; Vargas-Alarcón, Gilberto; Coss-Rovirosa, Fernanda; Vargas-Barrón, Jesús; Pérez-Méndez, Óscar

    2015-07-01

    Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification.

  2. The simulation of magnetic resonance elastography through atherosclerosis.

    PubMed

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm.

  3. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  4. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  5. Liquid biopsy of atherosclerosis using protoporphyrin IX as a biomarker.

    PubMed

    Nascimento da Silva, Monica; Sicchieri, Letícia Bonfante; de Oliveira Silva, Flávia Rodrigues; Andrade, Maira Franco; Courrol, Lilia Coronato

    2014-03-21

    Protoporphyrin IX (PPIX), a derivative of hematoporphyrin, can accumulate in rapidly growing tissues, including tumors and atherosclerotic plaques. The objective of this study is to employ PPIX fluorescence to detect the changes in blood caused by the formation of atheromatous plaques in arteries; this measurement can function as a liquid biopsy. For this purpose twenty four rabbits were randomly divided into groups: control group (CG)--fed with a normal diet, and an experimental group (EG)--fed with a hypercholesterolemic diet (1% cholesterol). Blood samples were collected before (0 time) and after 22, 43, 64 days to measure biochemical factors. The aortas were removed after 22, 43 and 64 days to assess the atherosclerotic plaques. PPIX was extracted from the blood and fluorescence was measured in the 550-750 nm range from samples that were excited at 405 nm. Aminolevulinic acid (ALA) was administered intravenously to increase the PPIX fluorescence intensity in the arteries and consequently in the liquid biopsy of the atherosclerotic plaques. The results have shown that the PPIX fluorescence increased as the atheromatous plaques grew. The aorta fluorescence and the PPIX fluorescence increased in the animals in the experimental group that received ALA. PPIX that accumulates in atheromatous plaques transfers to the blood and can be analyzed by extracting porphyrin from total blood. Therefore, this method can aid in the early diagnosis of atherosclerosis with high sensitivity.

  6. Pulp Stone, Haemodialysis, End-stage Renal Disease, Carotid Atherosclerosis

    PubMed Central

    Patil, Santosh; Sinha, Nidhi

    2013-01-01

    Objectives: The aim of this study was to determine the relationship between the presence of pulp calcification and carotid artery calcification on the dental panoramic radiographs in End Stage Renal Disease (ESRD) patients who were on haemodialysis. Methods: A total of 112 End Stage Renal Disease (ESRD) patients on who were haemodialysis participated in this study. The periapical and the panoramic radiographs for all the patients were evaluated for the presence or absence of the narrowing of the dental pulps and for pulp stones in the pulp chambers and the pulp canals. The panoramic radiographs were also evaluated to determine the carotid calcification. Results: Carotid calcifications were detected in none of the patients. 84 (74.99%) patients had dental pulp narrowing, and 38 (33.92%) patients had pulp stones. There was no statistical correlation between pulp narrowing and Carotid Artery Calcification (CAC) in the haemodialysis patient group. There was also no statistical correlation between pulp stones and CAC in the haemodialysis patients. Conclusion: However, the incidental finding of CAC on a panoramic radiograph can provide life-saving information for the vascular disease patients, but in the present study, no significant relationship was found between the presence of the pulpal calcification and CAC in the ESRD patients who were on haemodialysis. Therefore, the presence of pulp calcification does not seem to serve as a diagnostic marker for carotid atherosclerosis. PMID:23905147

  7. Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis

    PubMed Central

    2014-01-01

    Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term. PMID:25550701

  8. Nuclear microscopy investigations into the role of iron in atherosclerosis

    NASA Astrophysics Data System (ADS)

    Makjanic, Jagoda; Ponraj, D.; Tan, B. K. H.; Watt, F.

    1999-10-01

    Using nuclear microscopy we have investigated elemental distributions and concentrations in aortic arch tissue sections from three groups of rabbits: (a) rabbits on normal diet (normal group), (b) rabbits on a high-cholesterol diet (control group), and (c) rabbits on a high-cholesterol diet and depleted in iron by weekly bleeding (test group). Rabbits in each group were sacrificed at 4-week time intervals, at 4, 8, 12 and 16 weeks. As early as 4 weeks, the aortic arches of control rabbits showed signs of fatty streaks and lesions, with a 2-fold average increase of iron concentration in the artery wall of cholesterol fed rabbits compared to the normal group. At 12 and 16 weeks the control group exhibited well-developed atherosclerotic lesions with an accompanying 3-fold increase in iron. The test group showed a significant reduction of lesion formation compared to the controls, and only after 12 weeks was an increase in iron concentration in the aortic arch observed. These findings show that controlled blood letting results in reduced uptake of iron by the artery wall and delayed atherosclerotic lesion formation. This correlation strongly suggests that iron has an important role in the aetiology of atherosclerosis.

  9. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  10. Race-gender differences in the association of trait anger with subclinical carotid artery atherosclerosis: the Atherosclerosis Risk in Communities Study.

    PubMed

    Williams, Janice E; Couper, David J; Din-Dzietham, Rebecca; Nieto, F Javier; Folsom, Aaron R

    2007-06-01

    This paper examines the association between trait anger and subclinical carotid artery atherosclerosis among 14,098 Black or White men and women, aged 48-67 years, in the Atherosclerosis Risk in Communities Study cohort, 1990-1992. Trait anger was assessed using the 10-item Spielberger Trait Anger Scale. Carotid atherosclerosis was determined by an averaged measure of the wall intimal-medial thickness (IMT) of the carotid bifurcation and of the internal and common carotids, measured by high-resolution B-mode ultrasound. In the full study cohort, trait anger and carotid IMT were significantly and positively associated (p = 0.04). In race-gender stratified analysis, the association was strongest and independent only in Black men, among whom a significant trait anger-carotid IMT relation was observed for both the overall trait anger measure (p = 0.004) and the anger reaction dimension (p = 0.001). In Black men, carotid IMT levels increased across categories of overall trait anger and anger reaction, resulting in clinically significant differences (67 microm (95% confidence interval: 23, 110) and 82 microm (95% confidence interval: 40, 125), respectively) from low to high anger. Sociodemographic, lifestyle, anthropometric, and biologic cardiovascular disease risk factors appear to mediate the relation in Black women, White men, and White women. In conclusion, these findings document disparate race-gender patterns in the association of trait anger with subclinical carotid artery atherosclerosis.

  11. [Genetic dimorphism in beta-aminoisobutyric acid excretion in patients with atherosclerosis of the coronary artery and in groups at risk for atherosclerosis in the Lithuanian population].

    PubMed

    Spitsyn, V A; Stakishaĭtis, D V; Preĭksha, R A

    1993-11-01

    Frequency of genetic variants of excretion of beta-aminoisobutyric acid (BAIB) in the urea was examined in patients suffering from atherosclerosis of coronary arteries and in risk group for atherosclerosis: children frequently suffering from respiratory viral infection, children with insulin-dependent diabetes mellitus (IDDM) and in adults suffering from IDDM and non-insulin-dependent diabetes mellitus. With the aim to determine whether excretion of BAIB could be related with CMV persistence of with proteolytic activity of blood serum the IgG class antibodies against CMV and level of alpha 1-proteinase inhibitor (alpha 1-PI) in blood serum was tested also. Frequency of high excretors of BAIB was found significantly more often (P < 0.01) in children suffering from virus infection compared to that of population. Frequency distribution of BAIB excretion showed that "high excretors" were found significantly more often in children suffering from atherosclerosis. The difference of BAIB excretion among healthy and diabetics was not defined (P > 0.05). The changes of excretion of BAIB in urea were not related with quantity of alpha 1-PI in blood serum. Investigation reveal a possible relation between high BAIB excretor and latent CMV infection and that this may impact atherogenesis. This leads to a suggestion that children who are often ill with respiratory virus infection may constitute a risk group for coronary atherosclerosis.

  12. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice.

    PubMed

    Zhang, Huili; Guo, Changfa; Zhang, Alian; Fan, Yuqi; Gu, Ting; Wu, Duojiao; Sparatore, Anna; Wang, Changqian

    2012-12-15

    Hydrogen sulfide (H(2)S) is a novel gaseous mediator that plays important roles in atherosclerosis. The present study investigated the effect of a novel H(2)S-releasing aspirin, ACS14 (2-acetyloxybenzoic acid 4-(3-thioxo-3H-1,2-dithiol-5-yl)phenyl ester), on atherosclerotic plaques in fat-fed apoE(-/-) mice and the underlying mechanism with respect to CX3C chemokine receptor 1 (CX3CR1) in macrophages. Mouse macrophage cell line RAW264.7 or mouse peritoneal macrophages were preincubated with aspirin (50, 100 or 200μM), ACS14 (50, 100 or 200μM) or vehicle for 6h, and then stimulated with interferon (IFN)-γ (500U/ml) or lipopolysaccharide (LPS; 10μg/ml) for 12h. ACS14, but not aspirin, dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 expression and CX3CR1-mediated chemotaxis in macrophages. The inhibitory effect of ACS14 on CX3CR1 expression was abolished by pretreatment with GW9662, a selective peroxisome proliferator-activated receptor (PPAR)-γ antagonist, suggesting that suppression of macrophage CX3CR1 expression by ACS14 is PPAR-γ dependent. Eight-week-old male apoE(-/-) mice received intraperitoneal ACS14 (15 or 30μmol/kg/day) or aspirin (15 or 30μmol/kg/day) 4 weeks after fat feeding. Twelve weeks after ACS14 or aspirin treatment, mice were sacrificed to evaluate the extent of atherosclerosis and CX3CR1 expression in brachiocephalic artery (BCA). We found that ACS14, but not aspirin, significantly downregulated CX3CR1 expression in atherosclerotic plaques. ACS14 considerably impeded the formation and development of atherosclerosis as compared to a molar equivalent dose of aspirin. These data indicate that ACS14 may prevent the progression of atherosclerosis by downregulating macrophage CX3CR1 expression via a PPAR-γ-dependent mechanism.

  13. Reality of a Vaccine in the Prevention and Treatment of Atherosclerosis.

    PubMed

    García-González, Victor; Delgado-Coello, Blanca; Pérez-Torres, Armando; Mas-Oliva, Jaime

    2015-07-01

    Atherosclerosis together with multiple sclerosis, psoriasis and rheumatoid arthritis can be used as examples of chronic inflammatory diseases associated with multifactorial components that evolve over the years. Nevertheless, an important difference between these diseases relies on the fact that atherosclerosis develops from early ages where inflammation dominates the very beginning of the disease. This review highlights the inflammatory nature of atherosclerosis and the role the immune system plays in the process of atherogenesis. Although treatment of atherosclerosis has been for years based on lipid-lowering therapies reducing a series of risk factors, the degree of success has been only limited because cardiovascular complications related to the evolution of atherosclerotic lesions continue to appear in the population worldwide. In this sense, alternative treatments for atherosclerosis have come into play where both innate and adaptive immunity have been proposed to modulate atherosclerosis-associated inflammatory phenomena. When tested for their atheroprotective properties, several immunogens have been studied through passive and active immunization with good results and, therefore, the strategy through vaccination to control the disease has been made possible. Many experimental pre-clinical studies demonstrating proof of concept that vaccination using DNA and protein with an effective use of adjuvants and the optimal route of administration now provide a tangible new therapeutic approach that sets the stage for several of these vaccines to be tested in large, randomized, long-term clinical studies. A vaccine ready for human use will only be accomplished through the close association between academia, regulatory government organizations and private industry, allowing the reality of a simple and successful therapy to reduce atherosclerosis and its severe clinical complications.

  14. Impact of Hydroxychloroquine on Atherosclerosis and Vascular Stiffness in the Presence of Chronic Kidney Disease.

    PubMed

    Shukla, Ashutosh M; Bose, Chhanda; Karaduta, Oleg K; Apostolov, Eugene O; Kaushal, Gur P; Fahmi, Tariq; Segal, Mark S; Shah, Sudhir V

    2015-01-01

    Cardiovascular disease is the largest cause of morbidity and mortality among patients with chronic kidney disease (CKD) and end-stage kidney disease, with nearly half of all deaths attributed to cardiovascular disease. Hydroxychloroquine (HCQ), an anti-inflammatory drug, has been shown to have multiple pleiotropic actions relevant to atherosclerosis. We conducted a proof-of-efficacy study to evaluate the effects of hydroxychloroquine in an animal model of atherosclerosis in ApoE knockout mice with and without chronic kidney disease. Forty male, 6-week-old mice were divided into four groups in a 2 x 2 design: sham placebo group; sham treatment group; CKD placebo group; and CKD treatment group. CKD was induced by a two-step surgical procedure. All mice received a high-fat diet through the study duration and were sacrificed after 16 weeks of therapy. Mice were monitored with ante-mortem ultrasonic echography (AUE) for atherosclerosis and vascular stiffness and with post-mortem histology studies for atherosclerosis. Therapy with HCQ significantly reduced the severity of atherosclerosis in CKD mice and sham treated mice. HCQ reduced the area of aortic atherosclerosis on en face examination by approximately 60% in HCQ treated groups compared to the non-treated groups. Additionally, therapy with HCQ resulted in significant reduction in vascular endothelial dysfunction with improvement in vascular elasticity and flow patterns and better-preserved vascular wall thickness across multiple vascular beds. More importantly, we found that presence of CKD had no mitigating effect on HCQ's anti-atherosclerotic and vasculoprotective effects. These beneficial effects were not due to any significant effect of HCQ on inflammation, renal function, or lipid profile at the end of 16 weeks of therapy. This study, which demonstrates structural and functional protection against atherosclerosis by HCQ, provides a rationale to evaluate its use in CKD patients. Further studies are needed to

  15. Impact of Hydroxychloroquine on Atherosclerosis and Vascular Stiffness in the Presence of Chronic Kidney Disease

    PubMed Central

    Shukla, Ashutosh M.; Bose, Chhanda; Karaduta, Oleg K.; Apostolov, Eugene O.; Kaushal, Gur P.; Fahmi, Tariq; Segal, Mark S.; Shah, Sudhir V.

    2015-01-01

    Cardiovascular disease is the largest cause of morbidity and mortality among patients with chronic kidney disease (CKD) and end-stage kidney disease, with nearly half of all deaths attributed to cardiovascular disease. Hydroxychloroquine (HCQ), an anti-inflammatory drug, has been shown to have multiple pleiotropic actions relevant to atherosclerosis. We conducted a proof-of-efficacy study to evaluate the effects of hydroxychloroquine in an animal model of atherosclerosis in ApoE knockout mice with and without chronic kidney disease. Forty male, 6-week-old mice were divided into four groups in a 2 x 2 design: sham placebo group; sham treatment group; CKD placebo group; and CKD treatment group. CKD was induced by a two-step surgical procedure. All mice received a high-fat diet through the study duration and were sacrificed after 16 weeks of therapy. Mice were monitored with ante-mortem ultrasonic echography (AUE) for atherosclerosis and vascular stiffness and with post-mortem histology studies for atherosclerosis. Therapy with HCQ significantly reduced the severity of atherosclerosis in CKD mice and sham treated mice. HCQ reduced the area of aortic atherosclerosis on en face examination by approximately 60% in HCQ treated groups compared to the non-treated groups. Additionally, therapy with HCQ resulted in significant reduction in vascular endothelial dysfunction with improvement in vascular elasticity and flow patterns and better-preserved vascular wall thickness across multiple vascular beds. More importantly, we found that presence of CKD had no mitigating effect on HCQ’s anti-atherosclerotic and vasculoprotective effects. These beneficial effects were not due to any significant effect of HCQ on inflammation, renal function, or lipid profile at the end of 16 weeks of therapy. This study, which demonstrates structural and functional protection against atherosclerosis by HCQ, provides a rationale to evaluate its use in CKD patients. Further studies are needed to

  16. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  17. Regression of atherosclerosis by the intravenous infusion of specific biochemical nutrient substrates in animals and humans.

    PubMed Central

    Dudrick, S J

    1987-01-01

    Preliminary studies in 400 New Zealand albino rabbits produced a reliable animal model of nutrient-induced atherosclerosis that simulated that observed in humans. Atherosclerosis was then induced in an additional 1600 rabbits in sets of 40 animals each, maintaining plasma cholesterol concentrations between 1000 and 2000 mg/dL for 6-20 weeks. In each set, 10 control rabbits were killed to document baseline atherosclerosis, and the other 30 rabbits were assigned randomly to one of three groups of 10 rabbits. Groups of 10 rabbits were either continued on the atherogenic diet (group I), given standard laboratory rabbit pellets (group II), or infused continuously with specially formulated anticholesterol solutions via central venous catheters (group III) for 6 weeks. At autopsy, atherosclerotic lesions consistently involved 85-95% of the aorta in group I. In group II, atherosclerosis was comparable with the baseline control group with no regression. In group III, regression of atherosclerosis by 90-95% was consistently documented. Correlations between plasma amino acids and plasma cholesterol concentrations were established in four humans with severe atherosclerosis to maximize the cholesterol reduction capacity of the amino acid formulation. Infusion of the modified total parenteral nutrition solution induced prompt reduction in plasma cholesterol levels by 40-60% regardless of the initial level and was accompanied by evidence of regression of atherosclerosis after a 90-day infusion therapy period. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 13. Fig. 14. Fig. 15. Fig. 16. Fig. 18. Fig. 19. Fig. 20. PMID:3115205

  18. Decreased Renal Function Is a Risk Factor for Subclinical Coronary Atherosclerosis in Korean Postmenopausal Women

    PubMed Central

    Yun, Bo Hyon; Chon, Seung Joo; Cho, Si Hyun; Choi, Young Sik; Lee, Byung Seok

    2016-01-01

    Objectives Decreased renal function is associated with increased cardiovascular risk. Our study was planned to verify the association of decreased renal function and subclinical coronary atherosclerosis in postmenopausal women. Methods We performed a retrospective review of 251 Korean postmenopausal women who visited the health promotion center for a routine health checkup. Estimated glomerular filtration rate (eGFR) was used to show renal function, which was estimated by calculated using the Cockcroft-Gault (CG) and the modification of diet in renal disease (MDRD) formulas. Coronary atherosclerosis was assessed by 64-row multidetector computed tomography. Results Women with reduced eGFR (< 60 mL/minute/1.73 m2) had significantly higher brachial-ankle pulse wave velocity (baPWV) than women with normal eGFR (≥ 60 mL/minute/1.73 m2). The eGFR was negatively correlated with baPWV (r = -0.352, P < 0.001), significantly. The eGFR was lower in women with coronary atherosclerosis than in normal control women, markedly. Reduced eGFR was significantly associated with the presence of coronary atherosclerosis (odds ratio [OR] = 7.528, 95% confidence interval [CI] = 2.728-20.772, P < 0.001). Conclusions Decreased eGFR was closely associated with increased arterial stiffness and coronary atherosclerosis in postmenopausal women. Evaluating subclinical atherosclerosis by screening the renal function in postmenopausal women may be helpful screening high risk group and considering starting menopausal hormone therapy before atherosclerosis development. PMID:28119897

  19. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    PubMed

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  20. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  1. Deleterious effects of reactive aldehydes and glycated proteins on macrophage proteasomal function: possible links between diabetes and atherosclerosis.

    PubMed

    Moheimani, Fatemeh; Morgan, Philip E; van Reyk, David M; Davies, Michael J

    2010-06-01

    People with diabetes experience chronic hyperglycemia and are at a high risk of developing atherosclerosis and microvascular disease. Reactions of glucose, or aldehydes derived from glucose (e.g. methylglyoxal, glyoxal, or glycolaldehyde), with proteins result in glycation that ultimately yield advanced glycation end products (AGE). AGE are present at elevated levels in plasma and atherosclerotic lesions from people with diabetes, and previous in vitro studies have postulated that the presence of these materials is deleterious to cell function. This accumulation of AGE and glycated proteins within cells may arise from either increased formation and/or ineffective removal by cellular proteolytic systems, such as the proteasomes, the major multi-enzyme complex that removes proteins within cells. In this study it is shown that whilst high glucose concentrations fail to modify proteasome enzyme activities in J774A.1 macrophage-like cell extracts, reactive aldehydes enhanced proteasomal enzyme activities. In contrast BSA, pre-treated with high glucose for 8 weeks, inhibited both the chymotrypsin-like and caspase-like activities. BSA glycated using methylglyoxal or glycolaldehyde, also inhibited proteasomal activity though to differing extents. This suppression of proteasome activity by glycated proteins may result in further intracellular accumulation of glycated proteins with subsequent deleterious effects on cellular function.

  2. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo

    PubMed Central

    Lewis, Daniel R.; Petersen, Latrisha K.; York, Adam W.; Zablocki, Kyle R.; Joseph, Laurie B.; Kholodovych, Vladyslav; Prud’homme, Robert K.; Uhrich, Kathryn E.; Moghe, Prabhas V.

    2015-01-01

    Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes. PMID:25691739

  3. Fluorescence spectroscopic detection of early injury-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Lucas, Alexandra; Perk, Masis; Wen, Yue; Smith, Carol

    1992-08-01

    Laser-induced fluorescence spectroscopy has been used for the detection of advanced atherosclerotic lesions. Angioplasty balloon-mediated injury was examined spectroscopically in order to assess the sensitivity of fluorescence spectroscopy for detection of early atherosclerosis. Abdominal aortic balloon angioplasty was performed via femoral artery cutdown in nine White Leghorn roosters (five normal, four atherogenic diet). Roosters were sacrificed at 1, 2, 4, 8, and 12 week intervals. Fluorescence emission spectra (n equals 114) were recorded from each aortic section (XeCl excimer laser, 308 nm, 1.5 - 2.0 mJ/pulse, 5 Hz). Changes in normalized fluorescence emission intensity were correlated with selected sections of histology. All balloon-injured segments showed intimal fibrous proliferation. For intimal thickness measuring > 70 (mu) , fluorescence emission intensity was decreased at 440 - 460 nm (p < 0.0005). Lesions complicated by thrombus also had lower fluorescence emission at 425 - 450 nm when compared to histologically normal aorta (p < 0.009). In injured segments high cholesterol diet resulted in lower recorded fluorescence emission at 440 - 460 nm (p < 0.001) associated with the increase in intimal thickness. Spectra from uninjured elastic aorta (aortic arch and thoracic aorta) had greater fluorescence intensity at 380 - 445 nm than muscular (abdominal) aorta (p < 0.01), therefore, only spectra from injured and uninjured segments of corresponding areas of the aorta were compared. The conclusion is: (1) Early intimal proliferative changes after angioplasty can be detected by fluorescence spectroscopy. (2) Spectra from elastic thoracic aorta differ significantly from the spectra of muscular abdominal aorta.

  4. p62-enriched inclusion bodies in macrophages protect against atherosclerosis

    PubMed Central

    Sergin, Ismail; Bhattacharya, Somashubhra; Emanuel, Roy; Esen, Emel; Stokes, Carl J.; Evans, Trent D.; Arif, Batool; Curci, John A.; Razani, Babak

    2016-01-01

    Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages that cannot undergo autophagy because of a deficiency of an autophagy component such as ATG5. We showed that exposure of macrophages to atherogenic lipids led to an increase in the abundance of the autophagy chaperone p62, which colocalized with polyubiquitinated proteins in cytoplasmic inclusions. p62 accumulation was increased in ATG5-null macrophages, which had large cytoplasmic ubiquitin-positive p62 inclusions. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that co-localized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. The failure of these aggregates to form was associated with increased secretion of IL-1β and enhanced macrophage apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted. PMID:26732762

  5. Suppression subtractive hybridization.

    PubMed

    Ghorbel, Mohamed T; Murphy, David

    2011-01-01

    Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.

  6. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome.

    PubMed

    Lin, Yan-Jie; Juan, Chi-Chang; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Chen, Chin-Chang; Ho, Low-Tone

    2015-05-08

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ETAR during insulin resistance, ETAR expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ETAR expression, but not ETBR, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ETAR pathway suppressed insulin-induced AKT

  7. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress.

    PubMed

    Wang, Lintao; Huang, Zhouqing; Huang, Weijian; Chen, Xuemei; Shan, Peiren; Zhong, Peng; Khan, Zia; Wang, Jingying; Fang, Qilu; Liang, Guang; Wang, Yi

    2017-04-04

    Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development.

  8. Comparison of the effects of escitalopram and atorvastatin on diet-induced atherosclerosis in rats.

    PubMed

    Unis, Amina; Abdelbary, Amany; Hamza, Manal

    2014-03-01

    Atherosclerosis is one of the most common disorders among the elderly. Depression may be associated with the development of atherosclerosis. Thus, the aim of this study is to evaluate and compare the effects of escitalopram (a selective serotonin reuptake inhibitor) with atorvastatin (a well known antihyperlipidemic drug) on high fat diet induced atherosclerosis in rats. The results of this study showed that the administration of either escitalopram or atorvastatin for 6 weeks was associated with a significant decrease in serum levels of total cholesterol, triglycerides, low density lipoproteins, very low density lipoproteins, and serum malondialdehyde, and a significant increase in high density lipoproteins when compared with the atherosclerosis model group. Histopathological examination of the aortas from the test rats revealed significant regression of atherosclerotic changes, together with a significant decrease in vascular cell adhesion molecule-1 (VCAM-1) expression in the media of both the escitalopram group and the atorvastatin group when compared with the atherosclerosis model group. This study has shown that escitalopram reduced atherosclerotic changes, thus its use as an antidepressant in elderly patients should be considered.

  9. Early Onset Intrauterine Growth Restriction in a Mouse Model of Gestational Hypercholesterolemia and Atherosclerosis

    PubMed Central

    Busso, Dolores; Mascareño, Lilian; Salas, Francisca; Berkowitz, Loni; Santander, Nicolás; Quiroz, Alonso; Amigo, Ludwig; Valdés, Gloria; Rigotti, Attilio

    2014-01-01

    The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22–24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition. PMID:25295255

  10. Leishmania major Self-Limited Infection Increases Blood Cholesterol and Promotes Atherosclerosis Development.

    PubMed

    Fernandes, Luciana R; Ribeiro, Ana Cecília C; Segatto, Marcela; Santos, Luís Felipe F F; Amaral, Joana; Portugal, Luciane R; Leite, Jacqueline I A

    2013-01-01

    Leishmania major infection of resistant mice causes a self-limited lesion characterized by macrophage activation and a Th1 proinflammatory response. Atherosclerosis is an inflammatory disease involving hypercholesterolemia and macrophage activation. In this study, we evaluated the influence of L. major infection on the development of atherosclerosis using atherosclerosis-susceptible apolipoprotein E-deficient (apoE KO) mice. After 6 weeks of infection, apoE KO mice exhibited reduced footpad swelling and parasitemia similar to C57BL/6 controls, confirming that both strains are resistant to infection with L. major. L. major-infected mice had increased plasma cholesterol levels and reduced triacylglycerols. With regard to atherosclerosis, noninfected mice developed only fatty streak lesions, while the infected mice presented with advanced lesions containing a necrotic core and an abundant inflammatory infiltrate. CD36 expression was increased in the aortic valve of the infected mice, indicating increased macrophage activation. In conclusion, L. major infection, although localized and self-limited in resistant apoE KO mice, has a detrimental effect on the blood lipid profile, increases the inflammatory cell migration to atherosclerotic lesions, and promotes atherogenesis. These effects are consequences of the stimulation of the immune system by L. major, which promotes the inflammatory components of atherosclerosis, which are primarily the parasite-activated macrophages.

  11. Leishmania major Self-Limited Infection Increases Blood Cholesterol and Promotes Atherosclerosis Development

    PubMed Central

    Fernandes, Luciana R.; Ribeiro, Ana Cecília C.; Segatto, Marcela; Santos, Luís Felipe F. F.; Amaral, Joana; Portugal, Luciane R.; Leite, Jacqueline I. A.

    2013-01-01

    Leishmania major infection of resistant mice causes a self-limited lesion characterized by macrophage activation and a Th1 proinflammatory response. Atherosclerosis is an inflammatory disease involving hypercholesterolemia and macrophage activation. In this study, we evaluated the influence of L. major infection on the development of atherosclerosis using atherosclerosis-susceptible apolipoprotein E-deficient (apoE KO) mice. After 6 weeks of infection, apoE KO mice exhibited reduced footpad swelling and parasitemia similar to C57BL/6 controls, confirming that both strains are resistant to infection with L. major. L. major-infected mice had increased plasma cholesterol levels and reduced triacylglycerols. With regard to atherosclerosis, noninfected mice developed only fatty streak lesions, while the infected mice presented with advanced lesions containing a necrotic core and an abundant inflammatory infiltrate. CD36 expression was increased in the aortic valve of the infected mice, indicating increased macrophage activation. In conclusion, L. major infection, although localized and self-limited in resistant apoE KO mice, has a detrimental effect on the blood lipid profile, increases the inflammatory cell migration to atherosclerotic lesions, and promotes atherogenesis. These effects are consequences of the stimulation of the immune system by L. major, which promotes the inflammatory components of atherosclerosis, which are primarily the parasite-activated macrophages. PMID:23710353

  12. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

    PubMed Central

    Lee, Sang Joon; Choi, Woorak; Seo, Eunseok; Yeom, Eunseop

    2015-01-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. PMID:26561854

  13. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis[S

    PubMed Central

    Melchior, John T.; Sawyer, Janet K.; Kelley, Kathryn L.; Shah, Ramesh; Wilson, Martha D.; Hantgan, Roy R.; Rudel, Lawrence L.

    2013-01-01

    Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr−/− mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment. PMID:23804810

  14. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension.

    PubMed Central

    Zeiher, A M; Drexler, H; Saurbier, B; Just, H

    1993-01-01

    The effects of age, atherosclerosis, hypertension, and hypercholesterolemia on vascular function of the coronary circulation were studied by subselective intracoronary infusions of acetylcholine, which releases endothelium-derived relaxing factor, and papaverine, which directly relaxes vascular smooth muscle, in normal patients (n = 18; no risk factors for coronary artery disease), in patients with evidence of early atherosclerosis but normal cholesterol levels and normal blood pressure (n = 12), in patients with hypertension without left ventricular hypertrophy (n = 12), and in patients with hypercholesterolemia (n = 20). Papaverine-induced maximal increases in coronary blood flow were significantly greater in normals, but no differences were noted between the groups of patients with early atherosclerosis, with hypertension, and with hypercholesterolemia. The capacity of the coronary system to increase blood flow in response to acetylcholine was similar in normal and normocholesterolemic patients with epicardial atherosclerosis and/or hypertension but was significantly impaired in patients with hypercholesterolemia, irrespective of evidence of epicardial atherosclerotic lesions. Age (r = -0.62, P < 0.0001) and total serum cholesterol levels (r = -0.70; P < 0.0001) were the only significant independent predictors of a blunted coronary blood flow response to acetylcholine. Thus, hypercholesterolemia and advanced age selectively impair endothelium-mediated relaxation of the coronary microvasculature in response to acetylcholine, whereas endothelial dysfunction is restricted to epicardial arteries in age-matched normocholesterolemic patients with evidence of coronary atherosclerosis and/or hypertension. Images PMID:8349804

  15. Emerging Roles of Flavin Monooxygenase 3 (FMO3) in Cholesterol Metabolism and Atherosclerosis

    PubMed Central

    Schugar, Rebecca C.; Brown, J. Mark

    2015-01-01

    Purpose of Review Atherosclerosis and associated cardiovascular disease (CVD) still remain the largest cause of mortality worldwide. Several recent studies have discovered that metabolism of common nutrients by gut microbes can produce a proatherogenic metabolite called trimethylamine-N-oxide (TMAO). The goal of this review is to discuss emerging evidence that the hepatic enzyme that generates TMAO, flavin monooxygenase 3 (FMO3), plays a regulatory role in maintaining whole body cholesterol balance and atherosclerosis development. Recent Findings Several independent studies have recently uncovered a link between either FMO3 itself or its enzymatic product TMAO with atherosclerosis and hepatic insulin resistance. These recent studies show that inhibition of FMO3 stimulates macrophage reverse cholesterol transport (RCT) and protects against atherosclerosis in mice. Summary A growing body of work demonstrates that nutrients present in high fat foods (phosphatidylcholine, choline, and L-carnitine) can be metabolized by the gut microbial enzymes to generate trimethylamine (TMA), which is then further metabolized by the host enzyme FMO3 to produce proatherogenic TMAO. Here we discuss emerging evidence that the TMAO producing enzyme FMO3 is centrally involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism and insulin resistance, and how these new insights provide exciting new avenues for CVD therapies. PMID:26218418

  16. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis.

    PubMed

    Potekhina, Alexandra V; Pylaeva, Ekaterina; Provatorov, Sergey; Ruleva, Natalya; Masenko, Valery; Noeva, Elena; Krasnikova, Tatiana; Arefieva, Tatiana

    2015-01-01

    Objective. Immune processes play a significant role in atherosclerosis plaque progression. Regulatory T cells and T helpers 17 were shown to possess anti- and pro-atherogenic activity, respectively. We aimed to investigate the balance of circulating Treg and Th17 in stable angina patients with different stages of coronary atherosclerosis. Methods. Treg, Th17 and Th1 cell frequencies were studied in 117 patients via direct immunofluorescence staining and flow cytometry. Group 1 had intact coronary arteries. Group 2 and Group 3 had undergone previous coronary stenting; in Group 2 no coronary atherosclerosis progression was found, in Group 3 patients had disease progression in non-invaded coronary arteries. Group 4 had severe coronary atherosclerosis. Results. The frequencies of CD4+CD25highCD127low, CD4+foxp3+, and CD4+IL10 + T cells were decreased, and CD4+IL17 + T cells frequencies were increased in group 4 vs. 1. Treg/Th17 ratios were declined in groups 3 and 4 vs. groups 1 and 2. IL-10 level was lower while hsCRP and sCD25 levels were higher in group 4 vs. 1. Conclusion. We assume that the imbalance in pro- and anti-inflammatory/atherogenic lymphocyte subpopulations is associated with atherosclerosis progression.

  17. Differential impact of serum total bilirubin level on cerebral atherosclerosis and cerebral small vessel disease

    PubMed Central

    Kim, Jonguk; Yoon, Seung-Jae; Woo, Min-Hee; Kim, Sang-Heum; Kim, Nam-Keun; Kim, Jinkwon; Kim, OK-Joon; Oh, Seung-Hun

    2017-01-01

    Background A low serum total bilirubin (T-bil) level is associated with an increased risk of atherosclerosis. However, the differential impact of the serum T-bil level on cerebral atherosclerosis and cerebral small vessel disease (SVD) is still unclear. Methods We evaluated serum T-bil levels from 1,128 neurologically healthy subjects. Indices of cerebral atherosclerosis (extracranial arterial stenosis [ECAS] and intracranial arterial stenosis [ICAS]), and indices of SVD (silent lacunar infarct [SLI], and moderate-to-severe white matter hyperintensities [msWMH]) were evaluated by the use of brain magnetic resonance imaging (MRI) and MR angiography. Results In logistic regression analysis after adjusting for confounding variables, subjects within middle T-bil (odds ratio [OR]: 0.63; 95% CI: 0.41–0.97) and high T-bil tertiles (OR: 0.54; 95% CI: 0.33–0.86) showed a lower prevalence of ECAS than those in a low T-bil tertile. Although subjects with a high T-bil tertile had a lower prevalence of ICAS than those with a low T-bil tertile, the statistical significance was marginal after adjusting for confounding variables. There were no significant differences in the proportions of subjects with SLI and msWMH across serum T-bil tertile groups. Conclusions The serum T-bil level is negatively associated with cerebral atherosclerosis, especially extracranial atherosclerosis, but not with SVD. PMID:28319156

  18. Disruption of TGF-β signaling in T cells accelerates atherosclerosis

    PubMed Central

    Robertson, Anna-Karin L.; Rudling, Mats; Zhou, Xinghua; Gorelik, Leonid; Flavell, Richard A.; Hansson, Göran K.

    2003-01-01

    Increasing evidence suggests that atherosclerosis is an inflammatory disease promoted by hypercholesterolemia. The role of adaptive immunity has been controversial, however. We hypothesized that proatherogenic T cells are controlled by immunoregulatory cytokines. Among them, TGF-β has been implied in atherosclerosis, but its mechanism of action remains unclear. We crossed atherosclerosis-prone ApoE-knockout mice with transgenic mice carrying a dominant negative TGF-β receptor II in T cells. The ApoE-knockout mice with disrupted TGF-β signaling in T cells exhibited a sixfold increase in aortic lesion surface area, a threefold increase in aortic root lesion size, and a 125-fold increase in aortic IFN-γ mRNA when compared with age-matched ApoE-knockou